
Major Research Project

Fitting AdaBoost Models From Imbalanced Data
with Applications in College Basketball

Raymond Romaniuk, Brock University

May 12, 2023

Abstract

Data imbalance is an important consideration when working with real world data. Over/un-

dersampling approaches allow us to gather more insight from the limited data we have on the

minority class; however, there are many proposed methods. The goal of our study is to iden-

tify the optimal approach for over/undersampling to use with Adaptive Boosting (AdaBoost).

Based on a simulation study, we’ve found that combining AdaBoost with various sampling

techniques provides an increased weighted accuracy across classes for progressively larger data

imbalances. The three Synthetic Minority Oversampling Technique’s (SMOTE) and Jittering

with Over/Undersampling (JOUS) performed the best, with the JOUS approach being the

most accurate for all levels of data imbalance in the simulation study. We then applied the

most effective over/undersampling methods to predict upsets (games where the lower seeded

team wins) in the March Madness College Basketball Tournament.

Keywords: Imbalanced Data, Boosting Methods, AdaBoost, Over/Undersampling, Col-

lege Basketball

1

Contents
1 Introduction 3

1.1 Decision Trees . 3
1.2 Boosting . 6
1.3 AdaBoost . 7

2 Literature Review 9
2.1 Sampling . 9

2.1.1 Random Undersampling (RUS) . 10
2.1.2 Random Oversampling (ROS) . 10
2.1.3 Tomek Link Majority Undersampling (TLMU) 10
2.1.4 Synthetic Minority Oversampling Technique (SMOTE) 10
2.1.5 SMOTE with Tomek Links (SMOTE-TL) 11
2.1.6 SMOTE with Edited Nearest Neighbour (SMOTE-ENN) 11
2.1.7 Jittering with Over/Undersampling (JOUS) 11

2.2 Performance Measures . 11
2.2.1 Accuracy . 11
2.2.2 Sensitivity . 12
2.2.3 Specificity . 13
2.2.4 Geometric Mean . 13
2.2.5 Precision . 13
2.2.6 Recall . 13
2.2.7 Mean F-Score . 13
2.2.8 Kappa Statistic . 13
2.2.9 Macro Average Arithmetic (Weighted Average) 13
2.2.10 Macro Average Geometric . 14

3 Simulation Study 14
3.1 Data Generation . 14
3.2 Comparison of Sampling Method Performance . 14
3.3 Altering AdaBoost . 17

3.3.1 Adjusting the Error Calculation . 17
3.3.2 Forcing Minority Prediction . 17

4 Application 19
4.1 March Madness . 19
4.2 March Madness Data . 19
4.3 Predicting the 2022 March Madness Tournament 19
4.4 Predicting the 2023 March Madness Tournament 22

5 Conclusion 22

6 References 24

2

1 Introduction

1.1 Decision Trees
Two of the most common machine learning problems, regression and classification, are members of
the supervised learning family. Supervised learners are created using labelled training data, where
the model makes a prediction for the dependent variable in the dataset and then establishes how
close/far its prediction was from the true value. This difference between prediction and true value
is known as the residual and, naturally, models are built to minimize this difference and create
accurate predictions.

In this paper we will focus on solving classification problems, specifically binary classification
problems. That is to say in general there can be any number of classes attributed to the dependent
variable in our dataset, but we will focus on the case where there are only two classes (True/False,
Yes/No, Win/Lose, etc.).

The decision tree model provides one of the most intuitive outputs in the field of machine
learning. A decision tree is a combination of splitting criteria that splits the sample space into
regions and provides values to be predicted (whether it be a regression or classification problem)
for data points meeting the criteria of a given region. As with any machine learning model the
decision tree fits a function y = f (x) to the training dataset. In the case of the decision tree this
function is constructed as follows,

f (x) =

M∑
m=1

cm · IRm
(x)

where cm can be estimated as,

ĉm =

∑n
i=1 IRm

(xi) · yi∑n
j=1 IRm (xj)

given some partition of the data, Rm.
Here M is the total number of regions created by the chosen splits, IRm

(x) is an indicator
function indicating whether an observation falls in the mth region, n is the total number of ob-
servations, xi and yi are the x and y values corresponding to the ith observation, and Rm is a
partition of the X-space of the independent variables. These partitions are found recursively and
are the partitions that minimize the loss of the model at a given iteration. Selecting the optimal
partition each time, however, does not guarantee a global optimization of our loss, as paths that
prove to make superior predictions may be dismissed due to not being the optimal partition at a
given iteration. For the smallest of datasets each possible set of partitions could be checked and the
global minimum loss found, but this is simply not a feasible approach for the majority of datasets.
We can look at the ĉm formula as finding the average value of y for the mth region and thus f̂ (x)
simply predicts this average value when a new x observation falls in the mth region.

Decision trees get their name from the tree-like structure that is often used to visualize them.
In the case of the decision tree, the branches grow downward (alternatively to the upward growth
found in nature) and culminate in terminal nodes, where there are no more splits in the given
branch, known as leaves (again leaning into the tree theme). Within each branch we also find
decision/interior nodes where a decision is made, based on the data, which split to follow. The
last piece of terminology in a decision tree is the root node. The root node is the first split in our
decision tree from which all of the subsequent splits follow. In the context of this project we will
be using what is known as decision stumps. A decision stump is a decision tree with only one split,
the root node, thus it only has the root node and two leaves. Figure 1 depicts an example of a
decision tree for predicting whether a team will win a basketball game, given their points per game
(PPG) and field goal percentage (FG%).

Now that we’ve introduced the structure of a decision tree the next, and most important, step
is introducing how the splits in our tree are created. When fitting a decision tree we want to chose
splits that enable our model to have the best possible accuracy and this leads us to the notion of
the purity of a node. Purity, in the context of decision trees, refers to the distribution of classes
within the two nodes that result from the split. Our goal is to develop a model with as pure leaf
nodes as possible, preferably pure nodes where each node only contains observations pertaining to
a single class.

3

Figure 1: Visual representation of a decision tree for the outcome of a
basketball game, given their offensive statistics.

For example, if we have six observations corresponding to two classes, Class A and Class B,
with three observations per class and one independent variable, we’ll call Variable One. Consider
two possible splits:

Table 1: Split One

Node Class A Obs Class B Obs

1 2 1
2 1 2

Table 2: Split Two

Node Class A Obs Class B Obs

1 3 0
2 0 3

The option that provides us with the most pure nodes is #2, since each node only contains
observations from a single class. In practice we would check the purity of nodes for all possible
splits of our Variable One and we can look at our simple example as a comparison of the two best
available splits. However, as mentioned this is a simple example that is conveniently perfectly
separable. So, what is the procedure when our data is not separable (as likely will be the case) or
all of our observations are not equally weighted?

