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ABSTRACT

Simultaneous Range Differences (SRD’s) to Lageos are obtained by
dividing the observing stations into pairs with quasi-simultaneous
observations. For each of those pairs the station with the least number
of observations is identified, and at its observing epochs interpolated
ranges for the alternate station are generated. The SRD observables
are obtained by subtracting the actually observed laser ranges of the
station having the least number of observations from the interpolated
ranges of the alternate station. On the basis of these observables
semidynamic single baseline solutions have been performed. The aim of
these solutions is to further develop and implement the SRD method in
the real data environment, to assess its accuracy, its advantages and
disadvantages as related to the range dynamic mode methods, when the
baselines are the only parameters of interest.

Baselines, using simultaneous laser range observations to Lageos,
have also been estimated through the purely geometric method. These
baselines formed the standards of comparison in the accuracy
assessment of the SRD method when compared to that of the range
dynamic mode methods. On the basis of this comparison it was
concluded that for baselines of regional extent (i.e., up to 3700 km) the
SRD method is very effective, efficient and at least as accurate as the
range dynamic mode methods, and that on the basis of a simple orbital
modeling and a limited orbit adjustment.

The SRD method is insensitive to the inconsistencies affecting the
terrestrial reference frame and simultaneous adjustment of the Earth
Rotation Parameters (ERP’s) is not necessary. Therefore, this method
offers an inexpensive alternative for projects designed to study regional

plate tectonic motions.
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Chapter 1

INTRODUCTION

1.1 BASELINE ESTIMATION IN THE DYNAMIC AND SEMIDYNAMIC
ENVIRONMENT

In the dynamic environment accurate baseline estimation requires a
highly sophisticated orbital modeling and a baseline-pass geometry
leading to near cancellation of the accumulated along-track and
cross~track orbital errors caused by the erroneous constraints imposed
on a large number of estimable quantities (Rao, 1973), the recovery of
which is not possible due to their reduced data sensitivity. In this
environment proper implementation of the Terrestrial Reference Frame
(TRF) requires simultaneous recovery of the Earth Rotation Parameters
(ERP) or utilization of a consistent set of ERPs obtained through a
separate step.

Although fulfillment of these requirements makes it possible to
effectively recover baselines of global and regional extent, it results in
low temporal resolution of baseline recovery.

In the semidynamic environment (Section 2.2), and on the basis of
simultaneous observations, only regional baselines can be recovered with
an accuracy compatible to that of the observed laser ranges. The
maximum regional baseline length effectively recovered in this
environment depends on whether the simultaneous observations collected
by the baseline end stations are enough to result in a steady state
response (Section 4.2.1). This, however, is a function of the satellite
altitude, and for the Lageos satellite the effective regional extent may
include baselines of up to 3703 km (Section 4.4.2).

In the semidynamic environment a relatively simplified orbital model
is required and only the position and the orientation of each of the arcs

involved is adjusted to "best" fit the available observations (Section



2.2.6). Adjustment for the ERP parameters is not necessary since
proper implementation of the TRF frame is warranted by the use of only
simultaneous observations. The relaxing data requirements and the
limited orbit adjustment make it possible to increase the resolution of
baseline recovery without any loss on the achieved accuracies, and at
the same time to substantially decrease the required computations,
thereby making it possible to effectively implement the semidynamic
methods with limited computer facilities as, for instance, in the personal
computer (PC) environment.

The sophistication of the orbital modeling in the semidynamic
environment can be further simplified by appropriately transforming the
observed laser ranges to bring them "closer" to the estimable quantities
being recovered (i.e., baselines).  The term "closer" indicates that on
the basis of the same orbital model the errors affecting the computed
value of the transformed observations, referred to from now on as
"observables," are smaller than those affecting the computed value of
the observations themselves. By bringing the observations closer to the
estimated baselines, the sophistication of the orbital modeling could be
further reduced if the performed transformation cancels out the errors
caused by the model simplifications.

Transformation of the laser range observations to Simultaneous
Range Difference (SRD) observables brings them closer to the estimated
baselines (Pavlis, 1982). The potential of using SRD observables to
estimate baselines was studied with simulated data by Pavlis (1982). The
results of this study were very promising not only with respect to their

accuracy but also with respect to their simplicity.

1.2 SCOPE OF THIS INVESTIGATION

For the reasons mentioned in the previous section, it was considered
appropriate and worthwhile to pursue the present investigation, the aim
of which is to further develop and implement the SRD method (Section
2.2.1) in the real data environment, to assess its accuracy, its
advantages and disadvantages as related to range dynamic mode

methods, when the baselines are the only parameters of interest.



Since during the MERIT Main Campaign many stations collected
simultaneous observations (Section 3.4), it was decided to proceed not
only with the development of the SRD method but also with baseline
estimation through the geometric method (Section 4.3). These baselines
formed the standards of comparison in the accuracy assessment of both
the SRD and the range dynamic mode methods (Section 4.5).

In pursuing this study, the geometry does not take part in the
physical events, as happens in general relativity, but rather it is used
in its deductive form either purely (i.e., geometric methods) or in
combination with an inductive form (i.e., dynamic and semidynamic
methods), both of which were employed to formulate the spatial-temporal
relationships of the observing stations and the observed satellite
positions.

In a pure deductive mode the geometric method is entirely based on
Euclidean geometry, without any reference to the inductive inference
that the satellite moves along the path chosen by its physical
environment, The implied Euclidean geometry is revealed, in the
arithmetic framework, on the basis of Cartesian coordinates (Section
2.1.1). There exist, however, configurations in which some of the
vertices of the resulting figures are free to move along a locus of
points, thereby forming configurations that are not unique and are
referred to as "critical configurations" (Section 2.1.3).

In the inductive mode, the differential form of a satellite’s motion,
modeled on the basis of Newton’s inductive laws, is expressed through
its equations of motion (Section 2.2.5). These equations are integrated,
on the basis of the deductive mathematical framework, to reveal the
geometric path of the satellite (i.e., orbit), chosen by the satellite’s
physical environment (Section 2.2.3). Having the geometric path of the
satellite, the observing stations are connected with this path through
the Euclidean distance formulated in terms of Cartesian coordinates.
Since the simplest geometry of the satellite orbit reveals itself in an
inertial reference frame, the satellite’s equations of motion are expressed
with respect to such a frame (Section 2.2.4). However, the estimated

Cartesian coordinates of the observing stations are referenced with



respect to an earth-fixed frame (Section 2.2.2).

The deductive and/or inductive formulation described above contains
a large number of slow varying quantities which can be considered
constant for the time span of the observations and a subset of which
constitutes a set of quantities that are estimable only if the necessary
units, constants and/or constraints have been properly adopted for
their unique determination (Rao, 1973).

There are three types of estimable quantities that can be
differentiated from their relation to the physical environment, or the
observing environment, or the links of these two environments.

In satellite geodesy the interstation distances (i.e., baselines) are
estimable quantities related to the observing environment. The estimable
quantities of the physical environment are those related to its cause
(i.e., A,m and B,, potential coefficients) and those to its effect (i.e.,
geometric and dynamic characteristics of the orbit). The estimable
quantities molded in the link of the physical and the observing
environments are those resulting from the latter as relates to the cause
and effect duality of the former (i.e., station geocentric distances,
latitudes, and longitude differences).

The baselines are computed from the earth-fixed station coordinates
which are recovered through an inversion process, such as
least-squares adjustment, on the basis of both the geometric and the
SRD methods (Sections 2.1.2 and 2.2.6). The input to this inversion
process are the Simultaneous Ranges (SR) and SRD observables. These
observables were generated through an interpolation of the observed
laser ranges because it is quite unlikely, if not impossible, to record
simultaneous observations to a passive satellite (Section 3.6). Because of
the peculiarities of the SLR system (Section 3.1 ), it is very likely that
the recorded laser ranges will be affected not only by white noise but
also by large blunders (Section 3.2). For this reason and since the SR
and SRD observables will be generated via an interpolation, it is
important to edit the laser ranges before proceeding with the geometric

and the orbit adjustments.



In the geometric method the recovered baselines will only be
affected by the errors resulting from an improper or from the not yet
reached steady state response (Sections 4.2). The steady state response
of the geometric method, on the basis of a minimum least-squares
solution, is affected only by the observational errors. Such a response,
however, was not possible for longer baselines (Section 4.3.1), and
therefore an overconstrained solution was adopted to form the standards
of comparison with the anticipation that it is the least erroneous when it
is compared either to SRD or to dynamic solutions (Section 4.3.2).

The accuracy of the baselines, recovered via the SRD (Section 4.4)
is assessed from the comparison with the baselines obtained wvia the
geometric methods and the range dynamic mode methods (Section 4.5).
The response of the SRD method to the simplification of the orbital

model has also been investigated (Section 4.6).



Chapter 2

ESTIMATION METHODS

In this chapter an attempt is made to briefly describe the mathematical
models and the principles involved in the geometric and dynamic mode
methods as they are applied to satellite geodesy. Although the
geometric solutions performed in this study are only used as standards
of comparison (Sections 4.3 and 4.5), their mathematical formulation is
presented first because historically the geometric methods were the first

ones to result in accurate differential positioning.

2.1 GEOMETRIC METHODS

Geometric methods are based on the analysis of the relative geometry of
the observations without any reference to the physical processes
creating the problem under question. On the contrary, some or all of
the systematic corrections applied to the observations are computed with
the use of physical models.

In the geometric approach of satellite geodesy (Veis, 1960; Mueller,
1964a), the observed satellite positions are treated as auxiliary
independent points in space, and they are only used to relate the
observations geometrically. This in turn leads to the generation of
space networks. These networks manifest not only the relative geometry
of the observations, but also any a priori information which is necessary
for their realization. Thus each observation relates the position of the
observing station with the observed satellite position. The unknown
parameter vector includes the Cartesian coordinates of the observing
stations together with the Cartesian coordinates of the observed satellite
positions at each of the observing epochs. Since the coordinates of the

unknown satellite positions constitute an independent set of unknowns,



it is necessary to have a sufficient number of observations at each
observing epoch. The number of observations should be sufficient not
only to eliminate the unknown satellite coordinates at each of those
epochs, but also to solve for the unknown station coordinates.

The process described, however, necessitates the usage of
simultaneous (referenced to satellite time) observations without any
reference to the fact that the motion of the satellite obeys the physical
laws of dynamics. These two distinct features create the advantages

and disadvantages of the geometric approach to satellite geodesy.

2.1.1 Mathematical Model

The mapping of the parameter space into the observational space is
referred to as observational modeling. The analytical expression
responsible for the realization of this mapping is referred to as either
the mathematical or the observational model. The mathematical model
employed in the geometric approach is that of the Euclidean range from
a ground station to an observed satellite position expressed in terms of

Cartesian coordinates:

Fij = [(uj—ui)" + (V‘i—V‘)2 + (wj—wi)z]x - rij =0 (2_1)

The quantity rij is the true value of the range observable from the
ground station i to the satellite position j (see Section 3.1), while the
quantities u;, vy, w; and uj, v;, w; denote the true values of the
Cartesian coordinates of station i and satellite position j. These
coordinates may be referred to any arbitrarily chosen Cartesian
coordinate system since ranges are invariant under any rigid body
rotations.

The linearized form of equation (2-1) forms the basis for the
generation of the observation equations when four or more stations are
observing simultaneously (see Section 2.1.3). With these observation
equations the normal equations are derived on the basis of a weighted
constrained least squares adjustment (Uotila, 1967; Krakiwsky et al.,
1967). The resulting normal equations are reduced by eliminating the

unknown satellite coordinates. The reduced normals are then solved to



estimate the stations’ Cartesian coordinates which are finally transformed
to interstation distances.

Inverting the normals on the basis of the minimum required
information (i.e., minimum constraints) leads to baseline errors that
depend solely on the errors of the observed ranges and on their
geometric strength as well. This is true only when the scale has been
properly incorporated into the solution either through the obserwvations
and their geometry, or if this is not possible, through some other

additional constraints (see Section 4.3).

2.1.2 Normal Equations

The observation equations used to derive the normal equations are
obtained from the linearization of equation (2-1). Linearization is
achieved with a Taylor series expansion about the approximate values of
the station coordinates, the satellite coordinates and the observed

ranges as well. The resulting linear equations have the form:

Afj ﬁ,J—ViJ+L1j=O (2_2)
where
Aij = [ 8{] E —aij] (2“3)
aF,j
%7 3uy, vy, wy) (2-4)
[ du, ]
dv‘;
S de
Xij = du} (2-5)
dvi
[ dw;
vy j = residual vector corresponding to the range observable
L, j = the computed minus the observed range



In cases when the geometric strength of the observations is not
good enough to warrant a steady state response, it could still be
possible to reach such a response if estimated or observed interstation
distances are incorporated into the solution (see Section 4.3). This is
accomplished by introducing the interstation distances as fictitious
observations into the adjustment. Appropriate weights should be
applied to these (fictitious) observations in order to avoid any scale
conflicts that might contaminate the solution (Uotila, 1967).

The mathematical model of the interstation distance between stations

k and £ has the following form
Ge = [(ug—u)? + (vg-—vy)? + (we-wy)2]% = Lyp = 0 (2-6)

where L,g is the true value of the fictitiously observed range between
these two stations. Linearization of equation (2-6) about the

approximate station coordinates and the fictitiously observed distance

results in
Cut Xp2 = Vg + Dyz = 0 (2-7)
where
Cer = [ To i -Tp ] (2-8)
3Gy e
Te = (2-9)

ad(up, vg, wg)

Ve = residual of the (fictitiously) observed interstation distance

Dy2 = the computed minus (fictitiously) observed interstation

distance

So far the observation equations have been developed on the basis
of one range observation and one interstation distance. Considering
many range observations and many fictitiously observed interstation

distances, equations (2-2) and (2-7) take the following form:



AR-V+L=0 (2-10)

CR -Ve +D =0 (2-11)

These equations can be rewritten as

NENEN

and with some obvious substitutions they take the following form:
AR + L¥ = VX (2-13)

Equation (2-13) forms a set of observation equations which are used to
derive the normal equations on either deterministic or statistical
grounds.

Deterministically the principle of least squares requires that the
quantity (V¥Tp¥y¥ 4 ffTPx)E) assumes minimum value, subject to the
condition A¥X - V¥ + L¥ = 0. The matrix Py is the weight matrix
associated with the coordinates of the ground stations and of the

observed satellite positions, while the weight matrix P¥ takes the
following form

« P 0
p¥ = 0 P, (2-14)

where P and P are the weight matrices associated with the range
observables and the (fictitiously) observed interstation distances
respectively.

Statistically the maximum likelihood principle requires maximization of
the a posteriori conditional density function of the parameter vector b4
given that the observations L*¥ have been obtained. The resulting
estimator £ is referred to as Bayesian least squares estimator. Both of
the above principles lead to the same estimator X only if normality is

assumed not only for the a priori density function of the estimated
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parameter vector X, but also for the conditional density function of the
observational vector L¥ given that the parameter vector X has been
estimated. These assumptions should only hold for the maximum
likelihood principle since any least squares estimator is a distribution
free estimator. The estimator X is obtained from the resulting normal

equations (Uotila, 1967; Krakiwsky et al., 1967; Cappellari et al., 1976):

ATPA + Py cT X ATPL

where k¢ are the Lagrange multipliers associated with the (fictitiously)
observed interstation distances. Elimination of the Lagrange multipliers

from equation (2-15) leads to the following form for the estimator X:
X = —(ATPA + CTP(C + Py)~! (ATPL + CTP.D) (2-16)

Substitution of equations (2-2) through (2-5) and (2-7) through
(2-9) into equation (2-16) followed by elimination of all the satellite

coordinates leads to the following equations (Krakiwsky et al., 1967):
- The 3x3 diagonal matrix associated with the kth ground station

-1
Niw = [§ 23" Pig ang) - I {angT Puy aig [§ ayT Pijoag)

z
a7 Py ag) + P+ [ ] T Pue T (2-17)

~ The 3x3 off-diagonal matrix corresponding to the kth and sth ground

station
-1
Nit = -1 (2™ Py ayy [? ayT Pig aiy)  aeyT Prjany) +
[ 9] mm Pue 1 (2-18)

~ The 3x1 constant vector associated with the kth ground station
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U = - [)j: auy" Piy Liy) + ) {an;™ Puy g [§: aiyT Pyjayy) -
Ii: aijT Pij Ly } + [ (1) ] TeT Pxe Dy2 (2-19)

In equations (2-17) and (2-19) the j summation is performed over all
the satellite positions observed from station k, while in equation (2-18)
the j summation is performed over all the satellite positions observed
simultaneously from both stations k and £ respectively. The summation
i, on the other hand, is performed over all the stations observing the
satellite position j simultaneously. In these three equations the number
1 is used only when the interstation distance between the stations k
and £ is involved in the solution, otherwise the value of 0 is used.

Equations (2-17) through (2-19) form the basis for the estimation of
the ground station coordinates by inverting the normals through a
procedure accredited to Banachiewich. This procedure is carried out in

two steps.

- The first step involves the representation of the normal matrix as
a product of right and left triangular matrices with the left

triangular matrix having unit diagonal elements.

- The second step involves the computation of the inverse normal
matrix on the basis of only the inverted diagonal elements of the
right triangular matrix and the off-diagonal elements of the left

triangular matrix.

The above procedure is very closely related to the Cholesky algorithm
(Uotila, 1967).

2.1.3 Critical Configurations

In the geometric approach of satellite geodesy the observed satellite
positions (targets) are treated as auxiliary independent points in space.
They are used only to relate the observations geometrically through the
resulting range space networks (see Section 2.1). In certain cases the

ground stations and/or the targets which form the vertices of this
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network are involved in a kind of configuration for which a unique
adjustment is impossible although the number of observations is
sufficient and the coordinate system well defined. These configurations
are referred to as "critical."

With range observations the critical configurations have been
extensively studied in the past (Rinner, 1966; Blaha, 1971; Tsimis, 1972,
1973). The critical configurations have been traditionally analyzed
according to whether all of the observing stations are either in a plane
or generally distributed in space. For both of these cases the resulting

-

singularities are divided into three categories:

1. Singularity A, resulting from the relative geometry of an individual
station connected to its observed targets.

2. Singularity B, resulting from the relative geometry of the observing
stations only.

3. Singularity C, resulting from the relative geometry of all the
observing stations connected to their observed targets when

singularity A and singularity B are not present.

2.1.3.1 Critical configurations when all of the observing stations

are in a plane. When all of the observing stations are in a plane the
singularity problem is analyzed according to the number of stations
observing all the targets. This number may be three or more, or less
than three. The number three is important since ranges from three
stations are needed to eliminate the coordinates of one target, provided
that this target is not located on the plane of these three stations
{Blaha, 1971).

If the number of ground stations observing all the targets is three
or more, singularity A occurs when an individual station—excluding the
stations used to define the coordinate system, since for these three
stations singularity A cannot occur—is either observing less than three
distinct targets or is in the same plane with all of its observed targets.
Furthermore, singularity B occurs when all the observing stations but

one are lying in a straight line or more generally when all the stations
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are lying on a second-order curve. Since at least five stations are
needed to determine a second-order curve, singularity B can only be
avoided if six or more stations are involved. In the absence of
singularities A and B singularity C occurs when the stations making
off-plane observations (i.e., observed targets are not in the same plane)
are not themselves off-curve stations (i.e., not lying in the same
second-order curve). To avoid singularity C at least three off-curve
stations should make off-plane observations (Blaha, 1971; Mueller et al.,
1975). In the case when all the stations observe all the targets,
singularity A loses its importance because it always implies singularity
C, since off-plane observations are necessary to avoid singularity C.

When there do not exist three stations observing all the targets,
elimination of the coordinates for all the targets using the same three
stations cannot be achieved. Thus, in the elimination process one, two
or all of these three stations will have to be replaced. This leads to
the first, second and third replacement respectively, and therefore to at
least four-station events.

We first denote with k the station used in the first replacement. In
this replacement singularity A for all the stations but k, or singularity
B for all stations would occur as though there were three stations
observing all the targets. For station k, however, singularity A occurs
if any new stations coming into play are lying either on the x-axis of
the local coordinate system (e.g., line formed by two of the three
stations used to define the local coordinate system) or in the
intersection line (denoted by 4£) of the plane =n (see below) with the
plane of the ground stations. The plane =, if it exists, is the plane
containing station k together with the satellite positions (denoted by j)
that were observed by this station (e.g., k) up to the epoch at which
the new station(s) started observing. Singularity C, in the absence of
singularities A and B, is further analyzed according to whether j, are
off-plane or in-plane targets. If j, are off-plane targets, singularity C
occurs whenever stations making off-plane observations are not

themselves off-curve stations. The case when j, form in-plane targets
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is not discussed here because it is very unlikely to encounter in
practice. This case, of rather academic interest, is discussed in (Blaha,
1971, page 63).

Next we denote by s8” the station used in the second replacement.
In this replacement, if there is no other station 8"’ to start observing
for the first time after s° has started, singularity A occurs as though
only the first replacement would have taken place. However, with

’

station 8°° present, singularity A for station k occurs if, in addition to
the above, the station s8°° is lying either in the x-axis of the local
coordinate system or in the line £, Furthermore, singularity A for
station 8° occurs if in addition to being in the plane »° (defined below),
the station 8°° is also lying either in the line defined by the station
used as the origin of the local coordinate system and the station k or in
the intersection line (denoted by £°) of the plane =»° with the plane of
the ground stations. The plane n", if it exists, is the plane containing
the station s’ together with the targets (denoted by jg’) observed by
the station 8° up to the epoch at which the station 8°° started
observing. Singularity B occurs as though three stations observing all
the targets exist. If j;- and j, are off-plane targets, in the absence of
singularity A and B, singularity C occurs, when no other stations
besides k and s° exist to make off-plane observations. The case when
Jg’ or jy form in-plane targets is not discussed here because of the
unlikelihood of encountering it in practice.

The singularities resulting from three or more replacements are
similar to the ones described above. By avoiding singularities A, B and

C a nonsingular network can only be formed if at least six stations in at

least four station events are involved. This is so because five stations

are needed to define a second-order curve and only the sixth station is
possible to serve as an off-curve station.

Once a nonsingular network has been realized any extension of it
will result in a nonsingular one if for any additional station singularity
A is eliminated and if no target is lying in the plane of the ground

stations.
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2.1.3.2 Critical configurations when the observing stations are

generally distributed in space. When the ground stations are in general

configuration, singularity B loses its meaning because the effect of
ground stations cannot be separated from that of the targets.
Consequently, singularity B will not be considered here. However,
another type of singularity called "reverse singularity B" is the
singularity B if one assumes that the satellite points (targets) observe
the ground stations. Therefore, this singularity occurs when all the
targets are in a plane in a second-order curve. This in practice could
approximately occur when two short passes of about the same altitude
have been observed.

Having the observing stations in a general configuration, a
nonsingular network can be formed if at least six targets are being
co-observed by at least four stations. Accordingly, the analysis of
critical configurations proceeds by grouping the ground stations in
tetrads ("quads"). With four stations observing all the targets,
singularity A occurs only with respect to the fourth station because
singularity A never occurs for the three stations that have been used
to define the local coordinate system (Blaha, 1971). With respect to the
fourth station, singularity A occurs if all the targets are lying on a
plane through this station, or if all the targets are on the plane formed
by the stations used to define the local coordinate system.
Furthermore, in the absence of singularity A, singularity C occurs when
all the observing stations and all the targets are lying on a
second-order surface.

With more than four stations observing, the singularity problem is
analyzed by grouping the observing stations in quads. If the number
of stations observing all the targets is three or more, singularity A
occurs, as though all the observing stations were lying on a plane (see
Section 2.1.3.1). In the absence of singularity A, singularity C occurs
either when all the observing stations with their observed targets are
located on a second-order surface or when each tetrad of stations
together with its observed targets are located on specific second-order

critical surfaces. These surfaces intersect each other in one
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second-order curve containing the three stations used to eliminate the
coordinates of each target and to define the local coordinate system.
Furthermore, when all the stations are co-observing, these second-order
critical surfaces coincide,

When three stations observing all the targets do not exist, then the
concept of station replacement should be ﬁtilized in exactly the same
way as described in the previous section. Proceeding with this concept
it is found that singularity A occurs as though three stations observing
all the targets exist. As for singularity C, it is again associated with
other specific second-order surfaces in addition to the ones resulting in
singularity C when three stations observing all the targets exist.

By avoiding singularities A and C and reverse singularity B a
nonsingular network can be formed. What is important to keep in mind
is that when the ground stations are generally distributed in space a

nonsingular network can be formed if at least six targets are

co-observed by at least four stations. In fact four stations and five

targets can uniquely define a second-order surface, and the sixth target
could make the network nonsingular if it is not located on this surface.

Once a nonsingular network has been realized, an extension of it
will result in a nonsingular one if singularity A is eliminated for any
additional station and if no targets are on the plane of the three

stations defining the Cartesian coordinate system.

2.2 DYNAMIC AND SEMIDYNAMIC MODE METHODS
In contrast to the geometric methods, the observed satellite positions in
the dynamic and in the semidynamic methods are not treated as auxiliary
independent points in space but rather they are constrained to lie in a
space curve (Schwarz, 1969). This curve should resemble within the
required degree of accuracy the satellite orbit under question. The
satellite orbits, on the other hand, are modeled either empirically or
dynamically or by combining both empirical and dynamical modeling.
Empirical modeling of satellite orbits was extensively used in the

early years of satellite geodesy since many of the model parameters
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entering the equations of motion were not known with the degree of
accuracy required for precise geodetic work (Mueller, 1964b). These
methods are used today in wvery special circumstances and only in
combination with dynamic modeling (Tapley et al., 1985a).

Dynamic modeling results in three second-order differential
equations or six first-order differential equations referred to as
equations of motion of the satellite. These differential equations are
integrated either analytically (i.e., general perturbation methods) or
numerically (i.e., special perturbation methods) to generate the satellite
orbits.

In the general perturbation methods, the equations of motion of the
satellite are reformulated in terms of a set of orbital elements leading to
a set of differential equations which can be integrated analytically.
Unfortunately, a closed form analytical solution for the equations of
motion of the perturbed two-body problem does not exist. It is
possible, however, to obtain approximate analytical solutions either by
restricting the complexity of the perturbation model or by truncating
high power expansions (Kaula, 1961, 1966; Mueller, 1964b; Goad, 1977;
etc.) These solutions are approximate and in many cases cannot be used
for precise geodetic work. They are extremely useful, however, in order
to gain a keener insight into the effects of various perturbing forces on
the satellite orbits.

In the special perturbation methods, the equations of motion of the
satellite are integrated numerically (see Section 2.2.3). The main
advantage of these methods is that all the perturbing forces can be
accommodated to a high degree of accuracy. The special perturbation
methods, on the other hand, have proven to be computationally more
efficient, if one takes into consideration the high repetition rate of
recent geodetic observations (Rizos et al., 1985; Krakiwsky et al., 1985).

A combination of empirical and dynamic modeling is usually employed
either when the satellite orbits are integrated continuously over long
periods of time (i.e., two months or more) or when unexplained
perturbing accelerations are present. In the latter case the dynamic

models are supplemented with empirical models for the as yet not fully
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understood perturbing accelerations while in the former the empirical
models are employed to account for the accumulated along-track,
cross-track and radial errors (Tapley et al.,, 1985a). For instance, the
draglike acceleration of Lageos’ orbit which causes a decay of the
semimajor axis at a rate of 1 mm/d is modeled empirically (see Section
2.2.5).

The dynamic mode methods are further subdivided into semidynamic
(short-arc) and dynamic (long-arc) methods. There is no clear
distinction between these two terms and their exact meaning depends on
the investigator and on the kind of problem being analyzed.

In the present study the estimation of the baselines is performed in
the semidynamic mode environment. In this environment the lengths of
the arcs employed are relatively short (i.e., mostly up to three days and
very'rarely up to seven days) (see Section 4.4). A relatively short arc
is defined as having a maximum length over which the total modeling
error of a simple dynamic model is well below the noise level of the
observations (i.e., an order of magnitude or less). Consequently, with
this definition one may select a relatively simple dynamic model and then
determine the length of the arc, or one may choose the length of the
arc and then determine the required sophistication for the dynamic
models. With such a procedure the systematic errors caused by model
imperfections cannot accumulate up to a level that may corrupt the
semidynamic mode solution. The relatively short arcs, however, are not
stable in the sense that their position and orientation in space depends
primarily on the geometry of the observations. This instability may also
cause ill-conditioning of the normal equations (see Section 4.4).
Furthermore, relatively short arcs cannot be well tracked to bring
tracking sites of a global extent into a consistent satellite reference
frame. This implies that it is not possible to use semidynamic mode
methods for absolute position determination. Instead these methods can
be effectively used for baseline determinations (Latimer et al., 1977;
Christodoulidis et al.,, 1981; Pavlis, 1982; Section 4.4). Baseline estimates
are even more accurate if the observables are insensitive to the

position, orientation, and the shape of the trajectory as is the case, for
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instance, with the Simultaneous Range Difference observables (see
Section 4.4; Pavlis, 1982). With range observables, which are sensitive
not only to the position and orientation of the trajectory in space but
also to its shape, it is still possible to obtain accurate baselines if a

local support tracking network is available (Christodoulidis et al., 1981).

2.2.1 Simultaneous Range-Difference Semidynamic Mode Method

On the basis of the discussion presented in the previous section and
keeping in mind that our aim is to achieve highly accurate differential
positioning, wc have chosen to use in this investigation the semidynamic
(short-arc) method formulated in the context of special perturbations
(see Section 2.2.3). Furthermore, the laser range observations have
been transformed to Simultaneous Range-Differences (SRDs), and
although differencing is a noise generating operation it is anticipated
that these observables are less affected by the biases in the orbit, the
reference frame and the observations themselves (Pavlis, 1982).

Using laser range observations to Lageos it is impossible to obtain
strictly simultaneous observations not only because Lageos is a passive
satellite but also because there will always exist synchronization errors
among the varioug observing stations. Therefore Simultaneous Range
Differences can only be obtained through an interpolation (see Chapter
3). More specifically, the observing stations are divided into pairs of
simultaneously observing stations. For each pair the station with the
most observations is interpolated to generate ranges at the observed
epochs of the alternate station. Finally the interstation distances for
each of the pairs involved are estimated by processing the generated
SRDs through a least squares adjustment formulated in the context of

the special perturbation methods as applied in the semidynamic mode

environment.

2.2.2 Mathematical Modeling

The mathematical model for the Simultaneous Range Difference (SRD)
observable §,; is obtained by subtracting the Euclidean ranges from

station 2 and station 1 to the simultaneously observed satellite position j
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6p5 = {(8s - %) 5y - iz]]x - {85 - %) (5, - ’-‘1”X (2-20)
where the wvectors §j = (uj, Vi wj)T, }-(1 = (u,, vi, w,)7 and )-(2 = (u,,
va, W3)7 denote the Cartesian coordinates of the satellite position j,
ground station 1 and ground station 2 respectively. Since the SRDs are
invariant under any rigid body rotation the above wvectors could be
expressed in any arbitrarily chosen Cartesian coordinate system. In the
present study, the vectors S i )_(, and }-(3 at epoch j are expressed in a
Cartesian coordinate system whose origin is conveniently chosen to
coincide with the center of mass of the earth, and its orientation is
aligned to that of the true-of-date system (Mueller, 1969).

