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Zusammenfassung

Porenskalige direkte numerische Simulation von Strmung und Transport in porsen

Medien

Diese Dissertation stellt Untersuchungen zur porenskaligen Simulation von Strömung

und Transport in porösen Medien vor und beschreibt die Anwendung eines neuen nu-

merischen Ansatzes zu porenskaliger Modellierung, basierend auf unstetigen Galerkin

(DG) Finiten Elementen. In diesem Ansatz werden die partiellen Differentialgleichun-

gen, die die Strömung auf der Porenskala bestimmen, direkt auf einer strukturierten

Partitionierung des Rechengebiets gelöst. Der Hauptvorteil ist, dass auf das Erstellen

einer konformen Triangulierung verzichtet werden kann. AuSSerdem ist dieser Ansatz

lokal massenerhaltend, eine wünschenswerte Eigenschaft für Transportsimulationen.

Dies erlaubt die effizientere Untersuchung von Prozessen auf der Porenskala und ihrem

Einfluss auf makroskopische Phänomene. Es wurde die Stokes-Strömung in zwei- und

dreidimensionalen undgeordneten Kugelpackungen berechnet und in einem random-

walk Teilchenverfolgungsmodell zur Simulation von Transport durch die Kugelpackung

benutzt. Die Permeabilitäten wurden berechnet und das asymptotische Dispersionsver-

halten des gelösten Stoffes für einen weiten Bereich der Péclet-Zahl untersucht. Die

Ergebnisse der Simulationen stimmen gut mit den Literaturdaten überein, was zeigt,

dass der hier gewählte Ansatz gut für porenskalige Simulation geeignet ist.

Abstract

Pore-Scale Direct Numerical Simulation of Flow and Transport in Porous Media

This dissertation presents research on the pore-scale simulation of flow and transport in

porous media and describes the application of a new numerical approach based on the

discontinuous Galerkin (DG) finite elements to pore-scale modelling. In this approach,

the partial differential equations governing the flow at the pore-scale are solved directly

where the main advantage is that it does not require a body fitted grid and works

on a structured partition of the domain. Furthermore this approach is locally mass

conservative, a desirable property for transport simulation. This allows the investigation

of pore-scale processes and their effect on macroscopic behaviour more efficiently. The

Stokes flow in two and three dimensional disordered packing was solved and the flow

field was used in a random-walk particle tracking model to simulate the transport

through the packing. The permeabilities were computed and asymptotic behaviour of

solute dispersion for a wide range of Péclet numbers was studied. The simulated results

agree well with the data reported in the literature, which indicates that the approach

chosen here is well suited for pore-scale simulation.





Acknowledgements

I would like to express my profound gratitude to my advisers Prof. Dr. Peter Bastian

and Prof. Dr. Kurt Roth for the research opportunity that they provided me. I am

grateful to them for suggesting this interesting topic and for their continuous guidance,

support and keen interest in the progress of my work. I shall always cherish the

academic freedom that I have enjoyed under their guidance. Their scientific knowledge

and directions helped me to make this work possible.

I am most thankful to Dr. Olaf Ippisch and my colleagues Christian Engwer and

Markus Blatt for their constant help and many fruitful discussions and I appreciate their

scientific ideas. In particular, I am indebted to Christian for his work on UDG and for his

programming efforts. I have learnt a lot from them and would like to show my deep

respect for them. I extend my thanks to Thimo Neubaur for helping me during the initial

stages of my research and to Jö and Felix for always being helpful.

I gratefully acknowledge the scholarship offered by the International Graduiertenkol-

leg IGK 710 Complex Processes: Modeling, Simulation and Optimization at the Interdisci-

plinary Center of Scientific Computing (IWR). I am grateful for the opportunities that

the program offered and giving me a platform for the exchange of scientific knowledge.

Many thanks to my colleagues in the soil physics group and in IPVS Stuttgart: Dan,

Sven, Ute, Holger, Dr. H.-J. Vogel, Klaus, Stefan, Fereidoun, Enkaledja and all my former

and current colleagues for their support and friendliness.

Thanks are also to all DUNE developers for their excellent work, which helped me to

develop the required simulation codes using DUNE.

Special thanks to my wife Manisha for her love, support, encouragement and under-

standing. I am grateful for her consistent support during some difficult times.

I shall always recall with great fondness many of my friends: Nixon, Pradeep, Jishy,

Vinod, Shahi, Smitha, Lakshmi, Alex, Pauly, Beena, Badri, Adarsh, Prem, Ganesh. Thanks

also to Sabine for her nice hospitality during my stay in Heidelberg.

I would also like to thank many other people not listed who made my last few years a

memorable time of my life. Thank you, one and all.

Last but not least, I thank the God for always being with me and my parents, brother,

my wife and other family members for their love, support and constant encouragement.

You all have always been there for me, for that I am eternally grateful.

Sreejith Pulloor Kuttanikkad





Contents

Abstract i

List of Figures v

List of Tables ix

List of Symbols and Abbreviations xi

1 Introduction 1

1.1 Relevance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Modelling Approaches and Scales . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 Pore-Scale Modelling . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.2 Continuum-Scale Modelling . . . . . . . . . . . . . . . . . . . . . 3

1.2.3 Field-Scale Modelling . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Research Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.5 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Flow and Transport in Porous Media 7

2.1 Porous Media . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Governing Equations of Fluid Flow in Porous Media . . . . . . . . . . . . 8

2.2.1 Navier-Stokes Equations . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.2 Stokes Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.3 Darcy’s Law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Theory of Solute Transport in Porous Media . . . . . . . . . . . . . . . . 13

2.3.1 Advection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3.2 Molecular Diffusion . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3.3 Mechanical Dispersion . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3.4 Hydrodynamic Dispersion . . . . . . . . . . . . . . . . . . . . . . 16

2.4 Advection-Dispersion Equation (ADE) . . . . . . . . . . . . . . . . . . . 19

2.5 Hydrodynamic Dispersion Coefficients and Péclet Number . . . . . . . . 21

3 Pore-Scale Modelling 25

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2 Pore-Scale Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

i



Contents

3.3 Current Approaches To Pore-scale Modelling . . . . . . . . . . . . . . . . 26

3.3.1 Pore-Network Modelling . . . . . . . . . . . . . . . . . . . . . . . 27

3.3.2 Lattice-Boltzmann Modelling . . . . . . . . . . . . . . . . . . . . 28

3.3.3 Particle Based Methods . . . . . . . . . . . . . . . . . . . . . . . . 28

3.3.4 Direct Numerical Simulation . . . . . . . . . . . . . . . . . . . . 28

4 Discontinuous Galerkin Finite Element Methods 31

4.1 Numerical Methods for Solving PDEs . . . . . . . . . . . . . . . . . . . . 31

4.2 Literature Review on Discontinuous Galerkin (DG) Methods . . . . . . . 33

4.3 Model Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.3.1 Standard Finite Element Discretisation . . . . . . . . . . . . . . . 38

4.3.2 Discontinuous Galerkin Discretisation . . . . . . . . . . . . . . . 39

4.3.3 Various IP Discontinuous Galerkin Formulations . . . . . . . . . . 43

4.3.4 Local Discontinuous Galerkin (LDG) . . . . . . . . . . . . . . . . 49

4.4 Continuous and Discontinuous Galerkin . . . . . . . . . . . . . . . . . . 49

5 Discontinuous Galerkin Discretisation of The Stokes Equation 53

5.1 The Stokes Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.2 DG Discretisation of The Stokes Equation . . . . . . . . . . . . . . . . . . 54

5.2.1 Weak Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.2.2 General Formulation . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.3 Local Mass Conservation . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.4 Saddle Point Stokes Problem . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.5 Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.6 Prescribed Pressure Formulation . . . . . . . . . . . . . . . . . . . . . . . 62

5.7 Implementation and Testing . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.7.1 DUNE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.7.2 Assembling The Stiffness Matrix . . . . . . . . . . . . . . . . . . . 64

5.7.3 Solver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.7.4 Visualisation of The Results . . . . . . . . . . . . . . . . . . . . . 66

5.7.5 Numerical Test Problems . . . . . . . . . . . . . . . . . . . . . . . 66

6 Numerical Methods for Simulations on Complex Domain 79

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.2 Finite Element Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.3 Structured Grid Based Methods . . . . . . . . . . . . . . . . . . . . . . . 81

6.3.1 Immersed Boundary Methods . . . . . . . . . . . . . . . . . . . . 82

6.3.2 Composite Finite Element Method . . . . . . . . . . . . . . . . . 82

6.4 Mesh-free Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.5 Discontinuous Galerkin Methods for Complex Geometry . . . . . . . . . 83

6.5.1 Unfitted Discontinuous Galerkin Method . . . . . . . . . . . . . . 84

6.6 Implicit Representation of Complex Geometry . . . . . . . . . . . . . . . 86

ii



Contents

6.7 Results of Numerical Experiments Using UDG . . . . . . . . . . . . . . . 88

6.7.1 Flow Around a Cylinder . . . . . . . . . . . . . . . . . . . . . . . 89

6.7.2 Numerical Up-scaling Using UDG . . . . . . . . . . . . . . . . . . 89

7 Numerical Simulation of Transport Through Porous Media 101

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

7.2 Eulerian and Lagrangian Methods . . . . . . . . . . . . . . . . . . . . . . 102

7.3 Random Walk Particle Tracking Methods . . . . . . . . . . . . . . . . . . 103

7.3.1 Basic Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

7.3.2 Method of Moments . . . . . . . . . . . . . . . . . . . . . . . . . 107

7.3.3 Evaluation of Concentration . . . . . . . . . . . . . . . . . . . . . 108

7.3.4 Velocity Interpolation . . . . . . . . . . . . . . . . . . . . . . . . 109

7.3.5 Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . . 110

7.4 Implementation and Testing . . . . . . . . . . . . . . . . . . . . . . . . . 112

7.4.1 Taylor-Aris Dispersion Between Parallel Plates . . . . . . . . . . . 113

8 Pore-scale Simulation of Dispersion 125

8.1 Limitation of Advection-Dispersion Approach . . . . . . . . . . . . . . . 125

8.2 Pore-scale Simulation of Transport . . . . . . . . . . . . . . . . . . . . . 127

8.2.1 Present Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

8.3 Results of Two-Dimensional Simulations . . . . . . . . . . . . . . . . . . 129

8.4 Results of Three-Dimensional Simulations . . . . . . . . . . . . . . . . . 135

8.4.1 3D Flow Simulation . . . . . . . . . . . . . . . . . . . . . . . . . 135

8.4.2 3D Transport Simulation . . . . . . . . . . . . . . . . . . . . . . . 138

8.4.3 Dispersion Coefficients: Comparison With Literature Data . . . . 140

9 Summary and Conclusions 147

Bibliography 151

iii





List of Figures

1.1 Illustration of pore-scale and continuum scale . . . . . . . . . . . . . . . 2

2.1 An artificial and industrial porous medium . . . . . . . . . . . . . . . . . 8

2.2 Schematic representation of advection process . . . . . . . . . . . . . . . 14

2.3 Schematic representation of diffusion process . . . . . . . . . . . . . . . 15

2.4 Schematic representation of dispersion process . . . . . . . . . . . . . . 15

2.5 Mechanical dispersion at the pore-scale . . . . . . . . . . . . . . . . . . . 16

2.6 Dead end pores and re-circulation zones . . . . . . . . . . . . . . . . . . 18

2.7 Dimensionless longitudinal dispersion coefficient vs. Péclet number . . . 19

2.8 Dependence of the dimensionless longitudinal dispersion coefficient DL
Dm

on the Péclet number Pe with different Pe regimes marked (Fig. 36 from

Sahimi (1993).) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1 Illustration of a porous medium geometry at the pore-scale . . . . . . . . 26

3.2 Graphical illustration of a pore network model . . . . . . . . . . . . . . . 27

4.1 Notations for finite elements in DG method . . . . . . . . . . . . . . . . 40

4.2 Continuity and discontinuity in Galerkin finite element methods . . . . . 50

5.1 Computational domain and magnitude of the velocity field for mass

balance test problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.2 Computed error in global mass balance . . . . . . . . . . . . . . . . . . . 68

5.3 Computed error in local mass balance . . . . . . . . . . . . . . . . . . . 69

5.4 Stokes velocity field for the analytical test problem . . . . . . . . . . . . 70

5.5 Poiseuille flow in a channel . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.6 Velocity and Pressure field for the channel problem . . . . . . . . . . . . 74

5.7 Channel velocity profile as a function of y . . . . . . . . . . . . . . . . . 74

5.8 Geometry and boundary conditions for Driven cavity problem . . . . . . 75

v



LIST OF FIGURES

5.9 Pressure and velocity field for the driven cavity problem . . . . . . . . . 76

5.10 Velocity profiles across the driven cavity for the Stokes flow . . . . . . . 77

6.1 Unstructured and structured triangulation of an aerofoil . . . . . . . . . 81

6.2 Schematic illustration of a complex domain . . . . . . . . . . . . . . . . 85

6.3 Fundamental grid covering the pore-space in UDG . . . . . . . . . . . . 85

6.4 Generation of arbitrary shaped elements in UDG . . . . . . . . . . . . . 86

6.5 A schematic representation of the sub-triangulation in UDG . . . . . . . 86

6.6 Implicit representation of complex geometries on a Cartesian grid . . . . 88

6.7 Simulation and geometry grids for Stokes flow around a cylinder . . . . 90

6.8 Grid convergence test for flow around a cylinder (Level 1 to 3) . . . . . 91

6.9 Grid convergence test for flow around a cylinder (Level 4 to 6) . . . . . 92

6.10 Boundary conditions for the numerical upscaling problem . . . . . . . . 93

6.11 Illustration of cubic sphere packings . . . . . . . . . . . . . . . . . . . . 95

6.12 Velocity field through simple cubic sphere packing . . . . . . . . . . . . . 96

6.13 Permeability computed for a simple cubic (SC) sphere packing . . . . . . 96

6.14 Permeability computed for a FCC packing . . . . . . . . . . . . . . . . . 97

6.15 Artificial porous medium made of randomly packed spheres . . . . . . . 98

6.16 Permeability computed for a random sphere packing on various grid levels 98

6.17 Permeability as function of porosity for the random sphere packing . . . 99

7.1 Two-dimensional random walk of a solute particle . . . . . . . . . . . . 107

7.2 The geometry of the Taylor-Aris dispersion problem . . . . . . . . . . . . 113

7.3 Evolution of the concentration distribution in Taylor-Aris dispersion be-

tween parallel plates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

7.4 Cumulative breakthrough curve for the Taylor-Aris dispersion . . . . . . 119

7.5 Time variation of the centre of particle concentration for the Taylor-Aris

dispersion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

7.6 Time variation of the centred second moment for the Taylor-Aris dispersion121

7.7 Time variation of dispersion coefficient in Taylor-Aris dispersion . . . . . 121

7.8 Time variations of average velocity for Taylor-Aris dispersion . . . . . . . 122

7.9 Péclet Number vs. Deff for the Taylor-Aris Dispersion . . . . . . . . . . . 123

8.1 Schematic illustration of Gaussian and non-Gaussian breakthrough curves126

vi



LIST OF FIGURES

8.2 Two-dimensional porous medium for simulation of transport . . . . . . . 130

8.3 Pore-scale velocity field and streamlines for the two dimensional problem 131

8.4 Solute concentration profiles in a 2D irregular packing . . . . . . . . . . 132

8.5 Snapshots of solute particle distribution for two different Pe in a 2D

irregular packing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

8.6 Breakthrough curve for a solute slug in an irregular packing in 2D . . . . 134

8.7 Geometry of randomly packed spheres . . . . . . . . . . . . . . . . . . . 136

8.8 Computed pore-scale flow field through the random sphere packing and

a close-up view of the velocity vectors . . . . . . . . . . . . . . . . . . . 137

8.9 Advective and dispersive particle trajectories through the sphere packing 138

8.10 Solute concentration profiles computed at different sections along the

artificial porous medium . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

8.11 Comparison of simulated longitudinal dispersion coefficients in a random

sphere packing to data reported in literature . . . . . . . . . . . . . . . . 141

8.12 Simulated longitudinal dispersion coefficients in a random sphere packing

compared to literature data in the power law regime . . . . . . . . . . . 142

8.13 Least squares fit of the simulated longitudinal dispersion coefficients in a

random sphere packing . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

8.14 Simulated transverse dispersion coefficients in a random sphere packing 144

vii





List of Tables

5.1 Numerical errors and convergence rates for P1−P0 approximation of the

Stokes problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.2 Numerical errors and convergence rates for P2−P1 approximation of the

Stokes problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.3 Numerical errors and convergence rates for P3−P2 approximation of the

Stokes problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.1 Comparison of permeability computed for a simple cubic sphere packing

with analytical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.2 Comparison of theoretical and simulated permeability for cubic sphere

packings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.3 The radii of spheres and corresponding porosity for the artificial porous

medium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

8.1 Power law dependence parameters for DL(Pe) . . . . . . . . . . . . . . . 142

ix





List of Symbols and Abbreviations

Abbreviations

ADE Advection-Dispersion Equation

BCC Body Centred Cubic

CTRW Continuous Time Random Walk

DG Discontinuous Galerkin

DOF Degree of Freedom

FCC Face Centred Cubic

IIPG Incomplete Interior Penalty Galerkin

IP Interior Penalty

LBB Ladyzhenskaya-Babuška-Brezzi

LDG Local Discontinuous Galerkin

MRI Magnetic Resonance Imaging

NAPL Non-Aqueous Phase Liquid

NIPG Non-Symmetric Interior Penalty Galerkin

NMR Nuclear Magnetic Resonance

OBB Oden-Babuška-Baumann

PDE Partial Differential Equation

PDL Porous Diffusion Layer

PEM Proton Exchange Membrane

PLIF Planar Laser-Induced Fluorescence

REV Representative Elementary Volume

RK Runge-Kutta

RWPT Random Walk Particle Tracking

SC Simple Cubic

SIPG Symmetric Interior Penalty Galerkin

SPH Smoothed Particle Hydrodynamics

TA Taylor-Aris

UDG Unfitted Discontinuous Galerkin

Greek Letters

Γ = ∂Ω Boundary of the domain Ω
µ Coefficient of Dynamic Viscosity

ν Coefficient of Kinematic Viscosity

Ω Domain

xi



LIST OF TABLES

φ Porosity

ρ Density

σ DG Penalising Parameter

σ Standard Deviation

κ Intrinsic Permeability Tensor

ζ Geometric shape factor in the Taylor-Aris dispersion formula

Latin Letters

g Acceleration due to gravity

D Hydrodynamic Dispersion Tensor

K Permeability Tensor

C Solute Concentration

DL Longitudinal Dispersion Coefficient

Dm Molecular Diffusion Coefficient

DT Transverse Dispersion Coefficient

Pe Péclet Number

Re Reynolds Number

Other Symbols

〈·〉 DG Average Operator

∆ Laplace Operator

[·] DG Jump Operator

∇· Divergence Operator

∇ Gradient Operator

u : v Component-wise inner product, u : v =
∑

ij uijvij

xii



1 Introduction

1.1 Relevance

Some of the biggest challenges that the world is facing today are related to the environ-

ment and energy such as global warming, climate change and safe disposal of nuclear

waste. Increasing greenhouse gases caused by human activities is often considered as

one of the major causes of global warming. The carbon dioxide (CO2) sequestration

where industrially-produced CO2 are stored using subsurface saline aquifers and reser-

voirs is considered as an intermediate technique to reduce greenhouse gases. The other

important issues currently being addressed are the increasing demand for fresh water

and oil. For instance finding fresh water aquifers, remediation of contaminated water

sources for drinking and irrigation, prevention of salt water intrusion into fresh water

bodies, locating new oil deposits and optimising recovery of hydrocarbons etc. are of

utmost importance. Interestingly all these processes are related to the fluid flow and

transport in natural porous media. Apart from that, porous media are used widely in

many man made systems such as fuel cells (porous diffusion layer), packed columns,

filtration, paper pulp drying, textiles etc. Besides their potential applications in environ-

mental and industrial processes, they also find an important place in biological sciences.

For example, flow of blood through human body and purification of blood in kidneys

etc. involve flow through porous materials. Hence understanding the chemical and

physical processes involved in the flow and transport through porous media is of utmost

importance. However its simulation and predictions are very challenging because of

the complexity involved in these processes. In short, modelling the processes in porous

media therefore has wide theoretical and applied interest.

The physics of fluid flow (single and multiphase) and transport gives rise to complex,

nonlinear and coupled equations. The difficulties imposed by these nonlinear equations

along with the irregular geometries and transient behaviour associated with various

practical problems make numerical simulation an essential tool in the study of flow and

transport. Nevertheless, the mathematical models remain the same irrespective of the

nature of the fluid, which can be either gas or any organic/inorganic liquid. As a result,

though complex and challenging, the numerical simulations are considered as viable

and an effective approach to solve the environmental, biological and industrial problems

that involve the flow and transport in porous media.

1



1 Introduction

1.2 Modelling Approaches and Scales

In porous media, complex physical phenomena often occur on widely varying scales.

For instance, the length scale of major interest in porous media varies from a pore-level

(in the order of few micro meters) to field level (in the order of kilometres). Hence,

a continuing challenge in mathematical and computational modelling is to handle

these relevant scales properly. In general, the modelling approach varies based on the

scale at which the porous medium is being described. An illustration of pore-scale and

continuum scale is shown in Figure (1.1). In the following Section, the various scales

and associated modelling approaches are described.

Figure. 1.1. Illustration of pore-scale and continuum scale (REV is marked) (adapted from Fig.
3.8 from Roth (2007))

1.2.1 Pore-Scale Modelling

The pore-scale or micro scale as the name suggests ranges from 10−6 to 10−3m, where

individual pores enter the description. Flow at these scales is described by the specific

geometry of the solid phase, which determines the boundary with the fluid phases

and obeys the local conservation laws such as the Navier-Stokes equations. Given the

appropriate boundary conditions for the surface of the solid grains (e.g. no-slip), the

velocity and pressure field in the pore-space can be determined by solving the Navier–

Stokes equation. Pore-scale modelling is more appealing as the approach is based on

rigorous physics and it directly accounts for the fundamental physical processes that

affect the fluid behaviour thus providing better understanding of flow and transport

processes.In addition to that, pore-scale modelling offers ways to improve the prediction

of macroscopic parameters which are difficult to measure experimentally. Despite its
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attractiveness, the major difficulty involved in this approach is the presence of complex

pore geometries. An accurate description of the pore geometries is essential for pore-

scale modelling, which for intricate networks of pores is often very difficult.

1.2.2 Continuum-Scale Modelling

Typically continuum or macroscopic (or lab) scale is in the order of 10−2 to 100m. In this

scale, microscopic details in the pores are ignored and employs the volume averaged

laws such as Darcy’s law where the porous medium is considered as macroscopically

uniform continuum. Owing to the difficulty to observe and characterise properties

at the pore-scale, in this approach, a representative elementary volume (REV) (Bear

1972, Roth 2007) is considered and the effective macroscopic variables are defined by

averaging the microscopic properties over this REV. Hence at the continuum scale, the

concept of REV is very essential. Most of the laboratory experiments are conducted at

this scale to obtain required parameters and hence it is widely used for modelling in

porous media. The main difficulty with this approach is the requirement of accurate

values of the macroscopic parameters (e.g. permeability, dispersion coefficients, capillary

pressure, relative permeability etc.) which depend on the pore structure and pore-level

physical processes. Furthermore, this approach does not take into account the pore

geometries explicitly.

1.2.3 Field-Scale Modelling

Engineers and Hydrogeologists are concerned with practical problems involving flow

and transport occurring at larger scales which is often referred to as field scale or

regional scale in the order of kilometres. In this approach, large scale experiments

are needed to characterise the highly varying heterogeneous porous system and they

are often limited due to the expense and time. It is a common practise to apply the

macroscopic continuum theory to field scale and use continuum parameters.

1.3 Motivation

The pore structure and the physical characteristics of a porous medium and the fluids

that occupy the pore spaces determine several macroscopic or continuum parameters of

the medium such as permeability and dispersion coefficients (Øren and Bakke 2003).

Understanding the relation between the pore-scale properties and these continuum

parameters is therefore a great interest both theoretically and practically in many fields.

It is believed that the flow and transport processes depend strongly on the geometrical

details of the porous media at the pore-scale while the physical properties of interest

are observed at a larger scale. In this context, pore scale simulations can be used to
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improve our understanding of the physical processes at the pore level and can provide a

way to determine the macroscopic parameters. These parameters can in turn be used

in continuum models which otherwise can only be found through expensive and time

consuming laboratory or field scale experiments.

Recent advances in computational methodologies allow for the numerical simula-

tion of flow and transport through arbitrarily complex geometries in three dimensions.

Methods such as Lattice-Boltzmann, pore network models, discrete particle methods

(smoothed particle hydrodynamics) and direct discretisation methods (standard finite

element, finite volume, immersed boundary methods) have been developed and being

improved over the years. However, at present none of these methods can fully sat-

isfy the requirements for pore-scale simulations. For instance, pore network models

use highly simplified geometries, Lattice Boltzmann method requires high computa-

tional power and is found inferior to finite element methods for low Reynolds number

flows (Geller et al. 2006) and particle methods are often found very expensive. The

direct discretisation methods like standard finite element and finite volume require

highly refined grids to account for complex pore geometries while the structured grid

approaches like immersed boundary and fictitious domain methods are yet to find

wide interest in pore-scale simulations. Hence researchers are continuously looking for

novel computational approaches suitable for pore-scale simulations. Moreover, new

experimental technologies and high resolution imaging for porous media can provide

three-dimensional structural details of porous materials with resolution approaching

one micron. These techniques allow for direct observation of the pore space geometry

and fluid configurations within the pores (Wildenschild et al. 2005, Kaestner et al.
2008). These advancements such as development of advanced numerical methods and

high resolution imaging techniques are now helping researchers to make progress in

the understanding of pore-scale processes and how they influence fluid transport at

macroscopic scale.

1.4 Research Objectives

The main objective of this research is to simulate single phase flow and solute transport

processes through porous media at the pore-scale and thereby improve the understand-

ing of the influence of pore-scale properties on macroscopic flow and transport behaviour.

In particular, the objective is to use a new numerical discretisation approach introduced

by Engwer and Bastian (2005) for the solution of partial differential equations on

complex domains to predict the macroscopic parameters of porous medium based on

pore-scale simulations. The main advantage of this method compared to other direct

discretisation approaches is that, it uses only a structured grid for the numerical discreti-

sation and hence unstructured meshing of the complex pore geometries can be avoided.

Among its benefits are the simplicity of a uniform structured grid and easy incorporation
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of complex geometry via implicit function or level set methods. The method is also

well adapted with the geometric description obtained from imaging techniques. These

features are advantageous for fluid-flow problems in complex geometries. Moreover,

this approach is locally mass conservative, a desirable property for transport simulation.

1.5 Thesis Outline

The rest of the thesis is organised as follows:

The second Chapter (2) briefly brush up the basic theory of fluid flow and transport

where the governing equations of flow and transport in porous media and theory

of hydrodynamic dispersion are discussed. In Chapter (3), a short description of

various pore-scale modelling approaches is given. The fourth Chapter (4) presents the

discontinuous Galerkin (DG) finite element methods in detail. DG discretisation of

the model elliptic problem is given and its various formulations are described in this

Chapter. In the fifth Chapter (5), discontinuous Galerkin discretisation of the steady

Stokes equation is presented in detail. A brief discussion on previous works also given.

The code development, implementation and verification using benchmark simulations

are reported in this Chapter. The sixth Chapter (6) gives a background on numerical

methods for complex domains and shortly describes the Unfitted Discontinuous Galerkin

(UDG) method. Example numerical simulations using UDG are presented in this Chapter.

It also contains the results of computation of permeabilities from pore-scale simulations

and comparison with analytical and literature results. The seventh Chapter (7) describes

the numerical simulation approaches for transport in porous media. The random walk

particle tracking (RWPT) approach is described and code implementation, verification

and test simulations are provided. The eighth Chapter (8) presents the results of pore-

scale simulation of dispersion. Two and three dimensional simulations are presented

and discussed in this Chapter. Finally in Chapter (9), summary and conclusions of the

study are given.
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As mentioned in the introductory Chapter (1), the problems involving porous media are

enormous. Many of the natural, environmental and industrial problems are concerned

with flow in porous media. Hence it is very important to understand the processes that

take place inside a porous medium. This chapter is intended to provide the fundamentals

of fluid flow and transport through porous media. The theory is explained very briefly

and for details excellent lecture notes by Roth (2007), classic books by Bear (1972),

Zheng and Bennett (2002) etc. are referred.

2.1 Porous Media

A porous medium consists of a solid matrix or skeleton with a large amount of tiny

pores or voids in it. These microscopic pores within the matrix are typically connected,

which allows various flow and transport processes to take place inside (Bear 1972).

The interconnected network of pores is known as the pore space. Examples are natural

substances such as soils, rocks, sandstone and industrial or artificial materials such as

foam rubber, porous diffusion layer of a fuel cell, reactor beds etc. The Figure (2.1)

shows an artificial and industrial porous medium. The porous materials are used in many

areas of applied sciences and engineering such as soil mechanics, petroleum engineering,

geosciences, biophysics, material science etc. and hence it is very important to study and

understand the flow and transport through porous media. The pore structure of a porous

medium and the physical characteristics of the matrix and the fluids that occupy the

pore spaces influence the flow and transport processes. These processes are considered

very complex in nature due to the intricacy found in the pore structure. The pores tend

to have irregular surfaces, which is one of the reasons why fluid flow through them is

so complex. Some of the pores make dead ends and influences the flow and transport

behaviour significantly. The flow in porous media is referred to as single phase flow
when only one fluid phase is flowing through the pores (for example in aquifers where

the subsurface is saturated with water). When two or more phases flow through the

pore spaces, it is referred to as multiphase flow or two-phase flow (if only two phases are

present). Multiphase flow can occur in the unsaturated zone (for example in the case

of spills of non-aqueous phase liquid (NAPL) resulting in NAPL and water phases), in

petroleum recovery of hydro-carbons (system of oil, gas, water) and in many industrial

contexts.
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(a) Artificial porous medium created from sieved sand
packed in a Hele-Shaw cell, a simple two-dimensional
model (From Figure 3.1 of Roth (2007))

(b) Scanned electron microscopy micrograph of a porous gas diffusion layer in a PEM fuel cell (From Figure
3 of Van Doormaal and Pharoah (2008))

Figure. 2.1. Examples of porous media: an artificial and an industrial porous medium

2.2 Governing Equations of Fluid Flow in Porous Media

Fluid motion in a porous medium is governed by the conservation of mass, momentum,

and energy. The simulation of flow in porous media is done widely using the momentum

equation given in the form of Darcy’s law (Darcy 1856), which is based on averaging

(under the assumption of continuum). This macroscopically derived empirical law

introduces the permeability parameter which must be obtained experimentally often

with less accuracy. A more fundamental approach to porous media flow is to simulate

the dynamics at the pore-scale described by Navier-Stokes equation. This is an important

way to gain more insight into the fundamental processes and the macroscopic models.
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However, this requires direct dealing with highly complex geometries of a porous

medium. In this Section, we look at the governing equations of fluid flow in porous

media.