This brings us to the measures of impurity, Gini impurity index and entropy. For this project
we’ll focus specifically on the Gini impurity index, but entropy could be used just as easily. The
Gini impurity index and entropy are computed as follows,

IG(p) = 1−
k∑

i=1

p2i

IE(p) = −
k∑

i=1

pi · log2 pi

where pi is the probability that a sample is of class i in a given node, if all observations have
identical weight, and k is the number of classes (in our cases moving forward k = 2). If the

4

observation weights are not equal, then pi is calculated as pi =
∑n

j=1 I(yj=i)·wj∑n
j=1 wj

. Let’s use this
formula on our previous example to determine which is the optimal split.

In our first possible split each of our nodes contains two observations from one class and one
observation from the other class. Plugging this information into our formula we obtain,

IG1(p) = 1−
2∑

i=1

p2i

= 1−

((
2

3

)2

+

(
1

3

)2
)

=
4

9
= 0.4444

Naturally, since the distribution of classes within Node One and Node Two are identical, we
can similarly obtain IG2(p) = 0.4444. We can then sum the individual Gini values of our nodes
and divide by the number of nodes we have. Doing so, we obtain an overall Gini of 0.4444 for
our first potential split. Note that this averaging of the Gini values for our two nodes is actually
a weighted average, however, since the total weight of the observations in each node are equal we
can simply average the two Gini values.

Next we’ll follow the same process for our second potential split and find,

IG1(p) = 1−

((
3

3

)2

+

(
0

3

)2
)

= 1− 1 = 0

Thus, with identical class distributions between our two nodes, we obtain an overall Gini of 0. The
optimal split occurs where the Gini value is minimized, which is the second case with completely
pure nodes and a Gini of zero.

Notice that in our example each observation is weighted equally, meaning that each observation
carries the same importance (since we have six observations each one has a weight of 1

6). Unequal
weights may be useful for training a model where error’s in prediction of a specific class lead to
significant repercussions. An example of this is predicting whether someone has a certain disease
or does not have the disease. It would be considerably more important that we limit the error
of predicting that someone does not have the disease when they actually do (a Type I error), so
that treatment can start immediately. Conversely it may be incredibly inconvenient to be told
you have a disease that you don’t have, but this error doesn’t pose as significant a risk to an
individuals health as not diagnosing someone as diseased. Thus, in this medical example we would
increase the weights of the observation for individuals with this disease and decrease the weights of
observations for individuals without the disease. Another issue, since there are likely many more
healthy individuals than diseased individuals, is that we may have imbalanced data and 90% of
our observations are for healthy people (we will introduce strategies to combat this imbalance later
in the paper).

Let’s return to our previous example, but this time updating the weights attributed to our
observations such that the three observations from Class One account for 75% of the total weight
and observations from Class Two account for only 25% of the total weight. Previously both classes
accounted for 50% of the total weight. Table 3 shows the previous weights for each observation in
each class versus the new weights. Note that each class contains three observations and the sum
of weights between classes always sums to 100%.

Table 3: Breakdown of Observation Weights

Class Original Weight New Weight

1 16.67% 25%
2 16.67% 8.33%

We’ll use the case where the split did not perfectly separate our classes to demonstrate how
the new Gini values are computed. Node One contains two observations from Class One and

5

one observation from Class Two. From Table 1 we see that an individual observation from Class
One has a new weight of 25% and an observation from Class Two has an new weight of 8.33%.
Previously to calculate the Gini we were able to use the count of the observations of each class
within a given node, but this time we will be using the sum of each classes weights divided by the
sum of all the weights in the node as follows,

IG1(p) = 1−
2∑

k=1

(∑3
i=1 wi · I (yi = k)∑3

i=1 wi

)2

= 1−

((
0.25 + 0.25

0.25 + 0.25 + 0.0833

)2

+

(
0.0833

0.25 + 0.25 + 0.0833

)2
)

= 1− (0.8572)2 − (0.1428)2

= 1− 0.7348− 0.0204 = 0.2448

Unlike the case with equal weights, we no longer have identical weight distributions within
both nodes. The Gini value for Node Two is found following the same procedure as Node One with
different weights.

IG2(p) = 1−

((
0.25

0.25 + 0.0833 + 0.0833

)2

+

(
0.0833 + 0.0833

0.25 + 0.0833 + 0.0833

)2
)

= 1− (0.6001)2 − (0.3999)2

= 1− 0.3601− 0.1599 = 0.48

This time the weight of our observations between the nodes are no longer equal with 58.33% of
the total weight in Node 1 and the remaining 41.67% in Node 2. Thus our new overall Gini value
is calculated as,

IG(p) = 0.5833 · IG1(p) + 0.4167 · IG2(p)

= 0.5833 · 0.2448 + 0.4167 · 0.48

= 0.3428

Notice that despite having the same distribution of observations between nodes as our equally
weighted example, our Gini value has decreased from 0.4444 to 0.3428. We would still obtain a
Gini value of zero for our separable case and it would remain the optimal split despite whether
observations have their weights adjusted or not.

1.2 Boosting
Boosting is a member of a family of machine learning methods known as ensemble methods, which
combine a number of base learners to create one final model. The base learner used is usually
a weak learner, who’s accuracy is slightly better than chance, and an ensemble method uses a
number of these weak learners, with different strengths and weaknesses, and creates predictions by
committee. A model using M weak learners can be thought of as follows,

f̂ (x) = g
(
f̂1 (x) , f̂2 (x) , ..., ˆfM (x)

)
where the final model is a function of the weak learners. Essentially we are "boosting" the effec-
tiveness of these weak learners by combining them to create a single strong learner.

It is difficult to simultaneously fit M weak learners, so we use boosting algorithms to do so
sequentially. A meta model is a model of a set of models that gives the user a broader view of how
the set of models is developed. The meta model of a boosting algorithm is the weighted sum of its
weak learners,

f̂ (x) =

M∑
m=1

α̂m · f̂m (x)

A general boosting algorithm is run as follows, where Gm is the mth base learner,

6

1. Initialize f0 as f0 = 0.

2. Set m = 1

3. Compute the β̂ and Θ̂ that satisfy the minimization of the loss function below,(
β̂m, Θ̂m

)
= argmin

β,Θ

n∑
i=1

L (yi, fm−1 (xi) + β ·Gm (xi|Θ))

4. Set fm (x) = fm−1 (x) + β̂m ·Gm

(
x|Θ̂m

)
5. Repeat steps 3 and 4 for m = 2, ...,M and set the final model as f̂ (x) = fM (x)

1.3 AdaBoost
Adaptive Boosting, known as AdaBoost, is the first boosting method with the ability to adapt to
the intricacies of the weak learners and was developed by Freund and Schapire [7]. AdaBoost is
known as one of the best "out of the box" classifiers, meaning that with little, if any, intervention
by the user, it will create a robust model with high accuracy for its relative simplicity.