The adjusted parameters, in any estimation procedure involving a
dynamic process, are transformed to a reference frame in which they
can be considered constant for a certain period of time. This period
should be long enough to allow for collection of a sufficient number of
observations needed for a reliable recovery of the adjusted parameters.
For this reason the ground station coordinates are transformed to a
terrestrial reference frame (TRF) while the coordinates of the satellite at
epoch j are transformed to a celestial reference frame (CRF) with the

help of the following formulas (see Section 2.2.4)
S; = NPRy ; X, =8TY; , i=1,2 (2-21)

The quantities S, N and P designate the earth rotation, the nutation and
precession matrices respectively, while the vectors ﬁj, ’;', and ‘;'2 denote
the inertial position vector of the satellite at the epoch j and the
earth-fixed position vectors of stations 1 and 2 respectively. The
inertial and earth-fixed frames correspond to the CRF and TRF frames
respectively as they are described in Section (2.2.4). Substituting

equation (2-21) into (2-20) one obtains
% %
505 = [03,70y,) " - [b5,™,,)" = Ipj,| - Inj. | (2-22)

where
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Dy, = NPR; - STY, and Dy = NPR; - S7Y, (2-23)

The satellite position vector ﬁj is a function of an initial state
vector and a large number of parameters affecting the motion of the
satellite (i.e., potential coefficients, reflectivity, etc.). The choice of the
model parameters to be estimated depends on the data coverage and
distribution which in turn dictates the adopted lengths for continuous
integration of the satellite orbit (see Section 2.2.1). In the present
study, the shape of each of the satellite arcs involved is assumed known
and only its position and orientation in space is adjusted to "best” fit
the available data (see Section 4.4). Thus, the only adjusted parameters
inherent to the satellite position vector 1-21 are the components of the
initial state vector of the corresponding arc.

In the derivation of the observation equations, on the basis of the
equation (2-20), one needs the satellite position vectors at each of the
observing epochs together with their partial derivatives with respect to
the corresponding initial state wvector. The former is obtained by
integrating the equations of motion of the satellite while the latter is
obtained by integrating the wvariational equations of state (see Section
2.2.3). The partial derivatives with respect to earth-fixed station
coordinates, also needed in the derivation of the observation equations,
are easgily obtained by differentiating equation (2-20) (see also Pavlis,
1982). The resulting observation equations are used to obtain the
normal equations through a weighted least-squares adjustment (see
Section 2.2.6). The normal equations are subsequently solved to estimate
the initial state vectors for each of the arcs involved together with the
earth-fixed coordinates which are finally transformed to interstation
distances.

In the present study the initial state vectors are treated as
"nuisance" parameters, and therefore one is not concerned with how well
each of those initial state vectors has been recovered as long as the a
posteriori variance of unit weight is close to unity. In fact, the reason
for using SRDs instead of ranges is to reduce the need for accurate

knowledge of the satellite orbits and yet to increase the potential for
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baseline estimation with an accuracy compatible to or even better than
that of the observations. This is possible because SRDs have the
potential to reduce the effects of biases caused not only by the orbital
model and the reference frames but also by eliminating uncorrectable

systematic errors affecting the laser range observations (Pavlis, 1982).

2.2.3 Orbit Determination with the Method of Special Perturbations
Dynamic and semidynamic methods, based on special perturbations,
require integration of the satellite’s equations of motion. The degree of
sophistication in formulating these equations depends on the integration
length and the required accuracy.

Following the MERIT standards the relativistic perturbations are
ignored from the equations of motion (Melbourne et al.,, 1983).
Accordingly, ephemeris time (t) constitutes the independent variable in
the equations of motion. Up to 1983, ephemeris time was used as an
independent variable in the planetary equations of motion and therefore
in the construction of all the almanacs. Since January O0h 1984,
ephemeris time has been replaced by Terrestrial Dynamical Time (TDT)
and Barycentric Dynamical Time (TDB) (The Astronomical Almanac, 1984).
This was a necessity since data collected in interplanetary missions are
routinely processed in the context of the relativity theory (Moyer, 1971).
In this context TDT time corresponds to proper time (i.e., time measured
by the observer’s clock) while TDB corresponds to coordinate time (i.e.,
time measured at the barycenter of a motionless solar system in the
absence of all gravitational fields).

At each observing epoch j, the ephemeris time (t J) is computed from

the Universal Coordinated Time (UTC j) with the help of the following

formula

ty = 328184 + [TAI - UTC]; + UTC; = TDT (after 1984) (2-24)
where

t; = ephemeris time at the epoch j
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[TA1 - UTC]j = no. of leap seconds at the epoch j (The Astronomical
Almanac, p. B5)

UTC; = Universal Coordinated Time at the epoch j.

Using the ephemeris time (t) as an independent variable, the Lageos
equations of motion take the following form (Cappellari et al.,, 1976;
Pavlis, 1982):

R = Rpw + Rys + Rrp + Rgp + Rat (2-25)

Each of these accelerations is expressed relative to the center of mass

of the earth. More specifically

- 2 T
R = %—,— [uj, Vi, wj] = total quasi-inertial Lageos acceleration at

the epoch j
Rpy = gravitational acceleration due to point masses

Rys = gravitational acceleration due to nonsphericity of the gravi-

tational potential
Ryp = acceleration due to solid earth tidal effects
ﬁsg = acceleration due to solar radiation pressure

I-IAT = Lageos empirical drag—like acceleration

The acceleration vector l-i is a function of an initial state vector and a
large number of parameters affecting the motion of the satellite. These
parameters pertain to the gravitational potential, to solar radiation
pressure, etc. As it was described in the previous section, the only
adjusted orbital parameters considered in this study are the initial state
vectors of all the arcs involved. With these orbital parameters the

variational equations assume a very simple form (Pavlis, 1982):

Y(t) = A(t) - Y(t) (2-26)
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with initial conditions

Yo = [ 1{o ]:nus (2-27)
where
y(t) = | —2BL (2-28)
a(R(t,), R(to)) |, .
and
_ | R _
A(t) = 3§(t)]3x3 (2-29)

The matrix Y(t) is referred to as the state transition matrix and is used
to map the variations of the initial state into variations of the current
state.

Equations (2-25) and (2-26) can be integrated either by one-step or
by multi-step methods. In each integration step, the multistep methods
require fewer derivative evaluations than the one-step methods of
compatible accuracy. Fewer computations, on the other hand, not only
reduce the round-off errors but also require less computing time.
Furthermore, since these methods possess a larger number of parasitic
solutions they are more susceptible to instability problems.

The multistep algorithm used in our study employs a self starting,
variable step, variable order predictor-corrector mode of operation.
This mode selects the order automatically while the stepsize is subject
to accuracy requirements and numerical stability. Keeping the stepsize
constant, the predictor-corrector is reduced to an Adams-Bashforth
predictor of order q and to an Adams-Moulton corrector of order q + 1.
With this algorithm the second-order differential equations are
integrated directly without reducing them to a first-order system,
because a second-order set exhibits better numerical stability
characteristics, The described algorithm was developed and implemented

in computer coded form by Krogh (1969a, 1969b, 1973a, 1973b, 1974).
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2.2.4 Reference Frames and Systems
Reference frames constitute realizations of reference systems. The
reference frames are used to describe the spatial relationships and the
temporal variations of objects on the Earth (i.e., terrestrial frames) and
in space including the Earth (i.e., celestial frames) (Kovalesky and
Mueller, 1981). A reference system consists of an underlying principle
and all those elements (e.g., physical environment, theories and
constants) that are necessary to accomplish its realization. The elements
of a system, depending on the application and the accuracy
requirements, are selectively chosen and therefore the term
"conventional system" is often used to designate the selection process
that is usually involved in any realization of a reference system.

In this context the IAU/IUGG MERIT and COTES Joint Working
Group recommended the following concepts in regard to reference

systems and frames (Wilkins and Mueller, 1986):

The Conventional Terrestrial Reference System (CTRS) be
defined by a set of designated reference stations, theories and
constants [necessary elements], chosen so that there is no net
rotation or translation between the reference frame and the
surface of the earth [underlying principle]. The frame is to be
realized by a set of positions and motions of the designated
reference stations.

The Conventional Celestial Reference System (CCRS) be defined
by a set of designated extragalactic radio sources, theories and
constants [necessary elements], chosen so there is no net rotation
between the reference frame and the set of the radio sources
[underlying principlel. The frame is to be defined by the
positions and motions of the designated radio sources. The origin
of the frame is to be the barycentre of the solar system.

The above concepts are to be incorporated in the operation of the new
International Earth Rotation Service (IERS). This service is scheduled
to start operating as of January Oh, 1988 (Mueller and Wilkins, 1986).

In the Newtonian framework, the reference frame implied by a CCRS
can be considered as being an ideal inertial frame in the sense that the
time 1is homogeneous and the space described by this frame is

homogeneous and isotropic (Landau et al.,, 1960). In the general
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relativistic framework, on the other hand, the reference frame realizing
a CCRS is aimed to describe the curved space time for which a global
inertial reference frame does not exist (Moritz, 1979; Fukushima, 1986)!
This is the reason why, in the above recommendations, the term
"inertial" has been dropped and the term "celestial" has been used

instead.

For precise geodetic work, these seemingly conceptual differences
manifest themselves when 107® or 10~? accuracies are sought.
Therefore, when working at such accuracy levels, care should be taken
to account for relativistic effects either by using Newtonian formalism
with small corrections (Moritz, 1979) or by formulating the problem
entirely in the general relativistic framework (Fukushima, 1986). In the
present study, in accordance with the MERIT standards and since the
obtained accuracies hardly reach the 10~2 level, we have used the

Newtionian formaliém to formulate the equations of motion of the satellite.

The status today in terms of reference systems and frames is
confusing because the user community employs a variety of different
celestial systems (i.e., extragalactic radio source systems, stellar
systems, dynamical systems, etc.) and a variety of different terrestrial
systems as well (i.e., BIH terrestrial reference system, CSR terrestrial
reference systems, etc.). Investigations, however, are currently
underway with the objective of linking all of the available terrestrial
systems into a unified terrestrial system referred to as "BIH Terrestrial
Reference System" (BTS) (Boucher and Altamimi, 1985, 1986). Linking
different celestial systems, through their frames, into an ideal celestial
frame is8 not an easy task not only because of lack of collocations but
also because daily polar motion resolution is necessary (Mueller, 1985).
This kind of resolution is not achievable by the satellite related systems
due mainly to the deficiencies in nutation theory (Himwich and Harder,
1986) and to inadequate observational coverage.

The choice of ideal terrestrial and celestial frames is not important
in baseline estimation. It is important, however, to consistently link the

involved terrestrial and celestial reference frames, by choosing the
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appropriate set of transformation parameters. Effective choice of the
transformation parameters would only assure a reliable recovery of the
relative geometry of the observations since these parameters cannot be
effectively recovered in a semidynamic mode environment. The relative
geometry of the observations manifests the way the satellite arcs are
related to the observing stations. Reliable recovery of the relative
geometry, on the other hand, results in accurate baseline estimation
simply because baselines are estimable quantities. Estimable quantities
are molded by the geometric and dynamic characteristics creating the
problem under question.

In the present study, the Terrestrial Reference Frame (TRF) is
implied by the gravity field used to integrate the equations of motion
and by the adopted polar motion series. The origin of the TRF frame,
relative to the center of mass of the earth, is defined by the potential
coefficients C;o, C;, and S,,, while its orientation is primarily defined
by the potential coefficients C,, and S, as well as C,, and S,,. More
specifically, the coefficients C,, and S,, define the orientation of the
third axis, while C,; and S,; define the orientation of the first axis.
The orientation of the first axis, however, is weakly defined because the
Earth’s equatorial moments are nearly equal (i.e., C,, £ S;3).

The modified GEML2 gravity field, proposed by the MERIT standards,
has been replaced in this study by the PGS1680 gravity field
(Christodoulidis et al., 1985). This violation of the MERIT standards was
necessary to make the gravity field consistent with the adopted BIH
polar motion series. The modified GEML2 gravity field has all its
coefficients but S,;, and C,;, equal to the coefficients of the GEML2
gravity field (Lerch et al., 1985). C,; and S,, have been modified to be
consistent with the mean BIH polar motion values, computed over a
complete wobble cycle which lasts from 6.5 to 7 years (Melbourne et al.,
1983). Modifying only the C,, and S,, has caused inconsistencies as to
what frame the coefficients of the modified GEML2 field refer. As a
result, the PGS1680 gravity field was developed in order to avoid these
inconsistencies and the resulting confusion as well. In the development

of this field the coefficients S,, and C,, were constrained to the BIH
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implied values while the remaining coefficients were free adjusting
(Christodoulidis et al., 1985).

The coefficients C,,, C,, and S;,; of the PGS1680 gravity field are
zero thereby imposing the origin of the TRF frame to coincide with the
center of mass of the earth. The computed UT1 time, on the other
hand, is assumed to be consistent with the x axis of the implied TRF
frame (see Section 4.3).

The Celestial Reference Frame (CRF) employed for the integration of
the equations of motion, is realized from the implied TRF frame through

the following transformation (Mueller, 1969):

(CRF) = (SNP)T(TRF) (2-30)
with
S = R, (—xp) R, (-yp) Ra (GAST) (2-31)

where according to the MERIT standards the following quantities have

been used.

P Precession matrix based on the IAU (1976) system of astronomical
constants (Lieske, 1979)

N Nutation matrix based on the 1980 IAU theory of nutation (Wahr,
1981a). This matrix implies a pole whose nearly diurnal space-fixed
and earth-fixed motions vanish. This pole is referred to as the
Celestial Ephemeris Pole (CEP) (Mueller, 1981; Moritz and Mueller,
1987)

GAST # GMST (OhPUT1) + f(UT1) + EQ.E (2-32)

GMST(OMUT1) = 6™ 41™ 50854841 + 8640184$812866 Tu + 05093104 Tu?

- 682 x 1076 Tu? (2-33)
where
f = conversion factor from Universal time to sidereal time
= 1.002737909350795 + 5.9006x107'* Tu — 5.9x10715 Tu?
Tu = Julian centuries elapsed from J2000.0

UT1 = UTC(USNO) + (UT1 - UTIR) + [UTIR - UTC(BIH)] +
+ [UTC(BIH) — UTC(USNO)] (2-34)
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UTC(USNO) = USNO Universal Coordinated time (time scale used to

time tag the observations of the GLTN stations)

UT1 - UTIR = Tidal variations of UT1 caused by zonal tides with
periods up to 35 days (BIH Annual Report 1981 onwards, Table Bl)

UT1R - UTC(BIH) = Variations of the regularized UT1 (i.e., UTIR)
from the UTC(BIH) (BIH Annual Reports, Table 8)

UTC(BIH) - UTC(USNO) =Variations of UTC(USNO) in relation to
UTC(BIH)

EQ.E = Ay - cos (& + Ae) (2-35)

Ay = Nutation in longitude computed from the 1980 IAU nutation
theory

&

Mean obliquity of the ecliptic

23° 26’ 219448 - 4678150Tu - 0Y00058Tu? + 0V001813Tu? (2-36)

Az = Nutation in obliquity computed from the 1980 IAU nutation
theory

The CEP pole positions xp and yp in equation (2-31) have been taken
from the smoothed wvalues of Circular D (BIH Annual Report, 1983, 1984,
Table 7). These pole positions are referenced to the 1979 BIH system
during the first period of the MERIT Main Campaign (Sept. 1983 - Dec.
1983), while during the remaining period of the campaign (Jan. 1984 -
Dec. 1984) they are referenced to the BIH Terrestrial System (BTS). Our
study in not affected by this transition because in shifting from the
1979 BIH system to the BTS system a nonrotation constraint was applied

to assure the continuity of the BIH system (Boucher and Feissel, 1984).

2.2.5 Orbital Model
The set of elements necessary to determine a satellite orbit constitutes
the orbital model of the satellite. Thus, an orbital model consists of all

those elements that are essential to formulate and integrate the
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equations of motion (i.e., perturbations to be considered and associated
assumptions, initial conditions, etc.).

The Lageos state vectors required in the evaluation of the
observation equations (Section 2.2.6) are obtained by numerically
integrating the equations of motion (2-25). In this equation the inertial
accelerations are expressed relative to the geocenter. The components,
however, of Lageos’ inertial acceleration caused by the nonsphericity of
the earth are evaluated in the TRF frame and subsequently are
transformed into the corresponding CRF frame, while the components of
the remaining inertial accelerations are directly expressed in the
corresponding CRF frame. The two-step procedure used to evaluate the
Lageos inertial acceleration caused by the nonsphericity of the earth is
necessary because the gravity potential coefficients are conveniently
expressed in a TRF frame. Expressing these coefficients directly in a
CRF frame would make them time dependent and therefore a potential
source of unnecessary complications.

The aim of the present study is not to estimate the Lageos orbit
with the highest accuracy but rather to model it as simply as possible
and yet be able to recover the baselines with an accuracy compatible to
or even better than that of the observations. With this in mind the
MERIT standards have been violated whenever the proposed model is
complicated and cumbersome to incorporate into the solution. In such
cases a simpler model has been adopted. It turns out, however, that in
some cases the employed orbital model could be further simplified

without affecting the accuracy of the recovered baselines (Section 4.6).

2.2.5.1 Point mass gravitational acceleration. The point mass Lageos

gravitational acceleration based on the effects of the three major
perturbing bodies (Earth (E), Moon (M) and Sun (S)) and expressed
relative to the geocenter takes the following form (Cappellari et al.,
1976; Pavlis, 1982)

- rf My Mg ©f My ©¥ Mg r§
Rpw = GMg|- e - 1 —L— _ S P g (2-37)
OUTEL Tl Me Qgpls Me [zl Me Japle  Me [gsfe
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where

rf, ), rf = Lageos position vectors relative to the center of
mass of the Earth, the Moon and the Sun respectively

rf, rf =: Earth position vectors relative to the center of mass
of the Moon and the Sun respectively

My Mg .

_, = =: ratios of lunar and solar masses to the mass of the

Me * Me Earth

GMg =: geocentric gravitational constant

For the evaluation of equation (2-37), one needs the Lageos geocentric
position vector as well as the geocentric position vectors of the Moon
and the Sun respectively. The Lageos geocentric position vectors are
obtained from the numerical integration of the equations of motion while
the heliocentric position vector of the Earth and the geocentric position
vector of the Moon are calculated from the information supplied by the
DE/LE200 lunar planetary ephemeris (Standish, 1981). This ephemeris is
disseminated in terms of Chebychev coefficients. These coefficients can
only be used to calculate the geocentric positions of the Moon and the
barycentric positions of remaining planets and the Sun. With this
information, however, one can very easily calculate the position of any
desired planet with respect to any of the remaining planets and to the
sun as well.

The reference frame implied from the computed coordinates of the
planets has been accurately adjusted to the dynamical equinox J2000.0
(ibid.) The Chebychev coefficients of the DE/LE200 lunar planetary
ephemeris are based on the planetary coordinates estimated through the
numerical integration process involved 1in the adjustment of
interplanetary observations collected over a long period of time (ibid.).
In this adjustment, the planetary equations of motion were formulated on
the basis of the isotropic, parametrized post-Newtonian (PPN) n-body
metric (Moyer, 1971). The independent variable in the PPN metric is the
Barycentric Dynamical Time (i.e., coordinate time), and therefore this

time scale should be used as an entry to the DE/LE200 ephemeris.
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The TDB time at any epoch j is computed from the ephemeris time of the

same epoch via the following formula

where
TDBy = Barycentric Dynamical Time at the epoch j
t; = ephemeris time at epoch j, obtained from equation (2-24)

In the PPN framework the ephemeris time coincides numerically but not
conceptually with the Terrestrial Dynamical Time (i.e., proper time).
Thus, TDB time at any epoch is obtained by adding to the ephemeris
time of the same epoch a small correction AT. This correction accounts
for the general relativistic effects involved in the transformation of
proper time (i.e., TDT time) to coordinate time (i.e., TDB time). An
approximate value for the correction AT is given by the following

formula (Astronomical Almanac, 1984)

AT = 09001658 sin (g) + 0.000014 sin (2g) (2-39)
where
g€ = 357:53 + 35999.05 Tu (2-40)

In both of these equations (2-39 and 2-40), higher-order terms have
been neglected, g designates the mean anomaly of the Earth in its orbit,
and Tu designates the Julian centuries elapsed since J2000.0,

To complete the evaluation of equation (2-37), one still needs the
ratios of the lunar and solar masses to the mass of the earth as well as
the geocentric gravitational constant. For the mass ratios, we have
used the values recommended by the MERIT standards, but for the
geocentric gravitational constant the value estimated simultaneously with

the potential coefficients of the PGS1680 gravity field has been used:

GMg = 3.986004359 x 10!'4 m3/s? (2-41)

33



The scale in the range dynamic mode methods is implied not only by the
adopted value of the geocentric gravitational constant through the
modified Kepler’s third law but also through the speed of light used to
convert time measurements to range measurements. Thus, the adopted
value of the geocentric gravitational constant should also be consistent
with the speed of light implicit in the range observations. In the
present study we have used the speed of light proposed by the MERIT
standards (i.e., ¢ = 299,792,458 m/s) (Lerch et al.,, 1985; Christodoulidis
et al., 1985).

The associated partial derivatives of equation (2-37) contributing to
the variational equations of state (i.e., to matrix Y(t), equation (2-28))

are given in (Cappellari et al.,, 1976, eq. 4-21; Pavlis 1982, eq. 13).

2.2.5.2 Gravitational acceleration due to nonsphericity of the

gravitational potential. The inertial acceleration induced on the satellite

by the nonsphericity of the earth is obtained via the gradient of the
perturbing potential. The perturbing potential is a scalar function
describing the nonspherical part of the geopotential in terms of an

infinite spherical harmonic series (Heiskanen and Moritz, 1967):

n n
E%] EO[C,,,,, cos(mA) + Spm sin(m)\)]an(sinM]

(2-42)

r

The zero-degree harmonic has been modeled in equation (2-37) and
therefore is not included in the above equation. The first-degree
harmonics are also not included because the origin of the PGS1680
implied (TRF) coincides with the the center of mass of the earth (see
Section 2.2.4). With the gradient of the perturbing potential the-
components of Lageos’ inertial acceleration, caused by the nonsphericity
of the earth, are expressed in the PGS1680 implied (TRF) frame.
Incorporation of this acceleration into the equations of motion (2-25)
requires transformation of its components from the (TRF) frame into the

corresponding (CRF) frame via the transformation equation (2-30)
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Rys = (SNP)T B (2-43)

where

= [3VN5 WVns  Vys
r =

ax °’ dy ° 3z (2-44)

is the gradient of the perturbing potential function Vyg (equation 2-42).
The expressions for the partial derivatives of the perturbing potential
function Vyg are given in (Cappellari et al.,, 1976). The radius (ag) of
the reference sphere, also needed in the evaluation of the perturbing
potential, is the same with the radius employed in the estimation of the
PGS1680 gravity field (i.e., ag = 6378144.11 m). For our study we have
truncated this field at degree and order 12 because perturbations
caused by higher harmonics over a two-week period contaminate the
computed SRD observables with errors having magnitude well below the
noise level of the SRD quasi-observables (see Section 4.6). Furthermore,
a nonvariant nature of the coefficients C,, and S,, has been adopted,
although it is well known that these two coefficients are largely affected
by the forced diurnal motion of the figure axis caused by the
nonrigidity of the earth (Moritz and Mueller, 1987).

The associated partial derivatives of equation (2-42) contributing to
the variational equations of state are given in (Cappellari et al.,, 1976,
eq. 4-54; Pavlis, 1982, eq. 21).

2.2.5.3 Lageos tidal inertial acceleration. According to the MERIT

standards, the tidally induced variations in the earth’s external potential
should be incorporated in the orbital model as wvariations in the
geopotential coefficients (Melbourne et al., 1983; Eanes et al., 1983). In
order to save computing time a two-step procedure is proposed to carry
out the implementation of these variations (ibid). In the first step the
variations of the geopotential coefficients are computed on the basis of a
nominal frequency independent Love number k,, while in the second
step these variations are corrected to account for the frequency

dependent nature of the nominal Love number k..
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The frequency dependent variations of the Love number k, have been
estimated for an elliptical, rotating, elastic fluid outer core and solid
inner core, oceanless earth (Wahr, 1981b). Although the proposed
two-step procedure i8 computationally more effective than any one-step
procedure, it is not appropriate for our investigation because one still
needs to evaluate many trigonometric functions at each of the observing
epochs (Melbourne et al.,, 1983). This however, not only would make the
orbital model more complicated but also it would make the SRD method
computationally less efficient. Therefore, it was decided to compute the
tidally induced space potential by assuming a solid earth (i.e., oceans
not included) which exhibits the same elastic response over all possible
orders within a certain degree (Diamante et al., 1972; Pavlis, 1982). With
such an earth model the tidally induced potential on the surface of the
earth takes the following form (Diamante et al., 1972; Goad, 1977; Pavlis,
1982):

[one}
-
"
lit~8

o = Lka Ur (ap) (2-45)
where k, is the nominal Love number of degree n and UTn(aE) is the nth
surface harmonic of the tidal potential. Solving the Dirichlet problem

the tidally induced space potential is obtained:
aE n+1
[—] ko Uy (ag) (2-46)
2 | | n

where |§| is the norm of the Lageos position vector expressed relative
to the center of mass of the earth. To the first order, terms with n > 2
in equation (2-46) can be neglected (Diamante et al., 1972), and therefore

this equation takes the following form

(ag) (2-47)

where
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- 2
Ry . R| _,

IRy | |R|

GM
U, (ag) = —>— - af [3 (2-48)

2[Ry’

The quantity k,; denotes the second-degree Love number while M,
denotes either the lunar or the solar mass, or for that matter the mass
of any planet that is considered to be a disturbing body. In this study
the Moon and the Sun have been considered as the only disturbing
bodies. The vectors R and ﬁb designate the geocentric position vectors
of the satellite and the disturbing body respectively. The components
of these vectors are expressed in the corresponding (CRF) frame. In
this frame the tidally induced acceleration on Lageos takes the following
form (Diamante et al., 1972; Pavlis, 1982):

= GM g
Rrop = 3 ks —2r - —= [(1- 5(F, - ©2)d + 28 - D]  (2-49)
27 IRel®  IRI
where
ﬁ -
Gy = —>— and @ = 2 (2-50)
IRy | Ir]

To account for a phase lag produced by the earth’s dissipative forces,

the vector I-%b in equation (2-50) has been replaced by another vector

ﬁﬁ. This vector is obtained from the vector ﬁb via the following
transformation
R¥ = Rs(-60)Ry (2-51)

where &6, (=0°35) is the phase lag. The R; rotation is performed about
the third axis of the corresponding CRF frame (see Section 2.2.4)., In
equations (2-47) and (2-49) the value 0.29 was adopted for the
second-degree Love number k,. This wvalue is different from that
proposed by the MERIT standards (k, = 0.30). This deviation, although
not of much importance, is justified since the tidal corrections applied
in the estimation of the PGS1680 gravity field were based on the altered

value of k, (i.e., k,; = 0.29). The permanent tidal deformation affecting
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the potential coefficient C,o, is inherently present in equation (2-49).
Consistent incorporation of this equation in the equations of motion
requires that the permanent tidal deformation is not included in the
PGS1680 C,;, value. This, however, seems to be the case for the
PGS1680 gravity field (Melbourne et al.,, 1983; Christodoulidis et al.,
1985). Furthermore, the ocean tidal perturbations are not included in the
orbital model of Lageos not only because they are small (i.e., one order
of magnitude smaller than the solid earth tidal effects (Section 4.6)) but
also because their evaluation would increase the bulk of the
computations considerably.

The contribution of the tidally induced acceleration to the
variational equations of state is given in (Pavlis, 1982, eq. 30). In that
equation the vector I-%b should be replaced by the vector ftﬁ from

equation (2-51).

2.2.5.4 Lageos solar radiation pressure acceleration. The
acceleration induced on Lageos due to photon momentum transfer is

referred to as solar radiation pressure acceleration, and it is given by
the following formula (El’Yasberg, 1967; Cappellari et al., 1976; Pavlis,
1982).

z s Au 2 A R - ﬁs
Rsn=7'5[m] ‘Cn'ﬁ'lﬁ—s_—ﬁ—! (2-52)
The eclipse factor y assumes the values zero, one, or any other value in
between depending on whether the satellite is in complete shadow
(umbra), in sunlight, or in partial shadow (penumbra) respectively. In
our study the eclipse factor y is determined by a simple cylindrical
model (Cappellari et al.,, 1976; Pavlis, 1982). This model is easy to
incorporate into the equations of motion, but it does not differentiate
between umbra and penumbra regions. A full model for the earth’s
shadow, as proposed by the MERIT standards, would increase the bulk

of computations thereby complicating the solution. It is rather doubtful

38




that this complication would make any difference. The mean solar flux S
is the amount of photon energy flow through a unit surface per unit
time at a distance of one astronomical unit (AU) (i.e., AU = 1.4959787066
x 10'! meters) (Melbourne et al.,, 1983). The ratio (S/C) is the photon
momentum transfer to a unit surface per unit time at a distance of one
astronomical unit. The value (4.5605 x 10~ N/M2?) was used in our
study for the ratio (S/C) as proposed by the MERIT standards. The
position vectors R and P-ls in equation (2-52) designate the geocentric
position vectors of Lageos and the Sun respectively. The reflectivity
coefficient (Cgr) depends not only on the mechanism of light reflection
but also on the thermal emission distribution of the satellite surface.
The monthly values for the reflectivity coefficient (Cg) are shown in
Table 1 for the entire MERIT campaign. These values have been
estimated together with other parameters in the adjustment of the MERIT
laser range data performed by the GEODYN II programs (Pavlis, 1986,
private communication). In the present study we have used the
reflectivity coefficient values listed in Table 1 instead of using the
value proposed by the MERIT standards.

Table 1 Lageos Along-Track Acceleration and Its Reflectivity
Coefficients
Magnitude of Lageos Along—Track Lageos Reflectivity
Acceleration x 1072 p/s? Coefficients
Sep. 1983 -2.909 1.141
Oct. " -3.549 1.136
Nov. " -3.893 1.135
Dec. " -3.825 1.133
Jan. 1984 -4.343 1.136
Feb. " -4.319 1.134
Mar. " -4.065 1.109
Apr. " -3.550 1.057
May " -3.189 1.096
Jun. " -3.393 1.139
Jul. " -3.928 1.132
Aug. " -2.946 "1.126
Sep. " -2.301 1.126
Oct. " -2.524 1.126
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This deviation of the MERIT standards, although plausible, will not affect
the accuracy of the estimated baselines. The effective area (A) of the
surface normal to the incident light is given, for a spherical satellite
like Lageos, from (El’Yasberg, 1967)

A = nRg? (2-53)

where Rg is Lageos’ radius (i.e., Rg = 0.30 m) (Melbourne et al., 1983).
Finally, the Lageos mass (M) of 407 kg has been used in the evaluation
of equation (2-52).