2.2.1 Navier-Stokes Equations

In a porous medium, when a fluid starts moving (assuming single phase flow), friction

develops at the fluid-solid interface and in fluid. The fundamental equation governing

the motion of fluid in a porous medium at the pore-scale is described by the momentum

balance equation. Together with the mass balance equation, the system of equations

is known as Navier-Stokes equations. These are in fact the dynamical statement of

the balance of forces acting at any region of fluid. For an incompressible Newtonian

fluid with no other body forces than gravity, momentum balance equation is given by

(Byron Bird et al. 1960, Roth 2007)

ρ
∂u

∂t
+ ρ(u · ∇)u = ρg −∇p+ µ∇2u. (2.1)

where ρ is the density, u is the velocity, t is the time, p is the pressure, µ is the dynamic

viscosity, and g is the gravitational acceleration. The mass balance equation is given by

∇ · (ρu) = 0; (2.2)

which for incompressible flow becomes

∇ · u = 0. (2.3)

With appropriate initial and boundary conditions, the Equations (2.1) and (2.3) are well

defined (Roth 2007). For a detailed derivation of the Navier-Stokes equations, we refer

to standard text books of Batchelor (1970), Elman et al. (2005), Deville et al. (2002),

Bear (1972) etc. The terms appearing in the Navier-Stokes equation (2.1) are explained

in details below.

Inertia︷ ︸︸ ︷
ρ
( ∂u

∂t︸︷︷︸
Unsteady

acceleration

+ u · ∇u︸ ︷︷ ︸
Convective
acceleration

)
= −∇p︸ ︷︷ ︸

Pressure
gradient

+ µ∇2u︸ ︷︷ ︸
Viscosity

+ ρg︸︷︷︸
Body
forces

The term on the left of this equation represents the acceleration of the flow, while term

on the right consists of the pressure force, the frictional force due to the viscosity and

the body forces. The term (u · ∇u) is the convective acceleration term which can also be

written as (u · ∇)u and is often called the advection or convection term, while the term

∆u = ∇2u is called the diffusive or dissipation term. Note that the convection term is
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nonlinear and the viscosity is represented by the vector Laplacian of the velocity field.

The kinematic form is obtained by dividing the Equation (2.1) by the constant fluid

density ρ as

∂u

∂t
+ (u · ∇)u = g − 1

ρ
∇p+ ν∇2u. (2.4)

where ν =
(
µ
ρ

)
is the kinematic viscosity of the fluid.

The Navier-Stokes equations describe the temporal and spatial evolution of an incom-

pressible, Newtonian fluid movement in the void space of a medium at the pore-scale.

At the pore-scale, given the geometry of the solid phase and surface properties and

application of appropriate initial and boundary conditions, the equations can be solved

to obtain the corresponding pressure and velocity field. This equation is a non-linear

partial differential equation and the non-linear term (u · ∇)u renders it difficult to solve

analytically.

It is usually a convenient way to non-dimensionalise the variables by introducing

scaling factors. Let the velocity u scales with the characteristic velocity U , ∇ scales with

1/L where L is a characteristic length, time t scales with L/U . Then, the dimensionless

variables become

x′ =
x

L
, u′ =

u
U
, p′ =

p

ρU2

On substituting the primed variables into Equation (2.1) and rearranging the terms and

dropping the primes, we obtain

∂u
∂t

+ (u.∇)u =
1
ρ

(−∇p+
1
Re

∆u + f) (2.5)

where Re is the Reynolds number,

Re =
ρLU

µ
. (2.6)

In high-Reynolds-number flows, where typically Re > 100, the flow is dominated by the

convective term and in low-Reynolds-number flows with Re < 100 the flow is dominated

by viscous forces, i.e. the diffusion term. Looking at the Equation (2.5) we can observe

that the Reynolds number represents a measure of the relative strength between the

non-linear convective term and the viscous term. The higher the Re, the more important

is the non-linear term in the dynamics of the flow. Since Navier-Stokes equations cannot

be solved analytically (except in few simple cases), numerical approximation methods

are necessary to solve them.
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2.2.2 Stokes Equation

The flow of fluid in porous media under natural conditions (e.g. groundwater flow in the

subsurface) is generally very slow, which allows to make important simplifications. The

flow is assumed to be laminar and the Reynolds number is very small, i.e. much smaller

than one (Re� 1). Flows at low Reynolds numbers are characterised by the fact that

viscous effects dominate inertial ones. Hence the magnitude of (u · ∇)u corresponding

to inertial forces is small relative to that of the viscous forces (µ∇2u) and the inertial

term can be ignored. In addition, for many small-scale flow phenomena in porous

media, external forcing varies slowly on the time scale of the internal dynamics (Roth

2007) making time irrelevant and hence the time dependent term (∂u
∂t ) in the equation

of motion can also be neglected. Thus the combination of these assumptions leads to

the simplification of the nonlinear, time-dependent Navier-Stokes equation (2.1) that

govern general continuous fluid flows, to the linear incompressible stationary Stokes

equations given as

−∇p+ µ∆u + ρg = 0 (2.7)

Such low Reynolds number flow is often called the Stokes flow or creeping flow. While

still exhibiting the problem of the incompressibility, the Stokes problem is linear and

does not contain a hyperbolic term. Hence it is the stationary linearised form of the

Navier-Stokes equations and describes the creeping (low Reynolds number) flow of an

incompressible Newtonian fluid.

The study of incompressible fluid flows in which viscous forces are either comparable

with or dominate inertial forces has applications to many physical problems. Industrial,

biological, and environmental processes often involve flows of low Reynolds number

characterised by flow of slow viscous incompressible fluids. Sub-surface flows are often

considered as creeping flows. At the pore-scale, when the flow is slow and laminar,

the stationary Stokes equation can be used to describe the flow in porous media. The

solution of Stokes equation is relatively easier to obtain than Navier-Stokes equations

due to the absence of non-linear term.

2.2.3 Darcy's Law

Darcy’s law is a phenomenologically derived constitutive equation that describes the

flow of a fluid through porous media. This law was formulated by a French engineer,

Henry Darcy (1856) based on the results of experiments on the flow of water through

sand filters for a drinking water supply system for the city of Dijon, France. Through

a series of experiments with sand-filled tubes, he was able to determine the factors

that controlled the flow rate of water through the sand. He discovered one of the most

important physical relationships in the science of porous media hydrodynamics, which
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became known as Darcy’s law:

q = −K∆p
L

(2.8)

where q is the specific discharge or volumetric flow rate per unit area of porous medium

perpendicular to the direction of flow, and ∆p
L is the pressure gradient along the flow

path. The proportionality constant K is the coefficient of permeability or hydraulic

conductivity. By convention, the -ve sign implies that flow is along the direction of

decreasing gradient. It should be noted that q has the dimension of velocity and is often

called Darcian velocity.

Darcy’s law is empirical, meaning that, it is not derived from first principles, rather

the result of experimental observation. It is usually considered valid for creeping flow

where the Reynolds number as defined for a porous medium is less than one. For

instance, most subsurface flow (groundwater) cases fall in this category. Darcy’s law

is a macroscopic approach to the study of flow in porous media and in this equation,

all the interaction between the fluid and the porous structure is lumped into a single

parameter permeability tensor K. It should be noted that on a microscopic pore-scale

level, there is no such thing as hydraulic conductivity or permeability.

Darcy’s law is a vector relationship and can be extended to three dimensions. When

the flow is three-dimensional, a Darcy’s relation can be written for each of the directions

For instance, in the case of a three dimensional isotropic medium, there are three

equations:

qx = −K ∂p

∂x
(2.9)

qy = −K∂p

∂y
(2.10)

qz = −K∂p

∂z
(2.11)

In the case of anisotropic media, the permeability becomes a second order symmetrical

tensor K given as

K =

 Kxx Kxy Kxz

Kyx Kyy Kyz

Kzx Kzy Kzz

 (2.12)

Then the Darcy’s law becomes

qx = −Kxx
∂p

∂x
−Kxy

∂p

∂y
−Kxz

∂p

∂z
(2.13)

qy = −Kxy
∂p

∂x
−Kyy

∂p

∂y
−Kyz

∂p

∂z
(2.14)
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qz = −Kxz
∂p

∂x
−Kyz

∂p

∂y
−Kzz

∂p

∂z
. (2.15)

Notice that the potential gradients in one direction can yield flows in other directions.

However, such situations are in practise not considered because it is not feasible to

assess all permeability components in many cases.

It can be noted that the permeability K depends on the properties of the fluid as well

as on the pore structure of the medium. We can write the permeability in terms of the

so called intrinsic permeability κ (Roth 2007):

K =
κρg

µ
(2.16)

where µ is the viscosity of the fluid, ρ is the density and g is the gravitational constant.

The intrinsic permeability coefficient thus depends only on the micro-structural proper-

ties of the porous medium and is supposed to be independent of the properties of fluid.

Now for the case of a single viscous fluid flowing through a porous medium and taking

gravity into account, the Darcy’s law can be written as

q = −κ
µ

(∇p− ρg) (2.17)

Darcy’s law is well satisfied as long as the porous medium is sufficiently homogeneous

and the flow velocity is sufficiently low such that the Reynold’s number is always less

than unity.

2.3 Theory of Solute Transport in Porous Media

In this section, the basic transport mechanisms of solute in porous media are discussed.

In this study, the transport of ideal and inert (passive) solute that do not undergo

decay is considered and hence reactive effects are not taken into account. Basically the

transport of dissolved chemicals or solute is generally considered to be controlled by

one or more of the following physical processes:

• Advection or Convection

• Molecular Diffusion

• Mechanical Dispersion

A brief explanation of these processes are given in the next Sections.

2.3.1 Advection

Advection (also called convection) is mass transport caused by the bulk movement of

flowing fluid. If no other process acts, then the solute particles are simply moved at

13



2 Flow and Transport in Porous Media

Figure 2.2: Advection (also called
convection) is the transport due to
average fluid velocity in a porous
medium. Advective transport follows the
streamlines.

average fluid velocity (Darcy’s velocity). A schematic representation of advection process

is shown in Figure (2.2). In this case, dead-end pores and recirculation zones are not

accessible for particle path.

2.3.2 Molecular Di�usion

The transport of a solute from a region of higher concentration to a region of lower

concentration is known as molecular diffusion. Diffusion is caused due to random

molecular motion (Brownian motion) and will occur as long as a concentration gradient

exists, even if the fluid is at rest. That is, it is independent of fluid velocity. The

molecular diffusion is isotropic and acts very slowly. A schematic representation of

diffusion process is shown in Figure (2.3). When spatial concentration gradients exist,

diffusion is the net flux of solutes from zones of higher concentration to zones of lower

concentration and the diffusive solute mass flux can be described by Fick’s first law of

diffusion. Under steady-state conditions the diffusive flux Jm is described by Fick’s law

as

Jm = −Dm∇C (2.18)

where Dm is the diffusion coefficient. For diffusion in water, Dm ranges from 1× 10−9 to

2× 10−9m2/s. The change of concentration over time inside a control volume subject

to diffusion flux is given by Fick’s second law:

∂C

∂t
= Dm∇2C (2.19)
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Figure 2.3: Molecular diffusion: Primar-
ily due to Brownian motion. When a con-
centration gradient exists, solute parti-
cles move in the direction of decreasing
concentration.

Figure 2.4: Dispersion: Dispersion is
the spreading of the solute plume that
occurs along and across the main flow
direction due to advection, pore-scale
mixing and diffusion.

2.3.3 Mechanical Dispersion

Mechanical dispersion in porous media refers to the spreading of a solute as it flows

through the porous medium and is caused entirely by differential microscopic velocities

in the pore spaces, for example, due to non-uniform velocity profile within a pore and

variations in pore sizes (diameter and length).

On a microscopic scale, it is called pore-scale dispersion and is the result of deviations

of microscopic velocity from the average flow velocity. Various factors contribute to

these velocity variations at pore-scale such as:

• Fluid particles in the centre of a pore space travel faster than those near the pore

walls (due to the parabolic velocity profile), see Figure (2.5(a)) and mixing occurs

in individual pores due to viscous effects.

• Diversion of flow paths around individual grains of porous medium causes varia-

tion in average velocity among different pore spaces (see Figure 2.5(b)). The flow

velocity is larger in smaller pores than in larger ones.
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• The natural porous media render the flow paths in sinuous forms. Due to the

sinuousness of individual flow channels, some pathways are longer than others

(tortuous) (see Figure 2.5(c)).

Mathematically, mechanical dispersion is described the same way as diffusion (see

Equation 2.18), i.e, the mass flux is assumed to be proportional to the concentration

gradient.

(a) Non-uniform velocity distri-
bution in a pore cross-section

(b) Different pore channel veloc-
ities

(c) Changes in flow direction
due to tortuous paths

Figure. 2.5. Mechanisms that cause velocity variations at pore-scale

2.3.4 Hydrodynamic Dispersion

Dispersion is considered to be the net result of (1) molecular diffusion (2) local velocity

gradients within given pores (3) locally heterogeneous velocities and (4) mechanical

mixing in pore bodies. In practise, it is almost impossible to separate the effects

of mechanical dispersion and molecular diffusion. Hence the collective spreading

due to both mechanical dispersion and molecular diffusion is usually referred to as

hydrodynamic dispersion. The spreading is caused by both microscopic (pore-scale) and

macroscopic effects. As explained previously, dispersion originates from the combined

effects of pore tortuosity and differential velocities at the pore-scale. The porous medium

is composed of tortuous pores in which fluid flows and transports. The transported

quantities are then locally moved at velocities different than the average velocity. Due

to the geometrical obstructions and interconnectedness of pore networks, the flow

streams would split and rejoin at various pore junctions. These local flow and transport

phenomena then result in a macroscopic mixing effect, which is called hydrodynamic

dispersion.

The spreading along the direction of flow is called longitudinal dispersion and the

spreading in directions normal to the flow is called transverse dispersion. For example,
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in a three dimensional setting, solute introduced into a porous sample would move

in the main flow direction, say x, and will undergo spreading parallel to the main

flow (longitudinal dispersion) and dispersion parallel to other two directions y and z

(transverse dispersion). Mechanical dispersion in transverse direction is much weaker

process than in the longitudinal direction. At REV scale, dispersion can be described

by equation analogous to Fick’s law. The molecular diffusion coefficient Dm would

be replaced by a dispersion coefficient DL or DT that becomes a phenomenological

coefficient, which combines the effects of diffusion and mechanical dispersion. DL and

DT respectively refer to longitudinal and transverse hydrodynamic dispersion coefficient.

In addition to mechanical dispersion and molecular diffusion, there are other pore-

scale phenomena that can increase the hydrodynamic dispersion process such as re-

circulation zones and eddy effects. Various mechanisms that can cause hydrodynamic

dispersion or macroscopic mixing are listed below.

• Molecular diffusion

If time scales are sufficiently long and flow is very slow, dispersion results from

molecular diffusion.

• Mixing due to obstructions

Tortuous flow channels due to the presence of grains or obstructions in a porous

medium cause spreading and mixing of particles

• Dead-end pores

The stagnant fluid regions introduced by dead ends in the porous matrix often

can induce dispersion which is called holdup dispersion (see Figure 2.6(a)). Dead

end pore volumes cause mixing because, as a solute front passes the pore, solute

particles enter into the pore “pockets” by molecular diffusion. After the front

passes, these solute particles will diffuse back into the channel flow and disperse.

• Recirculation zones

Recirculation arising from flow restrictions (see Figure 2.6(b)) can cause dispersion

effects.

• Boundary layer dispersion

Solute particles may enter the boundary layer near the grain boundaries where

fluid velocities are very small. Advection and diffusion may cause the particles to

move into these layers, but due to very small velocities, diffusion can only allow

them to escape from these regions.

• Eddies

When the flow in the individual flow channels of the porous medium becomes

turbulent, the resulting eddies cause mixing.

• Adsorption
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Adsorption is the process where solute particles may deposit or remove material

on the pore walls. This process often tends to flatten the concentration profiles.

(a) Dead end pores induce holdup dispersion
where solute particle diffuse into immobile
fluid regions

(b) Recirculation zones created by flow restric-
tion

Figure. 2.6. Mechanisms that increase hydrodynamic dispersion: Dead end pores (holdup
dispersion) and recirculation zones (Figure modified from Stöhr (2003)).

2.3.4.1 Péclet Number

The relative contribution of advection and dispersion (or diffusion) to solute transport is

represented using a dimensionless number known as Péclet number (Pe). Pe can relate

the effectiveness of mass transport by advection to the effectiveness of mass transport

by either dispersion or diffusion, which is the ratio between typical time for dispersion

(or diffusion) L2/D and typical time for advection L/〈u〉. The Péclet number is thus

given by

Pe =
〈u〉L
D

(2.20)

where 〈u〉 is the average velocity of the carrier fluid, L is the characteristic length and

D is the hydrodynamic dispersion coefficient. At the pore-scale, D is the molecular

diffusion coefficient Dm.

The nature of dispersion is controlled by the competition between advection, disper-

sion and molecular diffusion. Different regimes of dispersion can be identified according

to the Péclet number (see Figure (2.7) taken from Batu (2006)). From Figure (2.7) it

can be observed that the dispersion coefficient is strongly dependent on the average

fluid velocity 〈u〉 as well as on the geometrical properties of the porous medium, repre-

sented by the characteristic length L. For small Péclet number regime, at vanishing flow

rates, the transport of solute is dominated by molecular diffusion. So as Pe → 0, the

dispersion coefficient approaches molecular diffusion coefficient, D → Dm. For large
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2.4 Advection-Dispersion Equation (ADE)

Pe regime, the transport is controlled by the advective effects. Here the solute velocity

is approximately equal to carrier fluid velocity and molecular diffusion plays only a

little role. In the intermediate range, both diffusion and mechanical mixing acts in the

dispersion process.

Figure. 2.7. Dimensionless longitudinal dispersion coefficient, DL/Dm vs. Péclet number
Pe = 〈u〉L/Dm (Figure 3-7 from Batu (2006)).

Notes:

• Molecular diffusion is an isotropic process whereas dispersion shows anisotropic

behaviour even in simple isotropic medium. For example, in Taylor dispersion pro-

cess longitudinal dispersion being always greater than the transverse dispersion.

• In general the dispersion coefficient is orders of magnitude larger than the coeffi-

cient of molecular diffusion.

• The coefficient of molecular diffusion is independent of the scale of observation,

whereas the dispersion coefficient is scale dependent. Dispersion is observed to be

increasing with the scale of observation.

• It is molecular diffusion which really causes the mixing process and dispersion

mainly tries to increase its effect to larger area.

2.4 Advection-Dispersion Equation (ADE)

In general, the transport of a conservative solute in a rigid porous medium is described

by the advection-dispersion equation (Bear 1972). Assuming a macroscopically ho-

mogeneous porous medium, the advection–dispersion equation on a representative
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2 Flow and Transport in Porous Media

elementary volume (REV) is derived by combining a mass balance equation with an

expression for the gradient of the mass flux (Bear (1972)). Here the key assumption is

that dispersion can be represented by an expression analogous to Fick’s second law of

diffusion. Combining advective, diffusive and dispersive fluxes leads to

∂C

∂t
= −u · ∇C +D∇2C (2.21)

which is called advection-dispersion equation (ADE). This is usually referred to as the

classical or Fickian model of solute transport in porous media. Here effects of diffusion

and dispersion are combined into a single tensor called hydrodynamic dispersion coeffi-

cient. In this equation, u is the velocity (of bulk motion of fluid) vector and D is the

macroscopic dispersion coefficient tensor with the form as shown below.

D =

 Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz

 (2.22)

In one dimension, the advection–dispersion equation is given by (Bear 1972, Roth 2007)

∂C

∂t
= −u∂C

∂x
+DL

∂2C

∂x2
(2.23)

where DL denote the longitudinal dispersion coefficient. The solution of Equation (2.23)

subject to the following initial and boundary conditions:

C(x, 0) = 0 x ≥ 0 (2.24)

C(0, t) = C0 t ≥ 0 (2.25)

C(∞, t) = 0 t ≥ 0 (2.26)

is given by

C(x, t) =
C0

2

[
erfc
( x− ut

2
√
DLt

)
+ exp

( ux
DL

)
erfc
( x+ ut

2
√
DLt

)]
(2.27)

where x is the distance from the injection point. The argument of the exponential term

is the Péclet number (Pe = ux/DL), which is the measure of the ratio of the rate of

transport by advection to the rate of transport by diffusion as described in the previous

Section. For large Péclet numbers (Pe > 100), the advection dominates and the second

term in the right-hand side becomes negligible and the approximate solution becomes

C(x, t) =
C0

2

[
erfc
( x− ut

2
√
DLt

)]
(2.28)
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2.5 Hydrodynamic Dispersion Coe�cients and Péclet Number

Figure. 2.8. Dependence of the dimensionless longitudinal dispersion coefficient DL

Dm
on the

Péclet number Pe with different Pe regimes marked (Fig. 36 from Sahimi (1993)).

The Figure (2.8) taken from Sahimi (1993), shows a compilation of measurements

from several authors showing the dependence of the dimensionless longitudinal dis-

persion coefficient DL
Dm

on the Péclet number Pe. Sahimi (1993) has classified the

dependence of DL
Dm

on Pe into different Pe regimes as marked in the Figure (2.8). In the

following, the important laminar flow regimes are described.

Pe � 1

In this regime velocity is so slow that advective effects are negligible and dispersion is

controlled almost completely by diffusion. The dispersion is isotropic and is given by

DL,T

Dm
=

1
Fφ

, Pe� 1 (2.29)

where F is the formation resistivity factor, φ the porosity of the porous medium and

subscripts L and T represent longitudinal and transverse dispersion respectively. For

Pe → 0, DL
Dm

approaches the tortuosity factor (τ) which represents the long time

diffusion coefficient in the pore-space. The tortuosity represents the resistance to

diffusion through a porous medium due to the influence of the pore structure and

account for the fact that the flow path is in general not straight. According to Bear
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(1972), it is given by

τ =
( L
Le

)2
=

1
Fφ

(2.30)

1 < Pe < 300

This is the so called power law regime where dispersion due to diffusion from boundary

layers are taken into account. The dispersion coefficients are described by the empirical

relation

DL,T

Dm
= βPeδ, 1 < Pe < 300. (2.31)

It should be noted that another model sometimes found to be used in the literature is

different where a logarithmic dependence of the form:

DL,T

Dm
= βPe lnPe, 1 < Pe < 300 (2.32)

is assumed.

Pe > 300

This is the mechanical dispersion regime where transport is dominated by convection

and a linear dependence on Péclet number is assumed:

DL,T

Dm
= αPe, Pe > 300 (2.33)

According to Sahimi (1993), there is another dispersion regime due to the hold-up

dispersion. In this case, the solute is trapped in dead-end pores or low velocity regions,

from which it can escape only by molecular diffusion giving a quadratic dependence on

Pe:

DL,T

Dm
= γPe2, hold-up dispersion regime. (2.34)

Considering all these regimes, the scaling of asymptotic dispersion as a function of

Péclet number in the laminar flow regime can be represented by (Sahimi 1993):

DL

Dm
=

1
Fφ

+ αPe+ βPeδ + γPe2 (2.35)

or

DL

Dm
=

1
Fφ

+ αPe+ βPe lnPe+ γPe2 (2.36)
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2.5 Hydrodynamic Dispersion Coefficients and Péclet Number

where the terms on the right are successively the molecular diffusion contribution,

mechanical dispersion, dispersion due to diffusion from boundary layers and the hold-up

dispersion. The first term 1
Fφ describes diffusion at very low Péclet numbers and depends

on the formation resistivity factor F and the porosity φ of a porous medium.

In this Chapter, the basic concepts of flow and transport through porous media

were introduced. Solute dispersion is one of the most important transport processes

responsible for the spreading of contaminants in the subsurface because dispersion

causes the solute to spread over a greater volume of porous medium than it would

do simply based on the average flow (advection). The macroscopic parameters that

quantify the solute dispersion in a porous medium are the hydrodynamic dispersion

coefficients (longitudinal and transverse). Hence accurate values of these dispersion

coefficients have to be estimated and is crucial for successful application of macroscopic

models for practical problems. For instance, in order to obtain reliable results from

contaminant risk assessment studies using advection–dispersion models, accurate values

of dispersion coefficients have to be used in the numerical simulation codes.
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3 Pore-Scale Modelling

3.1 Introduction

Pore-scale modelling is the fundamental approach to flow in porous media. In this

approach, the physical processes acting on the pores also have been taken into account

while modelling. That is, in contrast to macroscopic modelling where the real pore

structure and the associated length scales are neglected and replaced by effective

parameters, the pore-scale modelling directly account for pore geometries. Recently

many studies of flow and transport in porous media are motivated by the central question

of how does microscopic geometric structure of the medium influences the effective

macroscopic transport parameters (Acharya 2004)? Hence in order to understand the

dependence of complex pore geometry on macroscopic parameters, it is necessary to

study the flow and transport processes at the pore-scale and to describe their overall

influence on the macroscopic scale. Furthermore, pore-scale modelling provides a way

for the parametrisation of macro-scale constitutive relationships that in effect govern

the success of many flow and transport models. The quality of these constitutive

relationships is a controlling factor in the accuracy of the results obtained by the

continuum-scale model. Since these constitutive relationships are the result of averaging

the pore-scale processes to obtain continuum scale relationships, pore-scale modelling

can be used to obtain these relationships. The prediction of macroscopic transport

properties from their microscopic origins requires in general two main steps (Øren and

Bakke 2003): 1. Geometric description of the complex pore structure of the porous

medium. 2. Exact or approximate solutions of the equations that govern the flow and

transport behaviour. However, due to the tortuous nature of the pore-scale geometry,

modelling processes at this scale is a difficult task which requires techniques for obtaining

quantitative description of the complex pore geometries and numerical methods capable

of handling it.

Since hydrogeologists and engineers are typically interested in flow and transport at

scales much larger than that of a single pore, for most practical applications a continuum

scale is preferred. At the continuum scale flow is described by an equation based

on Darcy’s law and mass transport by the advection–dispersion equation where both

equations are satisfied by bulk averaged fluxes. However, flow and transport mechanisms

at the pore-scale is often essential for better understanding of phenomena observed at

larger scales. For instance, the presence of stagnant zones may affect the transport and

25



3 Pore-Scale Modelling

Figure 3.1: Schematic representation
of a porous medium geometry at the
pore-scale. In this scale, at each point ei-
ther a solid phase or a fluid phase exists
with distinct phase boundaries.

dispersive mixing. Pore-scale modelling can be used to observe these processes and

their impact on macroscopic hydrodynamic dispersion. However, the geometry of actual

porous media is very complex and the solution of Navier–Stokes or Stokes equations on

such complex geometry is indeed a difficult task. Hence numerical methods capable of

handling complex pore geometries are needed to make pore-scale simulations.

3.2 Pore-Scale Geometry

The pore-scale is characterised by the solid grains of the porous medium and the void

space filled with fluid (see Figure (3.1)). The fluid occupying the pore-space can be

described with fundamental quantities such as density, viscosity etc. On the pore-scale,

since the features of the pore boundaries are available it is possible to directly take the

known pore space geometry and combine with the appropriate boundary conditions to

describe the flow (solution of mass and momentum balance equations) of fluids in the

pore space.

3.3 Current Approaches To Pore-scale Modelling

Pore-scale modelling approach has been increasing for past few years. Advancements

in high performance computing, development of new efficient numerical schemes and

high resolution imaging to obtain accurate description of porous media are few reasons

for the increased interest. Once the pore geometry is determined, numerous methods
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Figure 3.2: Graphical illustration of a
pore network model showing pore bod-
ies and pore throats (from Figure 4 of
Aarnes et al. (2007)).

for modelling are available such as pore network modelling, Lattice-Boltzmann method,

smoothed particle hydrodynamics (SPH) and traditional finite element methods. In the

following Section, some of these methods are shortly explained.

3.3.1 Pore-Network Modelling

Pore network models are generally based on the attempts to idealise pore geometry into

a hydraulically similar but much simpler geometries (i.e., spheres, cylinders, etc.) in a

regular network. It uses simple flow models such as Poiseuille flow for governing the

dynamics in the pore-spaces which are collection of tubes or similar geometric shapes. In

the beginning, the network models used only spheres and cylindrical throats but recently

much more realistic geometries have been used (Pan et al. 2001, Vogel et al. 2005).

An illustration of the pore network representation (taken from Aarnes et al. (2007))

showing pores and pore bodies is given in Figure (3.2). In this method, the processes of

interest are simulated in individual pores, and information at the pore scale is summed

up and averaged to the continuum scale. Hence by applying rules that govern the flow

and transport of fluids in pores and throats, macroscopic properties are estimated across

the network, which typically consists of several thousand pores and throats representing

a porous sample. Pore network models typically require less computational resources

compared to other pore-scale approaches. The main disadvantage of this approach is

that it assumes the pore geometry can be idealised as a network, which does not hold in

general. Moreover, the surface processes cannot be properly taken into account as the

surface is not accurately represented.
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3.3.2 Lattice-Boltzmann Modelling

Lattice-Boltzmann (LB) methods have become very popular in the simulation of flow

and transport for last two decades. Many authors have demonstrated the use of the

LB methods for simulating flows in complex geometries and in particular for flow

and transport in porous media (Spaid and Phelan 1997, Maier et al. 1998, Pan et al.
2001, Manwart et al. 2002, Pan et al. 2004, Vogel et al. 2005, Pan et al. 2006). It is a

space discrete particle model where the governing PDEs are not solved directly instead

movement and collision of a number of fictitious particles in a lattice is tracked. The

fundamental idea behind the LB method is the construction of simplified kinetic models

that incorporate the essential physics of pore-scale processes. The advantages of LB

method are that it can account for complex geometry and implementation of boundary

condition is easy due to the simplicity of the bounce back boundary condition. The

method also allows easy parallelisation to speed up the computation. However, the

scheme is found to be unstable for advection dominated problems (Zhang and Lv 2007).

Traditionally LB methods only allow structured meshes and hence high resolution lattice

are needed to handle real complex geometries which in turn increases computational

and memory requirements.

3.3.3 Particle Based Methods

Particle based methods such as smoothed particle hydrodynamics (SPH) involve the

discretisation of the Navier-Stokes equations spatially, leading to a set of ordinary

differential equations (ODEs) with respect to time, which are solved via time integration

(Zhu and Fox 2002, Tartakovsky et al. 2007). SPH is a mesh-free particle method that is

Lagrangian in nature. The particle nature of SPH models allows multiphase interface

problems to be modelled through simple particle-particle interactions, which allows for

simulations of surface tension and well defined contact angles under both static and

dynamic conditions. However, SPH is computationally intensive and implementation of

prescribed boundary condition is considered difficult.

3.3.4 Direct Numerical Simulation

Traditional numerical methods such as finite difference, finite element and finite volume

methods which directly discretise the governing partial differential equation on a com-

putational domain may also be used for pore-scale simulation. However, they are not

widely used for pore-scale simulation. The main reason for the lack of interest in apply-

ing such methods is that these classical numerical methods require a computational grid

resolving the complicated boundaries of the porous medium at pore-scale. Generating

such a boundary fitted or conforming grid is a highly involved process especially if

coarse grids (to reduce the number of unknowns) and high quality solution are required
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in three dimensions. The quality of triangulation affect the quality of solution. Geller

et al. (2006) reported a comparison of the accuracy and computational efficiency of the

Lattice–Boltzmann and the finite element method for incompressible laminar flows in

two-dimension. In their study, the Lattice–Boltzmann methods perform equally well

for incompressible unsteady problems, but for stationary laminar flows in complex

geometries, finite element method is faster in solving Navier-Stokes equation than the

Lattice Boltzmann Method. This is indeed the case for porous media flows where most

often the flow is slow and laminar.