AdaBoost follows the general idea outlined in the Boosting section, creating a number of weak
learners where the observations inputted for training have their weights adjusted iteratively based
on the correctness of previous predictions. Weak learners with higher accuracy will also have more
influence on the predictions of our final strong learner than less accurate weak learners.

The AdaBoost algorithm can be run as follows [8]:

1. Initialize the observation weights as wi =
1
N , where wi is the weight of the ith observation

and N is the total number of observations in the training set

2. Fit a weak learner to the training dataset with the corresponding weights for each observation

3. Compute the error of the new weak learner as

errm =

∑N
i=1 wi · I (yi ̸= Gm (xi))∑N

i=1 wi

where m denotes the mth weak learner, yi represents the class of the ith observation, Gm (xi)
represents the classification made by the mth weak learner on the ith observation and
I (yi ̸= Gm (xi)) is an indicator function that takes the value of 1 when a prediction is incor-
rect and 0 otherwise

4. Next calculate the amount of influence that the weak learner should have on the final classi-
fications made by the strong learner using

αm = log

(
1− errm
errm

)
5. Using the current weights along with the αm we update the weight of each observation with

the following formula

wm+1
i = wm

i · exp (αm · I (yi ̸= Gm (xi)))

6. Repeat Steps 2 - 5, until the specified stopping criteria is reached. The stopping criteria can
be a specific number of weak learners or a threshold of the change in prediction error between
iterations. Finally, make predictions with

sign

(
M∑

m=1

αm ·Gm (x)

)

since AdaBoost is a perceptron machine learning algorithm for the problem of binary classi-
fication.

7

Table 4: AdaBoost Example Dataset

Class X1 X2

-1 64 44
-1 97 90
1 46 8
1 67 96
-1 13 100
1 78 33
-1 72 18
1 62 58
1 65 71
-1 66 73
-1 45 70
-1 8 50
1 5 13
-1 99 13
-1 49 45

Using the small dataset in Table 4, we will run the AdaBoost algorithm as an example of
AdaBoost’s effectiveness. Three weak learners will be fit in this example and we will compare the
accuracies of each weak learner to that of the final strong learner.

In this example decision stumps will be used as our weak learner and we’ll fit M = 3 of them.
This dataset has N = 15 observations, so each observation will have an initial weight of 1

15 .
We’ll run through the first iteration of the algorithm by hand to illustrate its usage.

1. First, weights are initialized as 1
15

2. Next, with the Gini impurity index we find the optimal split of the equally weighted problem.
With Python, we find the optimal split at X1 = 6.5 having a Gini value of 0.2296

3. With our optimal split we can now compute the error of this weak learner. This is done as
follows,

errm =

∑N
i=1 wi · I (yi ̸= Gm (xi))∑N

i=1 wi

=
5

15
= 0.3333

4. The influence this weak learner should have on our final model is,

αm = log

(
1− errm
errm

)

= log

(
1− 1

3
1
3

)
= 0.6931

5. Next we update the weights for use in the next iteration, with an example of the difference
between an observation predicted correctly and one predicted incorrectly below,

wm+1
1 = wm

1 · exp (α1 · I (yi ̸= G1 (xi)))

=
1

15
· exp (0.6931 · 0) = 0.0667

w3 =
1

15
· exp (0.6931 · 1) = 0.1333

Using this method to update the weights does not guarantee that they still sum to one, so
we will standardize them

w1 =
0.0667

0.0667 + ...+ 0.0667
=

0.0667

1.3333
= 0.05

8

w3 =
0.1333

1.3333
= 0.1

6. Finally, we would iterate through the algorithm two more times and stop once we reach our
specified stopping criteria of M = 3

Running through the entire algorithm we obtain a strong learner with an accuracy of 73.33%,
notably the three decision stumps used to create this final model only had accuracies of 66.67%,
53.33% and 66.67%, respectively. Table 5 shows the α value, split and accuracy of each weak
learner, while Table 6 displays how the weights differ between each iteration.

Table 5: Summary of AdaBoost Weak Learners

Weak Learner αm Split Accuracy

1 0.6931 X1 ≤ 6.5 66.67%
2 0.1335 X1 ≤ 87.5 53.33%
3 0.6931 X2 ≤ 10.5 66.67%

Table 6: Weight Adjustments By Iteration

Obs Initial Adj. 1 Adj. 2

1 6.67% 5% 7.41%
2 6.67% 5% 3.70%
3 6.67% 10% 7.41%
4 6.67% 10% 7.41%
5 6.67% 5% 7.41%
6 6.67% 10% 7.41%
7 6.67% 5% 7.41%
8 6.67% 10% 7.41%
9 6.67% 10% 7.41%
10 6.67% 5% 7.41%
11 6.67% 5% 7.41%
12 6.67% 5% 7.41%
13 6.67% 5% 3.70%
14 6.67% 5% 3.70%
15 6.67% 5% 7.41%

Now that we’ve introduced the main concepts that will be explored throughout this paper we
will move on to a literature review regarding strategies for handling imbalanced datasets. Later
these strategies will be implemented to study their effectiveness on different types of imbalanced
data.

2 Literature Review
In many datasets the class we are interested in predicting is the minority class. An example is
trying to predict whether an individual has a rare disease or not. This dataset would contain many
observations where the disease is not present and few where it is. We could create an accurate model
by predicting all individuals to not have the disease, but that would not provide any information
about the most important class, the diseased. In this section we’ll review the current literature
about sampling methods and performance measures to try to solve this problem.

2.1 Sampling
To combat the problem of an imbalanced dataset one potential solution is to attempt to balance
the dataset. This can be acheived in two ways. The first is undersampling where we select a

9

subset of the observations from the majority class. Here we continue to sample from the majority
class, removing the sampled observation from the dataset, until there are a similar number of
observations from both classes. By undersampling we are throwing away valuable data and we
would always prefer to have more data rather than less. Thus, this solution can be a problem,
especially when we are working with a small dataset.

The second potential solution is known as oversampling. To balance the majority and minority
classes we can sample the minority class, with replacement, until we have a balanced dataset. Here
instead of removing data, as happens in undersampling, we make our dataset larger. Although
sampling these observations that already exist will necessarily lead to duplicates in our dataset,
with datasets having a larger disparity between majority and minority classes containing more
duplicates. This can lead to an overfit model, and a decrease in the models accuracy on new data,
especially if the difference between the number of minority and majority observations is large.

Below we will introduce a number of over/undersampling techniques, including techniques that
create a new data point out of the existing observations available from the minority class.

2.1.1 Random Undersampling (RUS)

As mentioned random undersampling (RUS) is the process of sampling the data related to the
majority class in the dataset, and removing these sampled observations from the dataset. We
continue to sample and "delete" observations from the majority class until there is an equal number
of observations from both classes.

