3,659 research outputs found

    Exceptionally monotone models : the rank correlation model class for exceptional model mining

    Get PDF
    Exceptional Model Mining strives to find coherent subgroups of the dataset where multiple target attributes interact in an unusual way. One instance of such an investigated form of interaction is Pearson's correlation coefficient between two targets. EMM then finds subgroups with an exceptionally linear relation between the targets. In this paper, we enrich the EMM toolbox by developing the more general rank correlation model class. We find subgroups with an exceptionally monotone relation between the targets. Apart from catering for this richer set of relations, the rank correlation model class does not necessarily require the assumption of target normality, which is implicitly invoked in the Pearson's correlation model class. Furthermore, it is less sensitive to outliers

    Fitting AdaBoost Models From Imbalanced Data with Applications in College Basketball

    Get PDF
    Data imbalance is an important consideration when working with real world data. Over/undersampling approaches allow us to gather more insight from the limited data we have on the minority class; however, there are many proposed methods. The goal of our study is to identify the optimal approach for over/undersampling to use with Adaptive Boosting (AdaBoost). Based on a simulation study, we’ve found that combining AdaBoost with various sampling techniques provides an increased weighted accuracy across classes for progressively larger data imbalances. The three Synthetic Minority Oversampling Technique’s (SMOTE) and Jittering with Over/Undersampling (JOUS) performed the best, with the JOUS approach being the most accurate for all levels of data imbalance in the simulation study. We then applied the most effective over/undersampling methods to predict upsets (games where the lower seeded team wins) in the March Madness College Basketball Tournament

    Anytime Discovery of a Diverse Set of Patterns with Monte Carlo Tree Search

    Get PDF
    International audienceThe discovery of patterns that accurately discriminate one class label from another remains a challenging data mining task. Subgroup discovery (SD) is one of the frameworks that enables to elicit such interesting patterns from labeled data. A question remains fairly open: How to select an accurate heuristic search technique when exhaustive enumeration of the pattern space is infeasible? Existing approaches make use of beam-search, sampling, and genetic algorithms for discovering a pattern set that is non-redundant and of high quality w.r.t. a pattern quality measure. We argue that such approaches produce pattern sets that lack of diversity: Only few patterns of high quality, and different enough, are discovered. Our main contribution is then to formally define pattern mining as a game and to solve it with Monte Carlo tree search (MCTS). It can be seen as an exhaustive search guided by random simulations which can be stopped early (limited budget) by virtue of its best-first search property. We show through a comprehensive set of experiments how MCTS enables the anytime discovery of a diverse pattern set of high quality. It out-performs other approaches when dealing with a large pattern search space and for different quality measures. Thanks to its genericity, our MCTS approach can be used for SD but also for many other pattern mining tasks

    Mining subjectively interesting patterns in rich data

    Get PDF

    DĂ©couverte de sous-groupes avec les arbres de recherche de Monte Carlo

    Get PDF
    National audienceDécouvrir des règles qui distinguent clairement une classe d'une autre reste un problème difficile. De tels motifs permettent de suggérer des hypothèses pouvant expliquer une classe. La découverte de sous-groupes (Subgroup Discovery , SD), un cadre qui définit formellement cette tâche d'extraction de motifs, est toujours confrontée à deux problèmes majeurs: (i) définir des mesures de qualité appropriées qui caractérisent la singularité d'un motif et (ii) choisir une heuristique d'exploration de l'espace de recherche correcte lorsqu'une énuméra-tion complète est irréalisable. À ce jour, les algorithmes de SD les plus efficaces sont basés sur une recherche en faisceau (Beam Search, BS). La collection de motifs extraits manque cependant de diversité en raison de la nature gloutonne de l'exploration. Nous proposons ici d'utiliser une technique d'exploration récente, la recherche arborescente de Monte Carlo (Monte Carlo Tree Search, MCTS). Le compromis entre l'exploitation et l'exploration ainsi que la puissance de la recherche aléatoire permettent d'obtenir une solution disponible à tout moment et de surpasser généralement les approches de type BS. Notre étude empirique, avec plusieurs mesures de qualité, sur divers jeux de données de référence et du monde réel démontre la qualité de notre approche