Recently Engwer and Bastian (2005) introduced a new approach called Unfitted Dis-

continuous Galerkin (UDG) to solve partial differential equations in complex geometries.

The method is based on a structured grid and a discontinuous Galerkin discretisation of

the governing PDEs. This scheme is attractive for pore-scale simulations because it is

able to handle the complex geometry relatively easier than the standard finite element

and with minimum number of unknowns (Engwer et al. 2008). In this thesis, this

method has been used for the solution of the Stokes system at the pore-scale. The UDG

approach is described briefly in Section (6.5.1).
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Methods

The mathematical models are invaluable tool for engineers and scientists to study

complex systems involving physical, chemical and biological processes and are being

used extensively in science and engineering. These models are mostly described by

partial differential equations (PDEs). The PDEs which represents practical problems

arising in the field of science and engineering are often coupled and nonlinear and

obtaining analytical solutions to such equations are very difficult or even impossible.

Therefore, in practise, approximate solutions are sought and are obtained by use of

numerical techniques. There are various numerical techniques to obtain the approximate

solution of PDEs and the method is chosen based on the physical behaviour of the given

problem i.e., on the type of PDE such as parabolic, elliptic and hyperbolic that models

the system under study. Since PDEs are central to any mathematical model, an efficient

numerical solution of PDEs plays an ever increasing role in the field of modelling and

simulation. The numerical methods for obtaining approximate solutions to PDEs are

generally based on the discretisation of the continuous problem. Some of the well

known numerical schemes are finite difference methods, finite volume methods and

finite element methods. A brief description of these methods is given in the next Section.

For an elaborate reading on PDEs and numerical methods one can refer to standard

text books by Grossmann et al. (2007), Braess and Schumaker (2007), Knabner and

Angerman (2003), Schäfer (2006) etc.

4.1 Numerical Methods for Solving PDEs

Historically, finite difference (FD) methods were the first to be developed and applied

(Thomée 2001). In finite difference methods, the solution is approximated by appropri-

ate grid function on a uniform mesh. The function is defined only at a finite number

of grid points on the domain and its boundary. The derivatives in the equations are

approximated by Taylor series expansion, which results in an algebraic equation for

each grid point. The finite difference method is the most simplest among all numerical

methods and is very effective for simple geometries. The main drawback of this method

is the difficulty of adapting the mesh to a complex domain.
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The finite volume (FV) methods are a class of discretisation schemes for the ap-

proximation of conservation equations and was originally developed as a special finite

difference formulation (Versteeg and Malalasekera 2007). The finite volume method

consists of discretising the whole domain into small control volumes and differential

equations are integrated over these individual volumes. The terms in the equations

are approximated to get algebraic equation for each control volume. One advantage

of the finite volume method over finite difference method is that it does not require a

structured mesh to define the control volumes and hence effective for complex domains.

However, finite volume method has low order of accuracy as it uses a piecewise constant

approximation.

The finite element (FE) method is at present the most popular method to solve PDEs.

In this approach, the domain is divided into finite number of elements, which can be

structured or unstructured. It is based on the variational formulation of the differential

equations and it uses simple piecewise functions such as linear or quadratic on the

elements to describe the local variations of unknown variables. The substitution of the

piecewise approximating functions into the equation will not hold exactly and will result

in a residual. This residual and hence the errors are minimised by multiplying them

by appropriate weighting function and integrating over the domain. This procedure

results in a set of algebraic equations for the unknown coefficients of the approximating

functions. The finite element method is well suited for complex domains. One of the

reasons for its well acceptance is that it rests upon rigorous mathematical foundation

(Ciarlet and Lions 1991).

The discontinuous Galerkin (DG) methods in general refer to finite element ap-

proaches that allow for discontinuities in the approximating spaces. Although the DG

method was introduced by Reed and Hill (1973) for hyperbolic equations, over the years,

these methods have emerged as a powerful tool for solving wide variety of problems.

The main reason attributed to this explosion of interest in DG method is that allowing

discontinuities in the finite element approximation gives tremendous flexibility (Dawson

2006). DG methods combine the features of finite element and finite volume methods

and have been successfully applied to all class of PDEs arising from variety of application

areas. Unlike the standard finite elements, DG methods do not require continuity of the

approximating functions across the inter-element boundaries, instead, the continuity

is enforced weakly. This makes it possible to use spaces of discontinuous piecewise

polynomials and facilitates the development of higher order accurate methods using

structured, unstructured and non-conforming grids.

All the numerical approximation methods produce a linear system of equations for

the unknowns and these equations are then solved by using appropriate numerical tech-

niques such as Gaussian elimination or iterative procedures. The number of equations

in this system is as large as the number of degrees of freedom in the discretisation. The
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system can be written algebraically as

Ax = b

where A is the coefficient (stiffness) matrix, b is the given right-hand side vector and x

is the vector of unknowns. It should be noted that the numerical solution of a linear

system of the form Ax = b is, thus, an essential part of the numerical solution of PDEs.

This Chapter describes the discontinuous Galerkin finite element method in detail

and gives a brief literature review highlighting its developments over the years. The

DG discretisation of the model elliptic equation is also given and formulation of various

interior penalty (IP) methods are shown. At the end, a brief comparison between

standard (continuous) and discontinuous Galerkin finite element method is given.

4.2 Literature Review on Discontinuous Galerkin (DG)

Methods

Ever since Reed and Hill (1973) introduced the discontinuous Galerkin (DG) method for

hyperbolic equations in 1973, it has been growing steadily in various areas of application

and a substantial quantity of literature on DG methods is available for reference. For a

detailed history one can look up the paper from Cockburn et al. (2000). They have given

extensive historical review of DG methods appeared until year 2000. A short description

is given here.

In 1973, Reed and Hill (1973) introduced the discontinuous Galerkin method for

first order hyperbolic problems and used it for solving the neutron transport equation.

The DG methods have been developing ever since then. In 1974, LeSaint and Raviart

(1974) performed the first numerical analysis of DG methods for a linear advection

equation and derived a priori error estimates for DG methods applied to linear hyperbolic

problems in 2D. Independent of this, in the 1970s the first version of the discontinuous

Galerkin method for elliptic problems appeared (Wheeler 1978, Arnold 1982), using

discontinuous ansatz functions and non-conforming meshes (Arnold et al. 2000; 2001).

The idea of DG methods for elliptic equations originated from Nitsche’s work in 1971

(Nitsche 1971). Instead of enforcing the Dirichlet boundary conditions strongly in

standard finite elements, Nitsche applied it weakly by using penalty terms. In 1973,

Babuška and Zlamal (1973) proposed an application of the penalty term for imposing

the boundary conditions weakly for finite element methods. Motivated by Nitsche’s

work, Wheeler (1978) proposed penalty term for the enforcement of inter-element

continuity for second order elliptic equations. These methods are often referred to as

interior penalty (IP) methods. The IP method was then considered by Arnold (1982) to

solve parabolic equations and nonlinear elliptic equations.
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DG methods were not used extensively in the 1980s and early 1990s due to various

reasons such as lack of computational power and efficient solvers (Arnold et al. 2000).

Since mid 1990s and later 1990s DG methods have been gaining attention to a variety of

problems. In the late 1990s, Baumann (1997) and Oden et al. (1998) introduced a non-

symmetric DG method for solving convection-diffusion problems. In 1997, Baumann

(1997) in his PhD thesis introduced a discontinuous Galerkin method especially suitable

for elliptic problems, which is non-symmetric and does not require a penalty term. Their

method was later known as Oden-Babuška-Baumann (OBB) method. Baumann and Oden

(1999b;a; 2000) further enhanced this method and applied to various problems. Since

the formulation of OBB results in a positive definite stiffness matrix, it is more stable

and robust than the symmetric DG formulation. Also it exhibits a property of local mass

conservation at element level, which is very important for solving convection–diffusion

problems. Rivière et al. (1999) and Rivière (2000) introduced a variation of the OBB

method with interior penalties, the so-called non-symmetric interior penalty Galerkin

(NIPG) method, which contains an additional penalty term. In the study of compatibility

condition of algorithms for coupled flow and transport, a new discontinuous Galerkin

method called Incomplete Interior Penalty Galerkin (IIPG) was proposed by Dawson

et al. (2004). This method was analysed for the solution of flow and chemical transport

processes in porous media by Sun (2003).

In 1997, Bassi and Rebay (1997) proposed a DG formulation for the compressible

Navier-Stokes equations. Based on this work, Cockburn and Shu (1998; 2001) intro-

duced the local discontinuous Galerkin method (LDG). The idea of the LDG method was

to introduce new auxiliary variables and rewrite the original equation into several first

order equations. That is, in the LDG, besides the primary variable, the flux also appears

as unknown. The LDG method is locally mass conservative.

Arnold et al. (2001) provided a unified analysis of several discontinuous Galerkin

methods for the numerical treatment of elliptic problems with a common theoretical

framework. The relationship between various DG schemes such as LDG, OBB, SIPG

etc. was studied in their analysis. They obtained optimal error estimates for all existing

DG methods. Castillo (2002) followed Arnold et al. (2001) and analysed the methods

from a practical point of view. They compared the performance of several discontinuous

Galerkin (DG) methods for elliptic partial differential equations (PDEs) on a model

problem.

The discontinuous Galerkin method (DG) is an attractive scheme for problems dealing

with fluid flow and transport through porous media because of its local mass conser-

vation property. In addition, DG methods allow higher order approximation. Plenty of

literature is available on DG methods and its application to flow and transport problems.

Bastian and Reichenberger (2000) presented a higher order discontinuous Galerkin

finite element approach to the groundwater flow equation and applied multigrid meth-

ods in two and three dimensions for the solution of the arising linear systems. They
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have shown that the approximation using DG is considerably more accurate than a

vertex centered finite volumes and it is even competitive with the mixed finite element

methods. Bastian (2003) applied higher order discontinuous Galerkin methods based on

the method of Oden et al. (1998) (OBB) for elliptic, hyperbolic and parabolic equations

which describes single-phase and two-phase flow in porous media. In the work by

Bastian and Rivière (2003), a post-processing method for the discontinuous Galerkin

(DG) velocity approximations that preserves the local mass conservation property was

proposed. The projected velocities have additional property of continuous normal com-

ponent and numerical experiments have shown that the accuracy of the DG velocity field

is maintained. Bastian and Rivière (2004) have introduced DG methods for the incom-

pressible two-phase flow problem and applied to a total pressure-saturation formulation

for two-phase flows.

In the last decades, several researchers have been working with the development of

discontinuous Galerkin (DG) methods for the numerical approximation of incompressible

fluid flow problems. One of the difficulties in obtaining numerical approximation of

the Stokes system is the enforcement of the incompressibility condition on the velocity.

This numerical difficulty is called locking and is the result of violating certain conditions

when continuous approximations of the velocity is used. The point-wise enforcement

could yield an over-constrained velocity and the only divergence-free function might

then be zero (Cockburn et al. 2002).

In the 1990s, Baker et al. (1990) and Karakashian and Jureidini (1998) studied

piecewise solenoidal discontinuous Galerkin method for the Stokes and Navier–Stokes

equations and showed how to enforce the incompressibility condition point-wise inside

each element and obtain optimal error estimates. They achieved this by using interior

penalty approximation with discontinuous piecewise divergence–free velocities. How-

ever, their approach required to use continuous pressure approximation. Moreover,

this method required different computational meshes to be considered for velocity and

pressure to ensure stability. Recently Karakashian and Katsaounis (2006) extended

this method to the incompressible Navier–Stokes equations in which velocity field is

approximated using piecewise polynomial functions that are totally discontinuous across

inter-element boundaries and which are point-wise divergence-free on each element

(locally solenoidal). The pressure is approximated by standard continuous piecewise

polynomial functions and a special weak formulation is designed to account for the inter

element jumps.

Hansbo and Larson (2002) introduced an interior penalty DG method and studied

the h-approximation for incompressible and nearly incompressible elasticity. They used

the interior penalty (IP) method for the viscous term and approximating spaces of

polynomial degrees k and k − 1 for the velocity and the pressure respectively. That is,

the approximation degree for the pressure is of one order less than that of the velocity.

They derived the optimal error estimates in h, which remain valid in the incompressible
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limit.

Filippini and Toselli (2002) proposed and analysed a domain decomposition method

on non-matching grids for hp finite element approximations of the Stokes problem in

two-dimensions. They proved an inf-sup stability result for a DG approximation of Stokes

equations on non-matching grids.

Toselli (2002) proposed DG approximation together with suitable finite element spaces

consisting of discontinuous velocities and pressures for the Stokes problem. The bilinear

form was non-symmetric in this formulation and showed better stability properties than

the continuous Galerkin approximation and uniform divergence stability was proved

when velocity was approximated one or two degrees higher than pressure. With equal

order approximation, there were no spurious pressure modes but no uniform stability

properties were proven.

Cockburn et al. (2002) studied a local DG approximation of the Stokes problem in

mixed form where the Stokes equation was rewritten as collection of conservation

laws. Instead of imposing the incompressibility condition point wise inside the elements

this condition was imposed weakly as in standard mixed methods. The fluxes were

introduced as additional unknowns and appeared to have stabilising effect. They proved

optimal error estimates for h approximation and showed that the local DG methods can

easily handle meshes with hanging nodes and elements of general shapes. In addition to

that they proved an inf-sup condition for equal approximating polynomial degree for the

velocity and pressure by adding a stabilisation term to the discretised divergence-free

constraint.

Schötzau et al. (2003), presented an unifying abstract framework for the analysis of

mixed hp discontinuous Galerkin finite element approximation of the Stokes problem by

employing the equal-order formulation with an interior penalty (IP) discretisation of

the Laplacian.

Shahbazi et al. (2007) proposed the first DG approach to unsteady incompressible

Navier–Stokes equations. Their approach was based on a semi-explicit temporal dis-

cretisation in which the convective term was treated explicitly while the Stokes operator

was treated implicitly. The method employed a high-order DG spatial discretisation on

triangular and tetrahedral elements in two and three dimensions respectively. They

have used the IP method for the viscous term and used both equal and mixed order

formulation.

Lazarov and Ye (2007) derived and studied discontinuous Galerkin approximation of

the Stokes and linear elasticity (in the incompressible limit ) equations as stabilisation

schemes for certain saddle point problems. They studied two type of discretisations,

one that leads to a symmetric problem and other that produces a non-symmetric linear

system. Optimal error estimates were obtained and both methods were found to have

the same advantage of LDG methods by using discontinuous functions. An additional
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advantage was that their method had less number of unknowns compared to LDG as

they did not introduce additional variables.

For the steady state Navier-Stokes equations, a totally discontinuous finite element

method was formulated in (Girault et al. 2005a). They established optimal a priori
estimates for totally discontinuous family of approximations of the steady incompress-

ible Stokes and Navier Stokes equations in two-dimensions. Both non-symmetric and

symmetric formulations were considered and discontinuities were balanced by insert-

ing suitable jump terms. In a follow up paper, Rivière and Girault (2006) derived an

improved inf-sup condition for a class of discontinuous Galerkin methods for solving

the steady-state incompressible Stokes and Navier-Stokes equations. In their study, the

computational domain was subdivided into sub-domains with non-matching meshes

at the interfaces. Optimal error estimates were obtained and Numerical experiments

including two benchmark problems were presented. They also compared several numer-

ical schemes (symmetric versus non-symmetric) and obtained numerical convergence

rates.

As we can see from the literature review, the discontinuous Galerkin (DG) methods

have a long history and have become more and more popular recently. Further improve-

ments are being introduced and are being applied to various types of problems. The

main idea of DG methods is in the choice of approximation spaces consisting of piece-

wise polynomial functions with no inter-element continuity constraints. Consistency

and well-posedness are achieved by introducing suitable bilinear forms defined on the

interface. DG methods are closely related to finite volume methods as they rely on the

definition of numerical fluxes. Similar to conforming finite element approximations, the

corresponding discrete problem is given in terms of finite dimensional subspaces and

bilinear forms (Schötzau et al. 2003). Hence they combine the advantages of both finite

element and finite volume approximation.

4.3 Model Problem

In this Section, the continuous and discontinuous Galerkin discretisation of a standard

model elliptic problem are presented. For most of the information in this Section, we

referred to Brenner and Scott (2002), Morton and Mayers (2005) and Elman et al.
(2005).

Consider the Poisson equation, which is the standard model problem for elliptic

boundary value problems. For simplicity we consider the problem in two dimensions

(2D) with homogeneous Dirichlet boundary condition. Let Ω ⊂ R2 be an open, bounded

and connected Lipschitz domain with a smooth boundary ∂Ω. Let f : Ω→ R be a given

function. We seek a twice differentiable function u that satisfies the elliptic boundary
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value problem given as

−∆u = f in Ω

u = 0 on ∂Ω.
(4.1)

The ∆ is known as the Laplacian operator and is the sum of second derivatives as given

below

∆ = ∇2 =
∂2

∂x2
+

∂2

∂y2

4.3.1 Standard Finite Element Discretisation

Let us first consider the standard Galerkin finite element discretisation of the model

problem (4.1). The first step in the finite element discretisation is the reformulation of

the differential form (4.1) to the so called variational form and use this as a basis for the

discretisation. The variational form is obtained using Green’s formula or Greens Identity,

a generalisation of the integration by parts formula to higher dimensions.

The Green’s formula in its standard form is given as∫
Ω
∇v · ∇u dΩ = −

∫
Ω
v∆u dΩ +

∫
∂Ω
v
∂u

∂n
ds (4.2)

Let v be a smooth function from Ω̄ = Ω ∪ ∂Ω to R such that v(x) = 0 for each x ∈ ∂Ω.

To derive a variational equation, multiply both sides of equation (4.1) by the continuous

function v, integrate over Ω and apply Green’s formula (4.2) to obtain∫
Ω
vfdΩ = −

∫
Ω
v∆u dΩ

= −
∫
∂Ω
v
∂u

∂n
ds︸ ︷︷ ︸

=0

+
∫

Ω
∇v · ∇u dΩ (4.3)

=
∫

Ω
∇v · ∇u dΩ

where v vanishes on the boundary has been used in the first term of equation (4.3).

Theorem 1 If u is a classical solution to the Poisson problem (4.1), then u satisfies∫
Ω
∇v · ∇u dΩ =

∫
Ω
vfdΩ, (4.4)

for each smooth function v vanishing on the boundary.

The equation (4.4) is called the variational form of the Poisson equation.
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The variational formulation of the Poisson equation (4.1) is formally written as

Find u ∈ V such that∫
Ω
∇v · ∇u dΩ =

∫
Ω
vfdΩ ∀v ∈ V. (4.5)

Solutions to the variational problem (4.5) are called weak solutions of the PDE.

In order to make a Galerkin finite element approximation, we start from the variational

problem of the given PDE (4.5). To that end, we also introduce a triangulation of the

domain Ω and define Vh ⊂ V as the space of all functions that are continuous on Ω̄ and

vanishing on the boundary ∂Ω. We can then define the finite element discretisation of

the Poisson problem as

Find uh ∈ Vh such that∫
Ω
∇vh · ∇uh dΩ =

∫
Ω
vhfdΩ ∀vh ∈ Vh (4.6)

The construction of Vh is achieved by ensuring that specific choice of trial functions

coincide with the choice of test functions. This way of discretising is called Galerkin
approximation (Elman et al. 2005). Thus we have derived the standard Galerkin finite

element discretisation of the model elliptic problem (4.1) and is given by equation (4.6).

4.3.2 Discontinuous Galerkin Discretisation

The interior penalty (IP) version of the discontinuous Galerkin discretisation of the

model problem is formulated next. First of all, some notations and definition unique to

the DG formulation is introduced.

4.3.2.1 Discretisation and Notation

The following notations are used throughout in this thesis. Let Ω ⊂ Rd, where d the

dimension, be a Lipschitz domain in Rd. We denote the boundary of Ω by Γ = ∂Ω. In

each point x ∈ ∂Ω, n = n(x) denotes the outward unit normal vector. Let Th = {E} ⊂
Rd be a family of triangulation (consisting of shape regular, non-overlapping polygonal

sub-domains Ei) of Ω̄ that is possibly non-conforming. We denote the boundary of some

generic element E by ∂E and Eh denotes the set of all edges/faces e of Th, i.e. the set of

all edges in the domain Ω̄. Let EI denotes the set of all interior edges of the discretisation

and EB be the set of boundary edges. Let e denotes a generic inter-element edge (i.e.
edge shared by two generic elements). Let the elements of Th be numbered sequentially,

then for each e ∈ EI there exist indices l and k such that l > k and e = Ēl ∩ Ēk. Let elk
represent a segment of Eh shared by two elements El and Ek of Th (see Figure (4.1)).

Let nl and nk be the unit outer normal to element El and Ek on elk. Let us associate a

unique normal vector ne with face elk as the normal out of element El and in to element
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4 Discontinuous Galerkin Finite Element Methods

Ek. That is the normal vector is directed from El to Ek (see Figure (4.1)). Then, nl =

ne = -nk. Let |elk| denote the measure of the edge/face elk. Consider a function ϕ for an

Figure. 4.1. Neighbouring elements in DG schemes: (a) Notation for two arbitrary elements (b)
Generic notation for inter element face and unique normal associated with it (c) Notation for
element on the boundary

arbitrary element E ∈ Th. Let l, k be two adjacent elements of Th and x be an arbitrary

point on the interior edge e = elk = ∂El ∩ ∂Ek, ϕ±k denote the trace of ϕ taken from

within the interior of l and k, respectively. We associate a unique normal ne such that ne
= nl = -nk. Now let us define the jump and average of the function ϕ on e as follows:

Definition 1 ( Jump:) Let e be the interior face shared by the elements El and Ek. Let
eb ⊂ ∂Ω be the boundary face. For a function ϕ, the jump of ϕ on a face is defined as

[ϕ]lk =

ϕ|lnl + ϕ|knk on e

gnb on eb
(4.7)

The jump in ϕ across the face elk is written with the square bracket notation

[ϕ]lk = ϕ|lnl + ϕ|knk
= ϕ|l − ϕ|k
= (ϕ|El)|e − (ϕ|Ek)|e

Definition 2 ( Average:) Let e be the interior face shared by the elements El and Ek. Let
eb ⊂ ∂Ω be the boundary face. For a function ϕ, the jump of ϕ on a face is defined as

〈ϕ〉lk =

1
2 (ϕ|l + ϕ|k) on e

g on eb
(4.8)

The discontinuity of the function, which is formally called jump is denoted with the

square bracket [·]. The orientation for each jump term is chosen according to the
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direction of unit normal at each internal face. That is, the unit vector nl points out
of element El. The average operator is denoted with the angle bracket notation 〈·〉.
According to the definitions, if e belongs to the boundary ∂Ω, i.e. e = eb then ne is the

unit normal exterior to Ω (ne = nb) and the jump and average are defined to be equal to

the trace of ϕ (see Figure 4.1(c)). For x ∈ ∂E ∪ ∂Ω if the outer trace is set to be ϕ|l = g,

where g denotes an appropriate boundary function and ϕl is the trace of function ϕ for

element El. If we are on a face along the boundary of the domain, eb ∈ ∂Eb ∩ ∂Ω 6= ∅,
then we define 〈ϕ〉 = [ϕ] = g. Now note the following identity or definition:

Definition 3 Let ϕ, ψ be two functions, then for any internal face

[ϕψ] = [ϕ]〈ψ〉+ [ψ]〈ϕ〉 (4.9)

4.3.2.2 Weak formulation

We consider the model elliptic problem in 2D (4.1) and want to formulate the discreti-

sation in a discontinuous Galerkin (DG) way. The variational problem of the Poisson

problem is given in Equation (4.5). This can be written using the following bilinear

form:

Find u ∈ H1(Ω) with u = 0 on ∂Ω such that

a(u, v) := (∇u,∇v) = (f, v) ∀v ∈ H1
0 (Ω)

Let us recall our notations from Section 4.3.2.1. Let Th be shape-regular mesh and Eh
be set of all edges and EIh and EBh sets of all interior and boundary edges respectively.

Since discontinuous Galerkin methods are non-conforming methods, it is necessary

to introduce Sobolev spaces defined on a subdivision Th of the domain Ω. Such piece-

wise Sobolev spaces are called broken Sobolev spaces in literature. The DG method

approximates weak solutions in finite-dimensional subspaces of the broken Sobolev

space

Hm(Th) = {v ∈ L2(Ω) : v|E ∈ Hm(E) ∀ E ∈ Th}

with m ≥ 1, i.e. functions may be discontinuous at element boundaries. In the discrete

scheme the spaces Hm(E) will be replaced by polynomials Pr(E) of degree r on element

E. These polynomials are generated from the polynomials on the reference element Ê

via

Pr(E) = {ϕ | ϕ = ϕ̂ ◦ T−1
E , ϕ̂ ∈ P̂ = Pr(Ê)},

where TE : Ê → E is the mapping from the reference element to the transformed

element. The degree r may vary from element to element.
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The interior penalty version of the discontinuous Galerkin discretisation is considered

and for that first obtain the weak formulation by multiplying equation (4.1) by a test

function v ∈ Hm(Th) and integrating over Ω. Applying Greens formula, we obtain the

weak formulation of the Poisson problem given by equation (4.5). Weak form is given

below:∫
Ω
∇u · ∇v dx−

∫
∂Ω
∇u · ne v ds =

∫
Ω
f v dx (4.10)

Next we decompose the integrals of the weak formulation into element contributions.

Integrating over the discretised domain is the same as integrating over each of the

discrete elements and summing the results. Hence sum over all elements gives:

∑
E∈Th

∫
E
∇u · ∇v dx−

∑
∂E∈Eh

∫
∂E
∇u · ne v ds =

∑
E∈Th

∫
E
f v dx (4.11)

Next step is to split the boundary integrals into external and internal boundaries as

shown symbolically:

∑
∂E∈Eh

∫
∂E
· · · =

∑
EIh∈Eh

∫
EIh
· · ·+

∑
EBh ∈Eh

∫
EBh
· · ·

as a results, the second term in the Equation (4.11) becomes

∑
∂E∈Eh

∫
∂E
∇u · ne v dx =

∑
EIh∈Eh

∫
EIh

[∇u · v ne]ds+
∑
EBh ∈Eh

∫
EBh
∇u · v nbds (4.12)

Using the identity (4.9), the first term in the right-hand side of equation (4.12) can be

written as∑
EIh∈Eh

∫
EIh

[∇u · v ne]ds =
∑
EIh∈Eh

∫
EIh

[∇u · ne]︸ ︷︷ ︸
=0

〈v〉 ds+
∑
EIh∈Eh

∫
EIh
〈∇u · ne〉[v] ds (4.13)

Now on substituting (4.13) in (4.12), we get

∑
∂E∈Eh

∫
∂E
∇u · ne v dx =

∑
EIh∈Eh

∫
EIh
〈∇u · ne〉[v] ds+

∑
EBh ∈Eh

∫
EBh
∇u · v nb ds (4.14)

and finally when substituting (4.14) in (4.11), we get

∑
E∈Th

∫
E
∇u · ∇v dx−

∑
EIh∈Eh

∫
EIh
〈∇u · ne〉[v] ds

−
∑
EBh ∈Eh

∫
EBh
∇u · v nb ds =

∑
E∈Th

∫
E
f v dx

(4.15)
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Let us now define:

A(u, v) =
∑
E∈Th

∫
E
∇u · ∇v dx

F (v) =
∑
E∈Th

∫
E
f v dx

J(u, v) =
∫
EIh
〈∇u · ne〉[v] ds+

∫
EBh
∇u · v nb ds (4.16)

Then the primal formulation of the discontinuous Galerkin discretisation of the Poisson

problem with interior penalties reads:

Find uh ∈ Hm(Th) such that

A(uh, vh)− J(uh, vh) = F (vh) ∀vh ∈ Hm(Th) (4.17)

The equation (4.15) is the basic interior penalty Galerkin formulation of the model

problem (4.1).

The left-hand side of equation (4.15) has no symmetry and no positivity. One can

make some modifications to the basic formulation (4.15) in order to provide the bilinear

form with certain desirable properties such as symmetry and coercivity. Depending on

the way the modifications are introduced, we obtain various interior penalty versions

of DG methods such as Symmetric Interior Penalty Galerkin (SIPG), Non-Symmetric

Interior Penalty Galerkin (NIPG), Incomplete Interior Penalty Galerkin (IIPG) and Oden-

Babuška-Baumann (OBB) methods. In the following section we describe in detail the

above variants of DG.

4.3.3 Various IP Discontinuous Galerkin Formulations

The interior penalty versions of discontinuous Galerkin methods are based on the idea

that inter-element continuity could be achieved by following Nitsche’s (Nitsche 1971)

concept of imposing Dirichlet boundary conditions weakly rather than in the finite

element space. Arnold (1982) and Wheeler (1978) introduced interior penalty terms to

the DG formulation to enforce stability of the method for elliptic problems. It should

be noted that the DG methods are usually defined by means of the so called numerical

fluxes between neighbouring elements, but for most of the interior penalty methods for

second order elliptic problems, it is possible to relate the expression of the numerical

fluxes with a corresponding set of local interface condition that are weakly enforced

on each inter-element boundary (Zunino 2008). There are many variants of primal

DG formulations with interior penalties introduced over the years. As we can see from

literature about those methods given in the Section (4.2), they differ in their properties

such as convergence and stability from each other. In this Section we will see how to

obtain different DG schemes from the basic formulation (4.15).
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4.3.3.1 Symmetric Interior Penalty Galerkin (SIPG)

Consider the integral J(u, v) given in (4.16). Then

J(v, u) =
∫
EIh
〈∇v · ne〉[u] ds+

∫
EBh
∇v · u nb ds (4.18)

Noting that J(v, u) = 0 for smooth u, we can add or subtract J(v, u) to the left-hand

side of equation (4.17) keeping the resulting equation still equivalent to (4.17). Now if

we subtract, we will get the symmetric version of discontinuous Galerkin method called

Symmetric Interior Penalty Galerkin (SIPG) as given below:

A(u, v)− J(u, v)− J(v, u) = F (v) results in

∑
E∈Th

∫
E
∇u · ∇v dx−

∑
EIh∈Eh

∫
EIh
〈∇u · ne〉[v] ds

−
∑
EIh∈Eh

∫
EIh
〈∇v · ne〉[u] ds

−
∑
EBh ∈Eh

∫
EBh
∇u · nb v ds

−
∑
EBh ∈Eh

∫
EBh
∇v · nb u ds =

∑
E∈Th

∫
E
f v dx (4.19)

Although the left-hand side of (4.19) is symmetric, there is no reason to be positive

(Girault and Wheeler 2008). To enforce the coercivity one can penalise the jump terms.

Let σ > 0 be a penalising parameter. Noting that the integrals involving a jump in u are

zero for smooth u, the jump term J0(u, v) can be defined as given below:

J0(u, v) =
σ

|EIh|β
∑
EIh∈Eh

∫
EIh
σ[u][v] ds+

σ

|EBh |β
∑
EBh ∈Eh

∫
EBh
σu v ds (4.20)

Where |e| denotes the measure of the edge, σ > 0 a suitable positive parameter and β is

a user defined parameter.