As mentioned this is feasible, but not ideal for small datasets since we do not have the luxury
of being able to discard data. When we randomly delete observations from our majority class
we have no indication of how important the deleted observation is to determining the unknown
decision boundary of the data. Thus deleting observations may make it more difficult to train a
robust model and ultimately we would prefer more data rather than less.

2.1.2 Random Oversampling (ROS)

Random oversampling (ROS), on the other hand, expands the number of observations in our dataset
rather than diminishes it. Oversampling entails sampling from the minority observations, with
replacement, until the number of observations of our majority and minority classes are equivalent.

Random oversampling can lead to duplicate observations of the minority class. The greater the
difference between the number of the majority and minority observations the more duplicates we
will have. Since there is only a finite number of minority observations in our dataset we are unable
to create any unique new minority observations and are confined to sampling only from those that
are available. We will introduce some techniques to create unique synthetic data points for the
minority class later on using the minority observations that are available.

2.1.3 Tomek Link Majority Undersampling (TLMU)

The idea of Tomek links was introduced in 1976 by Ivan Tomek [21]. A Tomek link is found
by first using the k-Nearest Neighbour (kNN) algorithm and determining the nearest neighbour
(k = 1). Once each observations nearest neighbour has been found we define a Tomek link as the
observation whose nearest neighbour is of the opposing class.

Although ultimately unknown, the purpose of finding these links is to attempt to determine a
decision boundary encompassed in the data. We undersample by deleting observations from the
majority class that are involved in a Tomek link. This will decrease the number of majority class
observations, but does not guarantee that our dataset will be balanced. Instead as mentioned the
idea is to remove ambiguous points along the theorized boundary making the data more separable.

Depending on the dataset this may not be a useful technique as this approach will not provide
much help if the dataset is not separable.

2.1.4 Synthetic Minority Oversampling Technique (SMOTE)

The first technique we’ll introduce for creating new minority class observations is known as the
Synthetic Minority Oversampling Technique (SMOTE) [3]. SMOTE was developed specifically to
combat the data imbalance problem by creating new observations for the minority class using the
available minority class observations in the dataset.

10

Using the features available for each of our minority observations we perform kNN to find the
k most similar minority observations. We then randomly select one of the nearest neighbours for
each observation and create a new artificial data point, xnew as follows [9],

xnew = xi + (x̂i − xi) · δ

where xi are the features of the ith minority class observation, x̂i is the the randomly selected
nearest neighbour of the ith minority class observation and δ is a random number in the range
[0,1].

2.1.5 SMOTE with Tomek Links (SMOTE-TL)

The SMOTE with Tomek links [2] method combines an undersampling and oversampling method
to produce the benefits that we find in both methods on their own. Here we’ll have the advantage of
creating more minority data using SMOTE, while also, hopefully, creating a more distinguishable
decision boundary between the two classes.

To perform this method we first follow the SMOTE algorithm and create enough artificial
minority observations to balance the dataset. Once we have our balanced dataset we can find the
Tomek links that exist and, instead of deleting only the observation from the majority class, we’ll
delete both observations and keep the dataset balanced.

2.1.6 SMOTE with Edited Nearest Neighbour (SMOTE-ENN)

SMOTE with Edited Nearest Neighbour (SMOTE-ENN) [1] is a combination of SMOTE for over-
sampling and ENN for undersampling. To use ENN [22] we perform kNN (usually with k = 3)
and determine whether the observation in question belongs to the same class as the predominant
class displayed by its neighbours. If the classes do not match then each of the observations in the
neighbourhood are removed from the dataset.

This method provides a more aggressive approach to creating clear decision boundaries than
using Tomek links, however for small datasets this may be problematic as we are removing more
valuable observations from our analysis.

2.1.7 Jittering with Over/Undersampling (JOUS)

The Jittering with Over/Undersamping (JOUS) method was created explicitly for use in boosting
binary classification trees known as JOUS-Boost. As indicated in the name the idea of JOUS is
to oversample the minority class while adding small "jitters" to the samples, such that we don’t
create duplicate observations as occurs with simple random oversampling.

Mease et. al [10] define these jitters in the data as taking a sample of the Uniform(−v ·σj , v ·σj)
distribution where σj is the standard deviation of the jth variable in the dataset and v is a tuning
parameter that can be optimized by the user. The jitter for each variable is then added to the
random sample and the unique new minority observation is completed.

2.2 Performance Measures
A second topic we’ll explore in an attempt to combat the imbalanced data problem is adjusting
the error calculation in the AdaBoost algorithm to account for the imbalance. From the AdaBoost
algorithm outlined previously the error can be rewritten as 1−Accuracy since it is the fraction of
observations predicted incorrectly.

The idea we’re proposing is to update the accuracy measure contained within the error to a
performance measure that is more resistant to imbalanced data. Below we’ll introduce a group
of performance measures and hopefully determine whether there are any gains to be made by
adjusting the AdaBoost error measure.

2.2.1 Accuracy

Accuracy is the standard quantity used to determine the effectiveness of a models predictions. It
is the number of correctly predicted observations divided by the total number of observations and
is calculated as:

Acc =

∑k
j=1

∑n
i=1 f (i, j) · I (yi = G (xi))

n

11

For balanced datasets simply using accuracy is reasonable, however if we have an imbalanced
dataset using accuracy could be misleading. In a binary classification problem, if only 1 in 100
observations is from the minority class we could obtain an accuracy of 99% by predicting the
majority class every time. This would not teach us anything about the minority class and if this
model were deployed and used on new data there may not be the same 100:1 distribution dropping
our accuracy with every minority class observation.

To attempt to combat this issue we’ll try some alternative statistics to accuracy and see if we
can make any improvement on our predictions.

2.2.2 Sensitivity

For a binary classification problem the classes can be labelled as either positive or negative, where
the positive case, for the sake of our imbalanced dataset research, is defined as the minority class
and the negative case is the majority class. Labelling the classes as positive or negative for balanced
datasets is not a significant issue (either could be positive or negative with proper explanation) as
long as each class is consistently labelled.

When our model makes predictions on data we observe the models performance using a con-
fusion matrix. A confusion matrix contains four values, labelled true positive (TP), false positive
(FP), true negative (TN) and false negative (FN). A prediction that is a TP occurs when our
model predicts the observation to be in the positive class when that observation is actually in the
positive class. Likewise a TN is when we predict the observation is in the negative class and it
is actually in the negative class. Alternatively, a FP is when we predict the observation is in the
positive class, but it is actually in the negative class, and a FN is when we predict the observation
is in the negative class, but it is actually in the positive class. Table 7 demonstrates an example
of a confusion matrix.

Table 7: Confusion Matrix Example

Predicted Class

Positive Negative
True Positive TP FN
Class Negative FP TN

For consistency we’ll write TP, FP, TN and FN in terms of the functions f (i, j) and C (i, j).