    DĂ©couverte de sous-groupes avec les arbres de recherche de Monte Carlo

    Get PDF
    National audienceDécouvrir des règles qui distinguent clairement une classe d'une autre reste un problème difficile. De tels motifs permettent de suggérer des hypothèses pouvant expliquer une classe. La découverte de sous-groupes (Subgroup Discovery , SD), un cadre qui définit formellement cette tâche d'extraction de motifs, est toujours confrontée à deux problèmes majeurs: (i) définir des mesures de qualité appropriées qui caractérisent la singularité d'un motif et (ii) choisir une heuristique d'exploration de l'espace de recherche correcte lorsqu'une énuméra-tion complète est irréalisable. À ce jour, les algorithmes de SD les plus efficaces sont basés sur une recherche en faisceau (Beam Search, BS). La collection de motifs extraits manque cependant de diversité en raison de la nature gloutonne de l'exploration. Nous proposons ici d'utiliser une technique d'exploration récente, la recherche arborescente de Monte Carlo (Monte Carlo Tree Search, MCTS). Le compromis entre l'exploitation et l'exploration ainsi que la puissance de la recherche aléatoire permettent d'obtenir une solution disponible à tout moment et de surpasser généralement les approches de type BS. Notre étude empirique, avec plusieurs mesures de qualité, sur divers jeux de données de référence et du monde réel démontre la qualité de notre approche

    Subgroup discovery for structured target concepts

    Get PDF
    The main object of study in this thesis is subgroup discovery, a theoretical framework for finding subgroups in data—i.e., named sub-populations— whose behaviour with respect to a specified target concept is exceptional when compared to the rest of the dataset. This is a powerful tool that conveys crucial information to a human audience, but despite past advances has been limited to simple target concepts. In this work we propose algorithms that bring this framework to novel application domains. We introduce the concept of representative subgroups, which we use not only to ensure the fairness of a sub-population with regard to a sensitive trait, such as race or gender, but also to go beyond known trends in the data. For entities with additional relational information that can be encoded as a graph, we introduce a novel measure of robust connectedness which improves on established alternative measures of density; we then provide a method that uses this measure to discover which named sub-populations are more well-connected. Our contributions within subgroup discovery crescent with the introduction of kernelised subgroup discovery: a novel framework that enables the discovery of subgroups on i.i.d. target concepts with virtually any kind of structure. Importantly, our framework additionally provides a concrete and efficient tool that works out-of-the-box without any modification, apart from specifying the Gramian of a positive definite kernel. To use within kernelised subgroup discovery, but also on any other kind of kernel method, we additionally introduce a novel random walk graph kernel. Our kernel allows the fine tuning of the alignment between the vertices of the two compared graphs, during the count of the random walks, while we also propose meaningful structure-aware vertex labels to utilise this new capability. With these contributions we thoroughly extend the applicability of subgroup discovery and ultimately re-define it as a kernel method.Der Hauptgegenstand dieser Arbeit ist die Subgruppenentdeckung (Subgroup Discovery), ein theoretischer Rahmen für das Auffinden von Subgruppen in Daten—d. h. benannte Teilpopulationen—deren Verhalten in Bezug auf ein bestimmtes Targetkonzept im Vergleich zum Rest des Datensatzes außergewöhnlich ist. Es handelt sich hierbei um ein leistungsfähiges Instrument, das einem menschlichen Publikum wichtige Informationen vermittelt. Allerdings ist es trotz bisherigen Fortschritte auf einfache Targetkonzepte beschränkt. In dieser Arbeit schlagen wir Algorithmen vor, die diesen Rahmen auf neuartige Anwendungsbereiche übertragen. Wir führen das Konzept der repräsentativen Untergruppen ein, mit dem wir nicht nur die Fairness einer Teilpopulation in Bezug auf ein sensibles Merkmal wie Rasse oder Geschlecht sicherstellen, sondern auch über bekannte Trends in den Daten hinausgehen können. Für Entitäten mit zusätzlicher relationalen Information, die als Graph kodiert werden kann, führen wir ein neuartiges Maß für robuste Verbundenheit ein, das die etablierten alternativen Dichtemaße verbessert; anschließend stellen wir eine Methode bereit, die dieses Maß verwendet, um herauszufinden, welche benannte Teilpopulationen besser verbunden sind. Unsere Beiträge in diesem Rahmen gipfeln in der Einführung der kernelisierten Subgruppenentdeckung: ein neuartiger Rahmen, der die Entdeckung von Subgruppen für u.i.v. Targetkonzepten mit praktisch jeder Art von Struktur ermöglicht. Wichtigerweise, unser Rahmen bereitstellt zusätzlich ein konkretes und effizientes Werkzeug, das ohne jegliche Modifikation funktioniert, abgesehen von der Angabe des Gramian eines positiv definitiven Kernels. Für den Einsatz innerhalb der kernelisierten Subgruppentdeckung, aber auch für jede andere Art von Kernel-Methode, führen wir zusätzlich einen neuartigen Random-Walk-Graph-Kernel ein. Unser Kernel ermöglicht die Feinabstimmung der Ausrichtung zwischen den Eckpunkten der beiden unter-Vergleich-gestelltenen Graphen während der Zählung der Random Walks, während wir auch sinnvolle strukturbewusste Vertex-Labels vorschlagen, um diese neue Fähigkeit zu nutzen. Mit diesen Beiträgen erweitern wir die Anwendbarkeit der Subgruppentdeckung gründlich und definieren wir sie im Endeffekt als Kernel-Methode neu