The SIPG formulation then reads

A(u, v)− J(u, v)− J(v, u) + J0(u, v) = F (v) (4.21)

The interior penalty term σ
|e|β

depends on the size of the interior interface. The

penalisation term helps in controlling the magnitude of discontinuity to a certain extent,

thus making this formulation more stable. It should be noted that as the penalty →∞,

the method converge to a standard finite element method.
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The SIPG formulation for the model problem looks as below:

∑
E∈Th

∫
E
∇u · ∇v dx−

∑
EIh∈Eh

∫
EIh
〈∇u · ne〉[v] ds

−
∑
EIh∈Eh

∫
EIh
〈∇v · ne〉[u] ds

−
∑
EBh ∈Eh

∫
EBh
∇u · nb v ds

−
∑
EBh ∈Eh

∫
EBh
∇v · nb u ds

+
σ

|EIh|β
∑
EIh∈Eh

∫
EIh
σ[u][v] ds

+
σ

|EBh |β
∑
EBh ∈Eh

∫
EBh
σ u v ds =

∑
E∈Th

∫
E
f v dx (4.22)

The stiffness matrix obtained by this formulation is symmetric. The method is symmetric,

consistent and stable provided that the penalty is large enough. Because of the symmetric

advantage of the stiffness matrix, SIPG is often applied to problems that do not have

strict requirements on the stability.

4.3.3.2 Oden-Babu²ka-Baumann (OBB)

In 1998, Oden et al. (1998) introduced a new DG formulation later known as Oden-

Babuška-Baumann (OBB) method obtained by dropping the penalty term in the SIPG

formulation and switching the sign of certain integral terms. The OBB formulation

is obtained when the term J(v, u) is added to the left-hand side of equation (4.17).

Although a minor difference, the change in sign has striking effects that it results in

a positive definite bilinear form. The OBB formulation for the model problem is as

follows:

∑
E∈Th

∫
E
∇u · ∇v dx−

∑
EIh∈Eh

∫
EIh
〈∇u · ne〉[v] ds

+
∑
EIh∈Eh

∫
EIh
〈∇v · ne〉[u] ds

−
∑
EBh ∈Eh

∫
EBh
∇u · nb v ds

+
∑
EBh ∈Eh

∫
EBh
∇v · nb u ds =

∑
E∈Th

∫
E
f v dx (4.23)
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Since the formulation of OBB results in a positive definite stiffness matrix, the method is

more stable and robust than the symmetric DG formulation. Also, it exhibits local con-

servation properties at the element level. For polynomial approximation with minimum

order of 2 (p ≥ 2), OBB appears to be unconditionally stable (Oden et al. 1998, Castillo

2002, Romkes et al. 2006). The stiffness matrix obtained is still non-symmetric. This

formulation has been used in solving variety of problems such as diffusion, convection-

diffusion, Euler and Navier-Stokes (Babuška et al. 1999, Baumann and Oden 1999b,

Oden and Baumann 2000).

4.3.3.3 Non-Symmetric Interior Penalty Galerkin (NIPG)

This method was introduced by Rivière (2000) based on both SIPG and OBB as an

extension to the OBB by including a penalty term on the jump of the solution across

the element interfaces. Like in SIPG, NIPG formulation also uses interior penalty terms

that are mesh dependent and signs of certain integrals are kept same as that in OBB.

On adding the term J(v, u) to the left-hand side of Equation (4.17) and followed by the

application of penalty, one can obtain the NIPG formulation. The NIPG formulation for

the model problem is given below:

∑
E∈Th

∫
E
∇u · ∇v dx−

∑
EIh∈Eh

∫
EIh
〈∇u · ne〉[v] ds

+
∑
EIh∈Eh

∫
EIh
〈∇v · ne〉[u] ds

−
∑
EBh ∈Eh

∫
EBh
∇u · nb v ds

+
∑
EBh ∈Eh

∫
EBh
∇v · nb u ds

+
σ

|EIh|β
∑
EIh∈Eh

∫
EIh
σ[u][v] ds

+
σ

|EBh |β
∑
EBh ∈Eh

∫
EBh
σ u v ds =

∑
E∈Th

∫
E
f v dx (4.24)

This formulation results in a non-symmetric stiffness matrix and with sufficiently large

penalties NIPG is found to be stable ((Rivière et al. 1999; 2000)). It exhibits more stable

and robust behaviour than SIPG and in comparison to OBB, NIPG allows one to adjust

penalty parameters to achieve more accurate results.
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4.3.3.4 Incomplete Interior Penalty Galerkin (IIPG)

The Incomplete Interior Penalty Galerkin (IIPG) method was proposed by Dawson et al.
(2004) in order to improve the performance of DG methods. They can be obtained by

adding the penalty term (4.20) to the basic IP form (4.15) of the model problem. The

IIPG formulation for the model problem is as follows:

∑
E∈Th

∫
E
∇u · ∇v dx−

∑
EIh∈Eh

∫
EIh
〈∇u · ne〉[v] ds

−
∑
EBh ∈Eh

∫
EBh
∇u · nb v ds

+
σ

|EIh|β
∑
EIh∈Eh

∫
EIh
σ[u][v] ds

+
σ

|EBh |β
∑
EBh ∈Eh

∫
EBh
σ u v ds =

∑
E∈Th

∫
E
f v dx (4.25)

The IIPG formulation differs from SIPG and NIPG in the fact that the symmetrising and

stabilising terms are not enforced and only penalty term appears. It uses the regularity

of the normal derivative of u (Girault and Wheeler 2008).

4.3.3.5 General Formulation

A general formulation for the interior penalty discontinuous Galerkin method for the

model elliptic problem can be written as follows:

∑
E∈Th

∫
E
∇u · ∇v dx−

∑
EIh∈Eh

∫
EIh
〈∇u · ne〉[v] ds

− ε
∑
EIh∈Eh

∫
EIh
〈∇v · ne〉[u] ds

−
∑
EBh ∈Eh

∫
EBh
∇u · nb v ds

− ε
∑
EBh ∈Eh

∫
EBh
∇v · nb u ds

+
σ

|EIh|β
∑
EIh∈Eh

∫
EIh
σ[u][v] ds

+
σ

|EBh |β
∑
EBh ∈Eh

∫
EBh
σ u v ds =

∑
E∈Th

∫
E
f v dx (4.26)
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Depending on the choices of the parameters ε and σ we obtain different variants of the

DG methods that are developed for elliptic problems. For ε = 0, we get IIPG, ε = 1 for

SIPG, ε = −1 for NIPG and ε = −1 and σ = 0 for OBB. The NIPG and OBB formulations

differ only in the presence or absence of jump terms. In the case of non-homogeneous

Dirichlet boundary condition with a given Dirichlet function g, the Dirichlet boundary

conditions are imposed weakly and results in the appearance of extra integrals in the

formulation. The general formulation then becomes:

∑
E∈Th

∫
E
∇u · ∇v dx−

∑
EIh∈Eh

∫
EIh
〈∇u · ne〉[v] ds

− ε
∑
EIh∈Eh

∫
EIh
〈∇v · ne〉[u] ds

−
∑
EBh ∈Eh

∫
EBh
∇u · nb v ds

− ε
∑
EBh ∈Eh

∫
EBh
∇v · nb u ds

+
σ

|EIh|β
∑
EIh∈Eh

∫
EIh
σ[u][v] ds

+
σ

|EBh |β
∑
EBh ∈Eh

∫
EBh
σ u v ds

=
∑
E∈Th

∫
E
f v dx

−
∑
EDh ∈Eh

∫
EDh
〈∇v · nb〉 g ds

+
σ

|EDh |β
∑
EDh ∈Eh

∫
EDh
σ g v ds (4.27)

where EDh represents the set of Dirichlet boundary faces.

4.3.3.6 Remarks on IP methods

The interior penalty discontinuous Galerkin method for elliptic partial differential

equations is getting very popular. The IP methods facilitate hp adaptivity and give

symmetric, locally conservative and small-stencil discretisation, which allows efficient

parallelisation in large scale computation. However, one difficulty with IP scheme is

that it requires the specification of a penalty term which is mesh dependent. It has

been shown that if the value of the penalty parameter is not sufficiently large, the

approximation is unstable due to the non-coercivity of the associated bilinear form

(Castillo 2002, Shahbazi 2005). On the other hand, large penalty parameter causes

48



4.4 Continuous and Discontinuous Galerkin

performance loss in the iterative solvers. Hence it is critical to know the optimal value

of the penalty parameter for stable approximation. Except the OBB scheme, all other

interior penalty DG schemes require the specification of penalty parameter.

Both the OBB and NIPG methods are non-symmetric even for symmetric continuous

problem. The OBB method is stable for polynomial order k ≥ 2 and for the NIPG method

k ≥ 1 is sufficient. Both methods are locally mass conservative. If the solution satisfies

sufficient regularity, the OBB method exhibits optimal order of convergence in the H1

norm (O(hk)) for polynomials of degree k. For odd degree polynomial OBB method

shows optimal convergence in L2 norm (O(hk+1)) and for even degree polynomial the

convergence is suboptimal (O(hk)). NIPG method, however is optimal in the L2 norm

for both odd and even degree polynomials. The suboptimal convergence of the OBB

method is attributed to the absence of penalty terms. One of the advantage of the OBB

method is that it does not require any user supplied parameters and is computationally

cheaper due to the absence of penalty integral terms. Advantage of NIPG over SIPG is

that the penalty parameter σ can be kept small and need not to be fine tuned.

4.3.4 Local Discontinuous Galerkin (LDG)

In order to complete the discussion, we also briefly mention another family of DG

methods the so called Local Discontinuous Galerkin (LDG). All the previously mentioned

IP methods fall into the category of primal methods and LDG is one another method in

which flux also appear as variable as a result of rewriting the equation to first order. The

LDG method was introduced by Cockburn and Shu (1998; 2001) as a generalisation of

the DG method proposed by Bassi and Rebay (1997) and is very popular like IP methods.

Compared to IP schemes, the LDG scheme introduces large-stencil discretisation.

4.4 Continuous and Discontinuous Galerkin

Having shown the derivation of both the standard and DG formulation of the model

problem, in this section, we briefly compare standard and discontinuous Galerkin finite

element methods. Like all numerical methods, discontinuous Galerkin finite element

formulations have both advantages and disadvantages. It is important to understand

these issues for developing specific applications. The discontinuous Galerkin finite

element methods combine the advantages of both finite element and finite volume

methods. For instance, the DG method has the flexibility of finite element methods

and it uses the finite volume approach for the approximation of conservation equations.

Standard finite elements require that the discrete solution is continuous over the interior

boundaries or inter-element boundaries (such as edges in 2D or faces in 3D). In DG

methods, for adjacent elements in the computational mesh, the approximate solution

computed in the interior of elements does not have to match on the element interfaces.
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4 Discontinuous Galerkin Finite Element Methods

Figure (4.2) shows a schematic representation of function variation across an element

interface in 1D. In standard FEM, the function is continuous across the interface. In

DG, the function is allowed to be discontinuous and the continuity is only weakly

enforced and hence the jump is not zero. The degrees of freedom in DG methods are the

coefficients in the expansion of the solution with respect to the chosen basis function.

Hence in order to find the DG solution at a point, one has to compute the expansion by

evaluating the basis function and multiplying by the coefficients.

Figure. 4.2. (a) C0 continuity in standard finite elements (b) Weak enforcement of continuity
in discontinuous Galerkin methods.

Some of the appealing properties of discontinuous Galerkin finite element methods in

comparison to standard continuous finite element methods, which made DG methods

popular among the researchers (Arnold et al. 2001, Bastian 2003, Bastian and Rivière

2004) are listed below. They are:

• Uniform applicability to hyperbolic, elliptic and parabolic problems

The DG methods are devised for all types of partial differential equations. Although

originally developed for hyperbolic problems, DG methods found their way to

efficient discretisation of elliptic and parabolic equations.

• DG methods can handle problems in complex geometries to obtain high order accurate
solutions

The DG methods are based on discontinuous basis function unlike standard finite

elements. That is, the DG methods approximate the solution within each element

by a function whereas in standard finite elements the function is not local to

an element. DG methods are attractive since the element-wise discontinuous

representation of the solution helps in achieving higher-order accuracy on arbitrary

meshes in a natural way. It is well suited for complex geometries as it can handle

non-conforming grids with hanging nodes. Hence it is easier to construct locally

refined meshes. It should be noted that hanging nodes require no special treatment

in DG methods but they do need particular attention in continuous FE methods.

• Local (element-wise) conservation of physical properties
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4.4 Continuous and Discontinuous Galerkin

The DG method conserves the appropriate physical quantities (e.g., mass, mo-

mentum, and energy) at the element level whereas the standard finite element

method satisfies only a global mass balance over the whole computational domain.

Similar to finite volume approach when conservation equations are integrated

by parts over each element, certain terms yield integrals over the boundaries

of the element. Since this natural coupling of boundary fluxes are included in

the discretisation, conservations laws are guaranteed to hold locally also for the

discrete problem. Since DG methods satisfy the local conservation property they

are attractive for solving convection–diffusion problems.

• DG methods allow easy parallelisation

In the DG method, the inter-element communications are minimal because each

element only communicates to its neighbours through the edge/face integrals.

This simple communication pattern to elements sharing a common face simpli-

fies parallel computation. Since this discretisation produces a set of equations

within each element that are only weakly coupled to its nearest neighbours, the

discretisation is highly compact.

• Easy hp adaptivity

Relaxing the continuity of approximation functions across element interfaces

(which is required in standard FEM) gives the discontinuous Galerkin method more

localisation and flexibility which in turn provide easier and more natural hp mesh

adaptation. It can easily handle adaptive strategies, since refining or coarsening

the mesh can be achieved without considering the continuity restrictions typical

to conforming elements. Similarly, for p-adaptivity inter-element continuity is not

required.

• Use of arbitrary shaped elements

Unlike continuous finite element method where shape function is dependent on

the shape of the elements, the DG methods can have arbitrary shaped elements in

the discretisation.

• Easy implementation of boundary conditions

Implementation of various boundary conditions is more natural in the DG method

due to its compact formulation. This in turn greatly increases the robustness and

accuracy of any boundary condition implementation.

• Rigorous mathematical foundation

From theoretical point of view, it has several useful mathematical properties like

continuous FEM with regards to stability and convergence.

Like all other numerical schemes, DG methods also have some disadvantages. Some of

the problems when dealing with DG methods are the following:
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4 Discontinuous Galerkin Finite Element Methods

• Increase in degrees of freedom

The drawback of all discontinuous Galerkin approximations is that with discon-

tinuous basis, the DG methods introduce more unknowns for a given order of

accuracy on a mesh than the traditional finite element or finite volume methods,

which increases the computational requirement. In continuous finite elements,

the degrees of freedom of neighbouring elements are coupled directly, which

effectively reduces the total number of degrees of freedom. On the other hand,

in DG discretisation the degrees of freedom between neighbouring elements are

coupled in an indirect fashion realised by inter-element edge/face terms such as

numerical flux functions or interior penalty terms. This effectively increases the

number of degrees of freedom in the system.

• Method is more expensive

Referring to the continuous (4.6) and discontinuous (4.22) formulation of the

model elliptic problem, one can see that DG approximation has some extra edge

integral terms, which adds more computational burden. Also as previously men-

tioned, the DG approximation introduce a substantial increase in the number of

degrees of freedom, which leads to a much larger algebraic system. Hence the

method has been recognised as expensive in terms of both computational and

storage requirements.

• Integral evaluation demands simpler elements

Theoretically speaking, the DG method can be applied to an element of any shape

because DG basis functions are independent of the shape of the elements. However,

the evaluation of the integrals in the formulation (during the matrix assembly)

requires the use of numerical quadrature approach, which in general restricts the

applications to simpler elements.

• Lack of specialised efficient solvers

Discontinuous Galerkin discretisation yields individual dense block matrices due

to their locality in the approximation. For time dependent problems, since the

interpolation functions are defined independently in each element the mass matrix

has a block-diagonal structure and may be inverted directly. In order to exploit such

compact discretisation of DG methods and matrix structure, more sophisticated

solvers are necessary.

In this Chapter, discontinuous Galerkin finite element method was described in detail.

In particular, interior penalty discretisation of the model elliptic problem was presented

and various IP schemes were discussed. Finally, a brief comparison of continuous and

discontinuous finite element methods was given.
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5 Discontinuous Galerkin Discretisation of

The Stokes Equation

The flow of an incompressible fluid through a porous medium can be described by a

set of partial differential equations known as Navier–Stokes equations. These equations

model the behaviour of a fluid under some external forces and govern the velocity and

pressure fields. Navier–Stokes equations can be solved given appropriate boundary

and initial conditions. In general, these equations do not have analytical solutions and

hence a numerical approximation to the solution is necessary. The flow in porous media

is generally laminar in nature and in the limit of very small flow velocities, the effect

of inertia can be neglected and time may be irrelevant. Such flows are governed by

the incompressible stationary Stokes equations. This Chapter deals with the numerical

approximation to the solution of the stationary Stokes problem and in particular the

discontinuous Galerkin (DG) formulation of the stationary Stokes equation. The last

Chapter (4) gave an elaborate description of discontinuous Galerkin finite element

methods in general and this Chapter deals with the theory and formulation specific to

the Stokes equations.

5.1 The Stokes Problem

As described in the Section (2.2) of Chapter (2), the stationary Stokes equations (2.7)

can be used to describe the flow of fluid through porous media at the pore-scale. For

small values of Reynolds number, i.e. much smaller than one (Re � 1), viscous

forces dominate the flow, the inertial and external forces are negligible and time

may be irrelevant. This leads to the simplification of the nonlinear, time-dependent

Navier-Stokes equation (2.1) that govern general continuous fluid flows, to the linear

incompressible Stokes equations given as

−∇p+ µ ∆u + f = 0

∇ · u = 0.
(5.1)

where f = ρg is the body force. For small Reynolds numbers the flow is generally called

Stokes flow and it characterise the flow of fluid at the pore-scale in a porous medium.

The Stokes problem can be described formally as given below:
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5 Discontinuous Galerkin Discretisation of The Stokes Equation

Let Ω ⊂ Rd be a bounded, open and connected Lipschitz domain. The steady flow of

a viscous incompressible fluid in a bounded sub-domain Ω of Rd is in general described

by the inhomogeneous Stokes equations. The Stokes problem reads:

Find velocity and pressure (u,p) ∈ (H1(Ω))d × L2(Ω) such that

−µ∆u +∇p = f in Ω

∇ · u = 0 in Ω
(5.2)

u = g on ∂ΩD (5.3)

µ
∂u
∂n
− pn = p0 on ∂ΩN (5.4)

Here, u = (u1, u2, . . . , ud) : Ω→ Rd is the velocity field, p : Ω→ R is the pressure field,

f represents applied or body forces, n is the unit normal vector pointing out of ∂ΩN and

µ > 0 is the coefficient of viscosity of the fluid. The boundary ∂Ω = ∂ΩD ∪ ∂ΩN , where

∂ΩD and ∂ΩN are parts with essential (Dirichlet) and natural (Neumann) boundary

conditions, respectively. Also g ∈ H
1
2 (∂ΩD) describes the Dirichlet data and p0 ∈

L2(∂ΩN ) represents the Neumann boundary condition data (Heywood et al. 1996). If

Neumann/Outflow boundary condition is not applied, additionally it requires that∫
Ω
p dΩ = 0 and

∫
∂Ω

g · n ds = 0.

5.2 DG Discretisation of The Stokes Equation

In this Section, the discontinuous Galerkin discretisation of the Stokes equation is

described. Over the past several years, many researchers have been working on the

discontinuous Galerkin methods for Stokes and Navier–Stokes equations. For a detailed

account of the development of discontinuous Galerkin methods for incompressible flows

refer Baker et al. (1990), Karakashian and Jureidini (1998), Hansbo and Larson (2002),

Toselli (2002), Filippini and Toselli (2002), Cockburn et al. (2002), Schötzau et al.
(2003), Girault et al. (2005a), Rivière and Girault (2006), Karakashian and Katsaounis

(2006), Shahbazi et al. (2007). In this thesis, the discretisation given by Girault et al.
(2005a;b) and Rivière and Girault (2006) is followed. There are several variants of

discontinuous Galerkin methods (cf. Section (4.2)) for the solution of elliptic partial

differential equations and we have chosen to use the interior penalty (IP) version. The

IP versions with symmetric and non-symmetric variant of stabilisation with interior

and boundary penalties are referred to as SIPG (see Section (4.3.3.1)) and NIPG (see

Section (4.3.3.3)) respectively. The non-symmetric version without penalties is called

OBB (see Section (4.3.3.2)) method. Before proceeding further, the notations introduced

in the Section (4.3.2.1) for DG discretisation are recalled.
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5.2 DG Discretisation of The Stokes Equation

5.2.1 Weak Formulation

The weak form of the Stokes problem is derived here. On multiplying the Equation (5.2)

by an arbitrary chosen test function v and q respectively and integrating over a domain

Ω, we obtain∫
Ω

(−µ∆u +∇p) v dΩ =
∫

Ω
f v dΩ (5.5)∫

Ω
(∇·u) q = 0 (5.6)

Using the Greens formula or Greens identity, the first term in the left-hand side of the

equation (5.5) can be written as∫
Ω
−µ∆u v dΩ = µ

(∫
Ω
∇u : ∇v dΩ−

∫
∂Ω

(∇u · n) v ds
)

(5.7)

and applying the integration by parts formula, the second term can be written as∫
Ω
∇p v dΩ = −

∫
Ω
p ∇ · v dΩ +

∫
∂Ω
pv · n ds (5.8)

where (∇u : ∇v) represents the component-wise scalar product. For example, in 2D,

it is (∇ux · ∇vx + ∇uy · ∇vy). Similarly following the integration by parts formula or
divergence theorem, left-hand side of (5.6) can be written as∫

Ω
(∇·u) q dΩ = −

∫
Ω
q∇ · u dΩ +

∫
∂Ω
qu · n ds

Combining together Equations (5.7) and (5.8) we get,∫
Ω

(−µ∆u +∇p) v dΩ =
∫

Ω
µ∇u : ∇v dΩ

−
∫
∂Ω
µ(∇u · n) v ds

−
∫

Ω
p∇ · v dΩ

+
∫
∂Ω
pv · n ds =

∫
Ω

f v dx (5.9)

∫
Ω

(∇·u) q dΩ = −
∫

Ω
q ∇ · u dΩ +

∫
∂Ω
qu · n ds

= 0
(5.10)

The equations (5.9) and (5.10) are the weak formulation of the stationary Stokes

problem. The integrals of the weak formulation are now decomposed into element
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contributions as shown below:∑
E∈Th

∫
E

(−µ∆u +∇p) v dx =
∑
E∈Th

∫
E
µ∇u : ∇v dx

−
∑
∂E∈Eh

∫
∂E
µ(∇u · ne) v ds

−
∑
E∈Th

∫
E
p∇ · v dx

+
∑
∂E∈Eh

∫
∂E
pv · ne ds

=
∑
E∈Th

∫
E

f v dx

∑
E∈Th

∫
E

(∇·u) q dx = −
∑
E∈Th

∫
E
q∇ · u dx

+
∑
∂E∈Eh

∫
∂E
qu · ne ds

= 0

Splitting the edge integrals into external and inter-element boundary integrals gives

∑
∂E∈Eh

∫
∂E
µ(∇u · ne) v ds =

∑
E∈EIh

∫
E
[µ(∇u · ne) v] ds

+
∑
E∈EBh

∫
E
µ(∇u · nb) v ds

∑
∂E∈Eh

∫
∂E
pv · ne ds =

∑
E∈EIh

∫
E
[pv · ne] ds+

∑
E∈EBh

∫
E
pv · nb ds

∑
∂E∈Eh

∫
∂E
qu · ne ds =

∑
E∈EIh

∫
E
[qu · ne] ds+

∑
E∈EBh

∫
E
qu · nb ds

where Eh = EIh ∪ EBh , ne is the normal to the interior boundary, nb is the unit outward

pointing normal to the domain boundary and [·] is the discontinuity or jump in the

function. Upon applying the identity (4.9) and since p is continuous (p|E = 〈p〉|E), we

obtain∑
E∈EIh

∫
E
[µ(∇u · ne) v] ds =

∑
E∈EIh

∫
E
µ〈(∇u · ne)〉[v] ds

+
∑
E∈EIh

∫
E
µ [(∇u · ne)]︸ ︷︷ ︸

=0

〈v〉 ds
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∑
E∈EIh

∫
E
[pv · ne] ds =

∑
E∈EIh

∫
E
〈p〉[v · ne]ds

∑
E∈EIh

∫
E
[qu · ne] ds =

∑
E∈EIh

∫
E
〈q〉[(u · ne)] ds

Substituting the above expression into the corresponding jump terms, we get

µ
∑
E∈Th

∫
E
∇u : ∇v dx

−
∑
E∈EIh

∫
E
µ〈(∇u · ne)〉[v] ds

−
∑
E∈EBh

∫
E
µ(∇u · nb) v ds

−
∑
E∈Th

∫
E
p∇ · v dx

+
∑
E∈EIh

∫
E
〈p〉[vne]ds =

∑
E∈Th

∫
E

f v dx

and

−
∑
E∈Th

∫
E
q∇ · u dx+

∑
E∈EIh

∫
E
〈q〉[(u · ne)] ds+

∑
E∈EBh

∫
E
qu · nb ds = 0 (5.11)

Now referring to the general formulation of the model elliptic problem (4.26) described

in the Section (4.3.2.2), we add the terms corresponding to consistency, symmetry and

stabilisation as explained and additionally the Dirichlet boundary conditions are applied

weakly.

In order to have symmetry the following term is added.

ε
∑
E∈EIh

∫
E
µ〈(∇v · ne)〉[u] ds

and for stability, following penalty/jump term is applied:

J0(u,v) =
∑
E∈EIh

σ

|e|

∫
E
[u] · [v] ds (5.12)

Note that both the above terms vanish for smooth solution. Now apply Dirichlet BCs

weakly:

ε
∑
E∈EDh

∫
E
µ(∇v · nb)(u− g) ds
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and ∑
E∈EDh

σ

|e|

∫
E
[v] · (u− g) ds

5.2.2 General Formulation

The primal formulation of the interior penalty version of DG discretisation of the Stokes

problem (5.2) can be written as follows:

Find (uh, ph) ∈ Vh × Qh such that{
µ (A(uh,vh) + J0(uh,vh)) +B(vh, ph) = F (vh) ∀vh ∈ Vh

B(uh, qh) = G(qh) ∀qh ∈ Qh
(5.13)

where

A(uh,vh) =
∑
E∈Th

∫
E
∇uh : ∇vh dx

−
∑
E∈EIh

∫
E
〈∇uh · ne〉[vh] ds

+ ε
∑
E∈EIh

∫
E
〈∇vh · ne〉[uh] ds

−
∑
E∈EBh

∫
E
(∇uh · nb) vh ds

+ ε
∑
E∈EBh

∫
E
(∇vh · nb)uh ds

J0(uh,vh) =
∑
E∈EIh

σ

|e|

∫
E
[uh] · [vh] ds

+
∑
E∈EBh

σ

|e|

∫
E
uh · v ds

B(vh, ph) = −
∑
E

∫
E
ph∇ · vh dx

+
∑
E∈EIh

∫
E
〈ph〉[vh · ne] ds

+
∑
E∈EBh

∫
E
ph vh · nb ds
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5.3 Local Mass Conservation

B(uh, qh) = −
∑
∈Th

∫
E
qh∇ · uh dx

+
∑
E∈EIh

∫
E
〈qh〉[uh · ne] ds

+
∑
E∈EDPh

∫
E
qh uh · nb ds

F (vh) =
∑
E∈Th

∫
E

f · vh dx

+ µ ε
∑
E∈ED

∫
E
(∇vh · nb) g ds

+ µ
∑
E∈ED

σ

|e|

∫
E
g · vh ds

−
∑
E∈EDP

∫
E
p0 vh · nb ds

G(q) = −
∑
E∈ED

∫
E
qh g · nb ds.

Here |e| denotes the measure of the edge and β is a user defined parameter. The user

supplied parameters ε and σ >= 0 are defined as before for the model elliptic problem.

We get SIPG for ε = 1, IIPG for ε = 0, NIPG for ε = −1 and OBB for ε = −1 and σ = 0.

Notes:

1. ED ⊂ EB is the set of edges where Dirichlet boundary conditions for velocity is

applied (e.g. no-slip, prescribed velocity profile)

2. EDP ⊂ EB is the set of edges where Dirichlet boundary conditions for pressure is

applied (e.g. prescribed pressure)

5.3 Local Mass Conservation

The local mass conservation, i.e. conservation of mass on each element, is natural in the

DG discretisation. Since the continuity requirement between the elements is relaxed,

we can take a test function that is different on each element. Within the Stokes problem,

the local mass balance is the consequence of the discretisation of the incompressibility

equation ∇ · u = 0. Let us take an arbitrary element E belongs to Eh, and let q=1 on E
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5 Discontinuous Galerkin Discretisation of The Stokes Equation

and 0 elsewhere. Then the Equation (5.11) becomes

−
∫
E
∇ · u dx+

∑
E∈∂E\∂Ω

∫
E
[u · ne] ds+

∑
E∈∂E∩Ω

∫
E
u · nb ds = 0 (5.14)

Now using the divergence theorem (or Gauss’ theorem) which states that the integral of a

vector field divergence over a domain is equal to the integral of the normal component

of the field along the boundaries, the first term in the Equation (5.14) can be written as

−
∫
E
∇ · u dx = −

∫
∂E

u · nE ds

where nE denotes the outward normal to E. Upon substitution, the Equation (5.14)

changes to

−
∫
∂E

u · nE ds+
∑

E∈∂E\∂Ω

∫
E
[u · ne] ds+

∑
E∈∂E∩Ω

∫
E
u · nb ds = 0 (5.15)

The property of local mass conservation is important for flow and transport problems in

porous media.

5.4 Saddle Point Stokes Problem

The primitive variable formulation with both velocity and pressure as unknowns is known

as mixed finite element formulation. Such formulation present numerical difficulties

related to the treatment of the saddle point problem which arises from the variational

formulation of the incompressible flow equation with pressure acting as a Lagrangian

multiplier of the incompressibility constraint (Elman et al. 2005). The resulting algebraic

system for the velocity and pressure in a Galerkin framework can be expressed as a

system of linear equations:[
A BT

B 0

][
u

p

]
=

[
f

g

]
(5.16)

where the block matrix has a null sub-matrix on the diagonal (large block of zeros at

the main diagonal giving rise to saddle point structure). In the discrete case, this block

matrix will be symmetric but indefinite. The matrix A is called the vector-Laplacian
matrix (viscous part) and the matrix B is called the divergence matrix. It is well known

that the finite element spaces for velocity and pressure need to be chosen carefully

satisfying the inf-sup condition or LBB condition to obtain a stable Galerkin formulation

(Girault and Raviart 1979) such that the discrete problem is solvable.

The equal order basis for velocity and pressure does not satisfy the inf-sup condition

and hence the discretisation is not stable. Usually the approximating polynomials
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5.5 Boundary Conditions

are taken one degree higher for velocity than for pressure and hence in all numerical

computations presented in this thesis, the approximation basis for velocity is always

taken one order higher than the pressure basis to satisfy LBB condition.

5.5 Boundary Conditions

The boundary conditions are the physical constraints associated with the fluid flow

system and are important part of the mathematical model of fluid flows as boundaries

direct motion of flow. Mathematically speaking, in order to yield a well-posed problem,

partial differential equations have to be supplied with suitable boundary and initial

conditions (in the case of transient problems). That is, to ensure the existence of a unique

solution to the governing equations, appropriate boundary and initial conditions have to

be imposed at the boundary ∂Ω of Ω. Mainly two types of boundary conditions are being

used for the solution of Stokes equation: Dirichlet and Neumann boundary conditions.