TP =

n∑
i=1

f (i, 1) · C (i, 1)

FP =

n∑
i=1

f (i, 1) · C (i,−1)

TN =

n∑
i=1

f (i,−1) · C (i,−1)

FN =

n∑
i=1

f (i,−1) · C (i, 1)

where f (i, j) = 1 if observation i is predicted to be in class j and C (i, j) = 1 if observation i is
actually in class j.

The next six statistics are created using the TP, FP, TN and FN values gathered from our
models predictions. The idea is to see if all six will follow the same pattern of performance or if
any will differ from the rest of the group.

The first statistic from this group is sensitivity, where

Sens =
TP

TP + FN

Sensitivity is the true positive rate and demonstrates how well our model did predicting obser-
vations in the positive class.

12

2.2.3 Specificity

Next is specificity, which is the opposite of sensitivity, and is the true negative rate, indicating how
well we did predicting observations of the negative class.

Spec =
TN

FP + TN

2.2.4 Geometric Mean

The geometric mean is created using the model’s sensitivity and specificity as follows,

GM =
√
Sens · Spec

2.2.5 Precision

Precision is the accuracy of our predictions that the observation is a member of the positive class
(minority class).

Prec =
TP

TP + FP

2.2.6 Recall

Recall is just the true positive rate and is identical to sensitivity.

Rec =
TP

TP + FN

2.2.7 Mean F-Score

The mean F-score takes the precision and recall creating the statistic as,

MFS =

∑k
i=1

2·Rec(i)·Prec(i)
Rec(i)·Prec(i)

k

where Prec (i) and Rec (i) are the precision and recall of the ith class.

2.2.8 Kappa Statistic

The kappa statistic [4] is a measure of the agreement between variables and takes into account the
potential for this agreement having occured by chance. Additionally, the kappa statistic can be
used as a measure of classifier performance, which is how we will employ it.

The kappa statistic is defined as,

κ =
Acc− P (E)

1− P (E)

where,

P (E) =

∑k
m=1

([∑k
j=1

∑n
i=1 f (i,m) · C (i, j)

]
·
[∑k

j=1

∑n
i=1 f (i, j) · C (i,m)

])
n2

with P (E) representing the probability that the agreement between variables is due to chance [6].

2.2.9 Macro Average Arithmetic (Weighted Average)

The macro average arithmetic is the average of the model’s accuracy between classes. Unlike the
standard accuracy this measure is less susceptible to problems caused by imbalanced data. Thus
if we came across the scenario outlined in the accuracy section, with one observation from the
minority class and 99 from the majority, where the majority class was predicted everytime our
macro average arithmetic value would be half that of our accuracy since our minority class offers
no accuracy.

The macro average arithmetic value is calculated as,

MAA =

∑k
j=1

∑n
i=1 f(i,j)·C(i,j)

nj

k

13

2.2.10 Macro Average Geometric

The macro average geometric measure similarly utilizes the class-wise accuracies, however instead
of summing over the class accuracy it takes the product followed by the kth root as follows,

MAG = k

√√√√ k∏
j=1

·
∑n

i=1 f (i, j) · C (i, j)

nj

3 Simulation Study

3.1 Data Generation
For our simulation study we will generate the dependent variable using a logistic link function.
This means we will be computing P (yi = −1 | xi). The generation of our y ’s is done as follows

P (yi = −1 | xi) =
ex·β

1 + ex·β

where β is a vector of the regression coefficients, with β0 being an adjustable parameter to produce
datasets with a desired imbalance or lack of imbalance, while β1 through β5 were set to 1 for
simplicity and y is found by generating a random number k from the Uniform(0, 1) distribution
and determined as follows

yi =

{
−1 if P (yi = −1 | xi) ≤ k,

1 otherwise

Here x is an n×5 matrix representing our generated data and simulated under the following
distributions:

x1 ∼ Normal (0, 1)

x2 ∼ Normal (0, 5)

x3 ∼ Normal (0, 0.1)

x4 ∼ Normal (−3, 1)

x5 ∼ Normal (5, 0.5)

By default 1500 observations will be generated for each dataset, but we will also explore how
limiting and expanding the number of observations impacts the effectiveness of our methods.

3.2 Comparison of Sampling Method Performance
To test the effectiveness of our sampling methods we’ll compare the performance of our seven
sampling methods with the performance of using AdaBoost without altering the dataset. To do
this we will create 50 datasets, with 1500 observations, for each of our seven possible data imbalance
situations (50/50, 60/40,..., 95/5). We will use each of our sampling methods to minimize the data
imbalance, and with these datasets determine the accuracy and MAA (weighted average) of the
predictions made using AdaBoost. Figure 2 shows the average accuracy for each method and data
imbalance, while Figure 3 shows the average MAA.

Upon inspection of Figure 2 we see that the most accurate technique for the balanced data
(50/50, 60/40, 70/30) is JOUS, followed by a cluster of methods that include the three SMOTE
techniques. However, these methods are not the most accurate for the imbalanced data (90/10,
95/5). TLMU and Adaboost with no sampling method significantly outperform all the other
methods. This is peculiar since we would expect combining AdaBoost with our sampling methods
to provide a better model than using AdaBoost alone, and if AdaBoost is already the optimal
method then using these additional sampling methods is a waste of computing power.

Figure 3, however, provides us with an explanation for what we were seeing in Figure 2. When
we compare the weighted averages of each method, TLMU and AdaBoost with no sampling method
perform the worst for all data imbalances. This is not surprising since these are the only two
methods that return a dataset that is still imbalanced, so what looks like exceptional performance
in Figure 2 is shown to be a bias towards predicting the majority class in Figure 3, since the
weighted average controls for model accuracy between classes.

14

Figure 2: Comparison of the mean accuracies of each sampling method
for increasing data imbalance.

Figure 3: Comparison of the mean weighted averages of each sampling
method for increasing data imbalance.

15

Figure 4: Comparison of the mean accuracies of JOUS and the three
SMOTE methods for increasing data imbalance with not using any

techniques.

Figure 5: Comparison of the mean weighted averages of JOUS and the
three SMOTE methods for increasing data imbalance with not using

any techniques.

16

The consistent top performers between Figure 2 and 3 are JOUS and the three SMOTE vari-
ations. Figure 4 and 5 compare JOUS, SMOTE-ENN, SMOTE-TL and SMOTE with the use
of no sampling technique. While JOUS slightly outperforms the SMOTE methods, it is not sur-
prising that these are the top four best performing techniques. All four techniques create new
artificial minority observations to balance the dataset. SMOTE-TL and SMOTE-ENN both use
undersampling to remove observations and create a more separable dataset and improve model
performance on the decision boundary. This leads to them both outperforming SMOTE, with
respect to weighted average. Table 8 shows the mean accuracy and weighted average for each
method and data imbalance combination.