The associated partial derivatives of the solar radiation pressure
acceleration contributing to the variational equations of state are given
in (Cappellari et al.,, 1976, eq. 4-161 and 4-162; Pavlis, 1982, eq. 25 and
26).

According to the MERIT standards the inertial acceleration induced
on the satellite due to the diffused reradiated light from the earth
(earth albedo) is not included in the orbital model of the Lageos

satellite.

2.2.5.5 Lageos along-track empirical acceleration. Ever since the

launch of the Lageos satellite it has been observed that its semimajor
axis decreases at a rate of 1 mm/day. This has been traced to an
unexpected and still physically unmodelled along-track acceleration
acting on the Lageos satellite. Attempts to explain the origin of this
mysterious acceleration have either totally or partially failed. These
attempts are based on a variety of possible causes ranging from
assuming helium concentrations at satellite altitudes (Rubincam, 1980) to
considering the solar eclipses (Rubincam et al., 1985). Although all of
these attempts have partially failed, it is quite clear that this
acceleration is the result of a combined effect caused by the
asymmetries of the earth’s albedo and by the charged particles traveling
in the vicinity of Lageos (Smith et al.,, 1985; Alfonso et al.,, 1985). Since
the physical process producing this acceleration is unknown, its

modeling has been accomplished with an empirical model. This model
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1982):

(2-54)

where o« is the magnitude of the along-track acceleration. The monthly
magnitudes of this acceleration are also listed in Table 1 for the entire
MERIT campaign. These values have been estimated with the GEODYN II
program (Pavlis, 1982, private communication).

Contributions to the variational equations of state due to this

acceleration are neglected because of their small magnitudes.

2.2.6 Normal Equations

The observation equations for the SRD quasi-observables are readily
obtained through a Taylor series expansion of equation (2-22). In this
expansion only the zero- and first-order terms are retained while all of
the remaining higher-order terms are neglected. The expansion is
performed about the approximate earth-fixed station coordinates and the

celestial initial state vector of the corresponding arc:

where
(A)ixaa = [ By i Cy ] ., (2-56)

abp;
(Bj)lxs = [_—J—

=z 2-57
a(Yl’Yz) 1x6v ( )
a0p ; 31-2.
; = | —=—4 —_— = (8 . i
(CJ)‘XG [ aRj ] a(RO’RO) ]3)(6 ( J)‘xa [YJ(t)]sxs
(2-58)
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X, = (d¥, , d¥;, dR, , dRo)iyi2 (2-59)
Lj = the computed minus the generated SRD quasi-observable
v = residual corresponding to the jth SRD observable

The matrices (BJ)HG and (S;)ixs are readily obtained by differentiating
equation (2-22), while the state transition matrix [Yj(t)]sxa is obtained
in the numerical integration process of the variational equations of
state. The celestial satellite coordinates at the epoch j needed to
evaluate the vectors (BJ),xts and (Sj)lxa as well as the scalar L; are
obtained from the numerical integration of Lageos' equations of motion
(see Sections 2.2.3 through 2.2.5). The adjusted parameter vector ij
contains corrections to the earth-fixed approximate coordinates of
stations 1 and 2 (i.e., dY_'l and d\-fz) and to the corresponding celestial
initial state vector (i.e., dR, and d'ﬁo). Extension of equations
(2-55)-(2-59) to include all the available SRD observables and all the

observed satellite arcs leads to the following equations

V=A% +1 (2-60)
where
A¥ = [ Bx : ¢¥ ] (2-61)
a6p|
BY - [ﬁ (2-62)
“nx3k
26p] aR
o¥ = ﬁ ' [a(I_ I )] = (8)pxst - [Y*(t)]ggu—,m (2-863)
Inx3e Ro?’ Ro’d3lxem
i = d;{ ’ d[Iﬁo’IRO]] (2—64)
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vector containing the computed minus the SRD quasi-observables

<i)
"

residual vector

Vector 3p contains all the available SRD observables, vector Y the
Cartesian coordinates of all the observing stations, vector Z the
Cartesian coordinates of the observed satellite positions, and wvectors
I¥,, I, the initial state vectors of all the arcs involved. The adjusted
parameter vector )a( contains the corrections to the approximate
earth-fixed coordinates of the observing stations (i.e., d’?) together with
the corrections to the initial state vectors of the observed satellite arcs
(i.e., d(I'R'o, Iﬁo)). The integers £ and n denote the number of the
observed satellite positions and the number of observations, while the
integers k and m denote the number of the observing stations and the
number of the observed satellite arcs respectively.

A close examination of equations (2-62) and (2-63) reveals that the
submatrices (B¥,5,) and (Snxst) would be exactly the same even if the
satellite positions were treated as auxiliary independent points in space
(i.e., geometric approach). The constraints imposed on the observed
satellite positions to lie in the corresponding satellite arcs are applied
through the state transition matrix (Y*(t)u“m).

Singularity A (see Section 2.1.3) affects the dynamic and geometric
solutions in exactly the same way because the submatrix B¥ in equation
(2-61) is the same for both the geometric and the dynamic approach.
With SRD observables singularity A occurs not only from the resulting
geometry of one station and its observed targets (see Section 2.1.3) but
also from the geometry of two coobserving stations and their observed
targets. Singularity B or singularity C cannot exist in a dynamic
solution because the structure of the matrix (S,xs2) is altered by its
multiplication with the state transition matrix (Y¥(t), Lx6m)e The
alteration of the matrix (S,xs#) not only differentiates the dynamic from
the geometric approach but also furnishes the dynamic approach with
better stability characteristics (see Sections 4.2 and 4.4).

Taking into consideration that the state transition matrix is different

from epoch to epoch, one can readily prove that in the absence of
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gingularity A the design matrix A¥ (apart from the ill-defined origin of
longitudes) is nonsingular if the adjusted parameter vector consists only
of corrections to the approximate station coordinates and to the initial
state vectors. This is not surprising because the TRF frame, with an
ill-defined origin of longitudes, is implied by the PGS1680 gravity field
while the CRF frame is subsequently realized via the transformation
equation (2-30). Including polar motion and/or variations of UT1 in the
adjusted parameter vector results in an extremely ill-conditioned design
matrix A* because polar motion and station coordinate are nearly
inseparable, while variations in UT1l and in the satellite node are
inseparable parameters as well (Van Gelder, 1978; Pavlis, 1982).

In the present study, polar motion and the variations in UT1 are
not included in the adjusted parameter vector. Thus, after resolving
the problem of the ill-defined origin of longitudes (see Section 4.4) we
proceed with the formation and the solution of the normal equations.
Using the same arguments as in Section 2.1.2 and the observation
equations (2-60), the normal equations take the following form (Uotila,
1987)

(AXTPAX + Py)X + AXTPL = 0 (2-65)

where P and Py are the weight matrices associated with the SRD
observables and the adjusted parameter vector respectively. Since the
weight matrix P is diagonal the normals are formed sequentially through

the following formula

ATA .
S e R (2-66)

AXTPAX + Py =
j=1 Uj

where Aj (i.e., equation (2-56)) is the jth row of the design matrix A¥, n
is the total number of the SRD observables and a§ is the wvariance for
the jth SRD observable. These variances are computed via the following

formula
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g} = o}, + o3, G=1, . .., n) (2-67)

where d}l and 6}2 are the variances of the actually observed and the

interpolated ranges respectively. The inversion of the normal equation

matrix (2-66) was obtained with the Cholesky algorithm (Uotila, 1967).
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Chapter 3

GENERATION OF THE OBSERVABLES

This chapter starts with a description of the SLR system in an attempt
to identify and understand the systematic errors affecting the laser
ranges. It continues with a description of the data set employed in this
investigation and finally ends with the generation of the simultaneous
range and SRD observables. These two observables constitute the input

to the geometric and SRD methods respectively.

3.1 SATELLITE LASER RANGING
A satellite laser ranging system consists of three basic components:

(i) the ground segment,

(ii) the atmospheric channel, and

(iii) the spaceborne segment.

The ground segment consists of a global network of fixed and
highly mobile satellite laser ranging stations forming a network
configured to allow measurements of the plate tectonic motions (Coates et
al., 1985). Tectonic plate motions are essential in understanding the
geodynamic processes necessary for earthquake and volcano erruption
predictions. Each of the stations in the network is equipped with the
necessary hardware to produce, emit, receive and measure the round-
trip flight time of very short laser pulses to a retroreflector equipped
artificial satellite such as LAGEOS.

The atmospheric channel is the optical path followed by a laser
pulse in its round trip from the station to the satellite.

The spaceborne segment consists of approximately 14 retroreflector

equipped satellites (Degnan, 1985). For geodesy and geodynamics Lageos
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is an example of such a satellite in orbit high enough not to be
influenced by the difficult to model high frequency variations of the
gravity field and the atmospheric drag but yet at low enough altitude to
assure good signal returns to the tracking stations. Therefore, the
propagation of the orbital errors in the estimated geodetic parameters is
substantially reduced. This error reduction is very important because
variations in certain geodetic parameters such as baselines, polar motion,
and length of day are routinely used in understanding the mechanisms
driving geodynamic processes.

In the operational environment, depending on the technology
employed and the models used, each component of the satellite laser
ranging system will contribute in part to the total error affecting the
inferred geometric range. The next section contains, for each component
of the SLR system, a brief discussion of its operational principles, the
error sources, their status during the MERIT Main Campaign and the

future possibility of either reducing or eliminating them.

3.2 SATELLITE LASER RANGING SYSTEM, ITS COMPONENTS AND THEIR
CONTRIBUTION TO THE TOTAL ERROR BUDGET

3.2.1 Hardware of the Ground Segment

For each satellite ranging system, the hardware of the ground segment
consists of the laser transmitter, the laser receiver, their transmittimg
and receiving optics, the timing subsystem and the computer.

The laser transmitter in most of the modern laser systems consists
of a mode-locked Nd:YAG laser oscillator followed by one or more Nd:YAG
laser amplifiers. The name Nd:YAG is derived from the crystal used in
the light amplification by stimulated emission of radiation (i.e., lasing
process) which is a YAG crystal (Yttrium aluminum garnet : Y;Als0,)
"doped" with Neodymium (Johnson et al.,, 1978). Since the mode-locked
Nd:YAG lasers operate in a single spatial mode they are not affected by

"wavefront-distortion" errors (Degnan, 1985). The biases introduced by
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the mode-locked transmitters are of the order of subcentimeter level.
The crystals used in the lasing process, for the stations participating in
the MERIT Main Campaign, are reported in the SLR coordinator’s report
and its updates (Schutz, 1983b).

The laser receiver is designed to measure the round-trip flight time
of the laser pulse to a retroreflector equipped satellite. This time
interval is multiplied by the speed of light and divided by two to infer
the optical range from the station to the satellite. The basic elements of
a laser receiver are the photomultiplier, the discriminator and the time
interval unit.

The photomultiplier is a device used to detect the incoming laser
pulse. Its principle of operation is based on the photoelectric effect
(Halliday et al.,, 1962; Drain, 1980). Most of the SLR systems
participating in the MERIT Main Campaign made use of the conventional
type photomultipliers referred to as dynode-chain photomultipliers
(Degnan, 1985). The time it takes for the photoelectrons to propagate
from the photocathode to the anode via the dynodes is called transit
time. If the transit time were constant it could be completely accounted
for through either calibration or common channel procedures (ibid).
Variations in the transit time, referred to as transit time jitter,
influence the inferred ranges by as much as 15 cm (ibid). This error is
mainly caused by the motion of the satellite image within the
photocathode when the instrument tracks the satellite. However,
successful focusing of the satellite image onto the photocathode reduces
this error to the 1 cm level. Other factors such as the impulse
response of the PMT’s, the amplitude of the input signals and the
background radiation also contribute to this error. These problems are
currently being solved with the replacement of the conventional PMT’s
with the so-called microchannel plate photomultiplier tubes (MCP/PMT)
recently introduced on the market. These photomultipliers are
characterized by well-defined photoelectron path lengths with much
shorter transit times, and greatly reduced sensitivity in the image
position effects, the strength of the input signal and the background
radiation. When using the MCP/PMT photomultipliers, the resulting
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errors in the inferred range appear to be below the 5 mm level (ibid).

The purpose of a discriminator is to define on the photomultiplier’s
output waveform a timing point and subsequently to generate a
rectangular logic pulse that starts or stops the time interval unit. The
output waveform has a quasi-Gaussian form with a randomly varying
amplitude. This amplitude variation introduces, in the determination of
the timing point, a time bias which is highly repeatable and can be
estimated if the amplitude of the input pulse is measured and recorded
along with each observation. In practice the amplitude-dependent time
bias is determined experimentally and is compensated for by
incorporating a hardwired circuitry into the discriminator. The degree
of success in implementing this circuitry is determined experimentally
and is shown in the time walk characteristic of the discriminator. The
time walk characteristic is a curve obtained by plotting the signal
amplitude dependent time biases versus the input signal amplitudes.
The time walk characteristic shows the time bias introduced by
amplitude variations, while its RMS deviation from the zero horizontal
line characterizes the efficiency of the discriminator (ibid). For the
discrimators used during the MERIT Main Campaign, this RMS deviation
reached the value of 1.5 cm, while for discrimators currently appearing
on the market this value has been reduced to the 0.2 cm level. The
latter discriminators are currently being tested for implementation in the
continuously upgraded SLR systems.

The purpose of the Time Interval Unit (TIU) is to measure the
round-trip flight time of the laser pulse. The rectangular logic pulse
generated by the start discriminator activates the time interval counter
while the corresponding logic pulse from the stop discriminator
commands the counter to stop. The basic component of the TIU is an
oscillator which determines the stability and accuracy of the TIU. The
oscillators used by the SLR stations which participated in the MERIT
Main Campaign were either cesium beam type or rubidium type (Schutz,
1983b). To achieve maximum accuracy, the measurement of the round-trip
flight time is split up in three parts (i.e., T = T1 + T12 - T2), where T1

is the time elapsed from the starting epoch to the first following
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positive crossover of the oscillator, T2 is the time elapsed from the
ending epoch to the next following positive crossover, and T12 is the
time interval between the aforementioned positive crossovers. T12 is
obtained by multiplying the number of intervening positive crossovers
(N12) by the period (T0) of the master oscillator (i.e., T12 = N12 x TO).
The fractional times T1 and T2 are accurately measured either by
charging and discharging a capacitor with constant but different
currents or by using a second oscillator which is slightly off from the
master oscillator. Common biases introduced in measuring T1 and T2 are
canceled out because the times T1 and T2 are subtracted in the
computation of the round trip flight time (i.e., T). Residual errors at
the cm level are still present. These errors can be reduced at the mm
level with the use of streak-cameras employed in the Optical Time
Interval Unit (OTIU) currently being investigated for implementation in
the new two-color laser receivers (Abshire et al, 1985).

The transmitting optics are used to align the laser pulse towards
the satellite being tracked, while the receiving optics are used to
receive and focus the reflected laser pulse onto the cathode of the
photomultiplier. Unsuccessful focusing introduces the image position
effects previously mentioned. A substantially reduced single
dual-purpose telescope performs both of the above functions, thanks to
the technological advances in the field of signal detectors,
photomultipliers and discriminators. These advances introduced a
substantial reduction in the station design which in turn triggered the
construction of the highly transportable laser ranging systems TLRS-1
(Silverberg, 1982; Shelus, 1983), TLRS-2 (Transportable Laser Ranging
System No., 2), etc. These systems are extremely valuable in the study
of geophysical processes because of their ability to make observations of
limited time in remote areas, in a hostile environment.

The time receiver is either a LORAN-C or a GPS receiver and is
used to time-tag each observation in the Universal Coordinated Time
(UTC) scale. The synchronization accuracy with a LORAN-C receiver is
of the order of 1 us, while with a GPS receiver this accuracy is of the

order of 50 ns. Synchronization errors affect the inferred optical range
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by about 4 mm/us. The laser stations used in this study belong either
to the Goddard Laser Tracking Network (GLTN) or to the Participating
Laser Network (PLN) (Shawe et al., 1985), and their observations are
time-tagged with the UTC scale kept by USNO. According to the MERIT
standards and for reasons explained in Chapter 2, the UTC(USNO) has
been transformed to UTC(BIH).

The computer is used as an auxiliary equipment to control satellite
tracking operations, to assist the operator with such functions as data

quality and quantity assessment, maintenance, testing procedures, etc.

3.2.2 Atmospheric Channel

As the laser pulse propagates through the atmospheric channel it
experiences a continuously varying refractive index. This wvariation
depends primarily on the variations of the local pressure with only a
weak dependence on the local temperature and local humidity (Degnan,
1985; .Abshire, 1985). A varying refractive index, on the other hand,
bends the laser pulse according to Snell’s law and also decreases the
group velocity of the laser pulse as it travels through lower pressure
layers at higher altitudes. The error due to bending of the laser pulse
is relatively small and reaches a maximum value of 3-4 cm at 10 degrees
elevation while the error due to the decrease of the group velocity is
very large, reaching the wvalue of about 13 m at the same elevation
(Abshire, 1985). A great number of formulas have been developed to
correct the inferred optical length of the laser pulses (i.e., the inferred
laser ranges) for atmospheric refraction effects. In the present study
and according to the MERIT standards, the Marini and Murray formula
has been used to correct for these effects (Marini and Murray, 1973).
This formula is based on the assumption of a spherically symmetric
atmospheric refraction and it uses only the pressure, temperature and
relative humidity taken at the ranging site. This formula is in error at
the 4-6 cm level as the satellite reaches an elevation angle of 20
degrees (ibid). Today, use of two-color laser ranging systems equipped
with streak-camera receivers promises an atmospheric refraction

correction with an accuracy down to the mm level, thanks to the weak
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dependency of the group refractivity on the water wvapor at optical
wavelengths (Abshire, 1985).

3.2.3 Space Segment

Although the space segment of the SLR system consists of several
satellites, the LAser GEOdynamics Satellite (LAGEOS) is devoted
exclusively to geodynamic and geodetic applications (Moritz and Mueller,
1987). Lageos is a passive sphere with a 59.988 cm diameter orbiting
the earth at an altitude of about 5900 km. Its mass-to-area ratio of
1.44x103% kg/m? effectively minimizes the solar radiation pressure and
atmospheric drag perturbations. The high altitude of Lageos’ orbit not
only reduces the effects of the poorly modeled high frequency
variations of the gravity field but also warranties good simultaneous
tracking of continental extent. The altitude of the orbit, however, is
low enough to assure the geometric strength necessary for successful
implementation of simultaneous laser satellite tracking methods.
Consequently, only laser range observations to Lageos were facilitated in
order to investigate the effectiveness of the SRD and geometric methods
in baseline determinations.

The surface of the Lageos satellite is speckled with 422
solid-cube-corner reflectors (CCR’s) made of fused silica and four made
of germanium (Cohen et al.,, 1985). When the direction of the incoming
laser beam relative to the normal of each individual CCR reaches the
value of 25 degrees, reflection ceases to take place (Degnan, 1985). As
a result, 10 to 15 CCR’s contribute to the laser pulse detected at the
receiver. Therefore, it is difficult to locate for each returning pulse its
reflection point which constitutes the ending point of the inferred
optical laser range. The location of the reflection point is needed to
compute the correction necessary to transform the ending point of the
optical laser range to the center of mass of the satellite. This
correction is referred to as center of mass correction, and its value has
been determined experimentally for different pulse widths prior to the
Lageos launch. The standard deviation in estimating this correction is

about 2 mm. In the current investigation the wvalue of 24 cm has been
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adopted for the center of mass correction. This value is supplied on
each data record in the tape containing the observations (see Section
3.4). Furthermore, the interference of the individual CCR returns, at
the receiver’s level, may introduce a random error in the inferred laser
range the standard deviation of which reaches the value of 1.15 cm
(Fitzmaurice et al.,, 1977). This error is referred to as the coherent

fading effect.

3.2.4 Instrument Origin

Effective use of laser range observations necessitates a clear
identification of the starting and ending points of the inferred ranges.
As already mentioned, the ending point is identified with the center of
mass of the satellite. This is a natural choice because the equations of
motion of the satellite are conveniently expressed relative to this point.

The starting point is identified with a fixed reference point within the
laser instrument and is referred to as instrument origin. The
instrument origin usually coincides with the intersection of the
telescope’s azimuth and elevation axes, but other points within the laser
instrument may be used as well. Realization of the instrument origin is
achieved either through calibration or through the common channel
receiver approach (Abshire et al.,, 1984; Degnan, 1985). During the
MERIT Main Campaign, calibration procedures were employed to identify
the instrument origin through the estimation of the system delay
(Schutz, 1983a). The system delay is measured by making repeated
observations to a calibration target of known distance, usually before
and after each satellite pass. With this information, the system delay
introduced by the instrument’s electronics can . be readily estimated.
The distance to the calibration target is measured with a geodimeter
located very close to the laser ranging instrument. Additional surveys,
therefore, are necessary to determine the position of the geodimeter
relative to the instrument’s origin. In this process, errors of the
order of 2 cm may be introduced. In order to reduce these errors,
some laser instruments are equipped with fiberoptics allowing for

self-calibration (Silverberg, 1982). The common channel-receiver
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approach, on the other hand, eliminates the need for calibration since
the electronic system delay, except for a calibratable signal-amplitude
effect, cancels itself out (Abshire et al.,, 1984; Degnan, 1985). This
approach is currently being tested for implementation in the laser
ranging systems.

From the above discussion it is obvious that on the basis of the
technology employed and the models used, one could come up with a
standard deviation depicting the accuracy of the lagser range
observations recorded by a certain station. This approach, however,
would not take into consideration errors resulting from improper
calibration, from operator errors or from any other errors not being
accounted for. Bearing this in mind, it was considered appropriate to
estimate, for every station used in the present study, a standard
deviation that would reflect the station’s overall performance during the
MERIT Main Campaign. Such an estimate can be obtained by taking an
average value of the monthly precision estimates determined for every
station and for the entire MERIT Main Campaign by the University of
Texas (Analysis of Lageos Laser Range Data, Sept. 1983-Oct. 1984). For
the stations involved in our study, these estimates are shown in Table 2
along with the station ID’s and the kind of laser instruments with which

they were equipped during the MERIT Main Campaign.
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Table 2. Station Location, Laser Instruments
and Precision Estimates.

LASER OBSERVATIONAL
NAME| ID LOCATION INSTRUMENT |PRECISION (m)
QUINCZ| 7109 | Quincy, CA MOBLAS-8 0.028
MNPEAK| 7110 | Mount Laguna, CA MOBLAS-4 0.033
MAZTLN| 7122 | Mazatlan, Mexico MOBLAS-6 0.12/0.05%
GRF105]| 7105 | Greenbelt, MD MOBLAS-7 0.034
PLATVL{ 7112 | Platteville, CO MOBLAS-2 0.125
MCDON | 7086 | McDonald Obs., Ft. Davis, TX | MLRS 0.084
TL0O126| 7265 | Barstow, CA TLRS~1 0.080
OTAY 7062 | Otay Mt., San Diego, CA TLRS-2 0.060
QUINC3| 7886 | Quincy, CA TLRS-1 0.070
MONPK2| 7220 | Mt. Laguna, CA TLRS-1 0.060
HOLLAS{ 7210 | Lure Obs., Maui, HI HOLLAS 0.042
HUAHIN| 7121 | Huahine, Society Is., Pol. MOBLAS-1 0.094
ARELAS| 7907 | Arequipa, Peru AREfixed 0.145

*before and after upgrading.

3.3 SYSTEMATIC CORRECTIONS OF THE OBSERVATIONS EXTERNAL TO
THE SLR SYSTEM
Effective application of the least-squares adjustment assumes constant
adjusted parameters over at least the time span of the observations.
Thus, baseline estimation from station coordinates requires corrected
station coordinates for their temporal variations. Besides shocks and
regional deformations, the temporal variations of station coordinates are
caused either by tectonic plate motions or by earth tides. The regional
deformations are ignored because either they are unknown or their
effects are very small. For instance, the ocean loading effects for the
stations used in this investigation are very small (Melbourne et al.,
1983). Since the time span of the observations covers about one year,
the plate tectonic motions have also been ignored. Thus we have
considered only the temporal variations of station coordinates caused by
the earth tides. The tidal corrections are accounted for by correcting
either the observations or the station coordinates. In the present study

the traditional way of correcting the station coordinates has been
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adopted. This correction has been conveniently formulated through the
station displacement vector caused by the tidal deformation (ibid.). This
formulation is based on the same elastic response of a solid earth over
all orders within a certain degree, and if only the second degree is

considered it takes the following form:

4

3 GM;r h h
_ oX. ) -2 _ ok.ay2 _ 2 _
AP = jgz aﬁi§§?l[[322(RJ ?)]Rj + [ 3[2 l,](Rf ) 5 ]?] (3-1)
where
RY = Ra(-6,) - Ry (3-2)
8, = phase lag caused by the earth’s dissipative forces
GM; = gravitational parameter of the attracting body. In the
present study only the mocon (j = 2) and the sun (j = 3)
have been considered
GMg = geocentric gravitational constant

ﬁj,Rj = unit vector and the magnitude of the geocentric vector

of the moon (j = 2) and the sun (j = 3) respectively

f2,r = unit vector and the magnitude of the stations’ geocentric
vector

h, = nominal second-degree Love number

2, = nominal second-degree Shida number

ﬁ’}‘,R’_‘]‘ = unit vector and the magnitude for the geocentric vector of
of the moon (j = 2) and the sun (j = 3) in the absence

of dissipative forces

The way the tidal displacements have been incorporated in our study
differs in two aspects from what was suggested by the MERIT
standards. The phase lag caused by the dissipative forces has been
modelled in equation (3-2), while the second-degree Love and Shida
numbers have been assumed to be frequency independent. The latter
assumption results in a maximum error of 1.3 cm in the stations’ height
(ibid.). This assumption is well justified not only because the resulting

error is well below the noise level of the observations but also because
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it reduces the bulk of the computations considerably.

3.4 DESCRIPTION OF THE DATA SET UTILIZED IN THIS INVESTIGATION
Both the SRD and the geometric methods require strict simultaneity.
Although baseline estimations based on exclusively simultaneous
observations are largely insensitive to the orbital errors (Christodoulidis
et al.,, 1981) and to reference frame model errors (Pavlis and Mueller,
1983), no specific campaign was ever devoted to coordinate simultaneous
tracking. This, together with the inability of the SLR systems to track
a satellite through a cloudy atmosphere, makes it even more difficult to
achieve extensive simultaneous laser tracking.

Fortunately enough, as early as 1978 the IAU Symposium No. 82 on
"Time and the Earth’s Rotation" recommended setting up a working
group to organize a program of international collaboration to Monitor the
Earth’s Rotation and Intercompare the Techniques of observation and
analysis (MERIT). The proposed techniques of observation included
laser ranging and radio interferometry (Wilkins, 1980). As early as 1980
(August-October) the MERIT Short Campaign was undertaken to test and
develop the organizational arrangements that would be required for a
realistic coordination and successful implementation of the MERIT Main
Campaign which very successfully took place during the l4-month period
of September 1, 1983, to October 31, 1984.

The MERIT Working Group in collaboration with the Conventional
Terrestrial Reference System (COTES) Working Group, decided to extend
the objectives of the MERIT Main Campaign in order to include the
preparation of a catalog with a precise and consistent set of station
coordinates (Wilkins et al.,, 1986). Consistency of the station coordinates
is achieved by accurately linking together the reference frames realized
by each of the techniques involved. This is accomplished either
through collocations or by estimating for each technique the diurnal
differences of the earth rotation parameters. Towards achieving this
goal, it was decided to have an intensive campaign, during which, in

addition to other requirements, all the MERIT stations were asked to
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observe as frequently as possible and in full capacity (ibid). The SLR
technique, one of the techniques tested during the MERIT Main
Campaign, reached its full potential. It would never have reached this
potential if it weren’t for the NASA Crustal Dynamics Project whose SLR
network after several years of buildup approached during the MERIT
Main Campaign its full capacity (Coates et al., 1985)., It was this peak in
the operation of the SLR system that resulted in an extensive SLR
simultaneous tracking which in turn sparked the initiation of the
present study. Consequently, the SLR observations collected during the
MERIT Main Campaign were used in this study and herein this data set
is referred to as the MERIT Main Campaign (MMC) data set.

According to the SLR organizational arrangements for project MERIT,
each of the observing stations was obligated to submit its Full Rate (FR)
observations to the Crustal Dynamics Information System (CDIS) located
at Goddard Space Flight Center (GSFC). The FR observations would
have to be submitted within three months after their collection (Schutz,
1983b). The MERIT FR data format is a character oriented format
referred to as Seasat Decimal Format (SSD) (ibid.).

The MMC data set is available to any investigator from the Crustal
Dynamics Data Bank (CDDB). This data set was sent to us upon request
in nine-track magnetic tapes. Each record in the tape is stored in SSD
format and contains the observed range, the epoch of the observation
and a number of indicators pertaining to the corrections that have been
applied and to those that have yet to be applied (i.e., atmospheric
refraction corrections, center of mass corrections, etc.). The observed
ranges stored in those records are corrected for system delay, signal
amplitude dependent effects and any other effects pertaining to the
lager instrument (see Section 3.2). The center of mass correction has a
negative sign, and therefore it should be applied to the computed range.
Each record also contains the atmospheric refraction correction computed
with the Marini and Murray formula together with the pressure,
temperature and relative humidity recorded at the observing site. The
meteorological data is included for the analysts who might prefer to

compute the atmospheric refraction correction with a different formula
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than that of Marini and Murray. The Marini and Murray formulation was
suggested for use with the MMC data set as an extension of the MERIT
standards (ibid.).

At the time when this study was initiated the MMC data set was not
available. Thus, at the initial stage of this work, we employed the
Lageos laser ranges recorded during the last three months of the year
1979 by stations 7114 (Owens Valley) and 7115 (Goldstone) located in
California. The initial stage of this work was primarily devoted to the
development and testing of the software necessary to edit the laser
range observations and to generate the simultaneous range and SRD
observables which constitute the input to the geometric and SRD
methods respectively. Baseline estimation, however, was based solely on
the MMC data set (see Chapter 4).