When using a Dirichlet boundary condition, one prescribes the value of the variable at

the boundary, e.g. u = g. The so called no-slip boundary condition is a Dirichlet type. In

viscous flows, at the solid boundaries such as grains, obstacles and solid walls we apply

the no-slip boundary condition in which tangential fluid velocity and normal velocity

component are set to zero. When using a Neumann boundary condition, one prescribes

the gradient normal to the boundary of a variable, e.g., ∂nu(x) = constant.

The following boundary setups are considered for the solution of stationary Stokes

equation:

• Inflow–outflow type

When the velocity profile is known at inlet, it is specified at the inlet boundary. At

the outlet, outflow boundary condition is used. Outflow condition models flow
exits where the details of the flow velocity and pressure are not known prior to

the solution of the flow problem. The outflow boundary condition assumes a zero

normal gradient for all flow variables except pressure.

Since outflow boundaries are caused by the need to limit the computational domain

than any physically reasonable boundary, neither essential nor natural boundary

data is available there. Hence outflow boundary conditions are considered a

particular challenge in numerical simulations. In this thesis, the popular ’do
nothing’ boundary condition by Heywood et al. (1996) is used at the outflow

boundary, which implies the assumption of a zero Neumann boundary condition.

• Pressure drop

A pressure boundary condition is required as the pressure is determined by the

incompressible Navier-Stokes equations up to a constant. For pure flow problems

the pressure constant is usually fixed implicitly by a Neumann boundary condition
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or directly at a particular point. Alternatively the mean value of the pressure can

be fixed. Pressure drop boundary conditions prescribe pressure both at the inlet

and outlet and flow is driven by the imposed pressure difference. Pressure outlet

must always be used when model is set up with a pressure inlet.

5.6 Prescribed Pressure Formulation

When using the pressure drop boundary condition as mentioned before, the following

prescribed formulation is used (Heywood et al. 1996). Let Ω ⊂ Rd be a bounded, open

and connected Lipschitz domain. For any prescribed constants p0, find velocity and

pressure
(
(u,p) ∈ H1(Ω)d × L2(Ω)

)
such that

−µ∆u +∇p = f in Ω ⊂ R3

∇·u = 0 in Ω

u = 0 on Γ0 ⊆ ∂Ω

∂nu− p = p0 on ΓP .

(5.17)

where µ > 0 is the coefficient of viscosity of the fluid.

Finally, the DG discretisation of the Stokes equation using the non-symmetric scheme

introduced by Oden-Babuška-Baumann with prescribed pressure formulation reads:

Find u ∈ V, p ∈ Q such that

µa(u,v) + b(v, p) = l(v) ∀ v ∈ V ,

b(u, q) = 0 ∀ q ∈ Q .
(5.18)

where

a(u,v) =
∑
E

∫
Ω
∇u : ∇v −

∑
γef∈Γint

∫
γef

〈∇u · n〉[v] +
∑

γef∈Γint

∫
γef

〈∇v · n〉[u]

b(u, q) = −
∑∫

Ω
q∇ · u +

∑
γef∈Γint

∫
γef

〈q〉[u · n]

l(v) = −
∑
γp∈ΓP

p0

∫
γp

v · nds

5.7 Implementation and Testing

The mathematical models that are represented by PDEs are solved using numerical

techniques such as finite element methods. The numerical implementation of such

methods is not an easy process especially for large and complex models. The numerical

implementation of finite element based methods usually require the following:
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1. The spatial discretisation of the problem domain (representative mesh or grid)

The spatial discretisation which is called mesh generation or grid generation refers

to the process of subdividing the domain to generate a polygonal or polyhedral

mesh that approximates the given geometric domain. The mathematical entities

and basis functions are defined on this elements. The mesh generation itself is an

active research area involving mathematicians, computer scientists and engineers.

The realistic mesh generation in 3D for complex objects is still considered a

formidable task.

2. The mathematical framework of the finite element method (basis, shape function,
degrees of freedom)

Setting up of the finite element base for the problem where the basis functions are

chosen to discretise the function space.

3. Assembling of the stiffness matrix

Consists of assembling the entries of element stiffness matrices and right-hand

side vectors into a global system of equation (Ax = b). This is mostly problem

specific part in which boundary conditions are also to be considered.

4. Solution of the system of equations

The numerical methods in general approximate the PDEs and generate the matrix

and vector for the unknowns in the equation. The resulting algebraic system needs

to be solved for the unknown coefficients.

5. Post-processing of the results

The visualisation of the results, computation of errors and analysis are part of

post-processing.

In general grid generation, finite element framework and solver parts can be imple-

mented as a general purpose modules as they are independent of a particular application

and there is no need to re-implement them. The assembling part is the only part which is

problem specific to obtain the global system of equations for the corresponding differen-

tial equation. Such numerical tools must provide the problem independent components

with a flexibility that ease incorporation of the problem specific parts. This requires data

structures, which allow an easy and efficient implementation of the problem dependent

parts. It should also have a linear algebra module with an efficient implementation

of matrices, vectors and solvers for linear equations or access to other solver library

routines. DUNE is such a general purpose and unified framework for the numerical

solution of PDEs.
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5.7.1 DUNE

In this section we briefly describe the concepts and important aspects of the DUNE

software framework within which the discontinuous Galerkin discretisation of Stokes

equation is realised. For a detailed understanding of the underlying concept of DUNE, re-

fer to Bastian et al. (2004; 2008b;a). The DUNE websitea provides all the documentation,

implementation and development details on-line.

DUNE is a modular toolbox for solving partial differential equations (PDEs) with

grid-based methods, which is available as a software package written in C++ that has

a collection of abstract interfaces. One of the major goals of such an interface based

numeric environment is the separation of data structures and algorithms (Bastian et al.
2004) . DUNE enables design and implementation of numerical algorithms independent

of the type of grid (structured, unstructured, parallel) used. The DUNE framework

uses generic C++ techniques to allow for efficiency, flexibility and code reuse (Bastian

et al. 2004). The algorithms are written based on the abstract interface and users can

access grids, finite element functionality, solvers, visualisation etc. through the abstract

interface. The abstract interface with fine granularity use static (or compile-time)

polymorphism to achieve high performance. Within the DUNE framework it is possible

to use existing codes (e.g. UG. ALBERTA). One of the advantages with it’s uniform

interface is that, the user has the option to try out different implementations of grids

and solvers without any extra effort.

The central to DUNE is its grid interface, which describes structured, unstructured

and parallel grids of arbitrary dimensions and currently supports different grid imple-

mentations such as SGrid ,YaspGrid, UG, etc.

One of the important components in the numerical solution of PDEs is the linear

algebra module, which solves the resulting system of linear equations arising from

numerical discretisation. The solver module in the DUNE is called Iterative Solver

Template Library (ISTL). The ISTL is designed to handle the natural sparse block

structure of the matrices obtained when discretising PDEs using, for example, finite

element methods (Blatt and Bastian 2007). Using generic programming techniques,

ISTL exploits the matrix structure which is known at compile time to efficiently solve the

system of linear equations. Currently ISTL has various direct (SuperLU) and iterative

solvers (CG, BICG-Stab, etc.) available for the solution of large linear systems.

5.7.2 Assembling The Sti�ness Matrix

Since the finite element methods are always based on the integral formulation, one

important step in the implementation of finite element based codes is the assembling

routine, which is the most problem specific part and it consists of evaluating certain
ahttp://www.dune-project.org/index.html
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integrals over elements and boundaries. For example, implementation of the assembling

routine for the DG discretisation of the Stokes equation using the formula given in

Equation (5.13) consists of a sum over elements and faces like:

∑
E∈Th

(∫
E
· · ·+

∫
∂E
· · ·
)

=
∑
E∈Th

∫
E
· · ·+

∑
E∈EIh

∫
E
· · ·+

∑
E∈EBh

∫
E
· · · (5.19)

As we can see, such formulation allows to split the assembling into separate loops:

one for volume, one for internal edges/faces and one for boundary faces. In general,

the integrals as shown symbolically in the Equation (5.19) are not computed directly

because in most cases the integrals are not simple analytical forms. They are often

approximated using numerical integration techniques as the weighted sum of integrand

evaluations on set of quadrature points in the reference geometry as (for e.g. in one

dimension)

I =
∫ b

a
f(ξ)dξ ≈

N∑
i=1

Wif(ξi),

where Wi and (ξi) are the weights and chosen evaluation points, respectively. The

approximation developed for one-dimensional integration can be easily extended to

higher dimensions. However, as the dimension increases, the number of quadrature

points grows geometrically. It should be noted that since basis functions are given in

natural or local coordinatesb, we also need to map our real coordinates to the natural

coordinates to perform the integration. There are various integration schemes such

as Trapezoidal, Simpsons’ and Gaussian rules. The Gaussian quadrature methods are

widely being used due to its high-order accuracy with less number of sampling points.

Using N quadrature points it can accurately evaluate the integral of a polynomial P of

degree up to 2N − 1. In DUNE, implementation of Gaussian weights and quadrature

points are available for various element geometries.

Because of the local nature of the discontinuous formulation, generally there is no

need for a global assembly procedure and assembling can be done element-wise. The

matrix arising from the DG discretisation has a block structure where the diagonal

blocks represent inner element operation, while the off-diagonal blocks are the result of

inter-element fluxes which couple adjacent elements. The block can be inverted at very

low computational cost (where the inverse of the matrix can be calculated block-by-block

instead of calculating the inverse of the whole matrix) when solving for the solution.

The ISTL module in DUNE is designed to handle such block structured matrices very

efficiently.

Another point to be considered when evaluating the face integrals is that one would

bNatural coordinates are dimensionless coordinates expressed with reference to the element than with
reference to the global/real coordinate system.
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also need the values of the adjacent elements’ basis functions on the quadrature points.

Due to the nested loop in the assembling, when iterating over the faces of each element,

a face would be reached from both the elements that share the face. In order to assemble

face terms only once, a simple conditional rule based on the index of the elements was

introduced that decides from which element the face should be accessed.

5.7.3 Solver

An iterative solver based on the stabilised bi-conjugate gradient method (BICG-STAB)

with ILU preconditioner was used to solve the Stokes equations. This solver is one of

the many solvers available in the ISTL module of DUNE.

5.7.4 Visualisation of The Results

Visualisation of the results presented in this thesis was mostly done by ParaViewc

(Hendersen 2007) and gnuplotd. ParaView is an open-source visualisation application

integrating many VTK features. DUNE has a VTK writer interface to write data in the

VTK format and ParaView can be used to display the data. gnuplot is another widely

used open source program to plot and visualise data and it has been used for some of

the plots and graphs in this thesis.

5.7.5 Numerical Test Problems

The discontinuous Galerkin discretisation of the Stokes equation is implemented within

the DUNE framework. In this Section, to verify the implementation, several numerical

tests including benchmarking test are presented. The following problems are considered:

1. Mass conservation test

2. Problem with analytical solution, 2D

3. Poiseuille flow problem in channel, 2D

4. Driven cavity problem, 2D

5.7.5.1 Mass Conservation Test

One measure of the accuracy of any numerical discretisation scheme is to check how

well the method conserves mass. This can be measured by comparing the net fluxes

chttp://paraview.org/
dhttp://www.gnuplot.info/
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in the domain (e.g, inflow, outflow). The continuity equation or mass conservation

equation is given in the differential form as

∂ρ

∂t
+∇ · (ρu) = 0

where ρ is the density of fluid, t is time, and u is fluid velocity. In the case of incompress-

ible flow, density ρ is assumed to be constant and hence the mass conservation equation

simplifies to a volume conservation equation:

∇ · u = 0 (5.20)

which means that the divergence of velocity field is zero everywhere. Hence the test

for mass balance consists of checking if the velocity field satisfies the Equation (5.20).

Alternatively the Equation (5.20) can be written as the derivative of the net flow of the

velocity field across a very small surface ds. The amount of fluid passing through ds per

unit time is then given by

F = u · n ds

and the total flux across a surface is given by∫
F = u · n ds

Since the DG based numerical schemes are locally and globally mass conservative (see

Section (5.3)), both local and global mass balance were checked. The local mass balance

test evaluates the integral∫
∂E

u · nE ds ∀E ∈ Eh

where E denotes an element or cell in the triangulation Eh of the domain, ∂E represents

the edge or face of E and nE is the outward normal to the element E. Similarly, the

global mass balance check evaluates the following integral∫
∂Ω

u · n ds

where the integration is over the domain boundary ∂Ω. The domain considered for

the mass balance test is shown in the Figure (5.1(a)) and the Stokes velocity field is

given in Figure (5.1(b)). The computed errors in the global mass balance for various

grid refinement levels are plotted in the Figure (5.2) where it is observed that the

errors are in the order of the machine precision. Similarly local mass balance errors

were computed and plotted in Figure (5.3) and again the errors are in the order of

the machine precision. Hence the method is successfully implemented with respect to
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the mass balance and is able to conserve mass locally and globally up to the machine

precision.

(a) Computational domain (b) Magnitude of the velocity field

Figure. 5.1. Computational domain for mass balance test is shown in the left (a). The domain
consists of a unit square with some random holes in it. Velocity field was computed by solving
the Stokes equation on the domain and its magnitude is shown in the right (b).
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Figure. 5.2. Global mass balance error for various grid refinement level.
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Figure. 5.3. Local mass balance error on each element of the grid for various grid refinement
levels.

5.7.5.2 Stokes Flow With Analytical Solution (2D)

The Stokes problems with analytical solution are available for verifying the code and

validating the numerical methods. In order to obtain an analytical solution, we need to

find a velocity field such as ∇ · u = 0, the incompressibility condition. We refer to the

example problem given in (Rivière and Girault 2006) which fulfills the above condition.

Let u(u, v) be the velocity field with x-component u and y-component v. Then,

u(x, y) = x2(1− x)2(2y − 6y2 + 4y3)

v(x, y) = −y2(1− y)2(2x− 6x2 + 4x3)
(5.21)

In addition, the constant of viscosity is taken as µ = 1. The pressure field can be chosen

randomly because only needed is its gradient. In this case, it has been chosen as

p(x, y) = x+ y

as given in (Rivière and Girault 2006). Then, according to Equation (5.2), the applied

forces match

fx = −(24y − 12)(x4 − 2x3 + x2) + (4y3 − 6y2 + 2y)(12x2 − 12x+ 2) + 1

fy = (24x− 12)(y4 − 2y3 + y2) + (4x3 − 6x2 + 2x)(12y2 − 12y + 2) + 1

The problem is solved in a square domain of unit sides, Ω = [0, 1]× [0, 1]. The analytical

velocity is shown in Figure (5.4).
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Figure. 5.4. Stokes velocity field for the analytical test problem

A uniform grid refinement study was performed to test the error convergence of the

discretisation. In the following, we present the results of the convergent study on the

analytical problem (5.21). Different variants of DG schemes were tested: OBB scheme,

SIPG scheme with σ = 1 (SIPG1) and σ = 10 (SIPG10), NIPG scheme with σ = 1
(NIPG1) and σ = 10 (NIPG10). In all the tests, the velocity approximation was always

taken one degree higher than pressure basis and the polynomial degree k and parameter

σ were varied. The order of convergence was computed as described below.

Order of Convergence

Let u be the exact analytical solution and uh be the approximate solution obtained with

the discretisation size h. Then the discretisation error eh = u − uh and the order of

convergence p is defined as ‖eh‖ = O(hp). The order p can be evaluated by comparing

the two discretisation errors obtained with two different sizes h1 and h2 respectively as

p =
ln ‖eh1‖ − ln ‖eh2‖

ln
(
h1
h2

) (5.22)

The Equation (5.22) can be further simplified when the mesh is refined uniformly and

successively. Then the numerical convergence rate is calculated by

p =
ln
(
eh
eh

2

)
ln(2)

The results of the convergent study for k = 1, where linear approximation for velocity

and piecewise constant approximation for pressure (P1−P0) are given in the Table (5.1).

As predicted by the theory, we observe that the error of u in the H1 norm is O(h). We

obtain optimal convergence rates for velocity in L2 and H1 norm and pressure in L2

norm. The OBB method was not convergent in this case as it is stable only when k ≥ 2
and hence the results are not given for OBB. We can also observe that SIPG1 is not

converging possibly due to small value of σ. However, SIPG10 is converging optimally
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Table 5.1. Numerical errors and convergence rates for P1 − P0 approximation of the Stokes
problem

Method h
Velocity Pressure

L2 Error L2 Rate H1 Error H1 Rate L2 Error L2 Rate

NIPG1

1
1/2 4.792e-02 2.38 1.222e-01 1.06 5.046e-01 1.09
1/4 1.520e-02 1.65 5.351e-02 1.19 3.212e-01 0.65
1/8 4.248e-03 1.83 2.048e-02 1.38 1.773e-01 0.85

1/16 1.117e-03 1.92 8.130e-03 1.33 9.366e-02 0.92
1/32 2.860e-04 1.96 3.531e-03 1.20 4.824e-02 0.95
1/64 7.231e-05 1.98 1.651e-03 1.09 2.448e-02 0.97

NIPG10

1
1/2 1.073e-02 1.23 4.731e-02 0.03 5.843e-01 0.88
1/4 3.285e-03 1.70 2.647e-02 0.83 3.019e-01 0.95
1/8 1.015e-03 1.69 1.347e-02 0.97 1.551e-01 0.96

1/16 2.918e-04 1.79 6.513e-03 1.04 7.852e-02 0.98
1/32 7.744e-05 1.91 3.186e-03 1.03 3.950e-02 0.99
1/64 1.975e-05 1.97 1.580e-03 1.01 1.981e-02 0.99

SIPG 1

1
1/2 1.021e+00 -1.98 3.074e+00 -3.22 5.178e+00 -2.26
1/4 2.618e-01 1.93 2.154e+00 0.51 2.371e+00 1.12
1/8 1.503e-02 4.12 2.531e-01 3.08 1.729e-01 3.77

1/16 1.887e+01 -10.29 7.963e+02 -11.61 6.021e+02 -11.76

SIPG10

1
1/2 1.188e-02 1.09 4.747e-02 0.04 6.949e-01 0.63
1/4 3.947e-03 1.59 2.837e-02 0.74 3.591e-01 0.95
1/8 1.320e-03 1.58 1.458e-02 0.95 1.841e-01 0.96

1/16 3.994e-04 1.72 6.798e-03 1.10 9.318e-02 0.98
1/32 1.080e-04 1.88 3.233e-03 1.07 4.687e-02 0.99
1/64 2.796e-05 1.95 1.587e-03 1.02 2.351e-02 0.99

and it means that in the case of SIPG1, σ=1 was not large enough. We can see that the

NIPG method works well with small values of σ whereas SIPG needs large values of σ to

be stable. The results presented here matches well with that reported in Rivière and

Girault (2006).

The results for cases k = 2 and k = 3 are presented in Table (5.2) and (5.3) respectively.

When velocities are approximated by piecewise quadratics and the pressure by piecewise

linear all methods converge optimally in H1 norm for velocity and L2 norm for pressure.

But in L2 norm for velocity, NIPG methods and OBB are sub-optimal and exhibit only

of the order O(hk), k = 2. These results confirm the previously reported results in

literature that for elliptic problems optimal results are only observed when degree of

polynomial is odd. Optimal convergence can be observed in the results presented in

Table (5.3).
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Table 5.2. Numerical errors and convergence rates for P2 − P1 approximation of the Stokes
problem

Method h
Velocity P

L2 Error L2 Rate H1 Error H1 Rate L2 Error L2 Rate

NIPG1

1
1/2 1.846e-03 2.22 2.756e-02 1.06 1.572e-02
1/4 4.878e-04 1.92 9.092e-03 1.60 6.703e-03 1.23
1/8 8.743e-05 2.48 2.275e-03 1.99 1.098e-03 2.60
1/16 1.870e-05 2.22 5.504e-04 2.04 1.618e-04 2.76
1/32 4.409e-06 2.08 1.353e-04 2.02 3.094e-05 2.38
1/64 1.082e-06 2.02 3.359e-05 2.01 7.389e-06 2.06

NIPG10

1
1/2 1.709e-03 1.27 2.485e-02 0.74 2.357e-03
1/4 2.998e-04 2.51 7.244e-03 1.77 5.627e-03 -1.25
1/8 4.079e-05 2.87 1.941e-03 1.89 9.530e-04 2.56
1/16 5.484e-06 2.89 4.892e-04 1.98 1.438e-04 2.72
1/32 1.063e-06 2.36 1.222e-04 2.00 2.254e-05 2.67
1/64 1.458e-07 2.86 3.055e-05 1.99 5.163e-06 2.12

OBB

1
1/2 2.590e-03 2.61 3.111e-02 1.35 2.091e-02
1/4 8.197-04 1.66 1.230e-02 1.33 1.194e-02 0.80
1/8 1.674e-04 2.29 3.037e-03 2.01 2.177e-03 2.45
1/16 3.817e-05 2.13 7.070e-04 2.10 3.257e-04 2.74
1/32 8.998e-06 2.08 1.699e-04 2.05 6.158e-05 2.40
1/64 2.175e-06 2.04 4.172e-05 2.02 1.463e-05 2.07

SIPG10

1
1/2 1.927e-03 1.03 2.720e-02 0.63
1/4 4.325e-04 2.15 7.886e-03 1.78 9.267e-03 -2.42
1/8 5.795e-05 2.89 2.004e-03 1.97 1.726e-03 2.42
1/16 6.176e-06 3.23 4.943e-04 2.02 2.395e-04 2.84
1/32 7.052e-07 3.13 1.226e-04 2.01 3.341e-05 2.84

5.7.5.3 Channel Problem

The second problem considered is the simulation of Stokes flow in a two dimensional

channel. The problem configuration is shown in the Figure (5.5). The classical Poiseuille

flow is characterised by a parabolic velocity profile over the cross-section of the channel.

Problem here is of finding a velocity vector field u and a pressure scalar field p. In

this case, if we specify a parabolic inflow then the same velocity profile is maintained

through the channel and it can be seen that the pressure drops in a linear fashion. The

flow is driven by a constant pressure gradient along the channel, which acts as a body
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Table 5.3. Numerical errors and convergence rates for P3 − P2 approximation of the Stokes
problem

Method h
Velocity Pressure

L2 Error L2 Rate H1 Error H1 Rate L2 Error L2 Rate

NIPG1

1
1/2 4.372e-04 2.65 8.899e-03 1.90 3.918e-03
1/4 8.097e-05 2.43 2.019e-03 2.13 7.695e-04 2.34
1/8 5.373e-06 3.91 2.763e-04 2.86 8.863e-05 3.11

1/16 3.279e-07 4.03 3.480-05 2.98 8.830e-06 3.32
1/32 2.073e-08 3.98 4.317e-06 3.01 8.166e-07 3.43

NIPG10

1
1/2 3.420e-04 2.48 7.221e-03 1.83 2.891e-03
1/4 5.132e-05 2.73 1.766e-03 2.03 9.405e-04 1.62
1/8 3.199e-06 4.00 2.435e-04 2.85 1.207e-04 2.96

1/16 1.859e-07 4.10 3.096e-05 2.97 1.257e-05 3.26

OBB

1
1/2 6.437e-04 2.37 1.072e-02 1.79 5.603e-03
1/4 1.149e-04 2.48 2.400e-03 2.15 1.182e-03 2.24
1/8 8.639e-06 3.73 3.373e-04 2.83 1.33e-04 3.14

1/16 5.696e-07 3.92 4.320e-05 2.96 1.33e-05 3.31
1/32 4.169e-08 3.77 5.387e-06 3.00 1.27e-06 3.39

SIPG10

1
1/2 1.194e-03 1.82 1.689e-02 1.73 2.024e-02
1/4 2.863e-04 2.06 3.772e-03 2.16 7.775e-03 1.38
1/8 1.791e-05 3.99 3.411e-04 3.46 6.484e-04 3.58

1/16 8.801e-07 4.34 3.379e-05 3.33 4.324e-05 3.90
1/32 1.927e-07 2.19 4.168e-06 3.01 3.408e-06 3.66

Figure 5.5: A Poiseuille flow in
a channel or between two parallel
plates. The flow is driven by a body
force acting as a constant pressure
gradient along the channel.

force. Poiseuille flow in a rectangular channel domain [0, L]× [0, H] with a parabolic

inflow boundary condition:

ux =
−4 y2

H2
+

4 y
H

(5.23)

uy = 0 (5.24)

and natural outflow condition was simulated where the length of the channel L = 5,

width H = 1 and the viscosity coefficient µ = 1.0. The plot of the velocity vectors and

pressure contours are shown in Figure (5.6). In Figure (5.7), the velocity profile at the

middle of the channel is plotted as a function of y and is compared with the analytical
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velocity ux given by Equation (5.23).

(a) Velocity Vectors (b) Pressure Contours

Figure. 5.6. Velocity and pressure field for the channel problem.
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Figure. 5.7. Channel velocity profile as a function of y. The computed solution is shown by
symbols and the analytical solution is shown by solid line.

5.7.5.4 Driven Cavity Problem

The third problem considered is the driven cavity problem in 2D, in which fluid is

enclosed in a square cavity with an unit velocity imposed in the horizontal direction on

the top boundary and no-slip condition on the remaining walls. This problem has been

widely used as test case for validating incompressible fluid dynamic algorithms. Let u

and v be the velocity in the x and y directions respectively. The upper wall (at y = 1)

moves in the positive x direction at a constant velocity of 1, while the remaining three

walls are stationary. At the two upper corners the horizontal velocity is discontinuous

and generate strong singularity in the pressure solution. This adds an extra difficulty

to the problem. These corner singularities are of great physical interest and therefore
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Figure 5.8: Geometry and boundary con-
ditions for driven cavity problem: : The
two-dimensional square cavity has no slip
boundary conditions on all walls, the flow
being driven by the top wall sliding across
the cavity whilst the side and bottom walls
are static.

driven cavity problem is regarded as a stringent test case. Steady solution evolves with

recirculating vortex within cavity, as speed of upper lid is increased secondary vortices

form in lower corners. The domain and boundary conditions of this problem are shown

in the Figure (5.8).

The stokes flow in the driven cavity was simulated and the pressure contours and

velocity field for the cavity flow are shown in Figure (5.9). The results show the symmet-

ric characteristic of the Stokes flow. The primary vortex lies vertically symmetrical and

close to the top lid and small eddies are formed in the lower corners. The singularity

in the pressure field at the two upper corners also shown in the Figure (5.9). As the

Reynolds number increases, the main vortex moves to the centre and slightly to right

and lower vortices appear to grow in size. The Reynolds number in this case was 1.

The behaviour of the horizontal and vertical component of the velocity is shown in

Figure (5.10) where the mid-plane velocity profiles in the driven cavity are plotted. In

Figure (5.10(a)) horizontal velocity along the vertical centre line is compared with the

values given in Donea and Huerta (2003).
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(a) Pressure isobars (b) Pressure singularities in the upper corners

(c) Horizontal velocity (d) Vertical velocity

(e) Velocity streamlines

Figure. 5.9. Pressure iso-lines, velocity field and streamlines for the Stokes flow in the driven
cavity. The contours show the symmetric characteristic of Stokes flow.
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(a) Horizontal velocity profile. Comparison of horizontal velocity along the
vertical line through the centre of cavity with the values given in Donea and
Huerta (2003).
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(b) Vertical velocity profile

Figure. 5.10. Mid-plane velocity profiles for the Stokes flow in driven cavity

In this Chapter, discontinuous Galerkin discretisation of the Stokes problem was pre-

sented in detail and some benchmark problems were solved to verify the implementation

of the method.
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6 Numerical Methods for Simulations on

Complex Domain

6.1 Introduction

Classical numerical methods such as finite element and finite volume require a grid

resolving the complicated boundaries of the domain. Generating such boundary fitted

or conforming grid is a highly involved process especially if coarse grids (to reduce the

number of unknowns) and high quality solution are required. Even though the mesh

generation for complex geometries has advanced significantly over the last few years,

even now it is considered as a time consuming and cumbersome task especially when

solving realistic problems in three dimensions. Mesh generation is more complicated

in cases which involve moving or evolving boundaries where it is required to fit the

evolving surfaces. Several numerical methods have been developed in the past few years

to address these difficulties by avoiding the meshing of complex domains. The main

attraction of these methods lies in the fact that they do not require a conforming grid

of the complex domain. Examples are immersed boundary method, fictitious domain

method and cut-cell methods. These methods are generally known as Cartesian (or

structured) grid based methods. There are other approaches like mesh-less (particle

based) methods that are being used as well for handling complex domains. Recently,

Engwer and Bastian (2005) introduced a new approach for the solution of partial

differential equations on complex domains. Their approach is based on the discontinuous

Galerkin discretisation of the governing partial differential equations on structured

computational grid. The focus of this thesis is on simulating flow and transport through

porous media at the pore-scale and it requires simulations on complex domains because

of the complex nature of the pore spaces. Hence methods based on structured grids

are most appealing as they provide an alternative by avoiding the meshing of complex

domains. The new discontinuous Galerkin based approach of Engwer and Bastian

(2005) is chosen for pore-scale simulations in this research. This Chapter gives a

short overview of various methods for solving PDEs in complex domain including finite

element and structured grid based methods. In particular, the new approach called

Unfitted Discontinuous Galerkin (UDG) introduced by Engwer and Bastian (2005),

which is based on the discontinuous Galerkin finite element technique is emphasised.

Few examples simulations are given to demonstrate the working of the new approach
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for pore-scale simulations.

6.2 Finite Element Methods

The standard finite element method (FEM) continues to dominate the numerical sim-

ulation of complex problems, not only due to its applicability to solve a variety of

physical problems but also due to its ability to handle complex geometry and boundary

conditions. Since the basis of every finite element method is the subdivision (often

called triangulation) of the physical domain, the approximation quality is determined

by the element attributes (such as maximal element size, presence of cusp elements)

of the triangulation, while the computational effort is determined by its number of

elements. The FEM can handle complex geometries by meshing the domain with suf-

ficient accuracy. However, if the physical domain is very complicated and contains a

lot of geometric details, then the minimal number of elements that are necessary to

resolve the domain can be enormous and substantially increases the computational

effort. The Figure (6.1(a)) is taken from (Zienkiewicz and Taylor 2001) shows a finite

element mesh for an aerofoil. As the fluid dynamics and boundary layer around the

aerofoil is considerably complex, the mesh is refined very much near the boundary to

account for such behaviour. Away from boundaries one could use relatively coarser

grid. We can see that the finite element method requires lots of elements near the

aerofoil to get a reasonable solution. Hence resolving the shape of a complex boundary

would require a very fine grid, resulting in a large number of degrees of freedom and

hence increase in the computational effort. Moreover, creating a satisfactory mesh that

conforms to the boundaries of the domain still requires significant efforts. Meshing itself

is a complex process and is an active area of research. Mesh generation algorithms for

three dimensional domains may produce poor or distorted elements in some regions

that can lead to large error in the solution. The approximation error of the finite element

method and the convergence behaviour of iterative linear solvers depend on the mesh

quality. In addition to that, in finite element methods the domain can only be subdivided

into shape regular elements (e.g. triangles, quadrilaterals, hexahedron, tetrahedron

etc.) because the finite element basis functions depend on the shape of the elements

(hence called shape functions). This restricts the use of arbitrary shaped elements in

standard finite elements. Although the hanging nodes are allowed they require special

treatment which is not straight forward in finite element methods.
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6.3 Structured Grid Based Methods

(a) Typical triangulation of an aerofoil. We can see that the grid is refined
very much near the aerofoil to get a reasonable solution (taken from Figure
1.5, page 22 of Zienkiewicz and Taylor (2001)).