Table 8: Sampling Performance By Data Imbalance

Imbalance 50/50 60/40 70/30 75/25 80/20 90/10 95/5

Method Measure
No Method Accuracy 89.23% 89.86% 90.53% 91.62% 92.12% 95.24% 97.43%

MAA 89.22% 89.51% 88.49% 88.38% 87.55% 85.12% 82.12%
RUS Accuracy 89.84% 90.28% 90.30% 90.86% 91.12% 91.85% 93.43%

MAA 89.85% 90.29% 90.57% 91.05% 91.43% 91.76% 92.38%
ROS Accuracy 89.86% 90.26% 90.43% 90.99% 91.19% 92.81% 95.07%

MAA 89.86% 90.20% 90.39% 90.87% 90.88% 91.70% 92.34%
TLMU Accuracy 88.57% 89.29% 89.93% 91.20% 91.74% 94.95% 96.90%

MAA 88.65% 89.64% 89.66% 90.08% 89.87% 88.25% 85.16%
SMOTE Accuracy 89.68% 90.31% 90.38% 90.95% 91.35% 92.62% 94.62%

MAA 89.67% 90.30% 90.43% 90.93% 91.26% 91.70% 92.44%
SMOTE-TL Accuracy 90.13% 90.52% 90.20% 90.70% 91.17% 92.42% 94.53%

MAA 90.12% 90.59% 90.71% 90.92% 91.35% 92.48% 93.07%
SMOTE-ENN Accuracy 89.98% 90.70% 90.60% 91.24% 91.61% 92.72% 94.59%

MAA 89.98% 90.64% 90.50% 91.17% 91.42% 91.85% 93.15%
JOUS Accuracy 90.57% 91.42% 91.33% 91.94% 92.09% 93.14% 94.81%

MAA 90.56% 91.47% 91.53% 92.06% 92.20% 92.88% 93.14%

3.3 Altering AdaBoost
3.3.1 Adjusting the Error Calculation

The first alteration to AdaBoost that we propose is to update how the error term in the AdaBoost
algorithm is calculated by changing it from accuracy to one of the other previously introduced
performance measures. Upon testing this, however, we did not obtain any change in our model
performance from the standard application of AdaBoost. This is likely because the error measure
mainly impacts the weight that a specific weak learner receives in the final ensemble model, and
has less to do with creating a more diverse group of weak learners that would result in a different
overall final model.

3.3.2 Forcing Minority Prediction

Next, we’ll explore if altering how our decision stumps are created can improve the effectiveness
of AdaBoost on imbalanced datasets. The alteration we are proposing is to force all possible
decision stumps to have a majority leaf node and a minority leaf node. Previously this was not
the case as a highly imbalanced dataset, with equal weighting among observations, would likely
return a decision stump who’s leaves both predicted observations to be of the majority class. This
idea stems from the desire to create decision stumps that differ from the standard approach, thus
altering observation weights within the AdaBoost algorithm, and hopefully producing an increased
prediction accuracy.

We will test the effectiveness of this AdaBoost alteration across seven data imbalances, and
with three different dataset sizes (500, 1500 and 5000) with the data being simulated as outlined
in the previous section. Figure’s 6 through 8 compare the performance of our altered AdaBoost to
that returned using Python’s scikit-learn package for 50/50, 60/40 and 70/30 imbalances.

17

Figure 6: Comparison of the altered AdaBoost and scikit-learn’s
AdaBoost for a 50/50 majority/minority split and varying dataset sizes.

Figure 7: Comparison of the altered AdaBoost and scikit-learn’s
AdaBoost for a 60/40 majority/minority split and varying dataset sizes.

Figure 8: Comparison of the altered AdaBoost and scikit-learn’s
AdaBoost for a 70/30 majority/minority split and varying dataset sizes.

18

As we can see the scikit-learn AdaBoost outperforms our altered AdaBoost for each dataset size
and almost all M values for the three imbalances. The 75/25, 80/20, 90/10 and 95/5 imbalances
have performances that closely match those obtained by the 70/30 imbalance in Figure 8. We
see that when M = 5 our altered AdaBoost occasionally outperforms scikit-learn’s AdaBoost,
but this improvement in performance is not significant. Thus, we can conclude that the altered
AdaBoost model does not provide any improvement when predicting imbalanced data compared
to the standard AdaBoost.

4 Application

4.1 March Madness
March Madness is a tournament like no other. Men’s Division I College Basketball contains 363
teams from across the USA with 68 of the best teams reaching the national tournament. Teams are
classified in two categories: automatic and at-large bids. There are 32 conferences nationwide and
the winner of each of the conferences attains an "automatic" invitation to the tournament. The
at-large bids are given to the best 36 teams that did not win their conferences championship. All
conferences are not made equal, so the disparity between a team from a power conference like the
Big 12 and (currently the weakest overall conference according to Ken Pomeroy [15]) the Northeast
Conference is staggering. Successfully predicting March Madness entails finding the signal in the
noise that can predict potential upsets by weaker teams over perennial powers. With 63 games
in total, the number of possible bracket permutations is approximately 9.2 quintillion, making the
tournament almost unpredictable.

4.2 March Madness Data
The data for this project comes from a plethora of sources, including ESPN (Entertainment and
Sports Programming Network) [5], Fox Sports [20], College Basketball Reference [17], KenPom
(Ken Pomeroy) [15] and the Associated Press [16]. The variable of interest is a binary variable
that indicates whether the weaker team (underdog) won a given game, with a value of 1 if they
do and -1 if they don’t. The dataset contains approximately 120 variables ranging from win-loss
breakdowns (home, away, neutral site, top 25) to scoring statistics (field goals, free throws, etc.)
and advanced statistics (efficiencies, strength of schedule, pace).

Each row in the dataset contains data about a single game with statistics available for both the
underdog and their opponent. These games were contested during the 2018 and 2019 tournaments,
and each tournament had 63 games. Thus, in total the dataset has 126 rows with the underdog
winning approximately 32% of the time. The testing data comes from the 2022 tournament. Table
9 shows a subset of the data for the 2019 championship game where the favourite Virginia defeated
Texas Tech.

Table 9: 2019 Championship Game Sample

Upset Underdog Seed Wins Losses Favourite Seed Wins Losses

-1 Texas Tech 3 26 6 Virginia 1 29 3

4.3 Predicting the 2022 March Madness Tournament
Now that we’ve established which methods work well in our controlled simulation study, we can
test their performance on our March Madness data. First, we’ll use 10-fold cross-validation on our
2018 and 2019 training data to find the optimal M -value for each of our models. Figure 9 and
10 show how the training models performed at different M -values for both accuracy and weighted
average. Table 10 shows the optimal M for each model as selected by the weighted average.

Now that we’ve found the optimal models we can train them on the entire training dataset and
use them to make predictions on the games played in the 2022 tournament. Table 11 shows the
the testing accuracy and testing weighted average for each of the nine models.

19

Figure 9: Average model training accuracy over the 10-folds for
increasing M.