The MMC data set is not a unique data set because for each month
there have been several releases issued due to data problems or to
missing data (Section 3.6.3). Table 3 shows the monthly releases of the
MMC data set used in our study. These releases, besides having
erroneous observations, also contain data records with unacceptable
characters such as asterisks, plus and minus signs, etc. These records
should not have been there since the received data set was supposed to
have been preprocessed by the Bendix Field Engineering Corporation
(Schutz, 1985). Editing this data set was a tedious process and a

considerable amount of time was spent for this purpose.
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Table 3.
Monthly MERIT Releases

Final
Month Release Release
Sep. 1983 C yes
Oct. 1983 B no
Nov. 1983 E yes
Dec. 1983 E yes
Jan. 1984 E yes
Feb. 1984 C no
Mar. 1984 C no
Apr. 1984 D no
May 1984 D no
Jun. 1984 B no
Jul. 1984 B no
Aug. 1984 c no
Sep. 1984 B no
Oct. 1984 C yes

3.5 DATA EDITING

The brief description of the error sources affecting the SLR systems
(see Section 3.2) reveals that erroneous timing of the returned laser
pulse is possible, especially when the observations are made during
daylight time with a single photon detection laser instrument (i.e., TLRS
1, 2, 3 or 4) (Shawe et al.,, 1985). Erroneous timing is even worse for
the laser instruments equipped with single stop Time Interval Units
(TIU). With single stop TIU’s it is not possible to detect the returned
laser pulse if a noise pulse with an energy level exceeding the stop
discriminator threshold enters the receiver prior to the returned laser
pulse. Multistop TIU’s, on the other hand, have the potential to reduce
erroneous detection substantially since they are designed to detect more
than one returning pulse for each of the emitted pulses. The multistop
TIU’s available on the market today have time resolution at the
nanosecond level. Such low resolution makes them inadequate for use
with centimeter-level accuracy laser instruments. Erroneous laser range
observations may also result from operator errors, inadequate
maintenance and from any other sources affecting the proper operation

of the laser instrument.
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The erroneous observations should be detected and rejected before
the generation of the Simultaneous Range (SR) and the Simultaneous
Range Difference (SRD) observables. In common practice, editing of the
erroneous observations is incorporated in the final adjustment of the
observations when station coordinates and baselines are estimated. In
the present study, however, the editing of the laser ranges should
precede the final adjustment simply because the SR and SRD observables
are obtained through an interpolation of the laser ranges, and therefore,
the presence of erroneous ranges will affect the entire set of the
generated SR and SRD observables. Thus, effective generation of the
SR and the SRD observables requires early editing of the observed laser

ranges.

3.5.1 Data Snooping Procedure

Any kind of editing procedure requires a functional representation of
the observed ranges. The estimation of the parameters involved in this
representation allows the prediction of the observed ranges and
therefore the estimation of the errors associated with each of those
ranges. The difference of the estimated error vector (i.e., residual
vector) from the true error vector accounts for the projection of the
true error vector into the model space generated by the column space
of A (see equation 3-12). This is the component of the true error that
is lost in the estimation process, and therefore it cannot be recovered.
Based on the statistical properties of the estimated component of the
true error (i.e., residual), statistical tests may be derived to allow for
the detection and rejection of erroneous observations.

This section proceeds with the development of the statistical
formulation necessary for the derivation and implementation of those
tests. The next section contains a description and elaboration on how
the base functions employed in the functional representation of the laser
ranges should be chosen to effectively edit the laser range
observations.

Let’s consider the linear adjustment model employed in the

functional representation of the observed laser ranges (Uotila, 1986)
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—e = AX - Ly (3-3)
where

e = true error vector of the observations

L, = vector of the observed laser ranges

X = true parameter vector

design matrix of the experiment

The minimum variance unbiased estimate of the parameter vector X has

the following form (ibid.)
X = (ATPA)'ATPL, (3-4)

The true errors, under the null hypothesis, have a multivariate normal

distribution with 0 mean and }, variance-covariance matrix

e ~ N(0,Z,) (3-5)
where

Le = ¢3P7! = variance-covariance matrix of the observations (3-6)

P = weight matrix of the observations

a3

the a priori variance of unit weight

The unbiased estimate of the a priori variance of unit weight takes the
following form (ibid.)
1

3= ooy (AX - L) TP(aR - Ly) (3-7)

Q

where
n - u = degrees of freedom of the adjustment

The projection of the true error vector e into the orthogonal space
complement to the model space constitutes the estimated error (i.e.,

residual) vector

V=AK - L, = [A(ATPA)T1ATP - I]L, (3-8)
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Substitution, in this equation, of the weight matrix P with the identity

matrix leads to the following equation
V = [A(ATA)TAT - I]L, (3-9)

This substitution is well justified because the editing of the
observations is carried out on a station-by-station basis and for each of
the stations involved the variance-covariance matrix of their
observations is assumed to have a diagonal form and equal diagonal
elements. Thus, the weight matrix P, apart from a constant factor, is
equal to the identity matrix.

Since the true error vector e has zero mean, equation (3-3) takes

the following form

Lb = e + E(Lb) = e + AX (3‘10)

where the symbol E denotes the expected value. Substitution of

equation (3-10) into (3-9) leads to the following equation

V = Me (3-11)
where
M = [A(ATA)TAT - 1] (3-12)

The matrix M is a symmetric idempotent matrix with rank (n - u), and
since MA = 0 it represents the orthogonal complement operator of the
model space (i.e., projects any vector into the orthogonal complement of
the model space) (Pope, 1976).

With the help of equation (3-11) and the law of covariance
propagation, the variance-covariance matrix of the residuals takes the

following form

zv = Ma% (3‘13)
Ty = M52 (3-14)
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The first factor of the matrix M (eq. 3-12) depends on the design
matrix A or, in other words, on the chosen experiment. From an
estimation point of view the experiment (i.e., design matrix) should be
chosen to minimize the projection of the true observational error into
the orthogonal complement of the model space (i.e., to minimize the effect
of the true observational error on the predicted ranges). From an
editing point of view in which we are interested, the M matrix should be
nearly diagonal. This is preferred because each individual residual (v;)
will be primarily affected by the corresponding true error e;. This
makes it easier to identify erroneous observations with one-dimensional
residual testing (see next section).

Using an independent set of analytic base functions for the
functional representation of the laser ranges results in a severe
limitation in regard to the choice of the model space. This limitation
arises because any analytic base function can be approximated by a
partial sum of monomials up to degree k. Thus, the space spanned by
the monomials (1, t, . . . , tk) closely resembles the model space spanned
by any independent set of base functions. The basis, however, selected
to span the model space will determine the conditioning of the normal
matrix (i.e., ATA) and the distribution of the approximation errors in the
interval of approximation. Choosing Chebychev polynomials as base
functions results not only in a well-conditioned normal equations matrix
but also in an even distribution of the residuals over the interval of
approximation (see next section).

Having a functional representation for the observed laser ranges we
can proceed with the editing of those ranges using one-dimensional
statistical testing of the residuals. This is accomplished with the
one-dimensional data-snooping procedure originated by Baarda (1968).
In this procedure, under the null hypothesis the true observational
errors have a multivariate normal distribution with zero mean and Y.
variance-covariance matrix (equation 3-5). Thus, under the null

hypothesis H, the residuals have a multivariate normal distribution

vV ~ N(0, EIy) (3-15)
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with zero mean and ]y variance-covariance matrix (equation (3-13)).
This leads to a normal marginal distribution for each individual residual

with zero mean and variance «,,2

v; ~ n(O,d\z,i) i=1, ..., n) (3-16)

Thus, the original null hypothesis H, is now replaced by a sequence of

null hypotheses Ho‘ i=1, ..., n):

Ho : vy ~n(0, af;) (i=1, ..., n) (3-17)
where
v; = the residual of the ith observation
oV = g9 V my (3-18)
¢3 = a priori variance of unit weight
m;; = diagonal elements of the matrix M (equation 3-12)
Under the sequence of the hypothesis H°i (i=1, . . ., n) the statistic

W; = vy/o,; has a standard normal distribution

W, ~n(0,1) (i=1, ..., n)

The capital letter N in the above equations denotes multivariate normal
distribution while the small letter n denotes one-dimensional normal
distribution.

The theoretical value ¢, in equation (3-18) is unknown and therefore
the estimated &, (i.e., a posteriori variance of unit weight) is used to
evaluate the W; statistic. This new (V?i) statistic, under the sequence
of null hypotheses H°i (i =1, ... n), and as the degree of freedom
becomes larger and larger tends to have a student’s t distribution
(Pope, 1976)
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A Vi

Wi =73— ~ th-u, o, (3-19)
vy
where
Gyi = 30 VY my;, (3-20)

oo = Type I error = P (rejecting H, | when H, is true)
n — u =: degrees of freedom
o3 =: a posteriori variance of unit weight (equation (3-7))

The critical region C of a statistical test based on the W" statistic takes

the following form

C = {W, . 'wil > tn—u’ oy ] (3"'21)
while the Type I error becomes

=P vl t
oo = GV,- > n—u, o,

Therefore, the data-snooping procedure is carried out in the following
steps:
1. Choose a probability level (oo = 0.005)
2. Take from a student t table the critical value (c) for rejection
(e.g.y ¢ = tn-u, o, with n - u > 200 = 2.84)
3. Compute the individual statistic W’i

4. Reject each observation Lbi leading to ﬁi > ¢

If the observations are correlated a slightly different data snooping
is required (Pope, 1976). The data-snooping procedure has been
effectively applied in photogrammetry (Gruen, 1979), in deformation
analysis (FIG Deformational Analysis Working Group, Heck 1982) and in

the present study to edit laser range observations.
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3.5.2 Effectiveness of the Data Snooping Procedure in Editing the
Laser Range Observations

Implementation of the data-snooping procedure requires a functional
representation of the observed laser ranges. Before proceeding with
the choice of the base functions, we should try to single out those
properties of the base functions that would make the data-snooping
procedure more effective. To accomplish this, we should realize that the
data-snooping procedure is based on a sequence of one-dimensional
tests carried out for each residual individually. These one-dimensional
tests would be effective if the residuals are uncorrelated and evenly
distributed over the interval of approximation. It is not possible to
obtain uncorrelated residuals with the linear adjustment model (3-3); if
this were possible it would imply that rank (M) = n, which is a
contradiction since rank (M) = n - u (see equation (3-12)). Thus we can
only look for base functions yielding residuals with reduced
correlations. This, however, is not possible because a set of k
independent analytic base functions can be uniquely mapped into the
linear space spanned by the monomials up to degree k (ie., 1, t, . . .,
tk). Thus we are left only with the choice of base functions that yield
an even distribution of the residuals over the interval of approximation
and presumably a well-conditioned normal equations matrix.

To understand how an uneven distribution of the residuals may
result, we choose the monomials to represent the observed laser ranges
in the interval (tg, tgl. Since any such arbitrary interval can be

transformed to the interval [-1, 1] by the change of variables,

2t - tg -ty tg ¢t < tg
TE -1 (3-22)
E '8 -1 <¢r<1l
it is sufficient to examine the behavior of the monomials (1, =, 72, ... k)

in the interval [-1, 1]. In this interval each monomial assumes the same
maximum absolute magnitude 1 at + = *1 and the same absolute minimum
magnitude 0 at + = 0. If the observed ranges would be approximated
with the polynomial
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Ry(r) =X%7 - T (3-23)
where

T=(, =, 72, ... 7T (3-24)

X = estimated monomial coefficient vector (equation (3-3))

the errors in the parameter vector £ will produce small residuals for
small r (i.e., T near zero) and large residuals for r close to 1 or close
to -1. Such uneven distribution will apparently place limits on the
effectiveness of the data-snooping procedure. In addition to this, use
of monomials as base functions gives rise to numerical problems
asgociated with the inversion of a nearly-singular normal matrix when k
is moderately large (Carnahan et al., 1969; Pavlis, 1982). These
numerical problems further deteriorate the effectiveness of the
data-snooping procedure. Thus, the monomials cannot be effectively
used with the data-snooping procedure.

To avoid uneven distribution of the residuals it seems reasonable to
look for functions having evenly distributed extreme wvalues of equal
magnitude in the interval [-1, 1]. The Chebychev polynomials appear to

be good candidates since their cos(nf) origin fulfills the above

requirements. These polynomials are defined with the following
equations

T,(7) = cos(nb) ; n=0,1, ... k (3-25)
where

6 = cos™{(T) (3-26)

From this definition, one readily obtains

|
P

To(T) = (3-27)

Ty () =

i
9

(3-28)

and
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Ta(r) = 27 - Ta—y (1) — Tp-2(7) (3-29)

The n real roots of the polynomial T,(r) occur in the interval [-1, 1] at

the points

ro=cos [ 5ok (3-30)

Using equations (3-25) through (3-29) it is a matter of simple exercise
to prove that the extreme values of Chebychev polynomials have the
same absolute magnitude of (1) and are evenly distributed in the
interval [-1, 1]. In this interval the Chebychev polynomials are
orthogonal with respect to a weighted integral operator with weight

function w(r):
wit) =1 /v/1-+2 (3-31)

We desire, however, that these functions be orthogonal with respect to
summation as well. Fortunately, this is true but only if the summation
is carried out over a specific set of points in the interval [-1, 1]
(Pavlis, 1982)

0 iz
m _lm+1 ..
22230 Ti(re) Ty (70) = | =5~ i=j=0 (3-32)
m+ 1 i=jg=20

where r¢ denote the roots of the polynomial T,+,(r) given by equation
(3-30). Thus, in the formation of the normal equations matrix (ATA)
there exists a tendency for cancellations among the products of
different degree Chebychev polynomials according to the equation (3-32).
This tendency prevents the numerical problems associated with the
inversion of the normals and it justifies the term "nearly orthogonal"
often used when the Chebychev polynomials constitute the base

functions in a least-squares adjustment.
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The effectiveness of the data-snooping procedure to edit laser range
observations is shown below for only two passes. Extensive
experimentation, however, with sparse and dense data sets recorded by
many different stations, indeed confirms that the results for these two
passes are indicative for the overall performance of the data-snooping
procedure. Fig. 1 shows the residuals, computed with equation (3-9),
for two passes observed by stations 7114 (Owens Valley) and 7115
(Goldstone) on October 31, 1979. These residuals indicate that erroneous
observations with blunders as large as 350 m do exist in the original
data set. Rejection of the erroneous observations is carried out by the
data-snooping procedure (see Fig. 2). This figure shows the
distribution and the magnitude of the residuals after the application of
the data-snooping procedure. It is evident that a rejection of less than
10% of the the observations not only eliminates the blunders and makes
random the residuals but also reduces the RMS from about 46 m down to
0.11 m.

A close inspection of Fig. 1 and 2 also reveals that observations
having 20 m residuals not only survived in the data-snooping process
but also reduced their residuals down to the 0.10 m level. This not
only demonstrates the dependence of the residuals on the number and
the magnitude of the blunders affecting the observations but also shows
how difficult it would be to detect and reject erroneous observations by
testing the individual residuals v; alone. The data-snooping process
overcomes this difficulty by testing the normalized residual (i.e.,
v,/'&vi) instead. Furthermore, Fig. 2 shows that about three percent of
the residuals have an absolute magnitude greater than 0.40 m while the
rest of them are randomly distributed about zero with an RMS of 0.12 m.
Thus, it was decided to edit out the observations with residuals of
absolute magnitude greater than 0.40 m. A plot of the residuals for the
remaining observations is shown in Fig. 3. These residuals have a
random distribution about zero with an RMS ranging from 0.10 m to 0.12
m. These RMS values are consistent with the expected accuracy of the
observing stations thereby confirming our claim that these observations

form a clean (i.e., no presence of blunders) data set. Although the
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data-snooping procedure is very effective, it is relatively slow and
therefore very expensive since five to six iterations are needed for the
editing process to finish. Alternative ways to speed up this process
have been developed by various investigators (Pope, 1976; Gruen, 1979).
Finally, we should keep in mind that constant and time dependent
biases, no matter how large, cannot be detected by the described
procedure simply because if such biases do exist they will be absorbed

by the recovered coefficients of the Chebychev polynomials.

3.6 GENERATION OF SIMULTANEOUS RANGES AND SIMULTANEOUS RANGE

DIFFERENCES
Since Lageos is a passive satellite, it is quite unlikely for the
coobserving stations to record strictly simultaneous observations even if
the same part of the the Lageos orbit is coobserved. This happens
because for each observing site the tracking starts at a different epoch,
each laser instrument has a different repetition rate and last but not
least there will always be synchronization errors among the coobserving
sites. Implementation of the geometric and the SRD methods requires
strict simultaneity, and therefore, an interpolation of the observed laser
ranges i8 necessary.

Simultaneous observations for the geometric solution are obtained by
first identifying passes continuously coobserved (i.e., data gaps smaller
than 60 seconds) by four or more stations (see Sections 3.6.2 and 3.6.3).
For each of those passes the station with the least number of
observations 1is identified. At its observing epochs simultaneous
observations for all the remaining stations are generated through an
interpolation.

Simultaneous Range-Differences for the SRD method are obtained by
dividing the observing stations into pairs with quasi-simultaneous
observations. For each of these pairs the station with the least number
of observations is identified. Subsequently, at its observing epochs
interpolated ranges for the alternate station are generated. The SRD

observables are finally obtained by subtracting the actually observed
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ranges of the station with the least number of observations from the
corresponding interpolated ranges of the alternate station.

Therefore, it is essential for the success of this study to select an
interpolation method that is capable of generating laser ranges with an

accuracy compatible to that of the observations.

3.6.1 Chebychev Polynomials and Spline Functions in the Context of
Global and Piecewise Interpolation

A survey of the interpolation methods shows that these methods may be
divided into two basic categories:

- the global interpolation methods, and

- the piecewise interpolation methods.
With the global interpolation methods, a function is approximated over
the entire interval of approximation by the same linear combination of a
selected set of base functions. The function being approximated may be
known either analytically or quantitatively at a small number of base
points. The latter case depicts the situation in the present study since
the ranges to the satellite, apart from measurement errors, are known
only at each of its observing epochs. With a piecewise interpolation
method, a specific function whose values are given at a specified set of
base points is approximated by dividing the base points into successive
subsets, each of which contains two, three or more base points. Within
each subset the function is approximated by a different linear
combination of (possibly) different base functions. Boundary conditions
are imposed on the common points of adjacent subsets to make the
interpolating function continuous with (possibly) continuous first-
and/or second-order derivatives over the interval of approximation.
Thus, with a piecewise interpolation method one obtains a continuous
interpolating function consisting of pieces, each of which is composed
from a different linear combination of (possibly) different base
functions.

The approximating function of a global interpolation method, on the
other hand, generates approximate values with a relatively strong

dependence on the wvalues the approximated function assumes at each
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base point. This is a desired property for our study because we would
like to obtain interpolated ranges that reflect to the highest degree of
accuracy the overall information inherent in the actually observed
ranges. Furthermore, the effect of the gaps (i.e., distances between
successive base points) should be effectively controlled, and if possible,
kept down below the noise level of the observations. In global
interpolation methods these effects of unevenly distributed gaps are
uniformly distributed over the interval of approximation provided that
the gaps are not large enough to corrupt the effectiveness of the global
interpolating function (see Section 3.6.2). With global interpolators the
generated approximate values exhibit strong correlations because the
same linear combination of base functions is used to generate
approximate values over the entire interval of approximation. Moreover,
the closer the approximated values the stronger the correlations are.
Strong correlations are not welcomed in the present study since the
generated SR and SRD observables will be considered uncorrelated in
the final adjustment when the station coordinates and baselines will be
estimated (see Sections 3.6.2, 4.3 and 4.4). The effectiveness of the
global interpolation methods is largely dependent not only on the choice
of the base functions but also on their implementation to "best"
represent the given set of data points.

The base functions most often encountered in practice are the
monomials, the Chebychev polynomials, the Fourier series, the
exponentials, etc. (Carnahan et al.,, 1969; Davis, 1975). Linear
combinations of either monomials or Chebychev polynomials are by far
the most important and most popular approximating functions. These
polynomials are easily operated on by addition, multiplication,
integration, differentiation, scaling and shifting and more importantly
they are closed with respect to any of these operations. Other base
functions also possess some or all of the above properties, and therefore
the polynomials would not be so important if it were not for the
Weierstrass approximation and uniform approximation theorems (Davis,
1975; pp. 24 and 107).
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The choice of the base functions depends on the behavior of the
function being approximated. For instance, functions with certain
periodicities can be best approximated with Fourier base functions
sin(kr), cos(kr), k = 1, ... n, while functions with exponential behavior
are best described with exponential base functions. A combination of
Fourier series and exponentials would also be effectively used if the
behavior of the approximated function exhibits such a pattern. In the
present study, since the laser range observations are affected by
periodic and secular perturbations caused mainly by the gravity field it
is only fair to choose for their representation periodic base functions
supplemented with monomials of degree zero, one, and possibly two.
Chebychev polynomials exhibit such a behavior not only because of their
cos(nf) origin (see Section 3.5.2) but also because the Chebychev
polynomials of degree zero and one coincide with the monomials of the
same degrees. In addition to this, the optimal properties of the
Chebychev polynomials (see Section 3.5.2) make them ideal base functions
for an effective global representation of the observed laser ranges.

Having chosen a set of base functions, their linear combination
should be determined to "best" approximate the function implied by the
given set of data (i.e., function of the observed laser ranges). The best
representation of this function is determined on the basis of a chosen
criterion. Such a criterion may be chosen to either reproduce the
function at its base points or to reproduce the function and its
derivatives at a given point. We may also choose to either minimize the
maximum error of the approximation (i.e., minimax principle) or to
minimize a weighted sum of the squares of the residuals at the base
points (i.e., least squares approximation).

Reproducing the function at n base points results in an
interpolating polynomial of degree (n-1). Thus approximation of the
laser ranges with an interpolating polynomial would result in a
polynomial of degree ranging anywhere between 200 to 12000. Use of
such a high~-degree polynomial is completely out of the question.
Reproducing the function and its derivatives at a given point or

minimizing the maximum error of approximation are also ruled out
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because for the former criterion the derivatives needed are not available
while for the latter the base points should coincide with the roots of
the minimax polynomial. Such a choice is not feasible in our study
simply because we have no control over when the laser ranges will be
recorded. However, if such a choice would have been possible it would
result in a minimax polynomial of very high degree, and therefore it
would have been ruled out again. Minimizing a weighted sum of the
squares of the residuals (i.e., least squares principle) constitutes a very
good alternative not only because we can statistically select a relatively
low degree for the approximating polynomial but also because the least
squares do not reproduce the observations. The former property
prevents instability problems usually associated with the polynomial
interpolation, while the latter is desired because the observed laser
ranges are always contaminated by measurement errors. Therefore, the
functional representation of the observed laser ranges with Chebychev
polynomials whose coefficients are estimated with a least squares
adjustment, constitutes an alternative having many of the desired
properties necessary for a successful interpolation (see Section 3.6.2).
The piecewise interpolation methods generate approximate values that
are sensitive to the wvalues of the approximated function in the
neighborhood of the interpolating point but largely insensitive to the
values of this function a little farther away from that point.
Furthermore, the effects of the gaps in the piecewise interpolation
methods are not uniformly distributed over the interval of
approximation. Thus, approximation errors committed closer to big gaps
are substantially larger than those committed closer to smaller gaps (see
Section 3.6.2). Such behavior of the approximation errors cannot be
easily controlled because their functional dependence on the magnitude
and the distribution of the gaps is not known. Direct evaluation of this
functional dependence requires laser ranges between adjacent
observations which of course are not available. The inability to
effectively control the effect of the gaps in the piecewise interpolation
methods constitutes a major drawback when these methods are compared

to the global interpolation methods (see Section 3.6.2).
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The generated approximate values +via piecewise interpolation
methods are largely uncorrelated because a different linear combination
of a (possibly different) set of base functions is used to generate the
approximate values between different pairs of successive observations.
This property differentiates the piecewise interpolation methods from the
global interpolation methods and constitutes a desired property for the
present study because the generated SR and SRD observables will be
considered uncorrelated in the final least squares adjustment when
station coordinates and baselines are estimated (see Sections 4.3 and
4.4).

With the piecewise interpolation methods a relatively small number of
base functions (usually three to five) is needed to represent the data
between adjacent data points. The choice of the base function should
be made along the same lines discussed in the global interpolation
methods. The coefficients of the different linear combinations of the
(possibly) different set of base functions for each subset of adjacent
base points are determined by imposing boundary conditions to
reproduce the functional values (i.e., observed ranges) and to obtain a
continuous interpolating function with continuous first and/or second
derivatives. One may also choose not to reproduce the observed ranges
but rather to introduce a weight function that would reflect a desired
relation between the predicted and the actually observed laser ranges.
The introduced weight function may be derived according to the
measurement errors and to the distribution of the gaps in the
neighborhood of the base points (i.e., observing epochs). Use of weight
functions with cubic splines leads to the weighted cubic splines
interpolation (Spath, 1974). Estimating the weight function is a difficult
task, and this function may not be valid for different cases. Therefore
it was considered appropriate not to introduce any weight function but
rather to reproduce the functional values (i.e., observed ranges) at each
base point (i.e., observing epoch). This would enable the evaluation of
the overall performance of the piecewise methods in regard to their
ability to generate good approximate values when relatively large gaps

exhibit an uneven distribution over the interval of approximation (see
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Section 3.6.2). For this evaluation we made use of the easy-to-handle
cubic splines.

A cubic spline s(t) where t is in the interval [t,, t,] is defined as a
set of third-degree polynomials, each defined in the interval [t,, ty4,]
(k = 1, ... n-1). These polynomials are joined at the base points (t,) so
that the resulting cubic spline is twice differentiable at each base point.
A cubic spline defined on an interval with n base points consists of
(n-1) third-degree polynomials. Thus, its Lmique determination requires
4(n-1) independent sets of equations. The requirement to have a twice
differentiable cubic spline in the interval [t,, t,] introduces a set of
2(n-2) independent equations which results from the continuity
conditions required for the existence of the first and second derivatives
at the base points t, through t,—,. The requirement to reproduce the
functional values (i.e., observed laser ranges) at the base points (i.e.,
observing epochs) introduces another set of [2(n-2) + 2] independent
equations bringing up to (4n-6) the total number of independent
equations. The two additional equations, necessary for the unique
determination of a cubic spline, are obtained from the boundary
conditions specified for both ends of the approximation interval (i.e., at
the base points t, and t,). Since the observed laser ranges vary
slowly within a few seconds of time, we have adopted in the present

study the following conditions:

s 7 (ty) = 877 (ty) (3-33)

s” " (tp-1) (3-34)

1}

s” " (tn)

Such an arbitrary choice influences the results very slightly in the
neighborhood of the end points (Spath, 1974; Pavlis, 1982). The
independent set of equations used to determine the (4n-4) coefficients of
a cubic spline is given in (Spath, 1974; Pavlis, 1982). The next section
contains an evaluation of the relative performance of the least squares
Chebychev and cubic spline interpolators. This evaluation is based on

their ability to effectively interpolate the observed laser ranges.
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3.6.2 Chebychev Polynomials vs. Cubic Spline Functions in the
Functional Representation of Laser Ranges

Least~-squares approximation of the Ilaser ranges with Chebychev

polynomials requires a priori knowledge for the degree of the resulting

algebraic polynomial
Ra(‘f) = do + lel(T) + . . .t uka(T) (3_35)

The degree of the algebraic polynomial Ra(r) coincides with the degree
of the kith Chebychev base function Ty¢(r). This degree should be
chosen to represent the data "sufficiently” in the sense that an
extension of equation (3-35) to include higher-degree Chebychev
polynomials will represent the data with the same accuracy. There is a
limit as to what degree we can go to because after a certain degree has
been reached instability problems will deteriorate the solution
substantially. With Chebychev polynomials there exists a wide range of
degrees that can be used to represent the data with the same accuracy.
This is possible because Chebychev polynomials are not seriously
affected by instability problems (see Section 3.5.2). This property will
be very useful in our study because in the generation of the SR and
SRD observables it reduces the computing time substantially (see Section
3.6.3).

The lowest-degree Chebychev polynomial that sufficiently represents
the available data is conveniently determined through statistical testing.
To construct this test it was assumed that the coefficients of the
equations (3-35) were estimated together with the weighted sum of the

squares of the residuals
Rk = (VTPV)k ~°’2xr2l—k—l (3‘36)

through a least-squares adjustment. At this point we would like to
statistically test if the coefficient («y) is significantly different from
zero. To accomplish this, we perform another adjustment supplemented
with the constraint that the coefficient («,) is zero. If in this

adjustment the computed weighted sum of squares of the residuals is
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Rg-1, then the weighted sum
Re = Ry—y — Ry (3-37)

caused by the constraint (o) = 0) is distributed as o¢2x? [ = ¢2N2(0, 1)]
independently from R, (Hamilton, 1964). Thus, the percentage change of

the weighted sum of the residuals

_ Rc _ Rk—l - Rk ~ X% - - 2
P=g, (k1) = =—p— -(nk-1) " 5=— = F1,npm1 = thoim
(3-38)

caused by the constraint («, = 0) is distributed as t2_,.,., Having P
and its distribution it is possible to set up a hypothesis test based on

the percentage change of the weighted sum of the residuals

Ho: o =0 (=:

not significant change in P)

H,: dk=0 (

: significant change in P)
The critical region of the test is obtained through the following equation

P(Fi,n—k=1 > Per) = 2 & P(lto—p—y| > (Pe)¥%) = % (3-39)

where o is the significance level (i.e., Type I error) of the test.
Specifying a value for « of 0.01 (1%) we can determine P.. for n > 200

with the help of a t table and equation (3-39) (DeGroot, 1975)
(Per)% = 2.576

resulting in the critical region
C={P=zR P> (2.576)2%} (3-40)

Thus the hypothesis H, is rejected if
P > (2.576)2 (3-41)

thereby suggesting that a higher degree is needed at the 1%

significance level. This process continues up to the degree for which
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H, cannot be rejected. With this test at our disposal we have the
means to determine the least squares Chebychev polynomial that
"sufficiently"” represents the observed laser ranges. Therefore, we can
proceed with the relative evaluation of the cubic spline and Chebychev
interpolators. This evaluation is based on the ability of these
interpolators to "adequately" represent the laser ranges.

The relative performance of these interpolators is based on a
quantitative analysis of the orbit residuals obtained with two identical
semidynamic orbit adjustments. The SRD observables input to those
adjustment were generated through the cubic spline and the Chebychev
interpolators using the edited observations of the station pair 7114 and
7115. These observations correspond to the same two passes whose
Chebychev residuals are shown in Fig. 3. The generated cubic spline
and Chebychev SRD’s were processed with the help of

- Lageos 1initial state vectors ©predicted, through numerical

integration, for the starting epochs of both passes

~ the shortened version of the DE/LE200 lunar planetary ephemeris

file covering the time span of the observations, and

-~ the coordinates of the pole with the variations in UT1 at each

observing epoch
through two separate orbit least squares adjustments implemented by
the GEOSPP software. This software was developed by Pavlis (1982) and
during the course of this study was not only modified to comply with
the MERIT standards but also was corrected to successfully operate in
the real data environment (see Chapter 2). The TRF and the CRF frames
for each of the above adjustments are realized through the implicit
constraints discussed in Chapter 2 supplemented with the following
weighted constraints (see Section 4.1):
- coordinates of station 7114 were held fixed (i.e., ox = gy = oz =
0.0001 m)
~ coordinates of station 7115 were moderately weighted (i.e., ox =
oy = gz = 10.0 m)
- initial state vectors were moderately weighted (i.e., dx = oy = o2z

=20 m; X = gy = o7z = 0.02m/s)
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The relative evaluation of the cubic spline and Chebychev interpolators
is based on the comparison of the orbit residuals obtained with the
cubic spline and Chebychev SRD observables. The cubic spline and
Chebychev orbit residuals for the same two passes depicted in Fig. 3
are shown in Figs. 4 and 6. The generation of the cubic spline SRD’s
and the Chebychev SRD’s is based on the interpolation of the station
having the larger number of observations.