(b) A possible structured grid for the same aerofoil. The structured grid is
much easier to generate than the unstructured grid.

Figure. 6.1. Unstructured and structured triangulation of an aerofoil

6.3 Structured Grid Based Methods

The structured grid based methods are an alternative to the finite element methods for

simulations on complex domains. The main idea has been to use non-boundary fitting

mesh, often a structured grid, for the simulation. The geometry of the domain is often

represented using implicit equations and is therefore independent of the grid used. As
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previously mentioned, the traditional numerical methods require a boundary conforming

mesh and the mesh generation is considered time consuming and cumbersome task

especially for large three dimensional mesh in realistic geometries. They add further

difficulties when the domain is complex and evolving. The Structured grid based

methods provide a very attractive alternative by avoiding the meshing of complex

geometries and are preferred for problems with free boundaries. A possible non-

conforming structured grid for the same aerofoil is given in Figure (6.1(b)). It can

be seen that a structured grid is much easier to generate than an unstructured mesh

and all the elements in the grid can have regular geometry (squares/rectangles/cubes).

However, since the edges or faces in the grid are not guaranteed to be on the boundary,

the traditional way of applying boundary conditions used in FEM or FVM cannot be

used. This requires special approaches for introducing the boundary conditions. The last

two decades saw various approaches being developed to handle complex geometries

based on structured grids. They essentially differ in the way the boundary conditions

are applied. In the next Section, some of these methods are briefly mentioned.

6.3.1 Immersed Boundary Methods

The immersed boundary method was first introduced by Peskin (1972) for studying the

flow of blood in the human heart. In this method, the computational domain covers the

physical domain without following the boundaries. This method requires enforcing the

boundary conditions indirectly through the use of some forcing functions. Numerous

approximation techniques have been proposed such as Fictitious domain or Embedded

domain methods which work on the same principle. The essential difference between

each other lies in the way in which the boundary conditions are imposed. For instance,

in Fictitious Domain approach, boundary conditions are imposed as constraints on

the partial differential equation. The PDEs with constraints are then solved using the

technique of Lagrange multipliers. But the disadvantage is that it results in a saddle

point problem and introduce additional unknowns. The advantage of course is that

mesh generation is much easier.

6.3.2 Composite Finite Element Method

The composite finite element method, as introduced in (Hackbusch and Sauter 1991),

was developed to improve geometric multigrid methods on domains with complicated

structures and micro structures. This approach was primarily intended as a fast iterative

solver, not as a discretisation scheme. The composite finite element method constructs

piecewise linear basis functions on the fine background mesh and truncates them at the

true boundary. Meshing is easy as structured grid can be used and computation can

be performed efficiently because multigrid methods can be used as solvers. However,
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computing the matrix entries are more difficult as basis functions contain complexity of

structure and this method need more degrees of freedom.

6.4 Mesh-free Methods

Another type of methods for solving PDEs in complex domains are the so called mesh-

free or mesh-less methods such as smoothed particle hydrodynamics (SPH) (Liu and

Liu 2003). Most mesh-free methods are pure Lagrangian in character. They use a set

of arbitrarily distributed nodes (or particles) which has a mass and velocity. These

particles are put into the flow which are influenced by other particles that are within a

certain distance from each other. SPH uses smoothed particles as interpolation points

rather than a grid and hence considered suitable for problems involving free surface and

moving boundaries. The main difference to standard finite element method is that the

domain of interest is discretised only with nodes called particles. These particles interact

via mesh-free shape functions in a continuum framework similar to finite element

methods although particle connectivity’s can change over the course of a simulation.

6.5 Discontinuous Galerkin Methods for Complex Geometry

The finite element discretisation is considered to be most suitable for problems with

complex geometries, while a finite volume discretisation is well known for its conserva-

tion properties. The discontinuous Galerkin methods combine the advantages of both

these methods into a single discretisation scheme and hence considered very suitable

for simulations on complex domains. The compactness of DG discretisation, which

only requires neighbouring information to construct inter-element numerical fluxes to

evaluate the integrals is that makes it different from finite element and finite volume

methods. One of the nice features of discontinuous Galerkin methods for numerical

simulation in complex domains is that the grid can be arbitrary. The non-conforming

grids with hanging nodes are allowed without much restriction and their treatment

is straightforward in this approach. This method allows both spatial and polynomial

adaptation. These properties make discontinuous Galerkin methods particularly suitable

for numerical simulation in complex domains with non-boundary fitting framework.

Furthermore, the shape functions can be independent of the shape of the elements

hence the use of irregular elements are possible, at least theoretically. However, in

practise there are certain difficulties when using irregular elements. For instance, the

integral evaluations when assembling the stiffness matrix require the use of numerical

quadrature rules which are defined only for shape-regular elements such as triangles,

quadrilaterals etc. Thus imposing difficulties in using arbitrary elements in a straight-

forward manner. With special means, Engwer and Bastian (2005) introduced a way
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to use arbitrary elements within the DG framework. Their approach is called unfitted

discontinuous Galerkin (UDG). In the following Section a short description of the UDG

approach is given. For a detailed understanding, we refer to Engwer and Bastian (2005;

2008), Engwer et al. (2008).

6.5.1 Un�tted Discontinuous Galerkin Method

A numerical method to approximate partial differential equations on meshes that do not

conform to the domain boundaries was developed by Engwer and Bastian (2005). The

method is conceptually simple and effectively exploits the nice features of discontinuous

Galerkin schemes. It is called Unfitted Discontinuous Galerkin (UDG) method and offer

a new approach for solving PDEs in complex domains, combining the idea of unfitted

finite elements with a discontinuous Galerkin finite element discretisation. It is based

on the observation that in discontinuous Galerkin approaches, the elements can have

arbitrary shapes. Thus the elements can be taken as the intersection of a structured

background mesh with complicated geometry. This freedom has been used to construct

a grid by intersecting structured mesh (fundamental mesh) with the complex structure.

In this framework, the boundary representation can be implicit, defined by an implicit

function (such as level set function). This method allows more efficient computations

than standard finite element methods, while still offering the benefits of the finite

element method (Engwer and Bastian 2008). Moreover, this method is locally mass

conservative and allows higher order computations.

6.5.1.1 Working Principle of UDG

Consider schematic representation of a pore-space as shown in Figure (6.2). A com-

putational structured grid covering the given pore-space geometry is defined which is

called the fundamental grid. Since the computation is performed on this fundamental

grid (or background mesh), it is defined according to the desired results and generally,

one would like to use a course fundamental grid to reduce the number of unknowns. As

we can see in the Figure (6.3), the pore-space is covered by a fixed fundamental grid

and the complex geometry cuts through the Cartesian grid cells resulting in elements

of arbitrary shapes (see Figure 6.4). The support of the finite element shape functions

are then restricted to these arbitrary forms within each element. The finite element

computational procedure involves assembling of the stiffness matrix where certain inte-

gral terms are evaluated. This requires the integration over the interior and boundary

of those irregular elements. Since the standard quadrature rules cannot be applied

directly on such elements, a special approach is developed to handle this situation. This

is accomplished by constructing a local triangulation within each irregular element by

subdividing them into easily integrable sub-elements of standard shapes using a specially

designed local triangulation (Engwer and Bastian 2008) algorithm. This procedure is
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Figure. 6.2. Schematic representation of a pore-space showing the complex domain. The figure
modified from Fahlke (2008).

called a sub-triangulation. The standard quadrature rules are then used for integrating

over these regular sub-elements. Extended marching cube algorithm has been imple-

mented in the UDG framework to provide local surface and volume triangulation. A

schematic representation of the sub-triangulation is given in the Figure (6.5).

Figure. 6.3. In the UDG approach, a fundamental grid is defined to cover the complex domain.
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Figure. 6.4. In UDG, the intersection of the physical domain with underlying Cartesian grid
leads to arbitrary shaped elements.

Figure. 6.5. A schematic illustration of the sub-triangulation in UDG. The integration over the
boundary and over the non-standard elements are done by specially designed local triangulation
(Engwer and Bastian 2008).

6.6 Implicit Representation of Complex Geometry

Simulations on complex domains and in particular pore-scale simulations require ac-

curate methods to extract surfaces without expense and loss in geometric detail for

instance from an image data. The implicit boundary representation provides a general

and flexible way to represent complex geometries as image data (scalar function). This

enables the surface extraction from CAD and image data (e.g. porous media and medical

images using CT, NMR etc.) and the surface is then represented on a Cartesian grid

with implicit functions. Most appealing thing about implicit geometry representation

is that it facilitates direct simulation in irregular pore-scale geometries with structured

grid based methods. Within the UDG implementation, the idea of implicit geometric

representation via level set functions is used to represent complex geometries. In this
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approach, a complex domain is given by

Ω = {x : φ(x) > 0}

and domain boundary by

∂Ω = {x : φ(x) = 0}(zero level set).

Here the boundary ∂Ω is given as an iso-surface of a scalar function. The UDG approach

to complex geometry is very well compatible with the techniques for surface and

volume extraction from image data. The level set methods are used to obtain the

complex boundaries and the surface is then represented on a Cartesian grid with implicit

functions. The UDG implementation uses Extended Marching cube (and Marching

tetrahedron) algorithms, which is a well known algorithm for polygonising a scalar

field. Using this polygonisation routine, a two-dimensional and three-dimensional mesh

description of the implicit surface can be obtained. The implicit surface generation in

the UDG implementation consists of the following steps:

1. Input an implicit function, I(x, y, z) = 0

2. Apply marching cube/tetrahedron method

3. Marching cube algorithm solves equation I(x, y, z) = 0 to provide mesh description

of the unknown surface

4. Generate 2D/3D mesh description

The Figure (6.6(a)) shows an artificial porous medium created using the implicit geome-

try representation. The centres and radii of randomly packed spheres in a given domain

are generated using an open-source program by Skoge et al. (2006). In this program,

one can specify the extend of the domain and the number of spheres to be packed. The

implicit function to represent such a sphere packing is

φ(x) = min
k

(|x− xk|2 − r2
k)

where xk and rk are the centre and radius of kth sphere respectively. Now,

x : φ(x) = 0

gives the boundary (surface of spheres) of the sphere packing. Another example showing

a packing of cylindrical objects to represent an industrial porous medium like a porous

diffusion layer (PDL) (see Figure (2.1(b))) of PEM fuel cells is given in Figure (6.6(b)).

Such idealised porous medium has been used for numerical studies of flow and transport

through PDL of PEM fuel cells (Van Doormaal and Pharoah 2008).
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(a) An artificial porous medium made of 100 spheres
packed randomly in a unit cube.

(b) Idealised representation of PDL of a PEM fuel cell
made by randomly packed cylindrical objects. Such
idealised porous medium has been used for numerical
simulation of flow and transport through PDL of PEM
fuel cells (Van Doormaal and Pharoah 2008).

Figure. 6.6. Examples of Implicit representation of complex (irregular) geometries on a
Cartesian grid.

6.7 Results of Numerical Experiments Using UDG

The unfitted discontinuous Galerkin (UDG) scheme which is realised as a separate

module in DUNE (Engwer and Bastian 2008) has been used in this thesis for handling

complex pore-space geometry. The discontinuous Galerkin discretisation of the Stokes
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equation was implemented within the UDG scheme in DUNE and used for the solution

of pore-scale flow problems where Stokes equation is solved to obtain the pore-scale

velocity field. In this Section, results of numerical experiments using UDG are presented.

6.7.1 Flow Around a Cylinder

Consider the Stokes flow around a cylinder in 2D where the domain is a unit square.

The geometry of cylinder (in 2D it is a circle) is represented by a level set function as

explained before (6.6). The geometry is represented on a grid level (geometry level),
where mesh size is denoted by hg. Here hg = 1/64, that is, the unit square is refined

globally 6 times and level set is defined on the finest level. The grid level on which the

computation is done is denoted by simulation level. The Figure 6.7(a) shows the cylinder

geometry in 2D and the corresponding grid where the circle in red colour is the boundary

of the geometry. The Figure 6.7(b) shows the simulation grid (in blue) along with the

grid where geometry is defined. A zoomed picture showing the cylinder boundary and

the triangulation from the marching cube algorithm is shown in the Figure 6.7(c). The

Figures (6.8) and (6.9) show the solution for the successive refinement of the grid

starting from a course level of 1 to a fine level of 6. As we can see from the Figures,

the solution converges and gets smoother as the grid is refined. It should be noted

that the UDG approach gives reasonable solution even when the computational grid is

coarse. In this way, sufficiently accurate solution can be obtained with lesser number

of unknowns. This is an advantage especially when pore-scale simulations are to be

carried out because sufficiently accurate solution can be obtained with less number

of degrees of freedom. In traditional methods like standard finite element and finite

volume, the number of degrees of freedom depends on the accuracy of geometrical

approximation because finer mesh and consequently more unknowns are required for

good approximation of the complex boundaries. However, with the UDG approach, the

number of unknowns in a way is independent of the geometrical approximation.

6.7.2 Numerical Up-scaling Using UDG

The numerical simulations of fluid flow and transport in porous media at the continuum

scale require the knowledge of effective parameters such as permeability, dispersion

coefficients and capillary pressure/saturation relationships. The knowledge and reliable

prediction of these effective properties are of great interest in contaminant transport

and oil recovery processes. These macroscopic parameters are usually obtained by

laboratory or field scale experiments, which are often difficult to conduct or time

consuming. Nowadays detailed measurements of the pore-scale structures are possible,

thanks to the advances made in the experimental imaging of porous media. As the

governing equations on the pore-scale are well known, macroscopic parameters can

be obtained directly from the pore-scale geometry by numerical upscaling. In this
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(a) Geometry of cylinder (in red) in 2D and the
grid on which the geometry is defined.

(b) The simulation (blue) and geometry (black)
grid for the flow around cylinder.

(c) Zoomed picture around the cylinder (red) showing the local
triangulation.

Figure. 6.7. Simulation and geometry grids for the Stokes flow around a cylinder.
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(a) Level 1

(b) Level 2

(c) Level 3

Figure. 6.8. Grid convergence test for flow around a cylinder (Level 1 to 3)
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(a) Level 4

(b) Level 5

(c) Level 6

Figure. 6.9. Grid convergence test for flow around a cylinder (Level 4 to 6)
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Figure 6.10: Boundary conditions for
the numerical upscaling problem: pres-
sure is prescribed at the inlet and out-
let and No-flow condition on other
sides of the domain. No-slip condition
was given on the grains.

section, numerical upscaling examples are considered to show how UDG together with

the DG implementation of the Stokes equation can be used for simulation on complex

geometries. For more details we refer to Engwer et al. (2008).

Let M be a porous medium consisting of pore phase P and a solid phase S. Now

consider a single phase fluid flow through M. At the pore-scale, the problem to be solved

is that of slow laminar flow described by steady state Stokes equation in the pore space

P with appropriate boundary conditions to obtain the permeability of the medium. On

the pore-solid interface ∂P, the no-flow or no-slip boundary conditions are applied. A

schematic representation of the computational domain showing the boundary conditions

is given in Figure (6.10). A macroscopic pressure gradient is imposed along the x axis

by prescribing the pressure at the inlet and outlet of the domain. The no-flow boundary

conditions are applied on other external boundaries of the domain. As usually done,

the no-slip condition is given on the grain (spheres) surfaces. Then the Stokes equation

is solved on the pore-scale to obtain the pore-scale velocity field and pressure within

the pore-spaces. Finally using Darcy’s law the macroscopic permeability tensor can be

computed from the pore-scale velocity field for a given pressure gradient. Recalling the

Darcy’s law from Section (2.2.3):

〈ud〉 = −κ
µ
∇P (6.1)

where ∇P is the applied pressure gradient, ud is the Darcy velocity, µ is the dynamic

fluid viscosity (for instance the coefficient of viscosity of water at room temperature is

taken as 1 · 10−3Pa.s) and κ is the permeability tensor.

The permeability tensor is given as

κ =

 κxx κxy κxz

κyx κyy κyz

κzx κzy κzz


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The Darcy velocity ud is obtained as the volume averaged velocity over the system,

ud =
1
|Ω|

∫
u dx

where |Ω| is the volume of the porous medium. ud, the Darcy velocity (or often referred

to as the Darcy flux), is not the pore-velocity (pore velocity is the one which fluid

experiences when flowing through the pores). The Darcy velocity ud is related to the

pore-scale velocity u by the porosity (φ) as

ud = u φ.

The porosity φ is given by

φ =
|Ωp|
|Ω|

where |Ωp| is the volume of the pore-space. The average pore-velocity ū is obtained as

ū =
1
|Ωp|

∫
u dx

Now, assuming the permeability tensor to be an isotropic diagonal tensor, the component

xx in the main flow direction is computed using the Equation (6.2)

κxx = −µ ūφ
∇p

(6.2)

6.7.2.1 Permeability for Simple Cubic (SC) Sphere Packing

In this section numerical results for the permeability of cubic array of spheres are

compared with analytical results. We first considered the case of flow through a simple

porous medium, i.e., a periodic simple cubic (SC) array of spheres of equal radii as

depicted in the Figure (6.11(a)). The theoretical or analytical fluid permeability for

such periodic array of spheres was given by Sangani and Acrovos (1982). For periodic

array of spheres, they determined solutions of the Stokes equations in series formulation,

whose coefficients are determined numerically. We computed the flow field through the

SC sphere packing using the the prescribed pressure formulation (Equation (5.17)) of

the Stokes equation as explained in the Section (5.6). At the inlet and outlet, pressures

were prescribed and the imposed pressure difference caused the flow. On all other

macroscopic boundaries, no flow boundary conditions were given. Also on the sphere

surfaces, no flow condition was imposed. The Figure (6.12) shows the velocity field

through the simple cubic sphere packing where red colour shows the high velocity

magnitude. Once the pore-scale velocity field was obtained, the permeability in the

main flow direction was computed using the equation (6.2). The simulation results
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(a) Simple Cubic Packing (SC) (b) Face Centred Cubic Packing (FCC)

Figure. 6.11. Typical pore geometry of cubic array of spheres where Grey and White area
represent fluid and solid regions respectively.

were compared with the analytical results given by Sangani and Acrovos (1982) for

different ordered sphere packing (SC and FCC) and good agreement was obtained.

In particular, permeability values were computed for various volume fraction of SC

packing and errors were estimated. Analytical and computed permeabilities are listed in

Table (6.1) for various values of ψ = c
cmax , which is a scaled sphere volume fraction

where c =
(

4πr3

3

)
/L3 ( r is the radius and L = 1 is the dimension of cube) and

cmax = π/6 corresponds to the case when the spheres are touching each other. A

corresponding plot is given in Figure (6.13). The Table (6.2) shows the theoretical

and simulated values of permeability for SC and FCC packing for the case of closed

packing (where spheres are just touching each other). We note that the values are in

good agreement with those obtained analytically by Sangani and Acrovos (1982).

Volume
fraction
(ψ)

Porosity
κeff (Sangani and
Acrovos 1982)

κeff (Computed)
Relative
Error
(%)

0.1 0.99951 9.1107e-1 1.0169 11.61
0.2 0.99587 3.8219e-1 4.0158e-1 5.07
0.4 0.96661 1.2327e-1 1.2578e-1 2.03
0.6 0.88709 4.4501e-2 4.4882e-2 0.85
0.8 0.73 1.3197e-2 1.3208e-2 0.08
1.0 0.478 2.5203e-3 2.5159e-3 0.17

Table 6.1. Comparison of permeability computed for a simple cubic sphere packing with
analytical results.

A grid refinement study was also done for the FCC packing and we observed that the
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(a) Velocity variation at the inlet (b) A clipped section showing velocity field

Figure. 6.12. Velocity field through simple cubic sphere packing. The red and blue colour shows
high and low velocity region.
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Figure. 6.13. Permeability computed for a periodic cubic sphere packing packing for various
volume fraction compared with analytical solution given by Sangani and Acrovos (1982).

Type φ κanalytical κsimulated

FCC 0.259 8.68e-05 8.69e-05
SC 0.476 2.52e-03 2.51e-03

Table 6.2. Comparison of theoretical and simulated permeability for cubic sphere packings
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Figure. 6.14. Permeability computed for a FCC packing converging to the analytical value on a
relatively coarser grid. The mesh size is represented by h.

permeability value is converging to the theoretical value even on a relatively courser

grid. The plot is given in the Figure (6.14).

6.7.2.2 Permeability for a Random Sphere Packing

A more complex problem of finding permeability of an artificial porous medium (where

the geometry is much more complex than the simple cubic array of spheres) by numerical

upscaling is considered next. The artificial porous medium was generated by randomly

packing 100 spheres in a cubic box (Figure 6.15) where the sphere packing data (centre

and radius of each sphere) was obtained by an open source code by Skoge et al. (2006).

The geometry of this porous medium is then generated using the idea of implicit

geometric representation as discussed before. The packing geometry (100 Spheres

of radii r = 0.106 randomly placed inside a unit cube) is given as a scalar function

on mesh with mesh size hg = 1/64. The space between the spheres is the pore-space

P and the spheres constitute the solid phase S. The permeability in the main flow

direction has been computed and a grid refinement was carried out to learn how the

permeability value converges as the mesh is refined. Indeed the permeability converges

as the grid is refined and we can observe (see Figure 6.16) that even with coarser grid

the permeability was obtained with sufficient accuracy. This is an advantage of using

UDG where even with coarser computational grid the complex geometry problem can

be solved with sufficient accuracy. Finally, the porosity’s of the medium were changed by

shrinking or expanding the spheres (see Table (6.3) for the values) and permeabilities
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Figure. 6.15. Artificial porous medium made of randomly packed spheres where 100 spheres of
equal radii are placed randomly in a unit cube. In this setup, the spheres are shrinked such that
they are not touching each other.

were computed for different porosity values of the artificial medium. The simulation

results on two successive course grid levels are shown in (Figure 6.17) and it can be

seen that qualitatively the difference is very small and the nature of variation in the two

levels is similar.
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Figure. 6.16. Permeability for the artificial porous medium computed on various grid levels.
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r 0.0318 0.0530 0.0742 0.0954 0.1060 0.1166
Φ 0.9886 0.9432 0.8437 0.6732 0.5534 0.4161

Table 6.3. The radii of spheres and corresponding porosity for the random sphere packing.
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Figure. 6.17. Permeability computed for different porosities of random sphere packing on two
successive grid levels. The porosity (φ) values were changed by varying the sphere radii (r).

It has been proven mathematically that (see Bear (1972)) Darcy’s law for flow in

porous media has analytical foundation where it can be derived from Stokes equations.

With the recent advancements in porous media imaging and numerical discretisation

schemes such as UDG, it is now possible to derive macroscopic parameters such as

permeability by simulating fluid flow at the pore-scale modelled by the Stokes or Navier–

Stokes equations. In this Chapter, it has been shown through examples that indeed it is

possible to compute permeability by simulation on the pore-scale where UDG has been

used to solve Stokes equation in artificial porous media like random sphere packing.
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7 Numerical Simulation of Transport

Through Porous Media

7.1 Introduction

The partial differential equation (PDE) describing the non-reactive or passive solute

transport in porous media can be solved analytically or numerically. Since analytical

solutions are available only for simple problems, the PDEs have to be approximated

numerically for the solution of realistic problems. However, the solute transport equation

offers some difficulties to solve numerically because of its dual (hyperbolic and parabolic)

character. The mathematical properties of the transport equation (so called advection–

dispersion equation (ADE)) change according to the terms in the equation which are

dominant: when solute transport is dominated by advective transport, as is common

in many field problems, then the ADE approximates to a hyperbolic type (e.g. in high

permeability zones the velocity may be very high and the transport processes will be

advection dominated). But if a system is dominated by dispersive fluxes such as in

areas where fluid velocities are relatively low (e.g. in low permeability zones or near

stagnation points, the velocity may be close to zero and the transport processes will be

dominated by dispersion processes) the equation becomes parabolic in nature . Hence

for the same system the governing equation may have hyperbolic nature in one area at

a time and more parabolic in another area. This mixed character causes difficulties for

the solution of the advection–dispersion equation.

Numerical solution of the advection–dispersion equation has been an active area

of research for past three or four decades. Most numerical methods for solving the

advection–dispersion equation can be classified into Eulerian, Lagrangian and mixed

Eulerian–Lagrangian methods (Zheng and Bennett 2002). The common solution tech-

niques based on Eulerian approach are finite difference, finite element and finite volume

methods. They are well suited for solving parabolic equations like the flow equation or

the diffusion equation. However, for advection-dominated problems grid-based methods

suffer from numerical dispersion and numerical oscillations (Zheng and Bennett 2002).

These problems can be avoided by imposing stability constraints such as restricting the

grid spacing and size of time steps. Alternatively, Lagrangian methods can be used

to avoid numerical problems of grid-based methods to solve the transport equation.

Lagrangian methods offer interesting solution alternative to Eulerian methods mainly
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due to their grid-free approach and their appealing physical interpretation. In contrast

to Eulerian methods, the transport equation is not solved on a fixed grid but using a

large number of moving particles. The random walk particle tracking (RWPT) is a pure

Lagrangian based approach for numerically solving the ADE, and is used in this thesis.

RWPT is well suited for transport processes where advection is dominant because it does

not introduce spurious numerical diffusion. This Chapter gives a detailed description of

the random walk particle tracking (RWPT) method.

7.2 Eulerian and Lagrangian Methods

A brief overview of Eulerian and Lagrangian methods is given next. The Eulerian meth-

ods such as finite difference, finite element and finite volume methods consist of solving

the transport equation in a fixed spatial grid. They are generally mass conservative and

handle dispersion dominated problems efficiently. However, for advection dominated

problems that exist in many practical situations, an Eulerian method is susceptible to

excessive numerical dispersion or artificial oscillations (Zheng and Bennett 2002). If the

discretisation is too coarse, oscillations and numerical diffusion may yield poor or even

incorrect solutions. These types of errors may be controlled by using a sufficiently fine

spatial discretisation of the computational domain and small time steps. Consequently,

the computational effort required may become prohibitive.

In Lagrangian methods such as RWPT, the partial differential equation governing

solute transport is not solved directly. Instead, a large number of moving particles are

used to approximate both advection and dispersion. They provide an efficient solution to

advection dominated problems by essentially eliminating numerical dispersion (Kinzel-

bach 1990, Tompson and Gelhar 1990, Delay et al. 2005, Salamon et al. 2006). Since the

RWPT method is not a direct numerical solution to the governing differential equation,

it does not suffer from numerical dispersion (LaBolle et al. 1996). However, the lack

of a grid may lead to computational difficulties. The velocity interpolation needed in

particle tracking may also result in local mass balance errors and incorrect solutions

(LaBolle et al. 1996). In addition, the concentration solution obtained by a Lagrangian

method generally is not smooth compared to Eulerian solutions. The advantages and

disadvantages of Lagrangian methods (RWPT) compared with Eulerian methods are

as follows (LaBolle et al. 1996; 1998, Hassan and Mohamed 2003, Delay et al. 2005,

Salamon et al. 2006):

Advantages

– Advection dominated transport can be simulated without introducing numer-

ical dispersion and is easy to implement in a simulation code.

– By definition, the particle tracking procedure is perfectly mass conservative
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– In principle, they do not require a space discretisation (grid), if velocities are

known everywhere. Hence problems associated with the grid based methods

are not present.

– The random walk procedure also has the advantage of being an intuitive

representation of the physical dispersion process.

– Because of their intuitive and parallel nature, the algorithm is very suitable

for parallel computing.

Limitations or Disadvantages:

– The main problem with particle tracking methods is the random fluctuations

in the computed concentration. Although these fluctuations can be minimised

by using large number of particles, improvements in the results are not of the

same order as the increase in the computational costs (Hassan and Mohamed

2003, Salamon et al. 2006) because fluctuations are proportional to the

square root of the number of particles.

– The random walk methods become less efficient computationally and require

more computer memory and storage.

– Numerical accuracy is also affected when relatively large time steps are

used because with large time steps, a particle may fail to consider local flow

characteristics. Hence the time step must be chosen such that each particle

is able to correctly sample the flow properties of each cell. It should also be

noted that very small time steps lead to cumbersome calculations.

Another promising approach for transport modelling is the mixed Eulerian–Lagrangian

methods. The mixed Eulerian–Lagrangian methods (e.g. Method of characteristics,

Eulerian–Lagrangian Localised Adjoint Method (ELLAM) (Celia et al. 1990)) attempt

to combine the advantages of the Eulerian and Lagrangian methods by solving the

advection term (hyperbolic part) with a Lagrangian approach such as particle tracking

and the dispersion term (parabolic part) with an Eulerian approach such as finite

elements.

In this thesis, we use a random walk particle tracking, a pure Lagrangian based

method for solving the advection-dispersion equation. The next Section discusses the

principle of this method in detail.

7.3 Random Walk Particle Tracking Methods

The random walk particle tracking (RWPT) method is a typical example of a Lagrangian

approach and has been used for the last few decades for the solution of transport

problems not only to applications in porous media but also in other disciplines such as

atmospheric sciences. Plenty of literature (Kinzelbach 1990, LaBolle et al. 1996, Roth

and Hammel 1996, LaBolle et al. 1998, Delay et al. 2005) are available on this subject
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and recently Salamon et al. (2006) provided a detailed overview of RWPT methods. In

such methods, instead of solving the transport equation directly, the transport of solute

mass by a large number of moving particles is considered. As mentioned previously,

traditional Eulerian approaches present a number of problems when applied to advection

dominated flow regimes. They generally require very fine discretisation of the transport

domain to overcome problems of unstable numerical solutions and/or artificial diffusion.

If the discretisation is too coarse, oscillations and numerical diffusion may produce poor

or even incorrect solutions. The main attraction of RWPT methods is that they are found

to be free of numerical dispersion and particularly effective and efficient for handling

advection dominated transport problems. Hence at high Péclet numbers, numerical

dispersion does not cause any convergence issues. Moreover, they are physically intuitive

methods.

7.3.1 Basic Concepts

The basic idea of RWPT is that the mass transport in porous media may be considered

as an average result of the movements of a large number of solute particles. A large

number of passive or non-reactive particles are introduced into the flow field and move

them by an advective motion along the streamlines and subsequent random diffusive

motion. The random displacements allow to incorporate the effect of diffusion which

make fluid particles to jump between different streamlines. In this way, each particle is

engaged in two kinds of movements: one is advection (represented by the movement of

the solute particle with an average velocity in the flow field) ; the other is dispersion,

which may be seen as a random fluctuations around the average movement. The

movement of the solute particles are then traced using appropriate methods. As long as

the number of solute particles is large enough, mass transport in porous media can be

correctly described (Zheng and Bennett 2002). These particles correspond to the mass

concentration in an Eulerian method and since particles in the random walk method

are not lost nor destroyed in the process, the method is mass conservative. Finally

from the spatial equilibrium distribution of the particle ensemble, one can reconstruct

common Euler concentration profiles. In principle, a grid is not necessary for the RWPT

method. However, in practise, a grid may be employed for obtaining the velocity at

random particle locations (for the interpolation of velocity at vertices to arbitrary particle

locations). In addition, interpretation of the particle distribution as a concentration

field may require a grid or some other means for converting the spatial distribution of

particles to concentration values.