Figure 10: Average model training weighted average over the 10-folds
for increasing M.

Table 10: Optimal Models Selected By Training Weighted Average

Model Weighted Average M

JOUS 88.70% 9
SMOTE 82.31% 36
TLMU 80.70% 22
ROS 80.34% 37
RUS 77.78% 18

AdaBoost Only 75.96% 35
Altered AdaBoost 71.01% 14

SMOTE-TL 68.35% 13
SMOTE-ENN 60.50% 7

20

Table 11: Accuracy & Weighted Average of Optimal Models On Testing Data

Model Accuracy Weighted Average

JOUS 55.56% 55.95%
SMOTE 55.56% 54.76%
TLMU 63.49% 59.52%
ROS 52.38% 52.38%
RUS 60.32% 55.95%

AdaBoost Only 57.14% 54.76%
Altered AdaBoost 52.38% 50.00%

SMOTE-TL 57.14% 55.95%
SMOTE-ENN 57.14% 47.62%

Looking at the table we see a significant decrease in the performance of all models, with models
obtaining weighted averages between 12 and 33 percentage points lower than they did in training.
One reason for this may be that the 2018 and 2019 tournaments are not representative of the results
in the 2022 tournament and we can’t prove that there is a link between underdog performance
between tournaments. The notion that our training data does not model our testing data well
may be relevant to this scenario, as the 2022 tournament contains 13 significant upsets (where an
underdog beats a team that is ranked five seeds or higher than themselves). These 13 significant
upsets tie the 2022 tournament with the 1985 tournament for the most such upsets in a single
tournament all-time.

Another reason that our performance may have diminished, relative to our simulation study,
is that our March Madness data does not follow anything close to a normal distribution. In our
simulation study every variable was generated from a normal distribution, but real world data, like
college basketball outcomes, is messy and there is a negligible likelihood that the variables each
follow a normal distribution. Ultimately more research would have to be done into how our models
react to data generated from different distributions and the introduction of correlated variables.

A non-statistics explanation for the poor performance on the 2022 tournament testing data is
the implementation of NIL (name, image, likeness) and transfer portal between our training and
testing data. The current NIL rules were implemented July 1, 2021 [11], and allow student-athletes
to make money using their personal brand. Previously student-athletes were unable to monetize
their talents, with the exception of scholarships, but now schools and boosters (team supporters)
can pay athletes to play for the school. Table 12 shows the top 10 college basketball NIL valuations
from On3 [14].

Table 12: Top 10 College Basketball NIL Valuations

Rank Athlete School Valuation

1 Bronny James Uncommitted $7.4M
2 Hansel Emmanuel Uncommitted $1.4M
3 Jared McCain Duke $1.2M
4 Bryce James Uncommitted $1.2M
5 Shaqir O’Neal Texas Southern $1M
6 Jalen Wilson Kansas $926K
7 Trayce Jackson-Davis Indiana $897K
8 Brandon Miller Alabama $870K
9 Robert Dillingham Kentucky $854K
10 Zach Edey Purdue $829K

The second big change was the introduction of the one-time transfer rule in April 2021 [18].
Previously, if a student-athlete wanted to transfer schools they would be required to sit out for a
season before playing for the new school, and the only transfers eligible to play immediately were
graduate transfers. This rule change permits student-athletes a one-time transfer with automatic
eligibility regardless of the number of years they’ve spent at their current school. This has created

21

a greater level of parity in college basketball with high level recruits unhappy with playing time
at top schools transferring to smaller schools and making instant impacts. The transfer portal has
been a major point of discussion this year as fans, coaches and schools try to determine the best
way to use it. For example, this past season Michigan State head coach Tom Izzo denounced the
transfer portal and brought in no new transfers [13], while Kansas State has brought in ten transfers
in the past two years [12] and didn’t have a single player this year that originally committed to
the school. Kansas State’s team of transfers was picked to finish last in the Big 12 ahead of this
season [19], while in actuality they finished third and reached the Elite Eight.

4.4 Predicting the 2023 March Madness Tournament
To supplement our predictions on the games from the 2022 tournament, we also tried to predict
the 2023 tournament and submitted a bracket for each of our models into the ESPN Bracket
Challenge. Table 13 shows the number of correct predictions, percentage of the 20,056,273 models
that the given model was better than, and the number of points earned (points double each round,
maximum 1920 points) by each model. Figure 11 depicts the performance of our best model (ROS)
in bracket form.

Table 13: 2023 March Madness Model Performance

Model Correct Predictions Top Points

ROS 33 95.4% 690
Personal 35 88.4% 560

Altered AdaBoost 30 49.9% 440
SMOTE-TL 29 40.5% 420

SMOTE-ENN 30 40.5% 420
AdaBoost Only 31 36.00% 410

RUS 22 23.9% 380
TLMU 27 17.5% 360
SMOTE 27 12.5% 340

5 Conclusion
In this paper we found that almost all the sampling methods that we introduced, when combined
with an ensemble method like AdaBoost, outperformed AdaBoost on its own for varying levels
of data imbalance in terms of weighted average. However, the success in our simulation study
unfortunately did not lead to similar results when applied to March Madness data, and each of
our models underperformed.

As noted our simulation study only used uncorrelated variables generated from normal distri-
butions. In the future it would be interesting to see how our models would perform if this were to
change. It would be beneficial to try to develop data that more closely follows the structure of the
March Madness data. Additionally more research could be done combining our sampling methods
with different machine learning models, since we only combined them with AdaBoost.

Lastly, with the new college basketball landscape created by NIL and the transfer portal, it may
be beneficial to test the methods outlined in this paper using only seasons contested with these
new rules. Determining whether training our models exclusively on the 2022 tournament improves
performance when predicting the 2023 tournament would be a good first step. Every sport has
different eras which has lead to the introduction of era adjusted statistics. College basketball
seems to be entering into a new era, so taking this into account will likely be necessary for future
tournaments.

22

Figure 11: ROS 2023 March Madness Bracket.

23

6 References
[1] Gustavo E. Batista, Ronaldo C. Prati, and Maria Carolina Monard. “A Study of the Behavior

of Several Methods for Balancing Machine Learning Training Data”. In: ACM SIGKDD
Explorations Newsletter 6.1 (2004), pp. 20–29. doi: 10.1145/1007730.1007735.

[2] Gustavo E. A. P. A. Batista, Ana L. C. Bazzan, and Maria Carolina Monard. “Balancing
Training Data for Automated Annotation of Keywords: a Case Study”. In: Proceedings of the
Second Brazilian Workshop on Bioinformatics (2003), pp. 35–43.

[3] N. V. Chawla et al. “SMOTE: Synthetic Minority Over-Sampling Technique”. In: Journal of
Artificial Intelligence Research 16 (2002), pp. 321–357. doi: 10.1613/jair.953.

