42 research outputs found

    The cyberspace education revolution : what future for MET [Maritime Education and Training] institutions?

    Get PDF

    Smart Fabric sensors for foot motion monitoring

    Get PDF
    Smart Fabrics or fabrics that have the characteristics of sensors are a wide and emerging field of study. This thesis summarizes an investigation into the development of fabric sensors for use in sensorized socks that can be used to gather real time information about the foot such as gait features. Conventional technologies usually provide 2D information about the foot. Sensorized socks are able to provide angular data in which foot angles are correlated to the output from the sensor enabling 3D monitoring of foot position. Current angle detection mechanisms are mainly heavy and cumbersome; the sensorized socks are not only portable but also non-invasive to the subject who wears them. The incorporation of wireless features into the sensorized socks enabled a remote monitoring of the foot

    Existing and Required Modeling Capabilities for Evaluating ATM Systems and Concepts

    Get PDF
    ATM systems throughout the world are entering a period of major transition and change. The combination of important technological developments and of the globalization of the air transportation industry has necessitated a reexamination of some of the fundamental premises of existing Air Traffic Management (ATM) concepts. New ATM concepts have to be examined, concepts that may place more emphasis on: strategic traffic management; planning and control; partial decentralization of decision-making; and added reliance on the aircraft to carry out strategic ATM plans, with ground controllers confined primarily to a monitoring and supervisory role. 'Free Flight' is a case in point. In order to study, evaluate and validate such new concepts, the ATM community will have to rely heavily on models and computer-based tools/utilities, covering a wide range of issues and metrics related to safety, capacity and efficiency. The state of the art in such modeling support is adequate in some respects, but clearly deficient in others. It is the objective of this study to assist in: (1) assessing the strengths and weaknesses of existing fast-time models and tools for the study of ATM systems and concepts and (2) identifying and prioritizing the requirements for the development of additional modeling capabilities in the near future. A three-stage process has been followed to this purpose: 1. Through the analysis of two case studies involving future ATM system scenarios, as well as through expert assessment, modeling capabilities and supporting tools needed for testing and validating future ATM systems and concepts were identified and described. 2. Existing fast-time ATM models and support tools were reviewed and assessed with regard to the degree to which they offer the capabilities identified under Step 1. 3 . The findings of 1 and 2 were combined to draw conclusions about (1) the best capabilities currently existing, (2) the types of concept testing and validation that can be carried out reliably with such existing capabilities and (3) the currently unavailable modeling capabilities that should receive high priority for near-term research and development. It should be emphasized that the study is concerned only with the class of 'fast time' analytical and simulation models. 'Real time' models, that typically involve humans-in-the-loop, comprise another extensive class which is not addressed in this report. However, the relationship between some of the fast-time models reviewed and a few well-known real-time models is identified in several parts of this report and the potential benefits from the combined use of these two classes of models-a very important subject-are discussed in chapters 4 and 7

    Towards a circular building industry through digitalisation

    Get PDF
    This thesis explores the integration of Circular Economy (CE) principles of narrow, slow, close, and regenerate in the social housing practice through digital technologies. Beginning with the examination of the CE implementation in Dutch social housing organisations, the research extends its focus to the broader built environment, introducing the Circular Digital Built Environment Framework and identifying ten enabling technologies. Subsequent chapters explore realworld applications of these digital technologies in circular new built, renovation, maintenance, and demolition projects of forerunner social housing organisations. The thesis includes a comprehensive study of material passports, addressing challenges around data management and proposing a digitally-enabled framework. The thesis concludes with critical reflections on the findings and their implications and provides further recommendations for research and practical applications in advancing circularity in the building industry through digital technologies

    Baseline estimation from simultaneous satellite laser tracking

    Get PDF
    Simultaneous Range Differences (SRDs) to Lageos are obtained by dividing the observing stations into pairs with quasi-simultaneous observations. For each of those pairs the station with the least number of observations is identified, and at its observing epochs interpolated ranges for the alternate station are generated. The SRD observables are obtained by subtracting the actually observed laser range of the station having the least number of observations from the interpolated ranges of the alternate station. On the basis of these observables semidynamic single baseline solutions were performed. The aim of these solutions is to further develop and implement the SRD method in the real data environment, to assess its accuracy, its advantages and disadvantages as related to the range dynamic mode methods, when the baselines are the only parameters of interest. Baselines, using simultaneous laser range observations to Lageos, were also estimated through the purely geometric method. These baselines formed the standards the standards of comparison in the accuracy assessment of the SRD method when compared to that of the range dynamic mode methods. On the basis of this comparison it was concluded that for baselines of regional extent the SRD method is very effective, efficient, and at least as accurate as the range dynamic mode methods, and that on the basis of a simple orbital modeling and a limited orbit adjustment. The SRD method is insensitive to the inconsistencies affecting the terrestrial reference frame and simultaneous adjustment of the Earth Rotation Parameters (ERPs) is not necessary

    Development of Sophisticated Unmanned Software Systems and Applications to UAV Formation

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Pore-scale Direct Numerical Simulation of Flow and Transport in Porous Media

    Get PDF
    This dissertation presents research on the pore-scale simulation of flow and transport in porous media and describes the application of a new numerical approach based on the discontinuous Galerkin (DG) finite elements to pore-scale modelling. In this approach, the partial differential equations governing the flow at the pore-scale are solved directly where the main advantage is that it does not require a body fitted grid and works on a structured partition of the domain. Furthermore this approach is locally mass conservative, a desirable property for transport simulation. This allows the investigation of pore-scale processes and their effect on macroscopic behaviour more efficiently. The Stokes flow in two and three dimensional disordered packing was solved and the flow field was used in a random-walk particle tracking model to simulate the transport through the packing. The permeabilities were computed and asymptotic behaviour of solute dispersion for a wide range of Péclet numbers was studied. The simulated results agree well with the data reported in the literature, which indicates that the approach chosen here is well suited for pore-scale simulation

    BAC transgene arrays as a model system for studying large-scale chromatin structure

    Get PDF
    The folding of interphase chromatin into large-scale chromatin structure and its spatial organization within nucleus has been suggested to have important roles in gene regulation. In this study, we created engineered chromatin regions consisting of tandem repeats of BAC transgenes, which contain 150-200 kb of defined genomic regions, and used them as a model system to study the mechanisms and functional significance of large-scale chromatin organization. The BAC transgene arrays recapitulated several important features of endogenous chromatin, including transcription level and intranuclear positioning. Using this system, we showed that tandem arrays of housekeeping gene loci form open large-scale chromatin structure independent of their genomic integration sites, including insertions within centromeric heterochromatin. This BAC-specific large-scale chromatin conformation provided a permissive environment for transcription, as evidenced by the copy-number dependent and position independent expression of embedded reporter mini-genes. This leads to the development of a novel method for reliable transgene expression in mammalian cells, which should prove useful in a number of therapeutic and scientific applications. We also demonstrated that BAC transgene arrays can be employed as an effective system for dissecting sequence determinants for intranuclear positioning of gene loci. We showed that in mouse ES and fibroblast cells a BAC carrying a 200 kb human genomic fragment containing the beta-globin locus autonomously targets to the nuclear periphery. Using BAC recombineering, we dissected this 200kb region and identified two genomic regions sufficient to target the BAC transgenes to nuclear periphery. This study represents a first step towards elucidation of the molecular mechanism for the nuclear peripheral localization of genes in mammalian cells
    corecore