The well known macroscopic transport equation of a conservative solute in a porous

media at the REV scale is given by the advection–dispersion Equation (2.21). Recalling
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the equation as

∂C

∂t
+∇ · (uC) = ∇ · (D · ∇C)

where D is the dispersion coefficient tensor, C is the concentration, t is the time, u

is the velocity vector obtained from the steady state flow equation. This represents a

second order partial differential equation, which can be solved using RWPT method

where each particle is moved according to the following stochastic differential equation

(Zheng and Bennett 2002)

Xi(t+ ∆t) = Xi(t) + S(t) +Z(t)

where Xi(t) is the position vector of the ith particle at time t, S(t) is the advective

displacement and Z(t) is the random displacement associated with dispersion. In this

process, between time t and t+ ∆t, a particle i moves from position Xi(t) to Xi(t+ ∆t)
by advection and diffusion. The advective displacement is given by

S(t) = u(t) ·∆t

where u(t) is the local velocity at t. The diffusive displacement is given by

Z(t) =
√

2 ·Dm ·∆t · ξ (7.1)

where ξ is a a vector of length
√

dim with a random direction. The dim is the space

dimension. The ξ contains dim component random numbers drawn from a Gaussian

distribution of zero mean and unit variance (Maier et al. 2000, Jimenez-Hornero et al.
2005).

7.3.1.1 Advective Displacement

Since the velocity field is known, a numerical integration scheme can be used to move

particles from one position to another to approximate the advection of the solute

particles where the movement is described by an ordinary differential equation (ODE)

of the form

dx

dt
= u(x, t).

This can be solved using simple integration schemes such as the simplest Euler’s integra-

tion step:

x(t+ ∆t) = x(t) + u(x, t) ·∆t.
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For particles located in areas of relatively uniform velocity, the first order Euler algorithm

have sufficient accuracy. However, for particles located in areas of strongly converging or

diverging flows, the first order algorithm many not be sufficient unless ∆t is very small.

In such cases, a higher order schemes like Heun’s method (2nd order Runge–Kutta) may

be used. Heun’s scheme:

x∗(t+ ∆t) = x(t) + u(x, t) ·∆t

x(t+ ∆t) = x(t) +
1
2
{u(x, t) + u(x∗, t)} ·∆t

7.3.1.2 Dispersive Movement

Since the spreading of the solute mass caused by dispersion can be described by a

Gaussian or normal distribution (Bear 1972, Zheng and Bennett 2002, Roth 2007), a

particle displacement is considered as a normally distributed random variable whose

mean is the advective movement and standard deviation is the dispersive movement.

The dispersive component, Z(t), corresponds to the vector whose module is constant

and equal to
√
dim where dim is the number of dimensions. For a given time step ∆t,

the random direction of Z(t) follows a Gaussian probability distribution function with a

mean value of zero and a variance of 2Dm∆t. The dispersive displacement Z(t) is then

given by

Z(t) = N(0, σ2)

where N(0, σ2) is a normally distributed random number with zero mean and
√

2Dm∆t
as standard deviation. The values forN(0, σ2) can be generated through random number

generator (e.g. Press et al. (1993)). Hence for each time step, we assume that a particle

i first moves a distance of u∆t according to the advection and makes a random walk

along an arbitrary direction. The distance of the walk is
√

2Dm∆t ξ. Thus the total

displacement of the particle i is

u∆t+
√

2Dm∆t ξ. (7.2)

The procedure is schematically shown in Figure (7.1). The total displacement of a

particle i, in a given time step ∆t is thus given by

Xi(t+ ∆t) = Xi(t) + u(t) ·∆t+
√

2Dm∆t ξ (7.3)

This procedure is repeated for a large number of solute particles. Their displacements

are different because the second term of the equation (7.2) is stochastic. Finally from

the equilibrium distribution of particle ensemble, the dispersion coefficients can be

determined using the method of moments as described in the next Section.
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Figure 7.1: Two-dimensional random
walk of a solute particle. The position
of the particle vary due to advection and
dispersion in a given time step. Disper-
sion step allows particles to cross differ-
ent streamlines.

7.3.2 Method of Moments

The spatial moments serve as a simple physically meaningful description of overall

solute concentration behaviour. The method of moments can be used to study the

temporal behaviour of dispersion coefficients (both longitudinal and transverse) and to

evaluate their asymptotic value when time becomes infinite (or for very longer duration)

(Kitanidis 1988, Roth 2007). Usually only the first three moments are considered: the

zeroth moment represents the total solute mass for the concentration profile, the first
moment corresponds to the location of the centre of mass of the solute and the second
moment corresponds to the spreading of the solute concentration around the centre of

mass. Let x be the coordinates of the computed trajectory of a particle and let Np be

the number of particles. As long as the particles are in the computational domain, the

total mass is constant. The centre of mass of the solute distribution in the longitudinal

direction is approximated by the first moment as

〈x(t)〉 =
1
Np

Np∑
i=1

xi(t)

and the average velocity of the centre of the solute mass is determined by

〈u〉 = 〈x(t)〉/t. (7.4)

The spread of mass (spatial variance) around 〈x(t)〉 is approximated by the second

moment as

var(x(t)) =
1
Np

Np∑
i=1

xi(t)2 − 〈x(t)〉2.

The variance is usually represented by σ2, where σ is the standard deviation. Now using

the central limit theorem (Roth 2007), one can estimate the average displacement of
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the solute particles (Jimenez-Hornero et al. 2005) as

〈x(t)− x(t0)〉 = 0

and the square average displacement

〈[x(t)− x(t0)]2〉 = 2Dm(t− t0)

where t0 is the initial time and 〈·〉 represents the average operator. When both advection

and diffusion processes are considered together, the dispersion coefficient Deff replaces

the diffusion coefficient Dm. The calculated second spatial moment of the solute about

the centre of mass (i.e. spatial variance) over time allows estimation of the effective

dispersion coefficient, Deff. The temporal longitudinal (and transverse) dispersion

coefficient is then defined by

Deff(t) =
1
2
dσ2

dt
(7.5)

where σ2 is the spatial variance with time t. Using the RWPT, the second moment σ2 can

be estimated easily from particle displacements and the time derivative of the spatial

variance (where variance is approximately proportional to time) yields the dispersion

coefficient. The variance is computed according to

σ2(t) =
Np∑
i=1

(∆xi − 〈xi〉)2

and

∆x = x(t)− x(t0)

where x(t) is the solute particle coordinates at time t. If dσ2

dt is constant, Fick’s law is a

valid model for the dispersion process.

7.3.3 Evaluation of Concentration

The solution of the advection–dispersion equation by the random walk method provides

the discrete particle displacements (or positions) and not the concentration values. The

concentration is represented by the density of moving particles at any particular time

and usually it is evaluated on the underlying computational grid (finite element or finite

difference) from which the flow solution is obtained. Even though no grid is needed

for the RWPT method, interpretation of the particle distribution as a concentration

field may require a grid or some other means for converting the spatial distribution

of particles to concentration values. Hence it is necessary to locate the cell indices of
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any particle in the computational domain. If the grid is regular it is straightforward to

convert particle coordinates to cell indices. When unstructured grid is used, locating a

particle and getting the cell index would turn out to be a complicated procedure. Since

we are using the new UDG approach based on the structured grid to obtain the flow

field, locating the particle position and corresponding element index is much easier. The

concentration associated with a computational cell can be calculated from arithmetic

averaging. Assuming the number of particles in the cell or element e at time t is Ne, the

concentration for the cell at time t can be estimated as

Ce(t) =
1
Ve

Ne∑
p=1

mp

where mp is the mass of the pth particle within the cell e and Ve is the volume of the cell.

It should be noted that the number of particles used in the model has a great influence

on the computation of concentration values. Since spreading of the solute is affected by

the random component, two particles at the same initial location will most likely follow

different paths. Hence a small number of particles may not model the spreading of the

solute appropriately resulting in incorrect estimates of the concentration. Therefore

a a large number of particles is required for a particle tracking model to give a better

solution and as a result this considerably increases the computational costs.

7.3.4 Velocity Interpolation

The numerical implementation of random walk particle tracking is relatively very easy

with one exception that it requires the velocity to be known everywhere in the computa-

tional domain. Due to the random steps needed to represent the dispersion behaviour,

the particle may jump to anywhere in the domain and for the subsequent movement

the velocity at the current arbitrary position is required. Usually when solving the flow

equation using numerical methods, the resulting velocity field is given as a discrete point

information, i.e. velocity is known only at some grid points (vertices) and some kind of

interpolation is needed to obtain the velocity values at these arbitrary locations. Since

this interpolated velocity should fulfil the local fluid mass balance at any location and the

local solute mass conservation at any grid cell interface, the interpolation should be done

carefully. The interpolation of the velocity from the known points to particle position is

widely done using the linear and bilinear interpolation schemes. Furthermore, when the

particle tracking is done on non-uniform or unstructured grids (usual finite element or

finite volume grids) locating the grid cell containing the particle and interpolation of

velocity are not an easy procedure (Chen and Pereira 1999, V. and C. 1999, Chordá et al.
2002, Pokrajac and Lazic 2002). In this case, there should be a special way to identify

the current location of the particle and is a time consuming factor, which is necessary

after each integation step. This procedure turns out be easy when a structured grid is
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used, but for irregular grids a non-local cell search is needed for every evaluation. In

fact, one advantage of the discontinuous Galerkin based method (UDG) used in this

thesis is that it is based on a structured grid. Moreover, since the solution is represented

within each element as a polynomial approximation the velocity field at any point inside

an element can be found easily. Another advantage is that the DG based scheme is

locally and globally mass conservative.

7.3.5 Boundary Conditions

When solving the advection–dispersion equation in complex porous media, the solid

boundaries have to be dealt properly. This is in particular crucial when using RWPT

method as improper boundary condition can significantly reduce the accuracy of the

simulation. On the solid boundaries, it is natural to apply the no-flux boundary condi-

tions for the solute particles, implying that no mass is able to pass through the solid

surfaces of the porous medium. However, implementing the no-flux boundary condition

is not easy and can affect the quality of the solution (Salles et al. 1993, Maier et al.
2000, Freund et al. 2005). Although the random walk approach has been used for

the simulation of transport processes for a long time, there is no proper agreement on

the correct implementation of no-flux boundary conditions when using particle based

methods. Several approaches have been used in the literature to handle a particle hitting

a solid boundary. The following are some of the major approaches (Szymczak and Ladd

2003):

1. Specular reflection

The trajectory X(t) of a solute particle undergoing specular reflection on a plane

defined by the unit normal vector n̂ is given by

X(t+ ∆t) = R.[X(t) + S(t) + Z(t)], (X(t) + S(t) + Z(t)) /∈ Ω

where R = 1−2n̂n̂ is the mirror reflection operator and Ω is the domain. Basically,

if a particle hit the boundary ∂Ω with a velocity vector L then the reflected vector

L′ is given by

L′ = 2 ∗ (L · n̂) ∗ n̂−L

where n̂ is the normalised normal vector on the boundary/plane, ∗ is the scalar

multiplication operator and · is the dot product of two vectors.

2. Rejection

In this approach, a move is rejected when the particle hits the boundary and the

particle remains at its previous position for that time step. The problem with this

approach is that the particles near the solid surfaces move much slower than those
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in the bulk and would result in the tailing in the breakthrough curve. When the

pore space is narrower more number of particles hit the boundary and moves get

rejected. Hence they tend to remain near the surface and may accumulate time

delays.

3. Multiple rejection

As for the rejection condition, a move is rejected when a particle crosses the solid

boundary and new moves are tried until a move is within the pore-space (that do

not cross the solid boundary). The problem arises when particles are in a narrow

region of pore-space where almost every move has a chance to hit the boundary.

4. Interruption (Salles et al. 1993)

In this procedure, the particle stops at the boundary and its clock is incremented

by γ∆t with γ given by

X(t+ γ∆t) = X(t) + γ(S(t) + Z(t)) ∈ ∂Ω

For the remainder of the time step, ∆t′ = (1− γ)∆t, the particle moves away from

boundary in a new randomly chosen direction using a sole diffusion step. In this

condition, in fact the movement is the results of more random components which

increases the variance of particle’s displacement and overall displacement.

Rage (1996) used the rejection approach while Salles et al. (1993) and Maier et al.
(2000) used the interruption method. Freund et al. (2005) used a combination of

step by step movement with a simple reflection in which if a particle would end up

in a solid, it is moved to the surface first and then using a sole diffusive step into the

bulk fluid. Szymczak and Ladd (2003) has investigated different boundary conditions

and reported that the specular reflection implementation seems to implement the no-

flux boundary condition. They also showed that specular reflection condition is able to

preserve an initially uniform particle distribution in the presence of reflective boundaries.

Hence in the current work, the specular reflection boundary condition has been used

to implement no-flux boundary condition for the transport simulation. This boundary

condition has been tested with the Taylor-Aris dispersion (see Section (7.4.1)) between

two parallel plates and results were obtained with smaller errors. It should be noted that

in cases where more solid boundaries are near to each other, a particle lying between

the surfaces might undergo multiple reflection in a given time step. This is particulary

true for pore-scale problems where particles may undergo multiple reflections in narrow

pore channels.
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7.4 Implementation and Testing

The present implementation of random walk particle tracking algorithm is based on

Roth and Hammel (1996) in which the movement of a single particle is considered and

the movement is broken into a series of steps with duration ∆t. At each step the particle

is advected to represent the movement due to the average flow field, and then randomly

displace it to represent diffusion or dispersion. This two step process moves the particle

to a new location (see Figure (7.1)), where the velocity is recalculated and the process

is repeated over and over again monitoring the particle’s location as a function of time

until the desired time is reached or particle reached the outlet of the domain. For a

cloud of particles, the process is repeated for each particle. The simplest advection

step is the Euler method. However, in the current implementation the higher-order

Heun’s predictor corrector algorithm was used as it is more accurate (Szymczak and

Ladd 2003). Heun’s method is a two-stage Runge-Kutta method where the advective

displacement is given by

S(t) =
1
2
{u(X(t)) + u(Xp(t+ ∆t))}∆t

where superscript p denote a predictor step. The predictor step for Xp is an Euler step.

The Heun’s method is weakly second order convergent when diffusion coefficient is

independent of spatial position. The total displacement for a single time step is then

constructed according to

Xi(t+ ∆t) = Xi(t) +
1
2
{u(X(t)) + u(Xp(t+ ∆t))}∆t+

√
2Dm∆t ξ. (7.6)

where the last term represents the random displacement component. The random

displacement component requires a model of diffusion or dispersion and it is very easy

to implement the random walk for molecular diffusion because the diffusion coefficient

is typically both isotropic and homogeneous; that is, it is simply a constant scalar. At the

pore-scale, one only have to consider random movement due to molecular diffusion. The

random displacements Z are generally based on a Fickian model which yields Gaussian

distributed random displacements. For that one require a random number generator

that will generate the Gaussian random numbers given the mean and variance (standard

deviation squared). In the present implementation we have used a random number

generator from Press et al. (1993).

In this work, the RWPT was carried out using the Heun’s method with variable or

adaptive time step. Adaptive time steps were implemented to avoid unnecessary smaller

steps by adjusting the time step according to the magnitude of the local velocity during

the simulation. The time step is also constrained by the grid size h such that the largest

possible particle displacement in one time step is always less than h/2. In this way, one

can make sure that a particle would sample the local velocity field without jumping
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over to longer distance. The velocity required by the particle tracking procedure was

obtained by the new UDG approach as explained in the Section (6.5.1). Since the DG

schemes can provide solutions on element level, there was no need for interpolating the

velocities to arbitrary locations, instead, the velocities at the arbitrary locations inside

elements can be directly computed from the DG solution coefficients.

7.4.1 Taylor-Aris Dispersion Between Parallel Plates

In this section the process of Taylor-Aris dispersion often known as Taylor dispersion

(Taylor 1953; 1954, Aris 1956) between two parallel plates is simulated which is

considered as the simplest dispersion benchmark problem (Jimenez-Hornero et al. 2005,

Roth 2007) to verify the transport models. Taylor dispersion consists of the dispersion

of a passive solute along a stationary flow in a channel or a tube with small transverse

dimensions. A channel (or two parallel plates) geometry of the Taylor dispersion

problem is shown in the figure (7.2). This problem was first treated experimentally and

theoretically by Taylor (1953; 1954) and subsequently generalised by Aris (1956). It is

an effect in which a shear flow increases the effective dispersion of solute particles by

smearing out the concentration distribution in the direction of the flow and enhancing

the rate at which it spreads in that direction. Taylor dispersion has fundamental

importance in hydrodynamics and has many applications in various fields such as

biological perfusion, chemical reactors, soil remediation and oil recovery. Though

the problem is simple, it involves the effect of dispersion resulting from both velocity

gradients and diffusion and is considered as a good test for code verification (Byron Bird

et al. 1960, Baudet et al. 1989). In addition, it has been solved analytically (van

Genuchten and Alves 1982) which allows one to make comparisons.

Figure. 7.2. The geometry of the Taylor-Aris dispersion problem. The flow is along the x axis
between two parallel planes of infinite length separated by a distance of l with a parabolic
velocity profile (Poiseuille flow). When a slug of solute is injected at the inlet, the solute spreads
as it travels and the projection of the concentration on to the x axis eventually becomes a
Gaussian.

7.4.1.1 Theory

The theory of Taylor-Aris dispersion is briefly covered here. Consider an established

Poiseuille flow along x direction confined between two parallel plates separated by a

distance of l. The plates are kept at y = 0 and y = l as shown in the Figure (7.2).
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The flow takes place along the x axis between two plates with a parabolic velocity

profile (because the Poiseuille flow is characterised by a parabolic velocity profile) that is

dependent only on the transverse coordinate y. Let the velocity profile be u = (ux(y), 0)
and um be the mean flow velocity in the flow direction, defined as

um =
1
l

∫ l

0
ux(y) dy (7.7)

=
2
3
u0 (7.8)

where u0 is the maximum velocity in the plane y = l
2 , half-way between the plates. At

time t = 0, a slug of solute is introduced (as an abrupt variation in the concentration)

into the flow across the plane x = 0 perpendicular to the flow direction. Since the

fluid is flowing slowly with flow gradients transverse to the flow direction, the solute

particles are carried away by the flow in such a way that the particles close to the

plates move much slower than those in the middle because of the parabolic velocity

profile. In addition to that, the solute particles jump between fast and slow streamlines

randomly due to transverse diffusion and disperses them along the direction of flow.

In this regime, the spreading of the concentration front is purely due to advection and

width of the spreading ∆x increases linearly with time as ∆x = umt. However, as the

front moves downstream, the distribution of the solute particles between the plates

becomes more uniform because of the transverse molecular diffusion across the flow.

Aris (1956) showed that the characteristic time for this transverse diffusion tc ≈ l2/Dm,

where Dm is the molecular diffusion coefficient. He also showed that at times large

enough compared to tc, the variation of the mean concentration C(x, t) over the flow

section between parallel plates is governed by the convection-diffusion equation,

∂C(x, t)
∂t

+ um
∂C(x, t)
∂x

= Deff
∂2C(x, t)
∂x2

where Deff is the effective longitudinal dispersion coefficient. Furthermore it has been

shown that for flow between parallel plates, after the characteristic time, the projection

of the solute distribution onto the x-axis is nearly Gaussian. That is, the probability

distribution of displacements in the long time regime is expected to become a Gaussian

and its dynamics are given by the convection-diffusion equation giving rise to a Gaussian

distribution whose centre moves at the average velocity um, and whose mean square

displacement σ2 is given by the effective dispersion coefficient Deff = σ2/2t (Baudet

et al. 1989).

For Poiseuille flow in a circular tube, Taylor (1953) showed that the dispersion

coefficient could be explicitly calculated from the known properties of the flow field

and the diffusivity of the solute. He provided a relationship between the dispersion

coefficient and Péclet number for a circular tube where the dispersion coefficient Deff is
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given by

Deff

Dm
= 1 +

Pe2

48
(7.9)

and Aris (1956) further generalised this relationship. For a channel or flow between

parallel plates it is given by

Deff

Dm
= 1 +

Pe2

210
(7.10)

where the Pe is the Péclet number (see Section (2.3.4.1)). Here Pe is defined as

Pe =
uml

Dm
(7.11)

where um is the average velocity across the channel and l is the transverse dimension. In

most dispersion processes, the relative magnitude of the convective and diffusive effects

is given by the Péclet number Pe (Roth 2007). The Equation (7.10) can be written in

general form considering the shape of the cross-section of the geometry as

Deff = Dm(1 + ζPe2) (7.12)

where ζ is a coefficient that depends on the shape of the cross-section of the geometry.

In the case of a channel or parallel plates ζ = 1/210 and for a capillary tube with circular

cross-section ζ = 1/48. From above equation (7.12) one can observe that, except at

extremely low velocities where diffusion becomes dominant, molecular diffusion reduces

the longitudinal dispersion by homogenising the solute concentration across the flow

section. Additionally it can be observed from the Equation (7.12) that the effective

dispersion coefficient at high velocities increases proportionally with the square of the

velocity of the flow. This is the result obtained by Taylor and Aris. We can note that

within the characteristic time given by Taylor and Aris, the particle had the time to

explore the whole cross-section of the channel by a random process in which the particle

randomly visits different streamlines characterised by distinct velocities, which tends

to take it far from its original position. Particles are thus rapidly dispersed along the

channel. At short times (times shorter than l2/Dm), however, the solute mass follows

the streamlines and hence it is stretched out linearly with time until diffusion acts to

homogenise along the cross-section.

Recall the one dimensional transport equation (Equation (2.23)) from Chapter (2).

Taylor (1953; 1954) studied shear flow dispersion in a tube and gave a model analogous

to the one dimensional transport process of a solute concentration downstream of a

continuous point source. The analytical expression is

C(x, t) =
C0

2
erfc

(
x− umt√

2σ

)
(7.13)
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where σ =
√

2Dxt is the square root of the variance of the solute concentration and C0

is the concentration at (x, t) = 0 at the source. The above mathematical solution is valid

only when the solute is fully mixed across the cross-section of the flow. This occurs at a

downstream location x� l2/Dx which is called the far field. The Equation (7.13) is an

expression for the breakthrough curve from the normal density function and it is often

used to make verification studies (both for experimental and numerical simulations).

The cumulative breakthrough curves can be computed for a porous medium sample at

a distance of x and compared to the approximate theoretical solution (van Genuchten

and Alves 1982) given as

C

C0
=

1
2

erfc
[

x− umt
2(Deff · t)1/2

]
(7.14)

where x is the distance at which the concentration of the solute is computed and erfc is

the complementary error function.

7.4.1.2 Calculation of E�ective Dispersion Coe�cients

We have seen that the parabolic velocity profile causes the so called Taylor-Aris dis-

persion in simple geometries and the process can be described by an effective diffu-

sion/dispersion coefficient Deff. Now given the velocity profile, using the Taylor-Aris

approach, one can determine the effective dispersion coefficient in the axial direction

analytically using the Equation (7.10). Writing Equation (7.10) in terms of the average

flow velocity, we get the analytical expression for the effective dispersion coefficient as

Deff = Dm +
l2u2

m

210 Dm

where Dm is the molecular diffusion coefficient. The quantity Deff
Dm

can be calculated from

numerical simulations by the method of moments as described in the Section (7.3.2).

For instance, particles are released at time t = 0 and at x = 0 uniformly over the entire

cross-section and are tracked as they travel through the domain. After the characteristic

time, the first three moments of particle displacements are computed and these moments

are used to determine the dispersion coefficients.

7.4.1.3 Simulation Results

The implementation of our random-walk particle tracking model was verified by com-

paring the longitudinal dispersion coefficient with Taylor-Aris analytical solutions for

dispersion between parallel plates. According to Taylor-Aris dispersion theory when a

solute cloud is dispersed between two parallel plates kept at l apart, after a characteristic

time tc = l2/Dm, the projection of its concentration on the flow direction may be fitted

with a Gaussian probability distribution with a variance σ2 = Defft, where Deff is the
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effective longitudinal dispersion coefficient. Deff can be calculated analytically using

the Equation (7.10) and can be compared with numerical solutions obtained using the

method of moments.

Consider two parallel plates of length 3600 units kept at a distance of 30 units apart.

The parabolic velocity profile is imposed at the inlet and at the outlet a natural boundary

condition was applied. On the plates, no-slip conditions were imposed for velocity.

Then the Stokes equation was solved in this geometry and velocity and pressure field

were computed for various inflow conditions. The mean velocities were calculated

using the equation (7.7). After the computation of the Poiseuille flow in the channel,

Taylor simulation was simulated using the random walk particle tracking approach with

no-flow boundary condition on the plates. The particles are introduced into the flow

field at the inlet (x = 0) and tracked as described in Section (7.3). The characteristic

time to reach Taylor-Aris dispersion condition is calculated by

tc =
l2

Dm

where l is the distance between parallel plates and Dm is the coefficient of molecular

diffusion. The Figure (7.3) shows the concentration snap shots from a Taylor-Aris

dispersion with Dm = 0.35, um = 0.8326 and Pe = 71.365. Here tc = 2571.42. Péclet

numbers for the flow setup were calculated taking the separation of plates as the

characteristic length.
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Figure. 7.3. Evolution of the concentration distribution in Taylor-Aris dispersion between
parallel plates (Dm = 0.35, um = 0.8326, Pe = 71.365). At time t=0, particles are uniformly
distributed over the cross-section at x=0. Their initial, intermediate and equilibrium positions
are shown here. Initially when the effect of diffusion is small, particle distribution still has a
parabolic shape. When the effect of diffusion starts to act upon in transitional stages particles are
more spreading out and finally after a characteristic time, the projection of the concentration (red
lines) on to the x axis (flow direction) approaches a Gaussian distribution (yellow) according to
the central limit theorem.
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The breakthrough curves from numerical experiments were computed as the amount

of particles passing through the outlet of the domain (or the point of measurement)

and compared with the approximate theoretical solution given by the Equation (7.14).

Rewriting the Equation (7.14) as

C

C0
=

1
2

erfc
[

x− umt
2(Deff · t)1/2

]
(7.15)

where x is the distance at which the concentration of solute is computed and erfc is the

complementary error functions (van Genuchten and Alves 1982). The concentration

measured is normalised with respect to the initial concentration and plotted with the

normalised time T ∗ = t um/x where t is the time and um is the mean flow velocity and

x is the breakthrough distance. The flow was computed by solving the Stokes equation

in the channel using the unfitted discontinuous Galerkin method as described in the

Section (6.5.1). Taylor–Aris dispersion was simulated by taking Dm = 0.25 and the
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Figure. 7.4. Cumulative breakthrough curve for the Taylor-Aris dispersion. Simulated result is
compared with analytical solution (7.15) and plotted for different number of particles. It can be
seen that as the particles are increased the simulated result converges to analytical solution.

Figure (7.4) shows the normalised solute concentration C/C0 as a function of normalised

time. The breakthrough curves were plotted by varying the number of particles and

found that there is no visible difference when the particles are increased above 5000.

Hence for subsequent computations, we have chosen 10000 particles. In Figure (7.5), the

time variation of the centre of mass of the particle concentration (〈x〉) or first moment for

different values of the mean velocities (u1 = 0.666502, u2 = 0.333428, u3 = 0.0832609)
are plotted. The Péclet numbers corresponding to the flow are 79.98, 40.01 and 9.99
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Figure. 7.5. Time variation of the centre (〈x〉) of particle concentration obtained by computing
the first moment in the flow direction as a function of time and the analytical solution corresponds
to umt.

respectively by treating the width of the channel as the characteristic length. The values

(first moments) were calculated by subtracting the first moment at time t = 0 from those

at time t. It can be observed that the centre of solute mass is moving at constant velocity

in each case and matches the analytical solution corresponds to umt. At long times, we

observe that a linear variation of these two parameters as expected from the theoretical

laws:

〈x〉 = um t (advection)

σ =
√

2 Deff t (dispersive spreading)

The Figure (7.6) shows the time variation of variance (σ2) for three different values of

the mean velocity. It shows the mean square deviation 〈x2〉 − 〈x〉2 from 〈x〉 and shows

that in each case solute spreading about its centre grows linearly. The analytical solution

corresponds to σ2 = 2Defft where Deff was computed analytically using Equation 7.12.

The convergence of the system towards the Gaussian Taylor dispersion regime was

studied by plotting the time variations of σ2(t)/2t and 〈x〉/t in Figures (7.7) and (7.8)

respectively. From Equations 7.5) and (7.4, we know that these ratios should converge

to Deff and um respectively. In both plots, we can see that the simulated values are

converging towards its theoretical solution. Finally the variation of Deff
Dm

with Pe is also

studied. The dispersion coefficients were calculated at varying fluid velocities (i.e. for

different Pe) and the Figure (7.9) shows the computed dispersion coefficient versus

Péclet number where the line corresponds to the theoretical Taylor-Aris solution.
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Figure. 7.6. Time variation of the centred second moment of solute concentration in the flow
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solution corresponds to σ2 = 2Defft where Deff was computed analytically using Equation (7.12).
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the system towards the Taylor-Aris analytical solution (Equation 7.12) can be observed.
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Figure. 7.9. Variation of the longitudinal dispersion coefficient Deff with the Péclet Number
for the Taylor-Aris dispersion. The simulated values and its fit are shown together with the
analytical solution.

In this Chapter, we have applied our particle tracking code to the well known Taylor-

Aris dispersion between two parallel plates in an attempt to verify and validate the

code and found that the results are in good agreement with the theoretical predictions.

The particle tracking implementation can now be used for more complex problems like

simulation of dispersion in porous media.
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One of the most important transport processes that is responsible for spreading of

solute particles in a porous medium is the hydrodynamic dispersion. Dispersion has

high practical significance as it is an essential phenomenon in quantifying contaminant

migration in soils and aquifers. Dispersion which is conceptually a simple process

however has a complex macroscopic behaviour. Although dispersion coefficient D can

be defined by σ2 = 2Dt where σ2 is the variance of the solute position, breakthrough

curves observed in numerous field and laboratory scale experiments typically exhibit

long tails that cannot be explained using a fixed value of D (Bijeljic and Blunt 2006,

Anwar et al. 2008). Solute particles must be transported through the porous medium

for sufficiently long time so that a full sampling of complex flow field occurs before

the dispersion coefficient can reach an asymptotic value and the spreading becomes

a Gaussian. When these conditions are not met, solute particles undergo spreading

in a non-Fickian manner and at this pre-asymptotic regime, the dispersion coefficient

increases with time and distance travelled. This behaviour is known in literature

in various names such as anomalous, non-Fickian, pre-asymptotic and non-Gaussian

dispersion (Berkowitz et al. 2000, Delay et al. 2005, Salamon et al. 2006, Anwar et al.
2008). An illustration of concentration breakthrough curves exhibiting Gaussian and

non-Gaussian behaviour is shown in Figure (8.1). This non-Fickian behaviour is mainly

attributed to two generic mechanisms: the complex flow field and presence of mobile

and immobile zones (Berkowitz et al. 2008). Berkowitz et al. (2006) reported that

even in small scale homogeneous porous media, pore-scale disorder effects can lead to

non-Fickian transport. Hence to understand and predict these non-Fickian or anomalous

transport behaviours more fundamental approach is needed, which can provide useful

insights into pore-scale effects.

8.1 Limitation of Advection-Dispersion Approach

Solute transport through natural porous media has generally been modelled by advection-

dispersion equation (ADE) (see Section 2.4), which is based on the assumption of Fickian

type dispersion. This basic assumption assumes that dispersion follows Fickian behaviour

and hence breakthrough curves of solute input follow a Gaussian distribution and has

been used widely for predicting and quantifying solute transport. However, many nu-

merical and experimental studies have shown that solute spreading does not follow a
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Figure. 8.1. Schematic illustration of concentration breakthrough curves exhibiting Gaussian
and Non-Gaussian or Anomalous Transport (From Berkowitz et al. (2000)).

