21,617 research outputs found

    Death and rebirth of neural activity in sparse inhibitory networks

    Get PDF
    In this paper, we clarify the mechanisms underlying a general phenomenon present in pulse-coupled heterogeneous inhibitory networks: inhibition can induce not only suppression of the neural activity, as expected, but it can also promote neural reactivation. In particular, for globally coupled systems, the number of firing neurons monotonically reduces upon increasing the strength of inhibition (neurons' death). However, the random pruning of the connections is able to reverse the action of inhibition, i.e. in a sparse network a sufficiently strong synaptic strength can surprisingly promote, rather than depress, the activity of the neurons (neurons' rebirth). Thus the number of firing neurons reveals a minimum at some intermediate synaptic strength. We show that this minimum signals a transition from a regime dominated by the neurons with higher firing activity to a phase where all neurons are effectively sub-threshold and their irregular firing is driven by current fluctuations. We explain the origin of the transition by deriving an analytic mean field formulation of the problem able to provide the fraction of active neurons as well as the first two moments of their firing statistics. The introduction of a synaptic time scale does not modify the main aspects of the reported phenomenon. However, for sufficiently slow synapses the transition becomes dramatic, the system passes from a perfectly regular evolution to an irregular bursting dynamics. In this latter regime the model provides predictions consistent with experimental findings for a specific class of neurons, namely the medium spiny neurons in the striatum.Comment: 19 pages, 10 figures, submitted to NJ

    Design and development of a multipurpose, boresighted star tracker

    Get PDF
    Design and development of boresighted star tracke

    Interplay of plasma-induced and fast thermal nonlinearities in a GaAs-based photonic crystal nanocavity

    Full text link
    We investigate the nonlinear response of GaAs-based photonic crystal cavities at time scales which are much faster than the typical thermal relaxation rate in photonic devices. We demonstrate a strong interplay between thermal and carrier induced nonlinear effects. We have introduced a dynamical model entailing two thermal relaxation constants which is in very good agreement with experiments. These results will be very important for Photonic Crystal-based nonlinear devices intended to deal with practical high repetition rate optical signals.Comment: 10 pages, 8 figures, Phys Rev A (accepted

    Characterization of Large Volume 3.5 x 8 inches LaBr3:Ce Detectors

    Full text link
    The properties of large volume cylindrical 3.5 x 8 inches (89 mm x 203 mm) LaBr3:Ce scintillation detectors coupled to the Hamamatsu R10233-100SEL photo-multiplier tube were investigated. These crystals are among the largest ones ever produced and still need to be fully characterized to determine how these detectors can be utilized and in which applications. We tested the detectors using monochromatic gamma-ray sources and in-beam reactions producing gamma rays up to 22.6 MeV; we acquired PMT signal pulses and calculated detector energy resolution and response linearity as a function of gamma-ray energy. Two different voltage dividers were coupled to the Hamamatsu R10233-100SEL PMT: the Hamamatsu E1198-26, based on straightforward resistive network design, and the LABRVD, specifically designed for our large volume LaBr3:Ce scintillation detectors, which also includes active semiconductor devices. Because of the extremely high light yield of LaBr3:Ce crystals we observed that, depending on the choice of PMT, voltage divider and applied voltage, some significant deviation from the ideally proportional response of the detector and some pulse shape deformation appear. In addition, crystal non-homogeneities and PMT gain drifts affect the (measured) energy resolution especially in case of high-energy gamma rays. We also measured the time resolution of detectors with different sizes (from 1x1 inches up to 3.5x8 inches), correlating the results with both the intrinsic properties of PMTs and GEANT simulations of the scintillation light collection process. The detector absolute full energy efficiency was measured and simulated up to gamma-rays of 30 Me

    Performance of dynamical decoupling in bosonic environments and under pulse-timing fluctuations

    Get PDF
    We study the suppression of qubit dephasing through Uhrig dynamical decoupling (UDD) in nontrivial environments modeled within the spin-boson formalism. In particular, we address the case of (i) a qubit coupled to a bosonic bath with power-law spectral density, and (ii) a qubit coupled to a single harmonic oscillator that dissipates energy into a bosonic bath, which embodies an example of a structured bath for the qubit. We then model the influence of random time jitter in the UDD protocol by sorting pulse-application times from Gaussian distributions centered at appropriate values dictated by the optimal protocol. In case (i) we find that, when few pulses are applied and a sharp cutoff is considered, longer coherence times and robust UDD performances (against random timing errors) are achieved for a super-Ohmic bath. On the other hand, when an exponential cutoff is considered a super-Ohmic bath is undesirable. In case (ii) the best scenario is obtained for an overdamped harmonic motion. Our study provides relevant information for the implementation of optimized schemes for the protection of quantum states from decoherence.Comment: 8 pages, 5 figure

    Statistical-Mechanical Measure of Stochastic Spiking Coherence in A Population of Inhibitory Subthreshold Neurons

    Full text link
    By varying the noise intensity, we study stochastic spiking coherence (i.e., collective coherence between noise-induced neural spikings) in an inhibitory population of subthreshold neurons (which cannot fire spontaneously without noise). This stochastic spiking coherence may be well visualized in the raster plot of neural spikes. For a coherent case, partially-occupied "stripes" (composed of spikes and indicating collective coherence) are formed in the raster plot. This partial occupation occurs due to "stochastic spike skipping" which is well shown in the multi-peaked interspike interval histogram. The main purpose of our work is to quantitatively measure the degree of stochastic spiking coherence seen in the raster plot. We introduce a new spike-based coherence measure MsM_s by considering the occupation pattern and the pacing pattern of spikes in the stripes. In particular, the pacing degree between spikes is determined in a statistical-mechanical way by quantifying the average contribution of (microscopic) individual spikes to the (macroscopic) ensemble-averaged global potential. This "statistical-mechanical" measure MsM_s is in contrast to the conventional measures such as the "thermodynamic" order parameter (which concerns the time-averaged fluctuations of the macroscopic global potential), the "microscopic" correlation-based measure (based on the cross-correlation between the microscopic individual potentials), and the measures of precise spike timing (based on the peri-stimulus time histogram). In terms of MsM_s, we quantitatively characterize the stochastic spiking coherence, and find that MsM_s reflects the degree of collective spiking coherence seen in the raster plot very well. Hence, the "statistical-mechanical" spike-based measure MsM_s may be used usefully to quantify the degree of stochastic spiking coherence in a statistical-mechanical way.Comment: 16 pages, 5 figures, to appear in the J. Comput. Neurosc
    corecore