    Improved Detection for Advanced Polymorphic Malware

    Get PDF
    Malicious Software (malware) attacks across the internet are increasing at an alarming rate. Cyber-attacks have become increasingly more sophisticated and targeted. These targeted attacks are aimed at compromising networks, stealing personal financial information and removing sensitive data or disrupting operations. Current malware detection approaches work well for previously known signatures. However, malware developers utilize techniques to mutate and change software properties (signatures) to avoid and evade detection. Polymorphic malware is practically undetectable with signature-based defensive technologies. Today’s effective detection rate for polymorphic malware detection ranges from 68.75% to 81.25%. New techniques are needed to improve malware detection rates. Improved detection of polymorphic malware can only be accomplished by extracting features beyond the signature realm. Targeted detection for polymorphic malware must rely upon extracting key features and characteristics for advanced analysis. Traditionally, malware researchers have relied on limited dimensional features such as behavior (dynamic) or source/execution code analysis (static). This study’s focus was to extract and evaluate a limited set of multidimensional topological data in order to improve detection for polymorphic malware. This study used multidimensional analysis (file properties, static and dynamic analysis) with machine learning algorithms to improve malware detection. This research demonstrated improved polymorphic malware detection can be achieved with machine learning. This study conducted a number of experiments using a standard experimental testing protocol. This study utilized three advanced algorithms (Metabagging (MB), Instance Based k-Means (IBk) and Deep Learning Multi-Layer Perceptron) with a limited set of multidimensional data. Experimental results delivered detection results above 99.43%. In addition, the experiments delivered near zero false positives. The study’s approach was based on single case experimental design, a well-accepted protocol for progressive testing. The study constructed a prototype to automate feature extraction, assemble files for analysis, and analyze results through multiple clustering algorithms. The study performed an evaluation of large malware sample datasets to understand effectiveness across a wide range of malware. The study developed an integrated framework which automated feature extraction for multidimensional analysis. The feature extraction framework consisted of four modules: 1) a pre-process module that extracts and generates topological features based on static analysis of machine code and file characteristics, 2) a behavioral analysis module that extracts behavioral characteristics based on file execution (dynamic analysis), 3) an input file construction and submission module, and 4) a machine learning module that employs various advanced algorithms. As with most studies, careful attention was paid to false positive and false negative rates which reduce their overall detection accuracy and effectiveness. This study provided a novel approach to expand the malware body of knowledge and improve the detection for polymorphic malware targeting Microsoft operating systems
    • …
    corecore