Gaussian distribution, i.e. solute spreads at rates different than that predicted by Fick’s

law. Consequently the concentration profiles obtained are highly skewed with heavy

tails. Hence it is generally accepted that traditional advection-dispersion models can not

predict the anomalous behaviours like sudden breakthrough and long tailing. The main

reasons for the non-Fickian behaviour are thought to be the presence of heterogeneity at

various scales and the trapping of solute particles in microscopic dead ends or stagnant

pores. The variations in medium properties affect the velocity and path travelled by

solute particles and consequently time of travel varies with heterogeneity of the medium.

Since traditional models fail to describe non-Fickian behaviour, a more fundamental

approach is required to understand and predict such anomalous transport behaviours.

Furthermore when simulating macroscopic transport in a porous medium using the

advection-dispersion equation, the parameters that quantify the solute dispersion are

the longitudinal and transverse dispersion coefficients. From a continuum modelling

perspective, which is the widely practised modelling approach, accurate values of these

dispersion coefficients have to be used in the models to predict the results in a reliable

way (for instance in risk assessment studies and remediation designs).

Despite numerous experimental and theoretical studies, still there is a lack of fun-

damental understanding of how pore structure controls dispersion and in particular

behaviour of dispersion coefficients for various Péclet number regimes (Bijeljic and

Blunt 2006). Pore-scale simulation is considered as a viable approach to study the basic

mechanisms of solute transport at the pore level, which is essential for understanding

the phenomenon of dispersion on a larger scales. Hence pore-scale modelling and

simulation have became the preferred approach to quantify the influence of microscopic
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properties on macroscopic behaviour. In this Chapter, pore-scale simulation of solute

transport in porous media is presented and studied in detail.

8.2 Pore-scale Simulation of Transport

Many flow and transport phenomena are influenced by the pore scale characteristics and

it is important to understand the processes at this scale to improve theory and models

at larger scales. Although the only effective processes at the pore-scale are advection

and molecular diffusion, the differential velocity distribution causes further mixing and

spreading of concentration at the pore-scale. The parabolic velocity profile within the

pores (creates velocity differences inside) and different pore sizes (cause mean velocities

to differ from pore to pore) are the main reasons for such non-uniform velocity distribu-

tion (see Figure (2.5)). Since pore-scale velocity fluctuations and diffusion contribute to

the hydrodynamic dispersion behaviours, numerical simulations that explicitly account

for pore-scale properties can provide more information about macroscopic dispersion

mechanisms. Furthermore, pore-scale simulations of flow and transport offer the pos-

sibility of modelling laboratory-scale experiments without averaging the properties of

the porous medium. Hence modelling transport behaviour at the pore-scale is highly

desirable.

In order to simulate the dispersion processes at the pore-scale, a velocity field within

the pore space is required. This velocity field in turn is used for solving the advection-

dispersion equation posed at the pore-scale either by Eulerian methods or by a random

walk particle tracking method. However, as mentioned in the Chapter (3), one of the

difficulties for pore-scale simulation is the presence of highly complex pore structure,

which must be accounted when solving for pore-scale velocity field.

The most direct approach to model dispersion is to simulate transport directly on a

three-dimensional representation of a porous medium (Bijeljic et al. 2004). Coelho et al.
(1997) simulated dispersion through random packings of grains of arbitrary shape in

which the flow field was computed numerically using finite difference method. Their

study showed a good agreement with experiments in unconsolidated bead packs and

sand for Pe < 1000. Maier et al. (2000) simulated dispersion in a 3D representation

of a random pack of spheres. They were able to predict successfully the dispersion

coefficient as a function of Péclet number in the range 1 < Pe < 5000. Bijeljic et al.
(2004) studied dispersion using pore-scale network simulation. Their model was able to

quantitatively predict the asymptotic macroscopic dispersion coefficient over a broad

range of Péclet numbers 0 < Pe < 105. Further, Bijeljic and Blunt (2006) studied

the complex macroscopic behaviour of dispersion in porous media as a function of

Péclet number using a continuous time random walk (CTRW) approach for simulating

transport. Several numerical methods have been used for pore-scale simulation of flow
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8 Pore-scale Simulation of Dispersion

(solving Stokes or Navier-Stokes equations). Magnico (2003) used a collocated finite

volume approach to solve Navier-Stokes equations in 3D to study hydrodynamic and

transport properties of packed beds in sphere packing. Martys et al. (1994) used a finite

difference method to solve Stokes equation through random packings of non-overlapping

and overlapping spheres while studying the permeability of different classes of random

three-dimensional porous media via direct numerical simulation of Stokes flow. The

Lattice-Boltzmann method has been used by several authors (Maier et al. 1998; 2000;

2002) for computing flow field at the pore-scale. Inamuro et al. (1999) carried out

direct Navier-Stokes simulations using LBM in a three dimensional porous structure

for high Reynolds numbers as well as for low Reynolds numbers. The porous structure

consists of spherical bodies in a rectangular domain. Manwart et al. (2002) used both

finite difference and Lattice-Boltzmann approaches for determining the permeabilities

of porous media samples by solving the Stokes equations on the pore spaces of the

samples.

In addition to numerical studies, various experimental techniques also have been

applied to investigate the flow and transport in porous media. For example, we mention

the work of Stöhr (2003) where a transparent porous medium with refractive index

matching fluids and solids was used to study the dispersion of a tracer dye. A planar

laser-induced fluorescence (PLIF) technique with higher spatial and temporal resolution

was used to visualise and measure the 3D pore-scale flow and transport.

In this study, a new approach recently introduced by Engwer and Bastian (2005) is

used for obtaining the microscopic flow field in the pore spaces of a porous medium.

This is a direct numerical simulation approach in which the partial differential equations

describing the flow through the pore-spaces are directly discretised and solved to obtain

the velocity field. Subsequently a Lagrangian particle tracking method is used for the

simulation of transport. The following Section gives the details of our approach.

8.2.1 Present Approach

We have learnt that solute transport at the macroscopic scale is the result of several

physical processes such as advection, diffusion, boundary layer and holdup dispersion

etc. acting at the pore-scale as described in the Section (2.3). Hence the macroscopic

dispersion tensor can be related to pore-structure and pore-scale properties by solving

problems at the pore-scale. In the present work, the solute transport processes are

studied by simulating flow and transport at the pore-scale where the temporal evolution

of the solute concentration C(x, t) through a porous medium is obtained by solving

advection-dispersion equation at the pore-scale subjected to a pore-scale velocity field

given by the Stokes equation. The following steps are involved:

Pore-scale Flow Computation: The spatial distribution of fluid velocities within pore

spaces is needed in order to solve the advection-diffusion equation at the pore-
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scale. The Stokes equations, which represent the slow, laminar and incompressible

flow of a fluid in a porous medium are solved to obtain the stationary velocity

field. The UDG method is used to find the solution of the Stokes problem in the

complex pore geometries.

Simulation of Transport: Transport is simulated by random walk particle tracking,

where advection and diffusion is applied at the pore-scale. Particles are introduced

into the computed Stokes velocity field and transported by advection and diffusion.

The solute particles are followed through the pore-spaces and their positions are

noted. Within each computational cell, particle velocities are obtained directly

from the DG Stokes solution. At the free outflow boundary, particles are allowed

to naturally flow out of the domain. The hydrodynamic dispersion coefficients are

calculated from the particle distribution by method of moments.

8.3 Results of Two-Dimensional Simulations

In this Section, results of pore-scale simulation of transport carried out in a simple

two-dimensional porous medium are presented. The 2D porous medium considered

consists of a rectangular domain with randomly placed circular obstacles used in the

work of Fahlke (2008) where he simulated transport at the pore-scale using a discon-

tinuous Galerkin discretisation of the advection-dispersion equation. He had used the

Stokes implementation described in this thesis together with unfitted discontinuous

Galerkin approach to obtain the pore-scale velocity field. He obtained the concentration

breakthrough curves and they showed non-Gaussian behaviour.

The two-dimensional setup consisted of a rectangular domain of 1.5× 1.0 units with

circular obstacles of radii 0.1 unit each. These obstacles were placed such that there is a

small offset in the left side, which is free of internal obstacles (see Figure (8.2)). The

flow is driven from left to right by an imposed pressure difference in that direction. The

no-slip condition was applied on all internal obstacles and on the top and bottom sides

of the domain. For the transport, no-flux condition was given on the surfaces of the

obstacles and on the top and bottom sides. A rectangular solute pulse of size 0.25× 0.5
with unit initial concentration as shown in Figure (8.2(a)) was used. The value of

molecular diffusion coefficient is chosen as 0.001. Transport was simulated using a total

number of 50000 particles. The computed Stokes velocity field and streamlines are

shown in Figure (8.3). The concentration snap shots from the simulation are shown in

Figure (8.4) together with the snap shots from Fahlke (2008) for comparison. We have

observed that even after the main pulse has passed, there are concentrations trapped in

some regions especially around the obstacles and low velocity region, which contribute

to the observed tailing in the breakthrough curve. Figure (8.5) shows the distribution of

solute particles for different Pe and clearly shows the spreading behaviour as the Pe is
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8 Pore-scale Simulation of Dispersion

changed. We can observe more mixing at low Pe and less mixing when Pe increases.

In Figure (8.6) the concentration breakthrough curve plotted for different number of

particles are shown and compared with breakthrough curve obtained by Fahlke (2008).

(a) Problem geometry with boundary conditions

(b) Geometry with triangulation: Simulation grid is shown in blue and
geometry grid is in black

Figure. 8.2. [Two-dimensional porous medium geometry and triangulation. The problem setup
consists of a rectangular domain of 1.5 x 1.0 units with obstacles of circular discs of radii 0.1
unit each. These circular obstacles were placed such that there is a small offset near the inlet
(left side), which is free of internal obstacles. The flow is driven from left to right by an imposed
pressure difference.
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8.3 Results of Two-Dimensional Simulations

(a) Pore-scale velocity field

(b) Streamlines

Figure. 8.3. Pore-scale velocity field and streamlines for the two dimensional problem. Red
colour shows high velocity and blue represents low velocity region. Low velocity regions around
the obstacles and boundary layers are assumed to contribute to anomalous dispersion behaviour.
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8 Pore-scale Simulation of Dispersion

(a) Results from RWPT simulation (b) Result from DG simulation (Fahlke 2008)

Figure. 8.4. Snap shots of solute concentration profiles for in a 2D irregular packing. The
discrete nature of the concentration profile is typical to particle based methods. In this case, the
transport is simulated with 100,000 particles. Concentration profiles obtained by an Eulerian
method (DG FEM) by Fahlke (2008) are shown for comparison.
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8.3 Results of Two-Dimensional Simulations

Pe=47.96

Pe= 191.857

Pe=767.43

Figure. 8.5. Concentration snap shots during the evolution of a solute pulse for different Pe in
a 2D irregular packing showing the effect of Pe on dispersion (spreading) behaviour. We can
observe more mixing at low Pe and less mixing when Pe increases.
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(a) Breakthrough curve plotted for different number of solute particles
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(b) Breakthrough curve compared with that of Fahlke (2008)

Figure. 8.6. Breakthrough curve obtained for a solute slug in an irregular packing in 2D. The
curve is non-Gaussian because of the pore-scale heterogeneity, boundary layer and hold up
dispersion effects acting at pore-scale.
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8.4 Results of Three-Dimensional Simulations

8.4 Results of Three-Dimensional Simulations

In this Section, the transport behaviours in three dimensional artificial porous media

made using randomly packed spheres are studied. Detailed flow simulations in such

model porous media are carried out using the Unfitted discontinuous Galerkin method

(UDG) described in Section (6.5.1) to obtain the 3D pore-scale velocity field and it is

subsequently used as input to the Lagrangian random walk method for investigations of

the transport behaviour.

8.4.1 3D Flow Simulation

In Figure (8.7) we show an artificial porous medium made using 500 spheres of uniform

size (diameter =0.12407) randomly packed in to a cubic domain. In the simulation,

a domain of size 1.2 × 1 × 1 with an offset of 0.15 near the inlet is taken. The offset

which is free of obstacles near the inlet is taken to stabilise the flow before entering

into the porous medium. The porosity of the artificial porous medium is 0.503899. The

flow was forced from left to right with a pressure drop boundary condition. The 3D

calculations are carried out on a computational grid with 262144 elements obtained by

globally refining the grid up to a level of 6 and is shown in the Figure (8.7(b)). With a

quadratic velocity and linear pressure basis function, the DG Stokes system in 3D has

34 degrees of freedom (dof) in each element and hence a total of 8912896 dofs in the

computation.

The computations were performed on machines available at IWR, University of

Heidelberg with following configurations:

1. 4 x Dual Core Opteron 8222 3.0 GHz, 128 GB RAM

2. 4 x Quad Xeon 2.4 GHz, 128 GB RAM

The assembling of the stiffness matrix took about 4.8 hrs. The Bi-Conjugate Gradient

Stabilised (BiCGSTAB) solver with ILU preconditioner was used for solving the linear

system and took about 11.2 hrs. Hence approx. 16 hrs for a complete flow simulation.

The local velocity field in three axial planes is shown in Figure (8.8(a)) where one

can clearly observe the non-uniform velocity variations within the planes, which are due

to the random geometric arrangement of the spheres. Within the grains and on surface,

the velocity is zero whereas inside the pores, velocity vary many order of magnitudes. A

close-up view of the local velocity field is shown in the Figure (8.8(c)).
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8 Pore-scale Simulation of Dispersion

(a) Geometry of the artificial porous medium

(b) The computational grid used for simulating Stokes flow

Figure. 8.7. Geometry of randomly packed spheres in a cubic domain. The porous medium was
generated by packing 500 spheres of uniform size in a cubic domain with slight offset at the
inlet to stabilise the flow. The spheres represent solid grains of the porous medium. Grid with
262144 elements are used for the computation.
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8.4 Results of Three-Dimensional Simulations

(a) Local velocity field in three axial planes of a
random sphere packing

(b) Streamlines of the flow field

(c) Close-up view of computed velocity field through random sphere packing. Velocity
vectors are shown in a 2D plane parallel to main flow direction. The red indicates high
velocity and blue for very low velocity region.

Figure. 8.8. Computed pore-scale flow field through the random sphere packing medium and a
close-up view of the velocity field. The pore-scale velocity field was computed by solving Stokes
equation using UDG method.

137



8 Pore-scale Simulation of Dispersion

8.4.2 3D Transport Simulation

Using the results of the flow field simulation presented in Section (8.4.1), the simulation

of solute transport through the medium was performed using the random-walk particle

tracking method. In Figure (8.9) we show the effect of diffusion by plotting the

trajectories of particles from a point source. The thick black trajectory corresponds to

the streamline when diffusion is absent. The coloured lines corresponds to the case when

diffusion is present. We can see that in the presence of diffusion two particles released

from the same initial location follow different paths. If only advection is considered,

two particles at the same initial location will follow the same path as they just follow

the same stream lines. The Figure (8.10) shows the temporal evolution of concentration

Figure. 8.9. Advective and dispersive particle trajectories through the sphere packing. The
thick black line corresponds to the trajectory when diffusion is absent. In this case, when only
advection is considered particles released from the same point just follow the same stream
lines. On the other hand, when diffusion is present, movement of the particles is affected by the
random component and two particles at the same initial location will most likely follow different
paths. The coloured lines corresponds to the particle paths when diffusion is present.

at various sections along the main flow direction. The presence of low velocity regions

around the spheres cause slower decay of the solute concentration even after the main

pulse has passed because solute particles can enter and leave these region only by

diffusion. It clearly shows the influence of pore structure on the transport behaviour.
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(a) Different sections in the porous medium
along the flow direction where concentra-
tion profiles are computed.
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(c) Pe=25.67, Dm=1e-8

Figure. 8.10. Solute concentration profiles computed at different sections shown in Fig-
ure (8.10(a)). The presence of low velocity regions around the spheres cause slower decay of
the solute concentration even after the main pulse has passed because solute particles can enter
and leave these region only by diffusion. The observed tails in the concentration profiles are
result of such boundary layer and hold up dispersion behaviour acting at the pore-scale. 139
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8.4.3 Dispersion Coe�cients: Comparison With Literature Data

In Section (2.5), the dependence of dispersion coefficients on Péclet number was

described in detail. The asymptotic values of dispersion coefficients found to depend

on various mechanisms such as molecular diffusion, mechanical dispersion, boundary

layer and hold up dispersion. According to the contribution of these mechanisms on the

dispersion behaviour, researchers categorised the dispersion into different Pe regimes. A

standard way of describing longitudinal dispersion coefficient as a function of Pe in the

laminar flow condition is by using Equation (2.35) and is recalled here:

DL

Dm
=

1
Fφ

+ αPe+ βPeδ + γPe2

In this Section, hydrodynamic dispersion coefficients obtained from the pore-scale

simulation are compared with numerical and experimental results from literature. It

should be noted that comparisons between simulation and experiment are complicated

because of the difficulty of reproducing the exact geometry of the experimental porous

medium in a simulation. In literature, the dispersion data are most frequently presented

in logarithmic plots of DL/Dm and DT /Dm versus Pe and this custom is followed here

too.

In order to determine the dependence of dispersion coefficients on the Péclet number,

number of simulations were carried out by varying mean flow velocity and keeping

Dm fixed, thereby changing the Pe. A value of Dm=1e-8 has been taken through out

the simulations. The simulation results for longitudinal dispersion as a function of

Péclet number are plotted in Figure (8.11) together with previously reported numerical

and experimental results. The data are plotted as longitudinal dispersion coefficient

divided by the molecular diffusion coefficient (DL/Dm) versus Péclet number where

Péclet number was defined with the mean fluid velocity and a characteristic length.

The characteristic length for the artificial porous medium considered in this work is

taken as the size (diameter) of the spheres. The data from our simulations are plotted

together with the experimental results of Pfannkuch (1963), Seymour and Callaghan

(1997), Kandhai et al. (2002), Khrapitchev and Callaghan (2003) and Stöhr (2003)

and numerical results of Maier et al. (2000), Freund et al. (2005) and Bijeljic et al.
(2004). As we can see results are in very good agreement over the range of Pe studied.

We can observe from the graph (8.11) that at low Péclet number regime, molecular

diffusion is the main mechanism causing dispersion. In this regime, the ratio DL/Dm
is close to unity. At higher Pe, (3 < Pe < 300) advection starts to have much more

pronounced contribution to dispersive mixing. In this regime, even though the particles

are moving faster, they still have time to sample low velocity region near obstacles.

Here the spreading is caused by the interplay of mechanical dispersion and molecular

diffusion. A power law relationship of the form given by Equation (2.31) is often used to

describe dispersion in this regime. Power law exponent δ ≈ 1.2 is generally found in the
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Figure. 8.11. Longitudinal dispersion coefficients in a random sphere packing from the pore-
scale simulation compared to data reported in literature. The increase of longitudinal dispersion
with Pe can be observed showing that the dispersion coefficient tends to the molecular diffusion
coefficient for small velocities and becomes proportional to Pe at higher velocities. The pore-scale
simulation results (UDG+RWPT) are compared with (1) experimental data on unconsolidated
bead packs by Pfannkuch (1963) (2) data obtained by magnetic resonance imaging by Seymour
and Callaghan (1997), Kandhai et al. (2002) and Khrapitchev and Callaghan (2003) (3) results
obtained by planar laser induced fluorescence method by Stöhr (2003) (4) data obtained on
random packing of spheres in a tubular container by Lattice-Boltzmann and particle tracking by
Maier et al. (2000) and Freund et al. (2005) (5) results by Bijeljic et al. (2004) obtained using
pore-network simulations.

literature. The best fit (see Figure (8.12)) of our results to Equation (2.31) in the regime

3 < Pe < 300 is with β = 0.214 and power law coefficient δ =1.203 . In Table (8.1),

value of β and δ found in this work by pore-scale simulation is listed together with

values from literature for comparison. The value of δ found by our pore-scale simulation

agree well with that of Freund et al. (2005), Bijeljic et al. (2004) and Stöhr (2003).

In the mechanical dispersion regime (Pe > 300), a linear relation between dispersion

coefficient and Pe is assumed. This is mostly advective dominated dispersion regime in

which molecular diffusion effects are negligible because the particles are moving faster

and their response to molecular diffusion have nearly no effect. Consequently for large

Péclet number, we get a linear dependence of dimensionless dispersion coefficient on

pore scale Pe. However, it should be noted that the particles once trapped in stagnant
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zones and dead end pores can escape to main flow by diffusion only. Although this is

very slow process compared to strong advective transport, holding of particles might

occur in such conditions. Hence at moderately high Pe, diffusion is important and

should not be neglected.
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Figure. 8.12. Simulated longitudinal dispersion coefficients in a random sphere packing
compared to data reported in literature in the power law regime (3 < Pe < 300). The line
corresponds to the fit of the data to DL

Dm
= βPeδ with β=0.214003 and δ=1.20331.

Reference β δ

Pfannkuch (1963) - 1.2
Gist et al. (1990) 0.46 – 3.9 0.93 –1.2
Dullien (1992) - 1.2

Coelho et al. (1997) 0.26 1.29
Manz et al. (1999) - 1.12

Stöhr (2003) 0.77 1.18
Bijeljic et al. (2004) 0.45 1.19
Freund et al. (2005) 0.303 1.21

This work 0.214 1.2033

Table 8.1. Comparison of the power law coefficient δ obtained by fitting data to Equation (2.31)
with previously reported values.
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A least squares fit of the longitudinal dispersion coefficient data to the Equation (2.35)

for the full range of Péclet number studied is shown in Figure (8.13). The values of the

parameters obtained are τ = 1
Fφ=0.79, β= 0.214, δ=1.203 and γ=1.241e-5. The value

of γ which accounts for the hold up dispersion differs from Stöhr (2003) (3.0e-5) and

Kandhai et al. (2002) (1.7e-3) most probably due to difference in the arrangement of

grains in the porous medium. Maier et al. (2000), Bijeljic et al. (2004) and Freund et al.
(2005) did not consider the effect of hold-up dispersion.
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Figure. 8.13. Least squares fit of the simulated longitudinal dispersion coefficients to Equa-
tion (2.35) in a random sphere packing. The values of the parameters obtained by fitting are
τ = 1

Fφ=0.79, β= 0.214, δ=1.203 and γ=1.241e-5.

Next we considered the transverse dispersion behaviour with Péclet number. The

transverse dispersion causes spreading of the solute plume in the direction perpendicular

to the direction of flow. It is considered important in solute transport as transverse mixing

contribute to lateral spreading and smoothing of solute concentration in porous media.

Although its effects are smaller compared to longitudinal dispersion, several studies

have demonstrated its effects on overall solute dispersion behaviour and mentioned

that the knowledge of transverse dispersion is essential in accurate prediction of solute

transport behaviour. The dependence of DT on Pe is still not understood clearly as

evident from the large deviations in the experimental and numerical results (Sahimi
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1993, Maier et al. 2000, Bruderer and Bernabé 2001, Freund et al. 2005, Bijeljic and

Blunt 2007).

The Figure (8.14) shows the variation of transverse dispersion coefficients with Pe. As

we can see, although the data for transverse dispersion coefficients are more scattered,

it captures the trend and as expected increases with increase in Pe. However, in the

power law regime, the best fit for the data yields a power law coefficient δ ≈ 0.3 which

is lower than the experimental results (0.9 by Sahimi (1993) and 0.87 by Stöhr (2003)).

Our data is more in the range of that predicted by Maier et al. (2000). It should be

noted that even a value as low as 0.2 was suggested by Bruderer and Bernabé (2001)

from their work on transverse dispersion in heterogeneous network and mentioned that

the experimental results usually over estimate the transverse dispersion. Comparing DL

and DT , we can confirm that the values of DT in all Pe ranges are always lower than

DL.
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Figure. 8.14. Simulated transverse dispersion coefficients in a random sphere packing compared
to data reported in literature. Even though the data is more scattered, it captures the trend of
variation. In the power law regime, data is more in close to that of Maier et al. (2000). The
predicted power law coefficient δ ≈ 0.3 is lower than the experimentally found values. It should
be noted that even a low value of 0.2 has been suggested by Bruderer and Bernabé (2001).

In this Chapter, pore-scale simulations of flow and transport in porous media in which

the pore spaces and geometries are explicitly accounted were used to demonstrate links
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between microscopic and macroscopic phenomena. Using UDG, the Stokes equation

which governs the slow flow in porous media was solved to obtain the detailed 3D

pore-scale flow field, which was characterised by uneven velocity distribution due to the

random arrangements of impermeable spheres. Using the results of the flow field simula-

tion, transport of non-reactive solute particles was simulated by a random-walk particle

tracking approach to obtain the 3D concentration field. From the 3D concentration field

(particle distribution in particle based methods), we have estimated longitudinal and

transverse dispersion coefficients. In this way, we have studied the influence of pore-

scale properties on large-scale behaviour in which macroscopic properties are estimated

from pore-scale numerical simulations. Further, a study was carried out for a range of

Pe to know the relationship between Pe and dispersion coefficients. The longitudinal

and transverse dispersion coefficients have been computed for different Péclet numbers

in random sphere packing and results were compared to various experimental and

numerical results from literature. In the boundary layer regime (3 < Pe < 300), a

power law dependence of DL on Pe is confirmed with power law coefficient δ=1.203.

It is observed that pore-scale heterogeneity and the low velocity regions near the grains

of the porous medium (spheres) give rise to anomalous or non-Fickian dispersion. This

happens when a solute particle in the boundary layer near the solid grains cannot

move due to convection. Diffusion is required to be able to get out of the boundary

layer. Therefore, diffusion even though small in magnitude, influences the dispersion

behaviour at moderate Pe. The comparison between the pore-scale simulation results

and results from literature show that pore-scale simulation is able to predict the disper-

sion coefficient for a wide range of Pe. It is shown that the approach chosen here for

the pore-scale simulation of flow and transport in random sphere packing works very

well and can be used for the determination of dispersion coefficients in more realistic

porous media.
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9 Summary and Conclusions

This work is a numerical contribution to the study of fluid flow and transport through

porous media. The research presented in this dissertation has focused on improving

the understanding of flow and transport in porous media with the goal of linking

pore-scale properties to macroscopic parameters and flow and transport behaviours at

large scale using a direct numerical simulation approach. While Lattice-Boltzmann and

pore-network methods have become the choice for solving pore-scale flow and transport

problems in complex porous media, efficient direct numerical solution algorithms have

advantages in certain situations, for instance, easy incorporation of complex geometries

obtained using imaging techniques. The analysis of pore-scale simulation results has

enabled us to investigate the dependence of macroscopic parameters such as permeability

and dispersion coefficients on pore-scale properties and compare the results with those

reported in literature.

A new discontinuous Galerkin based numerical method called Unfitted Discontinuous

Galerkin (UDG) has been used for simulating fluid flow at the pore-scale by solving

the Stokes equations directly on the complex pore geometry. The computed flow field

was used in a random-walk particle tracking model to simulate the transport at the

pore-scale. UDG is a Cartesian grid based approach and does not require a grid resolving

the complex boundary thereby avoiding the generation of a conforming grid even in

complex geometries. The efficiency of Cartesian grid is exploited in this approach and

found to be highly suitable for direct numerical simulations. In structured grid based

approaches, the difficulty arises when the grid intersects the domain boundaries and

UDG has special way of handling such complications. The resolution of the structured

grid can be chosen based on the required accuracy of the simulation and in general it

does not depend on the complexities of domain boundaries. Since it is a direct numerical

simulation approach, simplified geometries like that used in pore-network models are

not necessary. In comparison to standard finite element methods, it can handle complex

geometries with sufficient accuracy yet with lesser number of mesh elements. Moreover,

since the method is based on the discontinuous Galerkin discretisation of the governing

PDEs it is locally and globally mass conservative, a highly desirable property for flow

and transport simulation.

Using the UDG method, we first implemented the DG discretisation of the Stokes

equations and presented benchmark computations for simulation of Stokes flow. Pore-

scale simulations through simple three-dimensional geometries such as cubic packing of
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9 Summary and Conclusions

spheres were presented and compared our results with analytical solutions aiming to

validate the method. Additionally, we presented results on computation of permeability

from pore-scale simulation where convergence of permeability as a function of grid

resolution for cubic and random arrays of spheres were shown. We showed that both

the pore-scale flow features and the permeability could be computed at a reasonable

computational cost and results were matching well with analytical and literature data.

We then studied the pore-scale dispersion by simulating flow and transport in two and

three dimensional porous media. A particle tracking model was developed to simulate

transport of non-reactive solute particles subjected to a velocity field computed on the

pore-scale using UDG, where transport includes the effect of both molecular diffusion

and advection. Our particle tracking implementation has been verified and validated by

simulating Taylor-Aris dispersion phenomena between two parallel plates and results

were in close agreement with analytical solutions. When simulating pore-scale transport,

particle positions were recorded and the dispersion coefficients were calculated from

the variance of particle distribution using the method of moments. The result of the

two-dimensional transport simulation in a channel with circular obstacles was compared

with the result obtained by a DG discretisation of convection-dispersion equation. We

further carried out pore-scale simulations for a wide range of the characteristic Péclet

number, Pe and computed the dispersion coefficients. The simulated results agree well

with the data reported in the literature, which indicates that our method can successfully

simulate dispersion behaviour.

The UDG method is found to be well suited for simulating fluid flow through complex

porous media. Since the method is based on the discontinuous Galerkin discretisation

of the governing partial differential equations, it has all the advantages of DG methods

and additionally it can easily handle the complex boundaries. This makes it an elegant

approach to solving flow problems at the pore-scale. UDG is flexible and convenient

tool for pore-scale simulation and in general for simulation in complex geometries.

As we have shown in this work, it can successfully simulate Stokes flow in complex

porous media. Among its benefits are the simplicity of a uniform structured grid and

easy incorporation of complex geometry via implicit function or level set methods.

These features are advantageous for fluid-flow problems in complex geometries. The

UDG method is also well suited for parallel computing because of the underlying DG

discretisation of the partial differential equations where DG is highly parallel in nature.

In conclusion, the pore-scale simulations using UDG in model porous media (random

sphere packing) carried out in this work have indeed given us new insights into the

flow and transport in porous media. In particular, the dependence of permeability and

dispersion coefficients on pore structure and pore-scale properties were investigated.
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Outlook

The Unfitted Discontinuous Galerkin is a powerful and promising direct numerical simu-

lation technique for pore-scale simulation, though there are scope for improvements. It

is computationally demanding because the DG discretisation introduces more unknowns

than a standard finite element discretisation. As a consequence, at present it requires

long computational time when used in serial computers and a parallel implementation is

must for a better performance. On the implementation side, assembling of the stiffness

matrix can be improved (speed up) further where parallelisation could be effectively

used. Additionally, introducing local adaptive refinement of the fundamental grid would

make the method much more flexible to use.

The method has been applied successfully to single phase flow and transport through

ideal porous media represented by random sphere packing. Next step would be to apply

to more realistic geometries obtained from tomography images and make qualitative and

quantitative comparisons with experimental results. Moreover, quantitative comparisons

with other well known pore-scale modelling approaches such as pore-network and LBM

would be very interesting as well. Finally, it can be extended to study multiphase flow

problem at pore-scale, which is more challenging as it results in new problems and

issues due to the presence of fluid interfaces and contact lines.
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