A comparison of Figs. 4 and 5 shows a strong correlation between
the cubic spline orbit residuals and the data gaps of station 7115.
However, this strong correlation exists only for the pass whose
successive data gaps reach a maximum value of 60 seconds (see left
plots of Figs. 4 and 5). For the other pass, whose gaps are not larger
than 10 seconds, the correlation of the cubic spline orbit residuals with
the successive data gaps is not strongly pronounced. This happens
because the small magnitude data gaps are evenly distributed over the
entire pass (see right plots of Figs. 4 and 5). On the contrary, the
correlation of the Chebychev orbit residuals with the successive data
gaps of station 7115 is very low (compare Figs. 6 and 5). Furthermore,
it is quite clear that the cubic spline residuals are noisier than their
Chebychev counterparts. In fact, the RMS of the cubic spline residuals
for the passes shown in Figs. 4 and 6 is 0.41 m and 0.23 m respectively,
while for the same two passes the RMS of the Chebychev orbit residuals
is 0.12 m and 0.11 m respectively. The noisy behavior and the high
RMS of the cubic spline orbit residuals is traced to the piecewise nature
of the cubic spline interpolation. This assessment is confirmed by
computing the differences between the cubic spline and the Chebychev
SRD’s. These differences are shown in Fig. 7, and they seem to exhibit
an almost identical behavior with the cubic spline orbit residuals (see
Fig. 4), thereby confirming the anticipated fact, namely, that these
residuals are primarily caused by the cubic spline interpolator. This
result is not surprising since the piecewise nature of the cubic spline
interpolator makes it sensitive to the magnitude and distribution of the
data gaps. On the contrary, the global nature of the Chebychev

interpolator makes it insensitive to the magnitude and the distribution
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of the data gaps provided that these gaps are not larger than 60
seconds. On the other hand, the 0.11 m and 0.12 m RMS of the
Chebychev orbit residuals is consistent with the expected accuracy of
stations 7114 and 7115 respectively. Thus one can safely assume that
the errors caused in the generation of the Chebychev SRD’s by the
up-to-60-second data gaps are not larger than the noise level of the
observations. Extensive experimentation with dense and sparse data
sets has revealed that gaps larger than 60 seconds tend to be several
minutes long, thereby implying that the corresponding station ceased to
observe due to calibration, weather problems, etc. (see Section 3.6.3).
Thus, from now on we say that a station observes continuously if and
only if successive data gaps are not larger than 60 seconds.
Furthermore, interpolation is performed only over time intervals with
"continuous" coverage of observations.

The above discussion demonstrates that interpolation of the laser
ranges with Chebychev polynomials is superior to that of the cubic
splines. Thus, for the MMC data set all the SR and SRD observables
have been generated through a Chebychev least squares approximation.
The interpolation is performed only over observing intervals with gaps

smaller than 60 seconds (see next section).

3.6.3 Data Selection for the Generation of the Simultaneous Ranges and
the Simultaneous Range Differences
In the present study a considerable amount of time and effort was
devoted to generate the Simultaneous Range (SR) and the Simultaneous
Range Difference (SRD) observables. These two observables constitute
the input to the geometric and to the SRD methods respectively. A
geometric solution, apart from special cases, is possible if at least six
satellite positions are being coobserved by at least four stations
generally distributed in space (i.e., not lying on the same plane). If the
ground stations either form a plane (or close to forming a plane), a
geometric solution is possible only if six or more stations are involved

and each satellite position is coobserved by at least four stations (see
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Section 2.1.3). An SRD solution, apart from special cases, is possible i
at least one pair of stations is coobserving (see Section 2.2.6).

The only data set having the potential to best fulfill the above
reqirements is the MMC SLR data set (see Section 3.4). This data set
contains the satellite laser range observations collected during the
MERIT Main Campaign. Presently, a large amount of simultaneous laser
range observations are recorded in the WEGENER/MEDLAS project.

The MMC data set was received upon request from the CDDB data
bank on nine-track magnetic tapes, each containing a month’s worth of
observations collected either by all or by some of the MERIT stations.
In each tape the information relevant to a specific observation is stored
in records in the Seasat Decimal (SSD) format (see Section 3.4). FEach
record contains the observed laser range, the epoch of the observation,
systematic corrections and indicators for the corrections that have been
applied and for those that have yet to be applied (Schutz, 1983b). Some
observations, however, were missing from the received tapes due mainly
to data problems and delays. Thus, it was necessary at first to identilv
for each of the received tapes the ID’s of the observing stations, the
number of passes per station and the number of observations per pass.
This information was compared against the same information published in
the monthly SLR reports issued for the entire MERIT Main Campaign by
the Center of Space Research (CSR) at the University of Texas (UTX).
These monthly reports contained the number of passes together with the
total number of observations recorded by each of the stations involved.
Any observations missing from the received tapes were obtained through
a subsequent request issued only if the utilization of those observations
was considered critical for the successful implementation of either the
geometric or the SRD methods. Upon this request, new tapes identified
with the release letters A, B, C, etc. were received from the CDDB data
bank. These tapes contained the missing observations together with
those received in previous releases.

When the software necessary to process the laser range
observations was ready, it was decided not to wait any longer but

rather to use whatever releases were available up to that date (i.e.,
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Spring 1985). These releases are listed in Table 3, and theyv were
finally employed in our investigation. TFor each of those releases the
passes containing arcs coobserved by two or more stations were
identified and isolated. In the context of the present study a pass is
defined as a satellite passage whose blind spots are shorter than 2.2
hours. With blind spots we designate the periods during which the
satellite was not observed by any of the stations involved. An arc, on
the other hand, denotes an observing period during which the
successive data gaps are shorter than 60 seconds. An arc overlap of a
Lageos pass recorded by American stations is shown in Figure 8 (left
plot).

The abscissae in these two plots denote the observing epochs
relative to the starting epoch of the pass shown on the tep of these
plots. The starting epoch (84082442132) shown on the top of Lhe left
plot reads 84 (1984), 08 (August), 24 (-th day), 1 (hours), 21 (minutes)
and 32 (seconds). The ordinates on the right-hand side designate lhe
numeric station ID's (see Table 2 in Section 3.2.4). The ordinates on the
left-hand side of these plots designate in ascending order the observing
sequence of the stations involved. The solid horizontal lines indicate
that for the period they cover the stations whose numerical 1D is shown
on the right-hand side of this line have data gaps shorter than 60
seconds. The dotted horizontal lines indicate that for the period they
cover the corresponding station was not observing. The number above
the starting point of each solid line denotes the number of observations
whose successive data gaps are shorter than 60 seconds. Fig. 8
confirms the assertion made in the previous section, namely, if the gaps
are larger than 60 seconds they tend to be several minutes long. It is
evident from the left plot of Fig. 8 that all of the stations involved
except 7086 have a good continuous coverage, thereby making it possible
to effectively interpolate their ranges. There is no need to interpolate
the ranges of station 7086 since this station has recorded the least
number of observations (see Section 3.6). The observing paltern shown
in the left plot of Fig. 8 is indicative for the performance of the

American stations during the MERIT Main Campaign. On the contrary,
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the performance of the European stations is not quite as good. This is
seen in the right plot of Fig. 8, This plot confirms the extended
overlap expected among the visibility regions of the European stations.
In spite of this, we can hardly interpolate the laser ranges for any of
the coobserving stations simply because each of the arcs involved
contains a small number of observations. Thus the question as to how
many continuous observations (i.e., observations with successive data
gaps shorter than 60 seconds) are enough for an effective interpolation
is examined next. This question will be investigated by analyzing the
errors committed in the recovery of ground truth observations. The
recovery errors are computed by taking out a subset of observations,
referred to as ground truth observations, in such a way that the data
gaps of the observations left remain shorter than 60 seconds. The
observations left are then used to determine a least-squares Chebvchev
polynomial which is subsequently employed to recover the ground truth
observations, that is, the observations not considered in iis
determination. Finally, by subtracting the recovered ground truth
observalions from the actually observed ones we obtain the recovery
errors mentioned above. A sample plot of such errors for station 7210
is shown in Fig. 9 together with the distribution of the ground truth
points used in the computation of those errors (i.e., left- and
right-hand-side plots respectively).

These errors were computed for 285 ground truth observations
obtained from a total of 1427 available observations by taking out every
fourth observation. The ones left (i.e., 1142 all together) formed the
basis to determine the least-squares Chebychev polynomial which was in
turn employed to recover the ground truth observations. The abscissae
for both of the plots shown in Fig. 9 designate the epochs of the
ground truth observations relative to 0" UT of the day shown on the
top of the figure. The ordinates of the left plot designate the recovery
errors (i.e.,, Range - Rint.) while the ordinates of the right plot
designate the laser ranges after they have been scaled and shifted for
plotting purposes. The RMS of these errors is 0.03 m which is exactly

equal to the expected precision of station 7210.
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Using a different arc observed by the same station and in the same
month we again have computed the recovery errors for 47 ground truth
observations obtained from a total of 283 observations by taking out
every sixth observalion. These errors, togelher with their distribulions,
are shown in Fig. 10.

The RMS of these errors is about 23% worse than the expected
precision of station 7210 {(Analysis of Lageos Range Data, August 1985).
Extensive experimentation with American stations has indeed confirmed
that on the basis of less than 500 observations the interpolated ranges
are affected by errors which are 15% to 20% worse than the noisc level
of the observations. On the contrary, using more than 500 observations
the errors caused by the interpolation hardly ever reach the noise level
of the observations.

The distribution of the ground truth points shown in Figs. 9 and 10
reflects for each arc the distribution of the available observations
because the ground truth observations were obtained from the available
observations by taking out either every sixth or every fourth
observation. With this in mind a closer inspection of [Figs. 9 and 10
clearly reveals that small recovery errors are distributed around the
denser parts of these two arcs while for the denser arc shown in Pig. 0
the recovery errors are considerably smaller. Although the small
recovery errors are distributed around the denser parts of these two
arcs, there exist in those parts recovery errors having an absolute
magnitude of 0.10 m which is aboul three times larger than the expected
accuracy of station 7210. Thus, the question arises as to whether these
large recovery errors are caused by the procedure used to cowmpute
them or by errors affecting the actually observed ranges.

To examine this we have plotted in Fig. 11 the Chebychev residuals
for both arcs shown in Figs. 9 and 10. These Chebychev residuals have
been computed by using all of the 1142 and 283 available observations
for both arcs. Comparison of the recovery errors shown in Figs. 9 and
10 with the corresponding Chebychev residuals shown in Fig. 11 clearly
shows their high correlation and the equality of their RMS values as

well. Moreover, the large recovery errcrs seem to have their
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counterparts in the Chebychev residuals thereby suggesting that the
large recovery errors have originated from errors affecting the actually
observed ranges. More importantly the equality of the RMS values
between the recovery errors and the Chebychev residuals suggests that
analysis of the Chebychev residuals will give a good qualitative measure
for the accuracy of the interpolated ranges. This important result used
in the present study to control the quality of the interpolated ranges
has also been confirmed from the analysis of the orbit residuals (see
Section 4.4). Thus, we can safely state that interpolated laser ranges
based on a relatively dense data set (i.e., with more than 500
observations) will be affected on the average by approximation errors
that are smaller than the noise level of the observation. Since the
Chebychev polynomials are nearly orthogonal, deterioration due to
numerical instability ceases to exist as the number of observations
increases 11,000, 12,000 or more. Thus, since the recovery errors are
smaller for denser data sets it is preferable to interpolate dense rather
than sparse data sets provided that at least 500 observations with gaps
shorter than 60 seconds are available,

Inspection of the left and right plots of Fig. 8 reveals that the
American stations fulfill the above requirements (i.e., to have more than
500 observations with gaps shorter than 60 seconds) while the European
stations hardly ever fulfill such a requirement. The American station
7086, on the other hand, seems to have experienced several problems
during the pass shown in the left plot of Fig. 8. The observing
pattern, however, of this station was more or less the same for the
entire  MERIT campaign thereby making its observation inappropriate for
interpolation, Fortunately, out of all the American stations used in this
investigation only two of them, station 7086 (Texas) and 7112 (Colorado),
seem to consistently have so many interruptions within all of their
observed passes. More specifically, the interruptions of station 7086 are
traced to the need of calibrating the laser within any of its observed
passes. Furthermore, for most of the passes coobserved by four or
more American stations, there exist at least three stations with dense

enough observations to be effectively interpolated. This is the
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necessary requirement only for the geometric solution since the required
four-station events are obtained by interpolating the observations from
three stations at the observing epochs of the fourth station for which
the actual ranges are used. For an SRD solution, the observations of
only one station are interpolated at the observing epochs of the
alternate station.

The European stations, on the other hand, seem to have experienced
several interruptions for most of their observed passes. These
interruptions have forced most of them to record relatively sparse
observations. Therefore, it is difficult to find passes having arcs
coobserved by four or more stations out of which three have dense
enough observations that can be effectively interpolated. For instance,
for the arc overlap shown in the right plot of Fig. 8 the observations
from stations 7839, 7834 and possibly from 7840 can be effectively
interpolated while the observations from any of the remaining stations
are inappropriate for interpolation. Since this is the case for most of
the passes coobserved by the European stations, it was considered
appropriate to drop these stations from their implementation in the
geometric solution. However, simultaneous observations collected in
(WEGENER/MEDLAS) project have the potential to effectively implement
the SRD method.

In other parts of the world there may exist two or three stations
coobserving. Overlap, however, for four or more stations is quite
unlikely to occur anywhere else except over North America and Europe
because only in these two parts of the world there exists a large
number of operating laser ranging stations. This and Lageos’ high
altitude orbit are the main reasons why most of the passes recorded
during the MERIT Main Campaign by American stations were coobseved
by at least two of them. This resulted in a large number of American
station pairs with quasi-simultaneous observations, and therefore it was
possible to generate a large enough number of SRD observables that
have led to a steady state response of the semidynamic solutions (see
Chapter 4). Since the purpose of the present study is not to compute

all possible baselines but rather to study the performance of the SRD
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and geometric methods in baseline determinations, it was considered
appropriate to employ the laser ranges recorded only by the American
stations for both the SRD and the geometric methods. Fig. 12 shows the
locations for those stations.

Since for each station the observing pattern in terms of data gaps
and observational density is relatively homogeneous from pass to pass,
we’ve shown in Fig. 13 three additional arc overlaps involving statlions
that are shown in Fig. 12 but not in Fig. 8. A comparison of Figs. 8
and 13 confirms our assertion that the observing patterns of stations
7109, 7110 and 7122 which are involved in more than one pass are
homogeneous from pass to pass. Furthermore, the RMS of the
Chebychev residuals for each of the stations involved shows very small
fluctuations from arc to arc. This, however, is not true for stations
such as 7122 that were upgraded during the MERIT Main Campaign.
Table 4 lists the monthly mean RMS values of the Chebychev residuals
obtained by interpolating the edited with the data-snooping-procedure
laser range observations. The RMS values listed in Table 4 are in close
agreement with those computed by the CSR at UTYX listed in Table 2 in
Section 3.2. This close agreement confirms once again the effectiveness
of the data-Snooping procedure to edit the laser range observations.

For each observing station the quality of the interpolated ranges as
reflected through the qualitative pattern of the Chebychev residuals is
relatively homogeneous for all of the arcs recorded during the MERIT
Main Campaign. Thus, in order to get a feeling for the quality of the
interpolated ranges we have plotted in Figs. 14 and 15 the Chebychev
residuals for those arcs of Figs. 8 and 13 which have been marked with
an asterisk next to their numeric station ID’s. If a specific station has
observed more than one of the arcs shown in Figs. 8 and 13, then the
arc whose Chebychev residuals are shown in Fig. 141 or 15 is also
marked just above its starting point with an asterisk. Table 5 lists, for
the same arcs shown in Figs. 14 and 15, the RMS values of the
Chebychev residuals together with the number of the available
observations before and after the data-snooping procedure was applied.

The condition numbers also shown in this table refer to the normal
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equations matrix that was used to estimate the coefficients of the
least-squares Chebychev polynomial. The condition numbers missing
from this table correspond to the stations whose actual ranges werc
used to generate both the SR and SRD observables. It is evident from
this table that for some stations rejection of less than 10% of their
observations reduces the RMS of the Chebychev residuals from
unacceptable levels down to the expected accuracy of the observations.
Furthermore, the large condition numbers associated with stations 7210
and 7121 are caused by the strong irregularities in the distribution of
the data gaps. These strong irregularities usually occur when
malfunction of the laser instrument has resulted in concentrated
erroneous observations which in turn are rejected by the data-snooping
procedure. For instance, the observations of stations 7210 and 7121 for
the arcs shown in Fig. 15 are affected by four large gaps and one large
gap respectively. The word large is used here in the sense that
although the data gaps are usually shorter than 60 seconds they are

still large as compared to the other gaps affecting the remaining

observations.
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Fig. 15 (cont’d)

The large condition numbers, caused by the strong irregularities in
the distribution of the gaps, might deteriorate the precision of the
interpolated ranges since the number of the significant digits lost in the
inversion of the normals is approximately equal to the base 10 logarithm
of the condition number (Forsythe et al.,, 1967). Even if the numerical
instability is not bad enough to affect the quality of the interpolated
ranges there might still exist large approximation errors in the
neighborhood of the large gaps. Therefore, it was decided to either
reject those arcs or to break them down into several subarcs with even
distribution of gaps (i.e., small condition number) provided that for each
subarc there are enough available observations to be effectively
interpolated.

Sufficient representation of a relatively large number of
observations requires a high-degree Chebychev polynomial.
Determination of its coefficients through a least-squares adjustment does

not cause any numerical instability, as might have been expected,
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Table 5. Precision of Chebychev Interpolation
(Before and After Data Snooping).

. RMS No. of obs. RMS No. of obs. A

St?;;on before before after after C;ﬁi;i;on R?fzgigze

’ D.S.*(m) D.S. D.S. (m) D.S. . -
7907 26.9 648 0.13 620 600 8, 14
7105 7.35 5314 0.02 5116 561 8, 14
7086 0.07 297 0.06 296 - 8, 14
7109 0.04 9611 0.02 9474 31 8, 14
7886 0.07 2720 0.07 2720 102 8, 14
7110 0.23 6681 0.02 6570 34 8, 14
7122 0.16 2088 0.15 2072 48 13, 15
7220 0.09 686 0.09 685 106 13, 15
7062 0.70 613 0.09 543 - 13, 15
7265 0.09 812 0.09 811 - 13, 15
7112 23.18 136 0.11 107 - 13, 15
7210 0.07 185 0.05 167 4219 13, 15
7121 15.88 1694 0.14 1653 1058 13, 15

*Data snooping

because of the near orthogonality properties of the Chebychev
polynomials (see Section 3.5.2). For instance, to sufficiently represent
9474 observations of station 7109, a 22-degree Chebychev polynomial is
required. In this case the condition number of the normals has a very
small value (i.e., 31, from Table 5), and therefore numerical instability
and ill-conditioning associated with large condition numbers (ibid.) are
not a concern in spite of the fact that a high~degree Chebychev
polynomial was used.

All the information acquired in regard to the interpolation of the
laser ranges was implemented in the locally developed software that was
subsequently used to generate the SR and SRD observables. With this
software the passes containing arcs coobserved by two or more stations
were identified and isolated together with the starting and ending
epochs of each of the arcs involved. More specifically, for the MERIT
Main Campaign there have been identified 536 such passes observed by
the American stations shown in Fig. 12. For each of these passes the
observations recorded within an arc by all of the stations involved were

edited by wusing the data-snooping procedure and by taking into
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consideration all of the necessary precautions in regard to the
magnitude, the distribution of the gaps, and the resulting numerical
instability. However, effective editing of the laser ranges requires
knowledge of the degree of the Chebychev polynomial that would
sufficiently represent the laser ranges recorded within any of the arcs
involved. This is accomplished with the help of a statistical test which
is explicitly outlined in Section 3.6.2. According to this test, any
adjustment for which the hypothesis H, is rejected leads to another
adjustment (see Section 3.6.2). To eliminate these additional
adjustments, and therefore to reduce the computing time, it was decided
to determine a priori the degree of Chebychev polynomials that
sufficiently represent the observations of any of the stations involved
in our study (see Fig. 12). Accordingly, if the number of available
observations recorded by a specific station falls into a certain window
then for that station an appropriate degree of the Chebychev polynomial
is assigned (see Table .é). These degrees are predetermined for
specified windows and for all of the stations involved on the basis of
the actually observed ranges. Table 6 lists for prespecified windows
and for all of the stations involved the degree of the Chebychev
polynomials that sufficiently represent the ranges falling into any of
those windows.

Next the software proceeds with the identification of the passes
containing arcs that have been coobserved by four or more stations.
For each of those passes the exact overlapping times of the arcs
involved are identified and subsequently Simultaneous Ranges (SR) are
generated along the guidelines described in Section 3.6. For instance,
stations 7110, 7122 7220 and 7062 have arcs with quasi-simultaneous
observations (see Fig. 16). It is obvious from Fig. 16 that
quasi-simultaneity for all four stations occurs only in the intervals (bc)
and (hi). The epochs b and c designate the starting and ending epochs
of the first arc of station 7062, while the epochs h and i designate the
starting epoch of the second arc and the ending epoch of the fourth
arc of stations 7220 and 7062 respectively. Since station 7062 recorded

the least number of observations for both arcs bc and hi respectively,
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Table 6. Degree of Chebychev Polynomials.

No. of
obs.| 0 - | 500 - 1000 -~ 2000 - 3000 - | 5000 -
500 1000 2000 3000 5000 9000 > 9000
Station
IDs

7907 16 17 17 18 19 21 22
7105 12 16 16 18 19 21 22
7086 12 17 17 18 19 21 22
7109 12 17 17 18 19 21 22
7886 12 13 15 17 17 21 22
71l0 12 16 16 19 20 21 22
7122 14 19 19 20 21 21 22
7220 11 11 14 14 16 21 22
7062 16 18 18 19 19 21 22
7265 11 13 15 18 19 21 22
7112 14 19 19 20 21 21 22
7210 11 19 19 20 21 21 22
7121 14 19 19 20 21 21 22

the four station events (i.e., exact simultaneous observations from four
stations) for these two arcs were generated by interpolating all the
available observations from the corresponding arcs of stations 7110, 7122
and 7220 respectively. Although in Fig. 16 we have only four-station
arc overlaps, there may exist arc overlaps including five, six or even
seven stations. In such cases all possible seven-, six-, five- or
four-station events are generated, provided that any duplication that

may occur is to be avoided.
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Fig. 16 Arc overlap of a Lageos pass involving four
American stations.

Finally all the passes with quasi-simultaneous observations from two
or more stations were employed to generate the SRD observables. For
instance, the station pair 7122-7110 shown in Fig. 16 has
quasi-simultaneous observations for the intervals (ad), (ef) and (gj)
respectively (see Fig. 16). For the first interval (ad) the SRD
observables are generated by interpolating the observations of the first
arc of station 7110 at the observing epochs of station 7122, while for
the intervals (ef) and (gj) the SRD observables are generated by
interpolating all the available observations of station 7122. Thus, having
all possible four-, five-, six- and seven-station events together with all
possible SRD’s, the baselines are estimated through the geometric and

SRD methods respectively. This is the subject of the next chapter.
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Chapter 4

BASELINE ESTIMATION

4.1 BASELINE ESTIMABILITY

Baseline estimability in connection with satellite geodesy is very closely
related to the concept of estimable parameters. In fact, if optimum
geometric configurations are fulfilled and enough observations are
available, the baselines can be estimated with a precision compatible to
that of the observations. This is possible only because the baselines
form a set of estimable parameters. This is true for both the range
geometric mode and the SRD semidynamic/dynamic mode methods. In
general, baselines estimated through either geometric or dynamic mode
methods are estimable only if through the appropriate adoption of the
necessary constants and units the scale is implied by the measurement
system being employed. In such cases the baselines estimated with a
dynamic mode method are referred to as best estimable parameters. The
use of this term is justified since out of all possible estimable
parameters associated with either semidynamic or dynamic mode methods,
the baselines are recovered with substantially reduced a postericri

variances (i.e., an order of magnitude) (Van Gelder, 1978).

4.2 STEADY STATE RESPONSE OF THE GEOMETRIC AND SRD METHODS
The nature of as well as the spatial and temporal distribution of the
available observations quantify the inherently present information for
each of the estimable parameters involved (Sections 2.2, 4.3 and 4.4).
The process of recovering estimable quantities from any given set of
observations is referred to as an inversion process. This process is
effectively realized via an estimation method such as a least squares

adjustment (Sections 2.1.2 and 2.2.8). The available set of observations
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forms the input to the inversion process, while the recovered estimable
quantities constitute the response (i.e., the output) of this process to
the given set of observations.

Different inversion processes have different responses to a specific
set of observations and adjusted quantities. Nevertheless, as far as
satellite geodesy is concerned, these responses cannot be meaningfully
differentiated in the light of the current observational distribution an
accuracy.

The steady state response of an estimation method has been reached
if extension of its input with additional observations does not contribute
any additional information to the estimable quantities being recovered.
In the present study, steady state responses of both the geometric and
the SRD methods is sought through the extension of their input with
more and more observations. This process continues up to that point
where additional observations do not affect the recovered baselines
beyond the level of accuracy implied by the sophistication of the models
employed and by the accuracy of the available observations. With the
assumption that the accuracy of the baselines, recovered from laser
range observations collected during the Main MERIT Campaign, cannot
exceed the 1 cm level, the steady state response of both the SRD and
the geometric methods is said to have been reached if additional
observations do not affect the recovered baselines at the 1 cm accuracy
level. Furthermore, we refer to "steady state response of the SRD
method” if the input observables are the dynamically modeled SRD
observables, while we refer to "steady state response of the geometric
method" if the input observables are the geometrically modeled
simultaneous ranges (see Chapter 2).

In many circumstances the steady state response of either the
geometric or the SRD methods may not be possible because their
response either diverges or oscillates. Such a response, however, can
be reached if the geometric and/or physical characteristics of either the

geometric or the SRD methods are changed accordingly.
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In the geometric method, for instance, near singularity cases
(Section 2.1.3) result in an extremely ill-conditioned normal equation
matrix which in turn leads to a divergent response. Divergence is
reversed to convergence if the input of the geometric method is
extended to include more and more observations collected by stations
located well away from the critical surfaces and the critical curves
(Blaha, 1971). However, if the distribution and number of available
observations is not good enough to warrant a steady state response,
then such a response can be reached via the implementation of
appropriately chosen constraints. This 1is accomplished either by
constraining baselines in the geometric method (Section 4.3.2) or by
increasing the lengths of continuous integration in the SRD method
(Section 4.4.2).

Increasing the length of continuous integration in the implementation
of the SRD method results in a "faster" steady state response in regard
to baseline estimation. The term "faster" is used to indicate that lhe
steady state response of the SRD method is reached on the basis of a
substantially reduced number of observations compared to those needed
to reach this steady state response via the short arc solutions (Section
4.4). This is the result of the geometric strength implied by the long
integration periods and manifested in the reduced order of the normal
equation matrix and in the larger values of its corresponding diagonal
elements.

Long integration periods constitute a potential source of
"instability” of the normal equation matrix. The term "instability”" is
used to express the existence of high correlations among the adjustied
parameters. High correlations (greater than .99) raise the warning flag
of ill-conditioning of the normal equation matrix and a possible
divergent response of the SRD method. Employing long integration
periods independently of what the baseline pass geometry is, the state
vectors of the passes that are days away from the corresponding
adjusted initial state vector are largely insensitive to that initial state
vector. Therefore, for those passes there exists a tendency for lincar

dependence among the corresponding columms of the state transition
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matrix Y¥(t) (equation 2-63). This tendency further contributes to the
instability of the normal equation matrix. The instability of the normal
equation matrix gets even worse when single long baselines (longer than
about 4000 km) are estimated via the SRD method. For those baselines
there is a tendency for the coobserved passes to concentrate in the
areas between the end points of the baseline (Section 4.4.1).

With the weather-dependent laser range observations it is very
likely that the stations consitituting the end points of the estimated
baseline have coobserved only one pass falling within a specific
integration period. Under these circumstances the length of continuous
integration will be reduced to that of the duration of one single pass
which lasts about one hour for the Lageos satellite. Such short
integration lengths implemented in the same solution with integration
lengths of up to one week (Section 4.4) constitute a potential source of
instability because of the resulting inhomogeneity in the structure of
the normal equation ma:trix. In the design matrix, this inhomogeneity
manifests itself by the many zero entries affecting the columns
associated with the initial state vectors of those short arcs. Therefore,
care should be exercised to avoid extreme circumstances that may result
in an algorithmically singular normal equation matrix (Section 4.4.2).
This can be avoided either by employing homogeneous integration
lengths and/or by incorporating in the same SRD solution observations
from many stations. This would improve the stability of the normals
because of the strength implied by the geometry of the additional
observations. This, however, is true only if four or more stations are
involved since as it was mentioned in Section 2.1.3, at least four stations
and six targets are generally necessary for a nonsingular range
geometric solution. Therefore, in the single baseline solutions the
stability of the normals is mainly controlled by the constraint imposed

on the satellite to move along a six-parameter orbit (Chapter 2).

In the present study only single baseline solutions via the SRD
method have been performed. This was decided upon because, for
moderate baseline lengths (<3500 km), the single SRD baseline solutions

seem to be simple, fast and very accurate.
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The maximum length of continuous integration in the implementation
of the SRD method should be chosen not only to assure the steady state
response of the SRD method but also to warranty minimum propagation
of the accumulated residual orbital biases into the recovered baselines.
These biases are the ones not eliminated by the nature of the SRD
observables which reduces substantially the accumulated orbital biases
with an almost total cancellation of the accumulated radial biases (Pavlis,
1982). Consequently, the choice of the integration lengths is limited
only to those which result in an a posteriori standard deviation of unit
weight the value of which is close to unity. Thus, in seeking the
steady state response of the SRD method we start out with short arc
solutions. If with short arc solutions the available observations are not
enough to warranty a steady state response, the integration lengths are
steadily increased up to those resulting in a steady state response. If
the a posteriori standard deviation of unit weight approaches unity
before such a response has been reached, then the corresponding
baseline is not estimated. However, any integration lengths leading to a
steady state response will be adopted even if the a posteriori standard
deviation of unit weight is smaller than one. This simply means that the
baselines via the SRD method are estimated on the basis of the minimally
required integration lengths.