[4] Jacob Cohen. “A Coefficient of Agreement for Nominal Scales”. In: Educational and Psycho-
logical Measurement 20.1 (1960), pp. 37–46. doi: 10.1177/001316446002000104.

[5] Entertainment and Sports Programming Network. 2022-23 men’s College Basketball Stand-
ings. 2023. url: https://www.espn.com/mens-college-basketball/standings.

[6] C. Ferri, J. Hernández-Orallo, and R. Modroiu. “An Experimental Comparison of Perfor-
mance Measures for Classification”. In: Pattern Recognition Letters 30.1 (2009), pp. 27–38.
doi: 10.1016/j.patrec.2008.08.010.

[7] Yoav Freund and Robert E Schapire. “A Decision-Theoretic Generalization of On-Line Learn-
ing and an Application to Boosting”. In: Journal of Computer and System Sciences 55.1
(1997), pp. 119–139. doi: 10.1006/jcss.1997.1504.

[8] Trevor Hastie, Jerome Friedman, and Robert Tisbshirani. The Elements of Statistical Learn-
ing: Data Mining, Inference, and Prediction. Springer, 2017.

[9] Qiujie Li and Yaobin Mao. “A Review of Boosting Methods for Imbalanced Data Classifica-
tion”. In: Pattern Analysis and Applications 17.4 (2014), pp. 679–693. doi: 10.1007/s10044-
014-0392-8.

[10] David Mease et al. “Boosted Classification Trees and Class Probability/Quantile Estimation”.
In: Journal of Machine Learning Research (2007), pp. 409–439.

[11] Dan Murphy. Everything you need to know about the NCAA’s Nil Debate. Sept. 2021. url:
https://www.espn.com/college-sports/story/_/id/31086019/everything-need-
know-ncaa-nil-debate.

[12] On3. 2022 Kansas State Basketball Transfer Portal. 2023. url: https://www.on3.com/
college/kansas-state-wildcats/transfer-portal/wire/basketball/2022/.

[13] On3. 2022 Michigan State Basketball Transfer Portal. 2023. url: https://www.on3.com/
college/michigan-state-spartans/transfer-portal/wire/basketball/2022/.

[14] On3. On3 nil 100. 2023. url: https://www.on3.com/nil/rankings/player/nil-100/.
[15] Ken Pomeroy. 2023 Pomeroy College Basketball Ratings. 2023. url: https://kenpom.com/.
[16] Associated Press. NCAA college basketball rankings: AP top 25 basketball poll. 2023. url:

https://apnews.com/hub/ap-top-25-college-basketball-poll.
[17] Sports Reference. 2022-23 men’s college basketball conference standings. 2023. url: https:

//www.sports-reference.com/cbb/seasons/men/2023-standings.html.
[18] On3 Staff Report. What is the NCAA transfer portal? everything you need to know. Dec.

2022. url: https://www.on3.com/transfer-portal/news/ncaa-transfer-portal-
everything-you-need-to-know/.

[19] Big 12 Sports. Baylor chosen big 12 men’s basketball preseason favorite. Oct. 2022. url:
https : / / big12sports . com / news / 2022 / 10 / 11 / baylor - chosen - big - 12 - mens -
basketball-preseason-favorite.aspx.

[20] Fox Sports. NCAA college basketball news, scores, Rankings amp; Stats. 2023. url: https:
//www.foxsports.com/college-basketball.

[21] Ivan Tomek. “Two Modifications of CNN”. In: IEEE Transactions on Systems, Man, and
Cybernetics SMC-6.11 (1976), pp. 769–772. doi: 10.1109/tsmc.1976.4309452.

[22] Dennis L. Wilson. “Asymptotic Properties of Nearest Neighbor Rules Using Edited Data”. In:
IEEE Transactions on Systems, Man, and Cybernetics SMC-2.3 (1972), pp. 408–421. doi:
10.1109/tsmc.1972.4309137.

24

https://doi.org/10.1145/1007730.1007735
https://doi.org/10.1613/jair.953
https://doi.org/10.1177/001316446002000104
https://www.espn.com/mens-college-basketball/standings
https://doi.org/10.1016/j.patrec.2008.08.010
https://doi.org/10.1006/jcss.1997.1504
https://doi.org/10.1007/s10044-014-0392-8
https://doi.org/10.1007/s10044-014-0392-8
https://www.espn.com/college-sports/story/_/id/31086019/everything-need-know-ncaa-nil-debate
https://www.espn.com/college-sports/story/_/id/31086019/everything-need-know-ncaa-nil-debate
https://www.on3.com/college/kansas-state-wildcats/transfer-portal/wire/basketball/2022/
https://www.on3.com/college/kansas-state-wildcats/transfer-portal/wire/basketball/2022/
https://www.on3.com/college/michigan-state-spartans/transfer-portal/wire/basketball/2022/
https://www.on3.com/college/michigan-state-spartans/transfer-portal/wire/basketball/2022/
https://www.on3.com/nil/rankings/player/nil-100/
https://kenpom.com/
https://apnews.com/hub/ap-top-25-college-basketball-poll
https://www.sports-reference.com/cbb/seasons/men/2023-standings.html
https://www.sports-reference.com/cbb/seasons/men/2023-standings.html
https://www.on3.com/transfer-portal/news/ncaa-transfer-portal-everything-you-need-to-know/
https://www.on3.com/transfer-portal/news/ncaa-transfer-portal-everything-you-need-to-know/
https://big12sports.com/news/2022/10/11/baylor-chosen-big-12-mens-basketball-preseason-favorite.aspx
https://big12sports.com/news/2022/10/11/baylor-chosen-big-12-mens-basketball-preseason-favorite.aspx
https://www.foxsports.com/college-basketball
https://www.foxsports.com/college-basketball
https://doi.org/10.1109/tsmc.1976.4309452
https://doi.org/10.1109/tsmc.1972.4309137

	Introduction
	Decision Trees
	Boosting
	AdaBoost

	Literature Review
	Sampling
	Random Undersampling (RUS)
	Random Oversampling (ROS)
	Tomek Link Majority Undersampling (TLMU)
	Synthetic Minority Oversampling Technique (SMOTE)
	SMOTE with Tomek Links (SMOTE-TL)
	SMOTE with Edited Nearest Neighbour (SMOTE-ENN)
	Jittering with Over/Undersampling (JOUS)

	Performance Measures
	Accuracy
	Sensitivity
	Specificity
	Geometric Mean
	Precision
	Recall
	Mean F-Score
	Kappa Statistic
	Macro Average Arithmetic (Weighted Average)
	Macro Average Geometric

	Simulation Study
	Data Generation
	Comparison of Sampling Method Performance
	Altering AdaBoost
	Adjusting the Error Calculation
	Forcing Minority Prediction

	Application
	March Madness
	March Madness Data
	Predicting the 2022 March Madness Tournament
	Predicting the 2023 March Madness Tournament

	Conclusion
	References