The effectiveness of the a posteriori standard deviation of unit
weight to control the maximum length of continuous integation in the
single SRD baseline estimation depends heavily on the assumption of
having weighted the observations properly. This assumption has been

elaborated on and it has also been well justified in Chapter 3.

4.3 BASELINE ESTIMATION VIA THE STEADY STATE RESPONSE OF THE
GEOMETRIC METHOD

In the absence of ill-conditioning that may result from nearly critical
configurations, the steady state response of the geometric method will
be reached if a large enough number of observations is available. This
is a consequence of the fact that the weight coefficient matrix (Qf) of

the adjusted parameter vector "improves'" as additional observations are
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incorporated 1into the geometric solution (Blaha, 1971). The Llerm
"improves" is used to indicate that with the same adjusted parameter
vector the matrix (Q% - Q¥%?) is a positive (semi) definite matrix where
(Q%) and (Q%?®) denote the weight coefficient matrices of the adjustied
parameter vector before and after the inclusion of additional
observations. Since (Q% - Q%?) is a positive (semi)definite matrix, it
follows that (ibid.)

Tr (Q§2) € Tr (Qf) (4-1)

indicating that the precision of the adjusted parameters improves only if
the additional observations are drawn from the same population, thereby
making it possible to assume that the a priori variance of unit weight is
the same for both solutions and it is equal to one. Since the
mathematical model employed in the minimum constraint geometric
adjustments is an almost error free model, the a posteriori variance of
unit weight tends towards one at the steady state. If these a posleriori
variances of unit weight are very close to unity so they preserve the
relative structure of the weight coefficient matrices of eq. (1-1), the =a
posteriori variance of the adjusted parameters decreases. In the
geometric mode adjustments, the adjusted parameters are the Cartesian
coordinates of the ground stations.

In the present study we are particularly interested in eslimating
baseline lengths and therefore the a posteriori variances of the
Cartesian coordinates have been mapped back into the estimated
baselines. As the a posteriori variance of the estimated Cartesian
coordinates improves with the incorporation of additional observations,
the a posteriori variance of the estimated baselines will also improve
only if the nonlinearity of the model employed allow such an
improvement to take place. Therefore, by including additional
observations into the geometric solutions a point will be reached where
the estimated baseline length will not change beyond the 1 cm level.

It turns out that before reaching the steady state, the a posteriori
standard deviations of the estimated baselines do not reflect the change

of their lenglth as additional observations are incorporated into the
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solution. For instance, it is possible for an estimated baseline, the a
posteriori standard deviation of which is 5 cm, to change its length by
as much as 76 cm with the incorporation of additional observations
(Table 8, baseline 7110-7122). This means that before reaching the
steady state response, the a posteriori standard deviations of the
estimated baselines do not reflect their accuracy but rather they
indicate how far away the solution is from its steady state. If, however,
the steady state response has been reached, the corresponding a
posteriori standard deviations assume millimeter-level values (Table 8).
Therefore, in the present study the a posteriori standard deviation of
the estimated baselines are used only as indicators showing whether or
not the steady state response has been reached. Successful utilization
of these indicators assumes close to unity a posteriori variances of unit
weight so they preserve the relative structure of the weight coefficient
matrices of the recovered parameters as additional observations are
incorporated into the solution (eq. 4-1).

If steady state has been reached, it is furthermore assumed that the
corresponding baseline has been determined at the 1 cm accuracy level.
This is well justified only if the following three assumptions are
fulfilled: (1) the motion of the observing stations has been properly
modeled for the time span of the observations, (2) the steady state
response implies strong geometry, and (3) the accuracy of the available
observations allows recovery of the baselines at the 1 cm level (see
Section 4.2). As of the geometric modeling itself, the only errors
affecting it arise from using the three-dimensional Euclidean space
formulation rather than the four-dimensional post-Newtonian formalism
(Moyer, 1971; Bjerhammar, 1985) which of course does not affect the
estimated baselines at the 1 cm level (Moritz, 1979).

4.3.1 Geometric Strength of the Available Observations

In the geometric approach the observed satellite positions are treated as
auxiliary independent points in space (see Section 2.1); therefore the
strength of any minimum constraint geometric solution depends entirely
on the geometric strength implied by both the amount and the

distribution of the available observations. Thus, any meaningful
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interpretation of the results obtained in geometric mode adjustments
should be preceded by an analysis aiming to assess the strength of the
geometry involved in each of those adjustments.

The analysis of the geometry involved in the geometric adjustments,
presented later in this section, is based on the examination of Table 7.
The first column of this table lists the ID of the stations involved, the
second, third and fourth columns contain the number of observations
per station when all the simultaneous events from Sept. 1983 to May
1984, from Sept. 1983 to Aug. 1984, and from Sept. 1983 to Oct, 1984 are
considered respectively. The bottom part of the second and third
columns contain the total number of observations, the degrees of
freedom and the a posteriori variance of unit weight obtained from
minimum constraint solutions on the basis of the data shown in the
corresponding column. The bottom part of the third column contains the
same information for two types of solutions, one minimum constraint and
one overconstraint obtained using the data listed in that column.

The geometric strength in each of the above solutions is primarily
drawn from the stations having the most observations. In assessing
this strength we assume that stations 7886 and 7220 coincide with
stations 7109 and 7110 because they are 8 m and 15 m away from each
other. With this in mind it can be easily deduced from Table 7 that 86%
of the available observations has been recorded by stations 7105, 7109,
7110 and 7122. A geometric solution, the strength of which is primarily
drawn from four stations, tends to be sensitive to how close these
stations are from their best fitting plane (Blaha, 1971) because with
stations close to forming a plane six are needed for a nonsingular space
range network (see Section 2.1.3). Thus, when six or more stations are
involved the solutions are not sensitive to the closeness of those
stations from the best fitting plane.

In the geometric solutions shown in Table 7 the additional 11% of
the available observations has been recorded by stations 7112, 7086 and
7265. Therefore, 97% of the observations has been recorded by seven
stations. The existence of these three additional stations reduces the

sensitivity of the solutions to how close stations 7105, 7109, 7110 and
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Table 7 Global Statistics of the Geometric Adjustments
Station No. of Observations(!)

ID Sep 83 - May 84 Sep 83 - Aug 84 Sep 83 - Oct 84
7105 7143 18990 19214
7109 10198 22784 23936
7112 2884 3467 3467
7122 10996 11284 12212
7220 1969 1969 1969
7110 11549 24200 25352
7062 841 841 841
7086 1412 4400 4624
73907 176 245 245
7082 299 299 299
7210 712 756 1684
7265 4395 4395 4395
7886 — 11859 11859

N = 52574 N = 105489 N = 110097
DF = 14519 DF = 29478 DF = 30630
g0%2 = 1.18 g2 = 1.03 g2 = 1.03

DF = 30631(2)
o2 = 1.05(2)

(1) Minimum constraint solution, coordinates fixed(3): X,Y,Z for
7109; X,Y for 7122; Z for 7105.

(2) Overconstraint solution, coordinates fixed(3): X,Y,Z for 7109;
X,Y,Z for 7122; Z for 7105.

(3) Coordinates fixed to those of (CSR)85L01 (Section 4.4.2)

N = total number of observations

DF = degrees of freedom

do? = a posteriori variance of unit weight

7122 are from their best fitting plane. The remaining four stations,
7062, 7907, 7082 and 7210, have contributed only the last 3% of the
available observations. Therefore, their contribution to the geometric
strength is very minor as compared to that of the previous stations.
Next we assume that stations 7112, 7086 and 7265, which contribute
the 11% of the available observations, make the geometric adjustments
insensitive to how close stations 7105, 7109, 7110 and 7122 are from their
best fitting plane. Even if this were true, the strength of the

geometric solutions tends to still be weak because the stations that have
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Table 8 Baseline Steady State Response of the Geometric Solutiocon

No. of Correlation Data Solution

Baseline Observ. > 0.80 Length (m) Set ! Type 2
7109-7110 9,186 None 883601.637 * 0.02 A 1
21,772 " .608 ¢ 0.02 B 1
22,924 " .661 = 0.02 C 1
" " 883601.661 + 0.02 C 2
" " 883602.245 = 0.009 C 3
7109-7265 3,363 " 627043.412 * 0.02 A 1
" " .452 ¢ 0.01 B 1
" " .535 = 0.01 C 1
" " .535 £ 0.01 C 2
" " .988 £ 0.005 C 3
7109-7886 11,859 None 7.746 £ 0.002 B 1
" " . 746 1t C 1
" " . 746 " C 2
" 1" . 746 " c 3
7109-7122 8,644 None 2280712.335 t 0.07 A 1
8,932 " 2.700 £ 0.05 B 1
9,860 " 3.188 t 0.05 C 1
" " 3.188 £ 0.05 C 2
" " 4.949 = 0.0005 C 3
7110-7122 10,060 P2¢25=0.998 1437137.428 £ 0.05 A 1
10,348 " .780 = 0.04 B 1
11,276 " 8.187 £ 0.03 C 1
" Pxpxg=0.996 8.187 £ 0.03 C 2
" None 9.288 + 0.009 C 3
7110-7220 1,576 Pxexg=0.801 15.225 = 0.006 A 1
PYFYS=0.990
Pz2p24=0.998
" Pypy5=0.987 .221 = 0.005 B 1
Pzp24=0.998
" Pyev5=0.981 .218 = 0.005 C 1
Pzp24=0.997
" Pxpxg=0.997 .218 £ 0.005 C 2
pYFYS:O'975
pZFZS:O-BOO
" Pyevg=0.965 .208 = 0.005 C 3
7110-7265 3,866 Pypvg=0.91 274069.453 = 0.01 A 1
PZFZS=0.996
" Pypvg=0.887 .383 * 0.008 B 1
P2p25=0.995
" Pyev5=0.850 .355 = 0.008 C 1
szZS:0'994
" Pxpxg=0.994 .355 = (.008 C 2
" None 474 = 0.007 C 3
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Table 8 (cont’d)

No. of Correlation

Data Solution

Baseline Observ. > 0.80 Length (m) Set ! Type 2
7110-7886 11,859 None 883605.698 + 0.02 B 1
" " .751 £ 0.02 C 1
" " .781 = 0.02 C 2
" " 6.335 £ 0,009 C 3
7122-7265 4,184 Pzgz5=0.995 1663980.848 ¢ 0.05 A 1
" =0.994 1.161 = 0.04 B 1
" =0.993 1.565 = 0.04 C 1
" Pxgxg=0.993 1.555 " C 2
" None 2.823 x 0.005 ¢ 3
71227886 0 None 2280718.021 * 0.05 B 1
0 " .509 ¢+ 0.05 C 1
0 " 18.509 = 0.05 C 2
0 " 20.269 = 0.002 C 3
72207265 0 Pypvg=0.90 274066.158 * 0.010 A 1
pZFZs=0.994
0 Pyevg=0.874 .090 £ 0.009 B 1
pZFZs=0.993
0 PyYev5=0.833 .064 £ 0.008 C 1
PZFZS=0.991
0 Pxexg=0.991 .064 £ 0.008 ¢ 2
0 None .189 = 0.007 C 3
7265-7886 0 None 627048.351 * 0.01 B 1
0 " .434 = 0.01 C 1
0 " .434 = 0.01 c 2
0 " .887 + 0.006 C 3

! Data Sets: A Sep 83 — May 84
B Sep 83 — Aug 84
C Sep 83 — Oct 84

2 Solution Type:
1 Minimum constraint solution, Cartesian coordinates fixed:
X,Y,Z for 7109; X,Y for 7122; Z for 7105

2 Minimum constraint solution, Cartesian coordinates fixed:
X,Y,Z for 7109; Y,Z for 7122; Z for 7105

3 Overconstraint solution, Cartesian coordinates fixed:
X,Y,Z for 7109 and 7122; Z for 7105

recorded the 91% of the observations (i.e., 7105, 7109, 7122, 7220, 7110,

7062, 7265 and 7886) are concentrated around two intersecting lines

defined by station 7109 with 7122 and 7122 with 7105 (see Fig. 8).
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two intersecting lines belong in the family of second-order curves, it is
reasonable to expect that near singularity B (Section 2.1.3) tends to
weaken the strength of those solutions. If we furthermore assume that
the 9% of the observations recorded by stations 7082, 7086, 7112, 7907
and 7210 which are located well away from these two intersecting lines,
make the geometric solutions insensitive to the previously mentioned
near singularity B, it is still possible that near singlarity C might be
present. This is a consequence of employing a network of relatively
large extent. With such a network the simultanecusly observed satellite
positions tend to concentrate on the area extended above the middle
part of the network and therefore to be closer to a plane. This in turn
would lead to near singularity C because off-plane targets are needed to
avoid this type of singularity (Section 2.1.3).

It is evident from the above discussion that the geometric strength
implied by the available observations is relatively weak. Therefore the
minimum constraint geometric solutions will be strongly influenced by
the distribution of the available observations thereby making it difficult

to recover the relative geometry of the ground stations (next section).

4.3.2 Baseline Resulis

On the basis of the data listed in the last three columns of Table 7, we
have performed five least squares geometric mode adjustments. Four of
these adjustments are based on minimum constraints, and the fifth is
based on constraining one additional Cartesian coordinate than those
required for a minimum constraint solution. More specifically, the first
three minimum constraint geometric adjustments have been obtained by
using all the events from Sept. 1983 to May 1984, from Sept. 1983 to
Aug. 1984 and from Sept. 1983 to Oct. 1984, An event occurs when four
or more stations observe the same satellite position. In these three
adjustments, the same mimimum constraints have been used as they are
implied by fixing the X,Y,Z Cartesian coordinates of station 7109, the X
and. Y coordinates of station 7122, and the Z coordinate of station 7105.
The fourth adjustment was obtained by using all the available events

and by fixing the Y and Z rather than X and Y coordinates of station
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7122. This adjustment was necessary to confirm further the weakness
of the geometry that seriously affects the minimum constraint geometric
solutions. Finally, the overconstraint solution performed on the basis of
the data listed in the fourth column of Table 7 was necessary to reach
the steady state response for longer baselines. The results for all of
the adjustments decribed above are listed in Tables 7 and 8. Table 8
contains for each baseline and for all of the solutions performed the
number of observations per baseline, the correlations that are greater
than or equal to 0.80 and the estimated baseline lengths followed by
their a posteriori standard deviations. Out of all of the estimated
baselines, only those are listed for which the a posteriori standard
deviations in the overconstraint solution have reached the millimeter
level. The symbol Pz¢zg, in Table 8, designates the correlation between
the Z coordinate of the first (F) station and the Z coordinate of the
second (S) station of the corresponding baseline.

A close inspection of the minimum constraint solutions clearly
reveals that the estimated baselines whose a posteriori standard
deviation is at the centimeter level change their length by as much as
70 cm to 80 cm when additional observations are incorporated into the
solutions (baselines 7110—7.122 and 7122-7265). The number of additional
observations incorporated in each solution as compared to the previous
one is easily deduced from the information given in Table 7 for each one
of those solutions.

The baselines whose length is smaller than 1000 km change their
length to within -10 cm to 12 cm with a tendency of positive increase.
This positive increase, which is clearly pronounced for the longer
baselines (7110-7122 and 7122-7265) takes place toward the correct
length of the corresponding baselines. This is easily seen by comparing
these lengths with the ones obtained in the overconstraint adjustment
(i.e., Solution C 3). The fact that the lengths of the baselines, which
have been estimated at millimeter precision level via the overconstraint
adjustment are very close to their true lengths is elaborated on at the
end of this section, and it has also been confirmed by comparing their

lengths with those obtained via the SRD method as well as with those
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computed by other computational centers such as CSR and ZIPE via
dynamic long-arc solutions (see next section).

The geometry implied by the number and the distribution of the
available observations manifests itself in the minimum constraint
solutions shown in Table 8. This geometry is not strong enough to
warrant a steady state response since all the baselines but 7110-7220
and 7109-7886 change their length by several centimeters with the
incorporation of additional observations. The existence of weak
geometry is the result of the expected near singularities described in
the previous section. This weak geometry is also confirmed by the high
correlations prevailing among the station coordinates that were not
constrained in the implementation of the minimum constraint solutions.
This weakness is further confirmed by using all the available events
from Sept. 1983 to Oct. 1984 and by changing the minimum constraints
from (1) to (2) (Table 8). In solution (2) the correlations prevail among
the X coordinates of the stations for which the correlations in solution
(1) were high among their Z coordinates. It is interesting to note that
the correlations among the X coordinates in solution (2) are almost the
same as those among the corresponding Z coordinates of solution (1).
This is the result of fixing the X and Y coordinates of station 7122 in
solution (1) and the Y and Z coordinates of the same station in solution
(2). The reduction of the correlations among the Y coordinates of the
corresponding stations from (1) to (2) simply reveals that the minimum
constraints (2) have better stability characteristics than those of
minimum constraint (1).

The correlations among the coordinates of station 7110 and 7220 are
also high because these stations are very close to each other, about 15
m apart. This, in light of weak geometry, makes their separation
difficult thereby bringing the corresponding correlations to high levels.
The correlations among the coordinates of station 7886 and the
coordinates of all of the other stations involved are small because 7886
is only about 8 m away from 7109 which was held fixed in the
implementation of both solutions (1) and (2). The estimated baseline

lengths and their a posteriori standard deviations remained of course
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the same for both solutions because the baselines are invariant
quantities under any minimum consraints and as such their estimated
lengths together with their variances should not change from one
minimum constraint solution to the next.

The above discussion evidently reveals that the geometry implied by
all of the simultaneously observed satellite positions is weak thereby
making the minimum constraint solutions susceptible to the distribution
of the available observations. For reasons mentioned in the previous
section, the simultaneously observed satellite positions tend to
concentrate on the area extended above the middle part of the employed
network (see Fig. 12). This observational coverage together with the
weak geometry will imply, via the minimum constraint solutions, a range
space network with a tendency to shrink towards its center and more
specifically towards the area where most of the available observations
are concentrated. This simply means that the scale of the recovered
range space network is not properly implied by the geometric strength
of the available observations. This fact is also confirmed by the
positive increase of the longer baselines when additional observations
are incorporated into the minimum constraint solutions. Implementation
of the scale in the geometric solution has been attempted by fixing the
third coordinate of station 7122 (solution (3)) in addition to the
coordinates fixed in the implementation of the minimum constraint
solutions. By fixing the third coordinate of this station we implicitly fix
the length of baseline 7109-7122.

As mentioned earlier in this section, Table 8 contains the results
only for those baselines for which the a posteriori standard deviations
in the overconstrained solution are smaller than 1 cm. Although all of
the remaining baselines have been estimated in all solutions shown in
this table, they are not included there because the steady state
regsponse for those baselines is assumed not to have been reached. The
reason for claiming this is based on the fact that baselines 7110-7220
and 7109-7886 are the only ones that do not change their lengths at the
centimeter level either when additional observations are incorporated

into the solution or when additional constraints are applied.
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Furthermore, only these two baselines have been estimated in the
minimum constraint solutions with an a posteriori standard deviation at
the milimeter level thereby suggesting that a steady state response in
the geometric mode environment assumes millimeter level a posteriori
standard deviations of the estimated baselines.

Application of an additional constraint brings the a posteriori
standard deviation of all the remaining baselines shown in Table 8 to
the millimeter level thereby implying that for those baselines the steady
state response has been reached via the implementation of the scale in
the resulting range space network.

This was expected because in the geometric solutions the baselines
constitute a set of estimable quantities and as such constraining one of
them (i.e., 7109-7122) will lead, apart from nonlinear terms, to reduced
unscaled standard deviations for the remaining baselines. Their scaled
standard deviations (i.e., a posteriori standard deviations) will also be
reduced if the scaling factors (i.e., the a posteriori standard deviations
of unit weight) are close enough to unity so they preserve the relative
structure of the corresponding unscaled standard deviations. In fact
the a posteriori standard deviation of unit weight in the overconstrained
solutions is 1.05, just slightly larger than that of the corresponding
minimum constraint which is 1.03, making it possible to preserve in
those solutions the same relative structure of the scaled variance-
covariance matrices as that of their corresponding weight coefficient
matrices (Table 8). This simply means that the additional constraint did
not distort the geometry but rather made it stronger, and therefore it
was possible to reach through the solution (3) steady state response for
longer baselines.

Since the geometric solutions are not affected by the erroneous
modeling of either the satellite motion or the motion of reference frames,
we have taken solution (3) to constitute the standards of comparison in
assessing the effectiveness of the SRD method versus the dynamic mode
methods. Solution (3) was chosen over the corresponding minimum
constrained solutions because, of all of the available events, the steady

state response for more than the two very short baselines (i.e.,
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7110-7220 and 7109-7886) was not possible via the minimum constrained
solutions (Table 8).

The only errors affecting solution (3) result from the ineffectiveness
to implement the ill-defined scale by fixing the third coordinate of
station 7122 to that of the (CSR)85L01 solution (see Section 4.4.2). This,
however, is difficult to assess, but on the basis of the results presented
in the next section it can be safely stated that the scale along a band
in the direction of baseline 7109-7122 has been properly defined by
constraining this baseline. In fact the value of the scale factor varies
from solution C2 to that of C3, from 6.61x10"7 to 7.72x10~7 for baselines
longer than 627 km while for the two baselines of about 274 km the
value of the scale factor drops down to 4.5x10~7. This dependency of
the scale factor on the baseline lengths is expected since for shorter

baselines the implied geometry is stronger.

4.4 BASELINE ESTIMATION VIA THE STEADY STATE RESPONSE OF THE
SRD METHOD

The incorporation of additional observations into the SRD solutions will
lead to a steady state response for the same reasons mentioned in the
previous section. This response is even faster if observations of
"improved quality" are available. The term improved quality indicates
improvement of the weight coefficient matrix. For instance, from two
sets of observations (a) and (b) having identical sizes, the sct (b) is of
improved quality if the difference (P, - P,) of their weight matrices is
a positive (semi)definite matrix. Based on this, it is a trivial exercise to
prove that the matrix (Q%® - Q%P) is positive (semi)definite if the design
matrix is the same for both sets of observations (a) and (b) and of full
rank. Q%2 and Q% denote the weight coefficient matrices of the same
adjusted parameter vector obtained on the basis of sets (a) and (b).

Since (Q%? - Q%P) is a positive (semi)definite matrix, it follows that
Tr(Qx®) < Tr(Q%2) (4-2)

Although the two sets (a) and (b) are drawn from different populations,

consistency between the accuracy of the models employed and the
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accuracy of the observations leads to a close-to~unity a posteriori
variance of unit weight, thereby reducing, as it follows from equation
(4-2), the a posteriori variances of the adjusted parameter vector. This
vector contains the earth-fixed Cartesian coordinates of the ground
stations and the inertial initial state vectors which are treated in the
present study as nuisance parameters. The adjusted station coordinates
and their statistics are used to estimate the baseline lengths and their a
posteriori standard deviations. Reduced variances in station
coordinates, obtained from improved quality observations, yield baselines
the variances of which are also reduced only if the non-linearity of the
employed models allows such a reduction to take place. These
reductions, taking place for most of the SRD solutions presented in the
next section, imply a faster steady state response.

Constraining of estimable quantities in any SRD solution results in
baselines with reduced variances thereby implying again a faster steady
state response. Thus, incorporation of additional observations, improved
quality observations, and constraining of estimable quantities constitute
the three major factors leading to a steady state response. In the SRD
solutions, this response is achieved by balancing the contribution of the
first and the third factors because we have no control over the second
factor since the quality of already recorded observations does not
change. Furthermore, the goal has been to restrict as much as possible
the contribution of the third factor because the steady state response
achieved on the basis of constraining estimable quantities may be
affected severely by the errors affecting those quantities. These
quantities are in error because their recovery has also been based on
erroneous observations. If the propagation of the errors affecting the
constrained estimable quantities is not well controlled, it will lead to
erroneous recovery of the adjusted parameter vector and therefore to
erroneous baseline estimates. Even worse, the a posteriori variances of
those estimates might also be reduced making it more difficult to

reliably assess their accuracy.
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4.4.1 Pass Baseline Geometry and Its Manifestation in the Design Matrix
of the SRD Observable

The underlying characteristic inherently present in any factor leading
to a steady state response is its ability to strengthen the geometry
implied in the SRD solution under question. Thus, with stronger
geometry, the steady state response will be achieved on the basis of a
reduced number of observations. In other words, observations
containing more information for the recovered estimable quantities will
lead to a faster steady state response.

Fig. 17 shows the horizontal plane of the starting point (1) of the
baseline (12). The ending point (2) of the baseline and the
simultaneously observed satellite positions have been projected on this
plane. This simplification is aimed at revealing the information the SRD
observables contain about the estimated baseline for two characteristic
geometric configurations, namely, one when the subsatellite tracks are
parallel to the estimated baseline (Fig. 17a) and one when the
subsatellite tracks are perpendicular to that baseline (Fig. 17b and c).

It is a matter of trivial trigonometric manipulations to confirm that
with subsatellite tracks parallel to the estimated baseline the magnitude
of the SRD observable tends towards the length of the estimated
baseline as the subsatellite point moves away from either end of the
baseline along the subsatellite track denoted by (s) in Fig. 17a. Thus,
with this geometry the SRD observable directly relates to the length of
the baseline. However, as the subsatellite point moves towards the
prerpendicular bisector of baseline (12°), the SRD observable tends
towards zero.

With the subsatellite tracks perpendicular to the estimated baseline,
the SRD observable tends towards zero as the subsatellite point moves
away from the projected baseline along the line (¢) in Fig. 17b and c.
This observable also tends towards zero as the subsatellite track (z)
tends toward the perpendicular bisector of the projected baseline (12°).
However, the SRD observable tends towards the baseline length as the
subsatellite point moves toward point (I) and as this point moves in the

direction of the baseline and away from it (Fig. 17c). Thus, for a faster
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Fig. 17 Subsatellite track-baseline geometry.
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steady state response, parallel passes, the coobserved parts of which
are extended well away from the endpoints of the baseline, should be
preferred. When perpendicular passes are available, the ones located
well away from the perpendicular bisector plane of the estimated
baseline should be preferred.

The previously described favorable geometry manifests itself in the
strong independence prevailing among the columns of the resulting
design matrix. The term "strong independence" indicates the sharp
variation characterizing the ratio of the corresponding entries between
any two columns of the design matrix. The sharp variation resulting
from favorable geometry is seen in the partial derivatives of the SRD
observable taken with respect to the coordinates of one of the ground

stations and to those of the inertial initial state vector (Appendix A)

36pj - _ XJ - Yz (4_3)
3%, Pj2

X. — Y X:. — Y T R.
¥y [ Xz ¥ X - Vi) owpy Ry (4-4)
aXo Pj2 Pjr 9Xo

where X j? \7“ S-Iz are the earth-fixed position vectors of the satellite at
epoch j and stations (1) and (2) respectively.

Since the partial derivatives of equation (4-3) have a common
denominator, the variation of their ratios is controlled by the variations
prevailing among the coordinates of the satellite as it moves along the
coobserved part of the pass referred to from now on as "common part."
The longer the common parts, the sharper the variations are for the
ratios of the partial derivatives of equation (4-3). Common parts tend
to be longer as the baseline decreases thereby resulting in sharper
variations among the ratio of those partial derivatives for shorter
baselines. However, these variations become sharper for both short and
long baselines as more and more passes of different spatial distribution
are incorporated into the solution. For long baselines (i.e., > 3500 km),
the common part tends to be short if the pass is parallel to the baseline

thereby reducing the variation of the ratio of those partial derivatives.
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For perpendicular passes, the common parts tend to be a little longer
for long baselines, allowing therefore for sharper wvariations in the ratio
of the partial derivatives of equation (4-3).

The variations of the ratios between the partial derivatives of
equation (4-4) as well as between the partial derivatives of equations
(4-3) and (4-4) tend for perpendicular passes to be substantially
reduced. The wvariations of the ratios among the partial derivatives of
equation (4-4) are controlled by the changes in the observed ranges Pja2
and pj,, the changes in the satellite coordinates and the changes in the
columns of the state transition matrix. When the SRD observables tend
to become shorter (Fig. 17b and c), the observed ranges tend to be
equal and therefore the coordinates of the coobserved satellite positions
tend to cancel out. With such cancellations taking place and with the
tendency to have equal denominators in those partial derivatives, the
variations of their ratios are primarily controlled by those among the
transformed state transition matrix ((SNP)‘aRj/aXO, «.), the columns of
which, apart from the common denominator, tend in this case to be
multiplied by the components of the estimated baseline. Thus, for
shorter baselines the variations among these partial derivatives tend to
be sharper than those for longer baselines (Appendix B). The
unfavorable geometry associated with almost perpendicular passes
manifests itself with an almost constant numerator in the partial
derivative taken with respect to the station coordinate measured along
the direction of the estimated baseline. This happens because in this
direction the satellite coordinates change very little as the satellite
moves along a pass almost perpendicular to the direction of the baseline.
This geometry also leads to small variations of the numerators in the
partial derivatives of equation (4-4); therefore, in the design matrix the
ratio between the entries of the columns corresponding to the station
coordinate, recorded along the baseline direction, and to the coordinates
of the initial state wvectors will exhibit very little variation because the
denominators of the corresponding entries are nearly equal.

Reduced relative variations among the columns of the design matrix

lead to high correlations among the corresponding adjusted parameters.
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These correlations tend to increase or decrease as the homogeneity and
the strength of the implied geometry decreases or increases
respectively, a fact also manifested in the resulting poor or strong
conditioning of the normal matrix.

The above discussion, the aim of which is to help in understanding
the results presented in the next section, evidently reveals that in
single SRD baseline solutions, the strength of the geometry fades away
as the length of the estimated baseline increases. For longer baselines
(i.e., > 4000 km), the steady state response cannot be reached because
poor geometry results in an ill-conditioned normal equation matrix.

The weak geometry associated with long single baseline solutions is
substantially improved through a network solution. Such a solution has
not been performed in the present study because of the large number
of observations and the limiting computer capabilities. If SRD normal
points were available a network solution would have been possible

which, however, is beyond the scope of this study.

4.4.2 Baseline Resultls

This section describes the process of achieving steady state response
for those baselines only for which such a response, through single SRD
baseline solutions, was possible on the basis of the data collected during
the main MERIT campaign.

The adjusted parameter vector in single SRD baseline solutions
contains the coordinates of the baseline end-points and the components
of the initial state vectors for all of the arcs involved. In these
solutions, obtained via a weighted least squares adjustment, the
coordinates of one baseline end are held fixed while the coordinates of
the other end and the components of the initial state vectors are
allowed to adjust by assigning, through their weight matrix, the

following standard deviations

Ox = dy = 0, = 0.0001 m (fixed baseline end)
Ox =gy =0, =20 m ("free" baseline end)
Txg = Ty, = Tz, = 50 m (initial position)
Txg = Ty, = Gz, = 5 cm/s (initial velocity)
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The term "free" designates the adjusting baseline end.

The standard deviation of 20 m assigned on the coordinates of the
free baseline end reflects an accuracy estimate of their approximate
values, These values have been obtained by altering from 20 m to
100 m the coordinates of the (CSR)85L01 solution (Tapley et al., 1985b).
The standard deviations of 50 m and 5 cm/s assigned to the approximate
values of the components of the initial state vectors, reflect the
accuracy of those values. They have been obtained by integrating, over
a period of a month, Lageos’' equations of motion using as initial state
vectors those computed at EG&G for the entire main MERIT campaign
(Pavlis, 1986; private communication). At the beginning of each month
the EG&G estimates differ from those obtained by integrating Lageos’
equation of motion over the period of the previous month because a
simplified orbital modeling was used in the integration. These
differences ranging from 50 m to 150 m for the position and from 5 cm/s
to 13 cm/s for the velocity reflect the assigned accuracies to the
components of the initial state vector.

Constraining one baseline end, by applying large weights to its
coordinates, results in implicit constraining of its latitude and geocentric
distance which both constitute, in the dynamic/semidynamic environment,
a set of estimable quantities if the scale has been defined through the
appropriate adoption of units and constants (i.e., units of time, velocity
of light, etc.) and if a solution is possible through appropriately
adopting physical constraints (Van Gelder, 1978). Weighting moderately
the components of the initial state wvectors results also in moderate
implicit weighting of the estimable quantities associated with the
geometric characteristics of the orbit. Adjusting only one baseline end
and the initial state vectors, in either dynamic or semidynamic single
baseline solutions, results in implicit and/or explicit constraining of a
large number of estimable quantities. For instance constraining the C,,
and S,, potential coefficients together with the geocentric gravitational
constant (GM¢) and the mean radius of the earth (ag) results in explicit
constraining of the A,, and B,, coefficients which in the dynamic/

semidynamic environment constitute a set of estimable quantities (ibid.)
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Erroneous constraining of estimable quantities distorts the geometric
and/or physical characteristics of the dynamic environment, thus if
enough time is allowed the accumulated errors can exceed the noise level
of the observations to the extent that the adjusted estimable quantities
will be affected by errors larger than those implied by the accuracy of
the observations. Even worse with a priori variance of unit weight
equal to one, the a posteriori standard deviations of these quantities
will also be reduced only if the a posteriori variance of unit weight is
close enough to unity so it preserves the relative structure of the
weight coefficient matrices (ibid.)

Under those conditions baselines estimated on the basis of Cartesian
coordinates will have their a posteriori variances reduced only if the
non-linearity of the models employed allow such reductions to take
place. In single SRD solutions the errors affecting the baselines,
computed from the erroneously adjusted Cartesian coordinates of the
free baseline end, result from the errors originated by erroneously
constraining the parameters entering in the computation of the
discrepancy vector L of equation (2-60). Erroneous baseline lengths
with reduced variapces constitute a potential source for misleading
inferences in regard to the accuracy of the estimated baselines.
Therefore, the a posteriori standard deviations of the estimated

baselines will only be used, as in the geometric solutions, to indicate

how far away the solution is from its steady state. The actual accuracy
of the estimated baselines will be inferred on the basis of the
comparison with the baselines estimated through geometric method
(present study) and range dynamic methods (CSR at UTX and ZIPE at
Potsdam) (next section).

Baselines estimated through Cartesian coordinates will also be
affected in the dynamic environment by the errors commited in the
implementation of the terrestrial reference frame, as it happens, for
instance, when the barycenters of the observations of the baseline end
stations are well apart in time (Pavlis et al., 1983). Strict simultaneity,
however, implied by the nature of the SRD observable eliminates such

inconsistencies in the present study.
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For various baseline lengths ranging from 8 m to 4000 km, Tables 9
through 17 list the final results and those obtained at intermediate
stages of the process leading to a steady state response. The a priori
variance of unit weight is taken equal to one for all of the baseline
solutions presented in this section. Fig. 18 shows the locations of the
stations involved in the SRD solutions (lower part) together with a
typical LAGEOS groundtrack for some of their coobserved passes (upper
part).

The lengths of these common parts increase or decrease as the
length of the baseline being estimated decreases or Iincreases
respectively.

Tables 9 and 10 contain the results of the steady state response
reached for two very short baselines via both short and long arc
modes. The first column lists the number of passes coobserved by the
baseline end points while the second lists the number and the duration
of the ércs, the position and orientation of which were adjusted to fit
"best" the available observations. For instance, 6 (lh) in the first row
of Table 9 indicates that six arcs were adjusted, each of one hour long,
and 1 (4h) and 1 (2d) in the fifth row indicate that observations from
eight passes (first column of this row) were adjusted using two arcs,
one four hours long, and one two days long. The third, fourth and
fifth column list the total number of the SRD observables, the a
posteriori variance of unit weight and the root mean square of all of the
SRD residuals respectively. The last column contains the estimated
baseline length together with its a posteriori standard deviation. All of
the remaining tables through 17 have the same format except for some
obvious very minor differences.

For baselines 7109 - 7886 and 7110 - 7220 steady state response has
been reached via both short arc and long arc solutions on the basis of
10 passes (Table 9, rows 3-7) and 17 passes (Table 10, rows 2-5)
respectively. As in the geometric solutions, the steady state response is
also associated with a posteriori standard deviations below the
centimeter level. After the steady state, the estimated lengths of these

two baselines do not change at the centimeter level either through a
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Fig. 18 Station location and Lageos groundtracks
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Table 9 Steady State Response of Baseline 7109 - 7886, Parallel
Passes
All length units in meters.

No. of Integration No. of 652) RMS of All SRD Baseline
Passes Lengths (!) Observ. ° Residuals 7.

Short-Arc Mode

6 6 (1 h) 8,414 0.94 0.070 719 £ 0.002

8 8 (1 h) 12,807 0.90 0.069 .731 = 0.002

10 10 (1 h) 18,589 0.86 0.067 .737 ¢ 0.001

13 13 (1 h) 25,865 0.85 0.067 .738 * 0.001

Long-Arc Mode

8 1 (4 h) 13,527 0.90 0.069 .733 £ 0.002
1 (2 d)

10 1 (4 h) 20,216 0.86 0.067 .741 = 0.001
1 (4 d)

13 1 (4 h) 27,697 0.85 0.067 .738 + 0.001
1 (7 d)

(1) k (£ h) = k arcs of £ hours

i H

k (£ d)

(2) a posteriori variance of unit weight

k arcs of £ days

short arc or a long arc solution and furthermore these lengths are the
same for both short arc and long arc solutions, thereby indicating that
the accumulated orbital biases for so short baselines cancel out
completely, a plausible property of the SRD observable. The correlations
among the components of the adjusted parameter vector are for so short
baselines substantially reduced because the lengths of the coobserved
parts of the passes tend to be long and their orientation is not
important since the subsatellite tracks for these short baselines are
located well away from their end points (Section 4.4.1).

The 34 cm a posteriori standard deviation of the baseline solution,
listed in the first row of Table 11, shows that although 17 passes of
about one hour long are available, steady state response, with a short
arc solution, is not possible for baseline 7110 - 7265 because the

pass-baseline geometry has deteriorated as the length of the estimated
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Table 10 Steady State Response of Baseline 7110 - 7220, Parallel
Passes
All length units in meters.

No. of Integration No. of 2(2) RMS of All SRD Baseline
Passes Lengths (1) Observ. To Residuals 15.

Short-Arc Mode
11 11 (1 h) 12,040 0.95 0.084 .233 ¢ 0.003
17 17 (1 h) 17,971 1.09 0.091 .236 £ 0.002
Long—Arc Mode

17 (4 h) 17,982 1.07 0.090 .240 * 0.002
(1 d)
(2 d)
(3 d)

(1 h) 17,983 1.08 0.030 .250 ¢ 0.002
(3 d)
(4 d)
(5 d)

(1 h) 17,984 1.08 0.090 .238 £ 0.002
(3 d)
(6 d)
(7 d)

(1) k (£ h)
k (£ d)

(2) a posteriori variance of unit weight

17

17

bt e et et DN e b et Q) bt et pet

k arcs of £ hours
k arcs of f days

baseline has increased from 8 m (Tables 9) to about 274 km (Table 11).
This deterioration is even worse since the geometry of the orbit is such
that passes parallel to this baseline do not exist and only passes
intersecting it at about ¢ 30 to * 50 degrees are available creating,
therefore, a geometry which is worse than that of the parallel passes
and better than that of the perpendicular ones. Steady state response,
however, for this solution can be reached by strengthening its
geometric characteristics on the basis of constraints imposed on some
additional estimable quantities. In the dynamic environment this is
accomplished by increasing the maximum length of continuous integration
(maximum arc length) which intensifies, through the implied geometric
strength, the effect of the coefficients A,, and B,, on the resulting

long orbital arcs. Care should be excercised not to destroy the
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Table 11 Steady State Response of Baseline 7110 - 7265, Passes
Within £30° - £50°
All length units in meters.

No. of Integration No. of 622) RMS of All SRD Baseline
Passes Lengths (!) Observ. ° Residuals 2740__.
Short—Arc Mode
17 17 (1 h) 21,767 0.77 0.0734 70.453 * 0.335
Long—Arc Mode
17 1 (1 d) 21,780 0.80 0.075 69.391 * 0.012
3 (24d)
17 2 (2 d) 21,781 0.80 0.075 69.482 + 0.009
1 @4 d)
17 1 (2 d) 21,781 0.80 0.075 69.494 * 0.009
1 (3 d)
1 (7 d)
(1) k (2 h) = k arcs of £ hours
k (£ d) = k arcs of £ days

(2) a posteriori variance of unit weight

accuracy of the available observations by the errors accumulated, over
these long arcs, due to errors affecting the A,, and B,, potential
coefficients.

With this in mind and on the basis of all observations, three long
arc solutions have been performed by allowing maximum arc lengths of
up to three, five and seven days respectively. The results of these
three solutions are listed in 2nd through 4th row of Table 11. In the
first long arc solution, employing one arc of one day long and three
arcs of two days long, the length of the estimated baseline changed by
106 cm as compared to that of the short arc solution. Steady state
response, however, for this solution has not yet been reached since the
length of this baseline changes by about 10 cm when arcs up to five
and seven days are allowed (Table 11, rows 3-4). However, increasing
the maximum arc length from four to seven days (rows 3-4) results in a
change of the estimated baseline length of about 1 cm, thereby implying
that steady state response is being reached and that the baseline length

of the solution listed in 3rd row of this table is the least affected by
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Table 12 Steady State Response of Baseline 7109 - 7110, Parallel
Passes

All length units in meters.

No. of Integration No. of 2(2)  RMS of All SRD Baseline
Passes Lengths (1) Observ. To Residuals 883602.
Short-Arc Mode
4 4 (1 h) 11,512 0.5 0.029 .676 = 0.30
8 8 (1 h) 36,236 0.36 0.026 .309 = 0.04
12 12 (1 h) 59,011 0.35 0.026 .249 = 0.03
16 16 (1 h) 69,083 0.43 0.026 .251 = 0.03
Long—Arc Mode
12 1 (1 h) 59,020 0.36 0.026 .220 = 0.001
1 (2 d)
1 (3 d)
12 1 (4 h) 59,021 0.36 0.026 .224 = 0.001
1 (3 d)
12 1 (7 d) 59,022 0.86 0.042 .217 £ 0.002
16 2 (2 4d) 69,816 0.37 0.027 .225 = 0,001
1 (3 d)
16 1 (2 d) 69,817 0.38 0.027 .226 = 0.001
1 (4d)
16 1 (1d) 69,817 0.79 0.057 .219 = 0.001
1 (6 4d)
(1) k (£ h) = k arcs of £ hours
k (2 d) = k arcs of ¢ days

(2) a posteriori variance of unit weight

any accumulated orbital errors,

employs the shorter long arcs and the a posteriori variance of unit

weight is smaller than one.

the adjusted parameter vector do not cause, for this baseline, any

instability since almost all of them are less than 0.90 with very few just

exceeding this value.

Tables 12 and 13 contain the results for the steady state response

of two baselines with the same length, the same orientation, and one

because at steady state this solution

common end point occupied by station 7110.
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Table 13 Steady State Response of Baseline 7110 - 7886, Parallel

and Perpendicular Passes
All length units in meters.

No. of Integration No. of 2(2)  RMS of All SRD Baseline
Passes Lengths (') Observ. ° Residuals 883606.
Short—Arc Mode
33 33 (1 h) 58,261 0.74 0.064 .467 t 0.056
parallel
passes
33 39 (1 h) 61,037 0.75 0.064 .459 t 0.056
parallel
+ 6
perpendicular
Long—Arc Mode
33 4 (1 h) 58,248 0.75 0.065 .347 £ 0.004
parallel 4 (4 h)
passes 2 (1 d)
1 (1.5 d)
3 (2 d)
33 2 (1 h) 58,252 0.76 0.065 .342 = 0.003
parallel 1 (4 h)
passes 1 (1 d)
3 (2 d)
3 (3 4d)
33 1 (4 h) 58,256 0.77 0.065 .335 £ 0.003
parallel 1 (2 d)
passes 1 (3 4d)
1 (4 d)
1 (4.5 d)
1 (7 d)
(1) k (£ h) = k arcs of £ hours
k (£ d) = k arcs of £ days

(2)

by stations 7109 and 7886,
baselines,
therefore, examination of the results presented in these two tables will

show how the quality of the observations affects the speed of the

have an accuracy of 0.028 m and 0.070 m respectively,

steady state response (Section 4.4).

7109 -~ 7110 has been reached via short arc solution on the basis of 12

150

a posteriori variance of unit weight

occupying the other ends of these two

Steady state response of baseline



passes having approximately 59,000 observations, as is confirmed by
comparing the third and fourth rows of Table 12. The a posteriori
standard deviation of the recovered baseline is at the 3 cm level
because, in short arc solutions, the components of the initial state
vectors are recovered with a relatively low precision (20 m to 50 m).

To examine the effects of using long arc solutions to achieve steady
state response, we have performed six long arc solutions, three of
which are based on observations from 12 passes (Table 12, rows 5-7)
and three on observations from 16 passes (rows 8-10) when maximum arc
lengths up to three, five and seven days are allowed respectively. The
baseline lengths, estimated through all of these long arc solutions, do
not change their length at the centimeter level, when either the number
of observations or the maximum arc length increases and furthermore,
the a posteriori standard deviation of the estimated baselines assumes
millimeter level values. However, the baseline length changed from the
short arc solution to the long arc solution by about 2.5 cm due to
accumulation of orbital errors. The RMS of all of the SRD residuals for
the long arc solutions (Table 12, rows 5-6,and 8-9) is about the same as
that of the short arc ones (rows 1-4),but it is twice as much when arcs

up to seven and six days are allowed in those solutions (rows 7 and 10).

Steady state reached through a short arc solution assumes a
posteriori standard deviation of 3 cm (Table 12), thus, for baseline
7110-7886 shown in Table 13 such a response has not yet been reached,
because a short arc solution, on the basis of all of the available
observations, results in a 6 cm a posteriori standard deviation of the
estimated baseline length (Table 13, row 1). This claim is also confirmed
by the 10 cm change of the estimated baseline length when long arc
solutions are performed (rows 3-5). The perpendicular passes
incorporated in the short arc solution (2nd row), tend, in the light of
weak geometry, to decrease the estimated baseline length because for
those passes the SRD observable tends to become very short (Section
4.4.1). Thus, the 8 mm decrease (2nd row) on the basis of just 2,776

additional observations is another indicator confirming that steady state
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response for this baseline through a short arc solution has not been
reached. Consequently, such a response is sought through long arc
solutions performed on the basis of arcs up to two, three, and seven
days long (Table 13, rows 3-5). Since in these three long arc solutions
the estimated baseline length did not change at the cm level and since
its a posteriori standard deviation is below the cm level, it is assumed
that steady state has been reached in those solutions.

For this baseline, although of same length and direction as baseline
7109 - 7110, steady state response was not possible on the basis of 33
passes with 58,261 observations processed via a short arc solution,
because the accuracy of the observations of station 7886 is twice as
large as those of station 7109, This confirms the claim, made in Section
4.4, that steady state response on the basis of improved quality
observations is faster.

As of the correlations among the components of the adjusted
parameter vector, they are well below the 0.90 value for all short arc
solutions shown in Tables 12 and 13, except for very few of them,
among the components of some of the recovered state vectors, that
tend to be just a little higher than this wvalue without, nevertheless,
affecting the conditioning of the normals to the extent that could result
in an algorithmically singular normal equations matrix. This behavior of
the correlations is not surprising since in estimating these two baselines
only parallel passes, the coobserved parts of which are extended well
beyond the baseline end points, were employed, thereby, leading
according to the discussion in Section 4.4.1 to a favorable geometiry
which is manifested in the reduced correlations among the components of
the adjusted parameter vector. On the contrary, when in some of the
long arc solutions shown in Tables 12 and 13, arcs of one or four hours
long are employed together with arcs of two, three or seven days long,
the relative geometry of the hours long arcs is very weak as compared
to that implied by the days long arcs, thereby leading to high
correlations among the components of initial state vectors of the hours
long arcs. This inhomogeneity together with the potential to have many

passes with weak geometry, when long baselines of about 4000 km are
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estimated, results in an algorithmically singular normal equations matrix
(see below).

Baseline 7110 - 7086, the steady state response of which is shown in
Table 14, has a relatively large number of coobserved passes each
having a substantially reduced number of observations as opposed to
those recorded in the passes used in the estimation of the baselines
described in Tables 9 through 13. Examination of the steady state
response for this baseline will reveal the effect of the geometry, implied
by the many passes, as opposed to the number of the available
observations. The 41 cm a posteriori standard deviation obtained with
the short arc solution, shown in the first row of this table, indicates
that steady state has not yet been reached. Thus, six long arc
solutions have been performed, the three of which use observations from
29 passes (Table 14, rows 2-4) while the other three use observations
from 40 passes (rows 5-7) and arc lengths of up to three, five and
seven days respectively. On the basis of 29 passes, processed in- the
long arc mode, steady state response has not been reached because
changing the maximum arc length from five days to seven days the
length of the estimated baseline changes as much as 18 cm (Table 14,
rows 3-4). However, when 11 more passes with about 4,000 additional
observations are included, the lengths of the estimated baseline change
only at the centimeter level (rows 4-7) and their a posteriori standard
deviations has dropped below the centimeter level, thereby suggesting
that steady state response for this baseline has been reached. Since
the a posteriori variance of unit weight is smaller than one, the
estimated lengths are assumed not to have been influenced by any
errors accumulated over these long periods and therefore, the length
estimated with the smaller standard deviation is assumed to be the
closest to that of the steady state (last row of this table).

In the short arc solution (1st row of Table 14), the correlations
among the components of the adjusted parameter vector are almost all
of them less than 0.90 with few just exceeding this value. These
correlations (i.e., >0.90) exist among some components of the initial state

vectors corresponding to arcs, the geometry of which is not favorable
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Table 14 Steady State Response of Baseline 7110 - 7086, Passes
Within £20° - *60°
All length units in meters.

No. of Integration No. of 2(2) RMS of All SRD Baseline
Passes Lengths (1) Observ. 9o Residuals 119829 .
Short—Arc Mode
40 40 (1 h) 16,752 0.76 0.078 1.110 = 0.411
Long—Arc Mode
29 8(1h), 1(4h) 12,395 0.81 0.081 0.814 = 0.042
3(1d), 2(2d)
3(3d)
29 5(1h), 2(4h) 12,414 0.82 0.081 0.821 = 0.036

2(1d), 2(2d)
2(4d), 2(5d)

29 4(1h), 1(1d) 12,400 0.84 0.083 0.998 ¢ 0.015
1(2d), 2(4d)
2(5d), 2(7d)

40 10(1lh), 1(4h) 16,771 0.82 0.081 0.987 ¢ (.009
3(1d), 2(2d)
5(3d)

40 7(1h), 1(4h) 16,790 0.80 0.080 1.024 = 0.009

3(1d), 3(2d)
1(3d), 2(4d)
2(5d)

40  7(lh), 1(1d) 16,776 0.87 0.084 1.005 = 0.008
1(2d), 1(4d)
2(5d), 2(6d)

2(7d)
(1) k (£ h) = k arcs of £ hours
k (£ d) = k arcs of 2 days

(2) a posteriori variance of unit weight

with respect to the estimated baseline (Section 4.4.1), that is, when the
passes are close to being perpendicular to the baseline and/or when
their coobserved part is short and close the perpendicular bisector
plane of the estimated baseline.

Increasing the maximum arc length results in arcs of different
lengths ranging from one hour to either three, five, or seven days long,

all of which are employed in the same long arc solution. This in turn
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weakens the geometric strength of the short arcs because in those
golutions the long arcs are the ones dominating the implied geometric
strength. The weaker the geometry of those short arcs, in a short arc
solution, the higher the correlations among their components adjusted in
long arc solutions, in which these short arcs could not be matched with
any other arcs. Furthermore, if only passes of weak geometry are
matched together they result in a long arc also of weak geometry,
thereby leading again to high correlations among the components of its
adjusted initial state vector. These correlations become larger as the
maximum arc length increases and the long arcs of weak geometry
cannot be matched with any other ones of strong geometry. This
pattern, which is present in the long arc solutions of Table 14, does
not lead to an algorithmically singular normal equation matrix, simply
because the length of the baseline is not long enough to result in a
geometry so weak that could lead to near singularities, although passes
parallel to this baseline do not exist (Fig. 18).

Table 15 contains the results for the steady state response of
basgeline 7110 - 7122, the geometry of which is such that passes
parallel to this baseline do exist and in fact all of the passes employed
in the solutions of Table 15 are parallel to this baseline. Since steady
state response for this baseline was not possible through a short arc
solution, long arc solutions have been performed on the basis of 15
passes (rows 1-2) and 22 passes (rows 3-5) with maximum arc lengths
up to three, five and and seven days respectively. The temporal
distribution of the observed passes is such that when 15 of them are
used the solution allowing maximum length of three days coincides with
that allowing maximum arc length of five days, and therefore only one of
them is shown in Table 15 (lst row). These passes contain observations
from station 7122 before and after it was upgraded (Table 2).

The 3 mm and 2 mm level of the a posteriori standard deviations
associated with the baselines obtained through all of the long arc
solutions, shown in Table 15, indicate that a steady state response for
this baseline has been reached. This is also confirmed by the fact that

the estimated baseline length changes at just the centimeter level when
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Table 15 Steady State Response of Baseline 7110 - 7122, Long—Arc
Mode, Parallel Passes (all length units in meters)

No. of Integration No. of 62(2) RMS of All SRD Baseline
Passes Lengths (1) Observ. 0 Residuals 1437139,

15 (1 h) 42,328 0.65 0.044 .307 * 0.003
(1 d)

(2 d)

(1 h) 42,329 0.66 0.045 .309 ¢ 0.002
(1 d)
(6 d)

(1 h) 69,803 0.52 0.035 .305 * 0.002
(1.d)
(2 d)
(3 d)

(1 h) 69, 804 0.54 0.037 .302 * 0.002
(1d)
(2 d)
(3 d)

(1 d) 69, 807 0.81 0.055 .293 * 0.002
(2 d)
(6 d)
(7 d)

15

22

22

22

BN b b BN PN b= WWER N o b O

(1) k (2 h)
k (2 d)

(2) a posteriori variance of unit weight

k arcs of 2 hours
k arcs of £ days

on the basis of 22 passes the maximum arc lengths change from 3 to 7
days (Table 15, rows 4-5). The correlations follow the same pattern as
that described for baseline 7110 - 7086 but since the passes are now
parallel to the estimated baseline, weak geometry is implied only by
those the coobserved part of which is extended only in between the
baseline endpoints (Section 4.4.1). However, the geometry implied by
those passes is not so weak to cause any algorithmic singularity in the
normal equations matrix. Such weakness in the geometry causes
problems when the lengths of the estimated baselines increases to
3500 km and 3700 km (Tables 16 and 17).
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Table 16 Steady State Response of Baseline 7109 - 7105, Long-Arc
Mode, Passes Within $20° - %30°
All length units in meters.

No. of Integration No. of 2(2) RMS of All SRD Baseline
Passes Lengths () Observ. To Residuals 3703351.
Maximum Arc Length = 2 days
42 10(1h), 5(4h) 78,801 0.54 0.032 .628 = 0,003
2(7h), 6(1d)
54 12(1h), 5(4h) 106,770 0.52 0.032 .686 = 0.003
2(7h), 8(1d)
62 14(1h), 5(4h) 129,147 0.50 0.031 .702 = 0.002
2(7h), 9(1d)
72 18(1h), 5(4h) 151,901 0.49 0.031 .693 = 0.002
2(7h),11(1d)
Maxisnm Arc Length = 3 days
42 5(1h), 2(4h) 72,783 0.57 0.033 .B877 * 0.003
1(7h), 4(1d)
2(2d), 3(3d)
54 5(1lh), 2(4h) 106,989 0.58 0.033 .689 = (0.002
1(7h), 4(1d)
4(2d), 4(3d)
62 5(1lh), 2(4h) 129,155 0.54 0.032 .699 t 0.002
1(7h), 5(1d)
5(2d), 4(34d)
72 6(lh), 2(4h) 151,910 0.53 0.032 .695 = (0.002
1(7h), 7(1d)
6(2d), 5(3d)
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Table 16 (cont’d)

No. of Integration No. of 62(2) RMS of All SRD Baseline
Passes Lengths (1) Observ. ° Residuals 3703351.__

Maximum Arc Length = 7 days

42  4(1h), 1(4h) 78,809 1.11 0.046 .706 t 0.004
1(7h), 1(1d)
1(2d), 1(3d)
1(5d), 4(6d)
1(7d)

54 4(1h), 1(4h) 106,780 3.33 0.081 .815 ¢ 0.005
1(7h), 1(1d)
1(2d), 1(3d)
1(5d), 5(6d)
2(7d)

62 4(1lh), 1(4h) 129,159 2.78 0.073 .809 ¢ 0.005
1(7h), 1(1d)
1(2d), 1(3d)
1(5d), 6(6d)
2(7d)

72  4(1lh), 1(4h) 151,916 2.45 0.069 .801 * 0.004
1(7h), 2(1d)
1(2d), 1(3d)
1(4d), 1(5d)
7(6d), 2(7d)

(1) k (£ h)
k (£ d)

(2) a posteriori variance of unit weight

k arcs of 2 hours
k arcs of £ days

"o

For both of these baselines the pass-baseline geometry is weak and
that of baseline 7110 - 7105 is even worse since passes intersecting this
baseline at *20 to t60 degrees are only possible, and many of them are
located close to the perpendicular bisector plane of this baseline.

For both of these baselines steady state response was not possible
through a short arc solution, therefore, long arc solutions were
performed on the basis of 42, 54, 62 and 72 passes and with maximum
arc lengths up to two, three, and seven days respectively.

Examination of the results listed in rows 2-4 of Table 16 reveals

that with maximum arc length up to two days steady state response has
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been reached when 54 passes are available and the a posteriori standard
deviation of the estimated baseline is 3 mm. Increasing the maximum arc
length up to three days leads, as expected, to a faster steady state
response since such a response is close to being reached with 42 rather
than with 54 passes (Table 16, rows 2 and 5). When maximum arc length
of 7 days is allowed, we see that steady state response has clearly been
reached on the basis of 42 passes (Table 16 cont’d, row 1). However,
the a posteriori standard deviation is greater than one, thereby
suggesting that either accumulated orbital errors and/or possible
ill-conditioning may be on their way up to corrupt the solution.
Ill-conditioning, however, seems to be at work since many components of
the recovered initial state vectors exhibit correlation at the .9999 level
resulting mainly from the weak geometry and the inhomogeneity of the
arc lengths employed in the solution shown in the 1st row of Table 16
cont’d. This is also confirmed, when on the basis of 54 passes (2nd
row), the estimated baseline length jumps by 11 cm and the a
posteriori standard deviation of unit weight jumps to 3.33. These
behavior is caused by the high correlations existing among the
components of the initial state vectors of those short or long arcs, the
geometry of which became worse by the additional long arcs when 54
rather than 42 passes were employed (Table 16 cont’d, rows 1-2).
Inclusion of additional observations, however, seems to lead the response
of this solution to the right direction, as it is seen from the 2nd
through 4th row of this table, but at a very slow pace, since the
geometry is still too weak for a steady state response to take place.

The divergent response resulting from weak geometry manifests itself
when baseline 7110 -~ 7105 is estimated on the basis of 56, 60 and 65
passes and with maximum arc lengths up to three, five and seven days
respectively. For many of these passes the geometry with respect to
baseline 7110 -~ 7105 is very weak (Section 4.4.1). This in turn leads to
high correlations among the components of the corresponding initial
state vectors. With arc lengths up to three days, steady state response
seems to have been reached because with the incorporation of additional

observations the length of the estimated baseline just changes at the
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Table 17 Steady State Response of Baseline 7110 - 7105, Long—Arc
Mode, Passes Within £20° - 260°
All length units in meters.

No. of Integration No. of 62(2> RMS of All SRD Baseline
Passes Lengths (!) Observ. ° Residuals 3559743.

Maximm Arc Length = 3 days

56 12(1h), 1(5h) 120,111 0.58 0.036 .594 = 0.003
1(8h), 5(1d)
3(2d), 4(3d)

60 12(1lh), 1(5h) 136,356 0.56 0.036 .615 * 0.003
1(8h), 4(1d)
3(2d), 5(3d)

65 15(1h), 1(5h) 146,956 0.55 0.035 .619 = 0.003
1(8h), 5(1d)
3(2d), 5(3d)

Maxipum Arc Length = 5 days

56 11(1h), 1(5h) 120,114 0.64 0.038 .542 + 0.003
1(8h), 3(1d)
2(2d), 1(3d)
3(4d), 1(5d)

60 11(1h), 1(5h) 136,359 0.63 0.038 .564 + 0.003
1(8h), 2(1d)
2(2d), 2(3d)
3(4d), 1(5d)

Maximum Arc Length = 7 days

56 8(1h), 1(1d) 120,118 1.25 0.053 .637 ¢ 0.004
1(2d), 2(4d)
5(6d), 2(7d)

60 8(1lh), 1(1d) 136,362 1.14 0.051 .615 * 0.004
2(2d), 2(4d)
5(6d), 2(7d)

(1) k (£ h)
k (2 d)

(2) a posteriori variance of unit weight

k arcs of £ hours
k arcs of £ days

o

centimeter level and the associated standard deviations assume 3 mm
values (Table 17, rows 1-3), However, correlations at the 0.9999 level
exist among the components of the initial state vectors of those arcs

that are primarily composed of passes crossing this baseline close to its
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perpendicular bisector plane. These correlations become larger when
maximum arc lengths up five and up to seven days are allowed and
when additional observations result in sharp inhomogeneity in regard to
the arc lengths incorporated in the same solution (Table 17, rows 4-5,
and 6-7). Thus, on the basis of 65 passes and when arcs up to five or
seven days are allowed, the existence of high correlations leads to a
singular normal equation matrix, thereby implying divergent response.
Because of this, solutions were not possible with those arc lengths and
therefore they are not shown in Table 17.

Thus, it is questionable whether for long baselines (>3500 km)
steady state response through single SRD baseline solutions can be
reached. For shorter baselines, however, steady state response can be
reached even if passes parallel to the baseline do not exist.

The ill-conditioning affecting longer baselines could be prevented in
a network solution if there exist observations from baselines that are
parallel to the passes responsible for the ill-conditioning. Such
solutions, however, for the reasons mentioned in the previous section

could not be performed in the course of this study.

4.5 Baseline Comparison
The baseline lengths estimated with the geometric method are
independent of any orbital errors and inconsistencies affecting the
implementation of the terresrial reference frames; therefore, these
lengths (Section 4.3.2) will constitute the standards of comparison when
assessment is made about the accuracy of the baselines estimated via
the SRD method. Both the geometric and the SRD baseline estimates will
also be compared with those obtained via long arc range dynamic
methods, on the basis of the MERIT data set, by the Central Institute
for Physics of the Earth (ZIPE) in East Germany and by the Center for
Space Research (CSR) at The University of Texas.

Both of these centers used in their solutions the gravitational
constant proposed by MERIT standards (i.e., GM =3.98600448 x 1014
m3s~2) which is different from that employed in the single SRD baseline

solutions (Section 2.2.5.1). A change in the gravitational constant will
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not only affect the metric scale (the semimajor axis a) but also the
dynamic scale (mean anomalistic motion n) according to Kepler’s modified
third law :

n2a3 =GM(14A) (4-9)

where A is a small parameter depending on the satellite orbit. It is
uncertain how the effect of this change will be divided between the
metric and the dynamic scales. For regional baseline estimation
however, the metric scale is primarily controlled by the velocity of light
which is the same for all the SRD, ZIPE and (CSR)85L01 solutions. For
this reason, changing the value of the gravitational constant (GM) in the
SRD solutions presented in the previous section in accordance with
MERIT Standards will affect at the centimeter level the lengths of only
the two very long baselines (i.e., 7109-7105 and 7110-7105). The

remaining baselines are affected either at the few millimeter or

- submillimeter level depending on the length of the estimated baseline

and on the duration of the arcs employed in the corresponding solution.
Nevertheless, for the sake of consistency the baseline differences shown
in Table 18 have been adjusted to the same value of the gravitational
constant by reestimating the SRD baselines on the basis of the (GM)
value proposed by the MERIT Standards.

Table 18 lists the differences of those baselines only for which
steady state response has been reached either through the SRD or the
geometric solutions. The first column of this table lists the baseline
ID’'s, the second one contains the length of the baseline rounded to the
nearest meter, the third and fourth columns contain the differences of
the baselines estimated through the SRD method and through the range
dynamic method by both ZIPE and CSR, the fifth and sixth columns list
the differences of the geometric and dynamic ZIPE and CSR baselines.
The last column contains the differences of the baselines obtained
through the SRD and the geometric methods. The baseline differences
not listed in this table were not computed because steady state response
for the SRD and/or the geometric method was not possible or because

one of the stations constituting a baseline endpoint was not included in
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Table 18 Baseline Differences

Length (m) ZIPE (CSR)85L01 ZIPE (CSR)85L01 SRD

Baseline to nearest —SRD —SRD ~GEOM —-GEOM —-GEOM
meter
7109-7110 883602. -0.03 -0.03 -0.03 -0.03 0.00
7109-7265 627044. — — 0.00 0.04 —
7109-7886 8. -0.01 0.00 -0.02 -0.01 ~0.01
7110-7122 1437139. -0.03 -0.03 -0.02 -0.02 0.01
7110-7220 15. — -0.04 - -0.01 0.03
7110-7265 274069. -0.04 -0.07 -0.03 -0.06 0.01
7122-7265 1663983. — —_ -0.02 -0.06 —
7122-7886 2280720. — — 0.01 0.02 —
7220-7265 274066. — — — 0.00 —
7265-7886 627049. — — 0.01 0.06 —
7110-7886 883606. -0.01 0.00 -0.01 0.00 0.00
7110-7086 1198291. 0.01 0.02 — — —_
7109-7105 3703352. 0.06 0.05 — — —

the corresponding dynamic method. For instance, the difference (ZIPE -
SRD) for baseline 7220-7265 could not be computed because steady state
response for this baseline was not possible through a single SRD
baseline solution; also for the same baseline the difference (ZIPE -
GEOM) is not included in Table 18 because station 7220 was not listed in
the reported ZIPE solutions (Montag et al.,, 1985).

The baseline differences between the SRD, ZIPE and CSR solutions
shown in the third and fourth columns are negative for north-south
baselines (rows 1-11) and positive for the east-west ones (rows 12-13)
(Fig. 18). Since some of these differences are larger in magnitude for
shorter baselines, scale difference between SRD and CSR or ZIPE
solutions would account for part of these differences. The remaining
differences, at the 2 cm or 3 cm level, must be caused by orbital errors
affecting mostly the dynamic solutions, because the SRD solutions
(column 7) are clearly closer to the geometric solution than both ZIPE

and CSR solutions (Table 18, columns 5-6). The large differences of 6
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cm between (CSR)85L01 and geometric solutions (column 6) are associated
with station 7265 (MOHAVE). This station during the MERIT Main
Campaign was equipped with a TLRS-1 laser instrument which
experienced many problems, as was confirmed in the present study when
editing the data with the data snooping procedure (Section 3.5).
Therefore, it is very likely that erroneous observations from this station
are still present in the (CSR)85L01 solution. This in turn would explain
these relatively large baseline differences.

Although the geometric solution (Table 8, Type C3) used in Table 18
has been overconstrained to the (CSR)85L01 solution, SRD baseline
estimates are on the average the "best" ones as compared to those of
either the ZIPE or the (CSR)85L01 solutions. The term '"best" indicates
that a solution is the one closest to a geometric solution at its steady
state. However, ZIPE baseline estimates when compared to those
obtained in the (CSR)85L01 solution, are closer to the geometric solutions
and therefore more accurate.

The root mean square of the differences between the geometric
baseline estimates and those of the SRD, ZIPE and CSR are 1 cm, 2 cm,
and 4 cm respectively.

Since these differences are based on baselines up to 1500 km, it is
fair to state that SRD baseline estimates are at least as accurate as

those obtained through the range dynamic mode methods.

4.6 RESPONSE OF THE SRD METHOD TO THE SIMPLIFICATIONS OF THE
ORBITAL MODEL

It was mentioned in Section 2.2.5 that the aim of the present study is
not to estimate Lageos’ orbit with the highest degree of accuracy but
rather to employ models as simple as possible and yet be able to
recover baselines with an accuracy compatible to that of the
observations.

Since the temporal variations of the baseline endpoints have been
accounted for to the required degree of accuracy (Section 3.3), and
since any inconsistencies in the implementation of the Terrestrial

Reference Frame do not affect the SRD observables (Section 4.4.2), the
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errors affecting the baselines estimated via the steady state response of

the SRD method (Section 4.4.2) result only from those orbital errors

accumulated over the integration periods and not cancelled out in the
computation of the SRD observable. Thus, the question that should be
addressed and investigated is twofold:

1) Is the sophistication of the orbital model, employed in the present
study (Section 2.2.5) sufficient to result in baselines the accuracy of
which is compatible to that of the observations?

2) If the answer is yes, how much could the sophistication of the orbital
model be reduced without affecting the accuracy of the estimated
baselines? If the answer is no, how much should the sophistication
of the orbital model be enhanced so the estimated baselines have an

accuracy compatible to that of the observations?

The errors affecting the estimated baselines are propagated from
those affecting the corresponding Cartesian coordinates. These errors,
which originated by the erroneous constraints imposed on a large
number of estimable quantities entering in the computation of the SRD
observable (eq. 2-60), tend to accumulate as the employed integration
periods become longer.

For baselines of moderate length (<2000 km) accumulated radial
errors are cancelled out almost totally in the computation of the SRD
observable. These errors are propagated almost unaltered into the
computed range observable (Pavlis, 1982). Depending, however, on the
location of the observed satellite positions, accumulated latitudinal and
longitudinal errors may affect the computed value of the SRD observable
worse than they affect the range observable (ibid.) For shorter
baselines (<200 km) the computed SRD observable is less affected by all
these three errors (i.e., radial, latitudinal and longitudinal).
Consequently, the answers to the questions posed in the beginning of
this section depend on the length of the estimated baseline, on the
magnitude of the accumulated orbital errors, and on whether these
errors are radial, latitudinal or longitudinal. If these errors are

primarily latitudinal and longitudinal, these answers depend also on the
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relative orientation of the estimated baselines and its observed passes.
This is the result of the anisotropy characterizing the latitudinal and
longitudinal error surfaces. The orientation of the estimated baseline is
not important for the propagation of the radial orbital errors because
the radial error surfaces are isotropic. Since all of the baselines of
Table 19 are extended in both north-south and east-west directions (Fig.
18), they will be affected by all three orbital errors (radial, latitudinal
and longitudinal).

The estimable quantities, entering the satellite perturbations and
being neglected in the simplification process, implicitly assume zero
values in the resulting orbital model. If these constraints result in
radial errors, then depending on the length of the estimated baselines,
these errors should be relatively large in order to affect those baselines
beyond the centimeter level. This in turn would allow longer lengths of
continuous integration and, therefore, a reduced number of observations
would be necessary to achieve steady state response of the SRD method
(Section 4.4.2). However, if these constraints result, in addition to
radial errors in both latitudinal and longitudinal errors, then even
smaller lengths of continuous integration may affect baselines of
moderate length (<2000 km) beyond the centimeter level. To set up the
guidelines as to what simplifications of the orbital model can be applied
without affecting the accuracy of the estimated baseline beyond the
centimeter level, several tests have been performed the results of which
are shown in Table 19.

Table 19 contains the baseline differences obtained as the orbital
model was simplified from one containing a 12x12 gravity field, the
direct point mass (PM) effects of Sun and Moon, the tidal(TD) effectis
due to Sun and Moon, the solar radiation (SR) pressure effects and the
along-track (AT) acceleration effects, to that containing only a 2x2
gravity field and the direct (PM) effects of the Sun and the Moon. The
first column of Table 19 lists the orbital models employed to estimate the
baselines which subsequently were differenced from those estimated on
the basis of orbital model shown on the title of this table (i.e.,

12x12+(1)).
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Table 19 Baseline Differences (in meters) With Respect to Those
Computed Using an Orbital Model Including a 12x12
Gravity Field + (1)

Force Model Gravity 7110-7265 7109-7110 7110-7122
Gravity Field + ( ) (274069.50) (883602.25) (1437139.30)
12x12 + (2) 0.01 0.00 0.00
12x12 + (3) 0.02 0.00 0.04
12x12 + (4) -0.08 0.00 0.10
12x12 5.14 -0.02 .-3.15
10x10 + (2) 0.01 0.00 0.01
10x10 + (4) - 0.00 -
8x8 + (2) 0.03 0.00 0.01
8x8 + (4) - 0.00 -
6x6 + (2) 1.02 0.00 2.02
6x6 + (4) - 0.01 —
4x4 + (2) 0.90 0.00 3.37
4x4 + (4) - -0.01 -
3x3 + (4) -— -0.02 -
2x2 + (4) - -0.07 -

(1) (PM) + (TD) + (SR) + (AT) PM = point mass effects of sun & moon

(2) (PM) + (TD) + (SR) TD = tidal effects due to sun & moon
(3) (PM) + (TD) SR = solar radiation pressure effects
(4) (PM) AT = along-track acceleration effects

The resulting differences are shown in the corresponding rows for only
three baselines estimated on the basis of arcs up to seven days (Table
11, row 4), up to one hour (Table 12, row 4) and up to three days
(Table 15, row 4).

Elimination of the AT acceleration, the SR pressure, the TD
acceleration and the direct PM effects of the Sun and the Moon,
introduces into the resulting orbital errors secular, long-period and
short-period terms. Short-period terms directly related to Lageos’ mean
anomaly are common in all of these errors.

Since the eccentricity of Lageos’ orbit is very small (70.0039),
elimination of the AT acceleration results primarily in latitudinal and
longitudinal orbital errors (Obenson, 1970). The long periods of the
resulting errors range from 66 days to 1100 days (Smith et al., 1985).
Elimination of the SR pressure acceleration results also in radial,

latitudinal and longitudinal orbital errors. Besides the additional

167



short-period terms related to the "ramp-like" behavior of the solar
radiation pressure, the long periods of the resulting orbital errors are
directly related to the motion of the Earth around the Sun and to the
motion of the ecliptic in space (Musen, 1960; Kozai, 1961; El'’Yasberg,
1967; Blitzer, 1970). In addition to the short-period perturbations
related to the daily motion of the Earth, the nonstationary disturbances
of the Earth’s potential due to the attraction of the Sun and the Moon
perturb the satellite periods with periods greater than a week (Kozai,
1973; Goad, 1977). As a result radial, latitudinal and longitudinal orbital
errors, having those periods will be introduced from the elimination of
the TD acceleration. Finally, elimination of the direct PM effects of the
Sun and the Moon introduces again the three types of orbital errors
having, besides the short periods associated with Lageos’ mean anomaly,
intermediate periods associated with the motion of the Earth around the
Sun(™ multiple of 180 days) and the motion of the Moon around the
Earth(™ multiple of 14 days), and long periods associated with the space
motions of the ecliptic and the orbital plane of the Moon (Kozai, 1959;
El’Yasberg, 1967; Fisher, 1971; Blitzer, 1970).

Therefore, elimination of each of the mentioned accelerations
introduces radial, latitudinal and longitudinal orbital errors. Since
periods longer than a week are present, these errors will accumulate as
the integration periods increase from one hour to seven days. The
effects of these errors on the estimated baselines are shown in Table 19
(rows 1-4),

The perturbations caused in the motion of the satellites by the
ocean tides can reach as much as 20% of the perturbations caused by
the tides of solid Earth (Musen, 1973). Inspection of Table 19, row 3,
reveals that elimination of ocean tidal effects from the orbital model, as
is the case in this study (Section 2.2.5), will hardly affect the estimated
baselines at the centimeter level.

Therefore, centimeter level accuracy for baselines up to 1500 km,
estimated via long-arc solutions, can be achieved if in addition to
gravitational effects of the Earth, the SR pressure, the TD and the

direct PM effects of Sun and Moon are included in the orbital model.
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However, if steady state response is possible via a short arc solution,
centimeter level accuracy for baselines up to 1000 km can be achieved if
in addition to the gravitational effects of the Earth only the direct PM
effects of the Sun and the Moon are included (Table 19, column 3).

The question as to how much the gravity field of the Earth can be
reduced without affecting at the centimeter level the estimated baselines
is investigated by performing several solutions, the results of which ére
shown Table 19 (rows 5-14). In these solutions the gravity field is
being reduced by two degrees at a time while the SR pressure, the TD
and the direct PM effects of the Sun and the Moon are included in the
orbital model (Table 19, rows 5, 7, 9 and 11). For baseline 7109-7110,
estimated via short-arc solutions, an additional solution has been
performed with each reduced gravity field and with only the direct PM
effects of the Sun and the Moon (Table 19, column 3, rows 6, 8, 10, 12,
13 and 14). Eliminating two degrees at the time introduces secular
orbital errors due to elimination of the even zonal harmonics,
long~period errors due to the elimination of the zonals, and short
periods due to the elimination of all of the harmonics included in those
degrees. Thus, as the length of continuous integration increases radial,
latitudinal and longitudinal orbital errors tend to increase to the extent
that the estimated baselines will be affected beyond the centimeter level.

Careful study of the results shown in Table 19 reveals that
baselines of up to 1500 km estimated via the SRD method will be affected

at just the centimeter level if the orbital model includes :

1) in short arc solutions:

gravity field 4x4, and

the direct point mass effects of the Sun and the Moon.
2) in long arc solutions with arcs up to three days:

gravity field (8x8),

the PM effects of the Sun and Moon,

TD effects, and

SR pressure effects.
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3) in long-arc solutions with arcs up to seven days:
gravity field (10x10),
the PM effects of the Sun and Moon,
TD effects, and

SR pressure effects.

Therefore, the sophistication of the orbital model employed in the
present study results in baselines having centimeter-level accuracy.
This accuracy is compatible with the accuracy of the laser observations
employed in this study (Section, 4.2). This constitutes the answer to

| question (1); question (2) has already been answered by the conclusions

stated above.
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Chapter 5
CONCLUSIONS AND RECOMMENDATIONS

5.1 CONCLUSIONS

The severe requirements of the geometric solutions to have simultaneous
observations from four or more stations (Section 2.1.3), results in
rejection of a large number of nonsimultaneous observations. The
rejection is even greater with weather dependent satellite observations
not specifically designed for simultaneous tracking as happens with the
laser range observations.

Although during the MERIT Main Campaign many stations committed
themselves to collecting simultaneous observations (Section 3.4), these
observations were not enough to yield strong geometric solutions
because of their sensitivity to configurations being close to those
leading to singularities B and C (Sections 2.1.3 and 4.3.1). Because of
these configurations, a steady state response in minimum constraint
geometric solutions was possible only for two very short baselines.
However, stronger implementation of the scale through an overconstraint
solution (Table 8, solution C3) resulted in a steady state response for
baselines of up to 2280 km (Section 4.3.2). These baselines formed the
standards of comparison in assessing the accuracy of those obtained via
both the SRD semidynamic and range dynamic mode methods (Section
4.5). Although the scale in this overconstraint solution was partly
implied by that of the (CSR)85L01 (Section 4.3.2), it is feasible in the
forseable future to incorporate the VLBI scale on the basis of only one
or two baselines. This in turn could lead through a geometric solution
to the estimation of a large number of baselines of compatible accuracy.
These baselines could be effectively used to assess the accuracy of

those obtained via the range dynamic methods. This practice might be of
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great importance with the upcoming millimeter accuracy laser range
systems.

As a result, regular baseline estimation through geometric solutions
using laser range observations is impossible and therefore, since
geometric solutions are free of errors affecting the orbit and the TRF
frame they should be used, whenever possible, as standards of
comparisorn.

In contrast to the geometric method, the SRD semidynamic mode
method can be effectively used for regional baseline estimation,
especially with laser range observations to Lageos, since the altitude of
its orbit makes it possible for stations as far as 3703 km apart to collect
enough simultaneous observations to result in a steady state response of
the SRD method. The number of observations required for such a

response to take place is a function of

° the baseline length,
° the geometry and the length of the arcs employed,

® and the accuracy of the available observations.

Table 20 shows the number of passes used in the present study to
achieve steady state response for different baseline lengths. In
general, as the length of the estimated baseline increases, more arcs,
sironger geometry, and more observations are required for a steady
state response to take place. The speed of the steady state response
will primarily depend on the number, distribution and accuracy of the
available observations, and on the length of the arcs employed in the
SRD solutions.

For instance, when the geometry is favorable (i.e., parallel passes
are available) and the observations of the baseline end stations have an
accuracy of about 3 c¢m, baselines of 883 km can be estimated via both
short arc and long arc solutions (Table 12). This is possible on the
basis of only 12 passes collected within a period of a week. However,
as the accuracy of the observations decreases, even in the light of

favorable geometry, the steady state response of a baseline having
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Table 20 Steady State Response of the SRD Method

No. of Passes Approx. Occupation Time Steady State
Needed in This Dataset Up to ____ km
10 - 15 1 week 1000
20 - 25 3 months 1500
25 ~ 30 3 months 2500
50 - 55 8 months 3500

about the same length as that in Table 12 (see Table 13) was not
possible on the basis of approximately the same number of observations
and through a short arc solution because the accuracy of its end
stations was worse than that of Table 12 (see Table 2). Nevertheless, a
steady state response for this baseline was possible through a solution
employing arcs of up to two days long. For longer baselines of up to
1437 km, the end stations of which recorded observations of 3 cm and 9
cm accuracy respectively, a steady state response in the light of
favorable geometry was possible on the basis of 22 passes and only
through a long arc solution employing arcs up to three days long (Table
15).

When the baseline-pass geometry is not favorable, (i.e., passes t30°
to $50°) and the accuracy of the observations of the baseline end
stations is approximately 3 cm and 8 cm respectively, a steady state
response for a 274 km baseline was possible on the basis of 17 passes
and only through a long arc solution employing arcs up to four days
long (Table 11). For another baseline of about 1198 km having
unfavorable pass-baseline geometry, a steady state response was
possible on the basis of 40 passes and through a solution employing
arcs up to seven days long (Table 14). The number of observations
required for the steady state response of this baseline is substantially
reduced as compared to those required for all the other baselines shown
in Tables 9 through 17. This is not surprising because the stronger
geometry implied by the 40 passes compensated for the reduced number
of observations. However, if more observations could have been

collected during each pass, fewer passes would be required for a steady

173



state response.

For very long baselines of about 3703 km, although passes of
favorable geometry are not available, a steady state response was still
possible on the basis of 54 passes and through a solution employing
arcs up to one day long (Table 16). This response, however, started
diverging when for the determination of this baseline arcs up to seven
days long were employed (Table 16). Furthermore, for a baseline of
about 3559 km, the pass-baseline geometry of which is very weak (i.e.,
passes within t20° to %60°), a steady state response was possible only
with arcs up to three days (Table 17). Therefore, for so long baselines
and when the geometry is fairly weak care should be exercised as to
whether or not a steady state response is possible.

From the above discussion it is evident that for baselines up to
1500 km, steady state response can be reached without any problems
even if the geometry is not favorable. However, tracking passes of
favorable geometry with accurate (i.e., 3 cm) and high repeatability laser
instruments increases the resolution of baseline recovery to weekly
estimates. Although this was shown only for baselines of up to 883 km,
baselines of up to 1437 km can also be recovered on a weekly basis,
because steady state response for these baselines was reached on the
basis of about 69,000 observations (Table 15).

In addition to the increased temporal resolution the comparison of
the SRD method with the geometric solution (Table 8, solution C3)
evidently demonstrated an accuracy of lcm (Table 18), accomplished on
the basis of a simple modeling and a limited orbit adjustment (Section
4,6). This demonstrates the potential of the SRD method for accurate
differential positioning, and the insensitivity of the SRD observable not
only to the errors affecting the orbit but also to those affecting the
implementation of the TRF frame. The simple modeling of the orbit and
its limited adjustment result in relaxing requirements in regard to
availability of sophisticated software and extensive computer facilities
which in turn makes it feasible to implement this method in the PC

environment.
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The stability characteristics of the SRD single baseline semidynamic
solutions make it possible to estimate baselines of up to 1437 km without
any need for a local support Llracking network which is required in
regional baseline estimation via the range semidynamic mode method
(Christodoulidis et al., 1981).

The steady state response of baseline 7109-7105 (Table 16), reached
on the basis of weak pass-baseline geometry strongly suggests that with
parallel passes single SRD baseline solutions may very well lead to
accuracy at the 2 to 3 cm level for baselines of up to 3500 km or 4000
km,

The stability characteristics and the high accuracy of the SRD
method make it ideal for regional baseline estimation. This in turn
makes it possible to obtain baselines up to 1500 km on a weekly basis
free of the fluctuations usually affecting the monthly estimates of the
range dynamic method. The stability characteristics could be greatly
enhanced with a network solution which on the basis of SRD normal
points would also substantially reduce the bulk of the computations
without affecting the speed of the steady state response since the
almost noise free SRD normal points will lead to a faster steady state
(Section 4.4). However, with a network solution there might exist
baselines for which simultaneous observations will not be available or
the SRD observables will contain very little information for those
baselines. This happens when the intersection of the visibility regions
of the baseline end points is either an empity set or one having very
few points. If a steady state response for those baselines has been
reached it will entirely depend on the strength of the network which in
the semidynamic environment tends to depend on the geometric strength
of the observations which may not lead to a steady state response for
longer baselines as it was the case with the geometric solutions. Steady
state response of those baselines would require increasing the
integration period. If this increase leads to a steady state, the
estimated lengths for those baselines would primarily depend on the
orbital strength, and therefore they would be susceptible not only to

accumulated orbital errors but also to any inconsistencies affecting the
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implementation of the TRF frame. However, employing the same orbital
model as in the range dynamic solutions, the SRD baseline estimates will
be less affected by the accumulated orbital errors.

In a network solution care should be exercised to account for the
correlations resulting from the redundancy of having pairs of stations
with common observations.

In the implementation of the SRD method a great deal of effort was
spent to edit the data and create the SRD observables. Editing the
observed laser ranges before generating those observables is crucial
because generating them on the basis of erroneous laser ranges leads to
the distribution of these errors among all of the generated SRD
observables and therefore it will be difficult, if not impossible, to
effectively edit the SRD observables in the final orbit adjustment.

The effects of gaps should also be well controlled and should be
kept below the noise level of the observations. This was the reason
why so much care was taken in the generation of SRD observables
(Chapter 3). This in turn increased considerably the bulk of the
computations required for the implementation of the SRD method.

These two factors do not by any means limit the potential of the
SRD method because through proper arrangements either full rate SRD
observables or preferably SRD normal points could be very easily
generated with some slight modifications of the software employed by
the computational centers responsible for the generation of the range
normal points. With SRD normal points at our disposal a network SRD
solution could be performed even in a PC environment, and since normal
points are almost noise free they would lead to a faster steady state

response of the SRD method.

5.2 RECOMMENDATIONS

Since the SRD method, based on a relatively simple orbital modeling and
a limited orbit adjustment, is for regional baseline estimations at least as
accurate as the dynamic mode methods, it is recommended that for such

applications serious consideration should be given to regularly implement
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this method for accurate differential positioning. If such a step is to
be taken it is also suggested that:

° Further effort should be made by the observing stations to
achieve simultaneous tracking.

The direction of the baselines being estimated should be chosen, if
this is feasible, to closely resemble the two main Lageos groundtrack

directions.

SRD normal points should be generated by the computational center
responsible for the generation of range normal points.
Research the response of the method, on the basis of normal points,

when different network configurations are employed.

Projects specifically designed for studies of regional plate tectonic
motions, determined on the basis of laser range observations to Lageos,
are ideal for implementation of the SRD method. Such a project is
currently under way in the area around the Mediterranean Sea
(MEDLAS/WEGENER project), and therefore for this project the SRD
method could offer an accurate and inexpensive alternative to study

regional plate tectonic motions.
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Appendix A

PARTIAL DERIVATIVES OF THE SRD OBSERVABLE

Expressing the SRD observable relative to an earth-fixed frame takes

the following form:

p; = (Ej2T-Ej2)% - (EjuT-Ej0)% (A-1)

with

ﬁjz = )-(J - Yz and EJI = )-(J - Yl (A—Z)

where )-(j, ’?2 and S-(, are the earth-fixed position vectors of the satellile

at the epoch j and stations (2) and (1) respectively.

Differentiating 0p; with respect to \72 one obtains:

- — - — = E; T. -1 = -
aY2 Ej2 Y2 Pj2 12 (1) Pj2
Thus
abpy  (Xj=¥a)T
— = - (A-3)
Y2 Pj2

where pj, is the distance from station (2) to satellite position J.

Suppose that

Ro

H

(XO) YO: ZO) (A_4)
and

Ro = (XOa ?o’ zo)T (A-5)

are the initial position and velocity vectors with respect to an inertial

frame. Differentiating equation (A-1) with respect to the initial state

vector (l—?o, ilo) one obtains:
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a6pj _ adpj aﬁjz aij . a6pj anl aij (A 6)
3(Ro,Ro)  3Ejz 3X; a(Ro,R,) 9Ej1 aXj a(R,,Ro)
From equ. (A-1) and (A-2) it follows that:
a&pj 1 - ijT-§2T
— = BjaT = — (A-T)
dEj2 Pj2 Pj2
aﬁjz
—_ =1 (A-8)
X
ax; ax| ax; a(SNP)R a(SNP)R,
— = s eeey ™ = ) ey (A-9)
3(Ro,Ro) 3Xo aZo 3Xo aZo

where pj, is the distance from the station (2) to the satellite position j;
ﬁj is the inertial position vector of the satellite at the epoch j; and S,
N, P are the earth rotation, nutation and precession matrices
respectively. Similarly to eq. (A-7), the partial aépj/an, takes the

following form:

- 86pj ij T—§1T
B B (A-10)
3Eja Pijr
where p j1 is the distance from station (1) to satellite position j.
Substituting eq. (A-7) - (A-10) into eq. (A-6) the following formula

results:

a&pj _ (ij—?z)T (ij‘?l)T aij 3ij (A-ll)
a(ﬁovﬁo) ) Pj2 Py o™ T aZo
or
adpj (ij“?;)T (ij'?l)T aﬁj aﬁj
— = - -{(SNP)——, ..., (SNP)—/ (A-12)
3(Ro,R) Pj2 Pj1 3Xo aZo

Thus, from eq. (A-11) and (A-12) it is easily deduced that the partial
derivative of the SRD observable with respect to the first coordinate

(i.e., Xo) of the initial state vector (ﬁo,ﬁo) takes the following form:
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a6p [)'(j-?, xJ—YI]T aR;
= - - (SNP A-13
3Xo Pj2 Pijr ( )3Xo ( )
adpj )-(j_?z )-(j—§l T a)-(j
Xy [ - ax (A-14)
o o

Pja Pjr

Similarly one can obtain the partial derivative of the SRD observable
with respect to all of the remaining componenets of the inertial initial

state vector.
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Appendix B

SENSITIVITY OF THE PARTIAL DERIVATIVES WITH RESPECT TO THE
INITIAL STATE VECTORS

With the tendency of the observed ranges pj2 and Pj1 from stations (1)

and (2) to become equal (Section 4.4.1).

Pj2z ¥ pjr = pj (B-1)
equation (A-11) becomes

a6p (¥,-Ya)T (aX; 2X;

— = ~ B-2
3(Ro,Ry) Pj Xo’ ’ 370 ( )

This equation can also be expressed as follows

36pj | iy - j
—_— = — (Y,~-Y2) (D%o, ---5 Dz
3(R0,Ro) Py 1 2 Xo 20

where (+) and (I-);i(o, ey I-)ig) denote the dot product and the partial

derivative vectors [%J-, . %J-] at the epoch j respectively.
[+ [+]

If ‘-’xg’: eees “ig designate the angles between the baseline vector
and the partial derivative vectors respectively, equation (B-3) takes the

following form

36pj 1 - - -, . = .
—_— = ~— Y=Y, (IDyd!l-c s ey 1D33H ; B-4
IR AT (IDxd! - cos(wxd) 7d1coswzd) (B-4)

Therefore, from epoch to epoch the wvariations among the entries of
the columns, corresponding to the components of an initial state vector,
are controlled by the variations of the projection of the partial deriv-
ative vectors Bx;i,, cens ﬁz;’, in the direction of the estimated baseline.

These variations tend to be reduced as the observed part of the pass
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becomes short and/or perpendicular to the estimated baseline. This
geometry is closer to reality for longer baselines because as the
baseline length increases the intersection of the visibility regions of the
baseline endpoints tends to become smaller and closer to the
perpendicular bisector plane of the baseline, thereby leading to a

geometry close to also fulfilling assumption (B-1).
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