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Malicious Software (malware) attacks across the internet are increasing at an alarming rate.  
Cyber-attacks have become increasingly more sophisticated and targeted.  These targeted attacks 
are aimed at compromising networks, stealing personal financial information and removing 
sensitive data or disrupting operations. Current malware detection approaches work well for 
previously known signatures.  However, malware developers utilize techniques to mutate and 
change software properties (signatures) to avoid and evade detection.  Polymorphic malware is 
practically undetectable with signature-based defensive technologies.  Today’s effective 
detection rate for polymorphic malware detection ranges from 68.75% to 81.25%.  New 
techniques are needed to improve malware detection rates.  Improved detection of polymorphic 
malware can only be accomplished by extracting features beyond the signature realm.  Targeted 
detection for polymorphic malware must rely upon extracting key features and characteristics for 
advanced analysis.  Traditionally, malware researchers have relied on limited dimensional 
features such as behavior (dynamic) or source/execution code analysis (static).  This study’s 
focus was to extract and evaluate a limited set of multidimensional topological data in order to 
improve detection for polymorphic malware. This study used multidimensional analysis (file 
properties, static and dynamic analysis) with machine learning algorithms to improve malware 
detection. This research demonstrated improved polymorphic malware detection can be achieved 
with machine learning.  This study conducted a number of experiments using a standard 
experimental testing protocol.  This study utilized three advanced algorithms (Metabagging 
(MB), Instance Based k-Means (IBk) and Deep Learning Multi-Layer Perceptron) with a limited 
set of multidimensional data.  Experimental results delivered detection results above 99.43%.  In 
addition, the experiments delivered near zero false positives.  The study’s approach was based on 
single case experimental design, a well-accepted protocol for progressive testing.  The study 
constructed a prototype to automate feature extraction, assemble files for analysis, and analyze 
results through multiple clustering algorithms. The study performed an evaluation of large 
malware sample datasets to understand effectiveness across a wide range of malware.  The study 
developed an integrated framework which automated feature extraction for multidimensional 
analysis.  The feature extraction framework consisted of four modules: 1) a pre-process module 
that extracts and generates topological features based on static analysis of machine code and file 
characteristics, 2) a behavioral analysis module that extracts behavioral characteristics based on 
file execution (dynamic analysis), 3) an input file construction and submission module, and 4) a 
machine learning module that employs various advanced algorithms.  As with most studies, 
careful attention was paid to false positive and false negative rates which reduce their overall 
detection accuracy and effectiveness.  This study provided a novel approach to expand the 
malware body of knowledge and improve the detection for polymorphic malware targeting 
Microsoft operating systems.  
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Chapter 1 

Introduction 

Background 

Malware (malicious software) represents a significant problem for today’s highly 

networked and distributed computer systems (Cesare & Xiang, 2010).  In general, 

malware is used to represent a variety of annoying or hostile software programs 

specifically designed to access, interrupt or establish communication channels, and/or 

perform data exfiltration from compromised computer systems without the owner’s 

informed consent (Kumar, S., Rama Krishna, C., Aggarwal, N., Sehgal, R., & Chamotra, 

S., 2014). The ability to detect malware is a major challenge due to the proliferation and 

complexity for detecting malware across a wide range of endpoints throughout the 

enterprise (Qu & Hughes, 2013).  The growth of malware threats continues to far exceed 

the security industry’s projections and estimates (Qu & Hughes, 2013).  According to the 

McAfee Labs Threat Report (2014), the security company collected over approximately 

235 million malware samples in the first quarter of 2014.  In 2015, McAfee estimated 

that the company collected over 3 million new samples a day (McAfee, 2016). A majority 

of samples collect were detected by McAfee’s worldwide sensor network protecting 

computer systems and networks for both commercial and Government organizations 

(McAfee, 2014).  These samples were collected based on the suspicious activity or 

behavior of the malware by typical network protection devices and security appliances 

(McAfee, 2014).  The unprecedented growth of new malware increased by 174% for the 

same quarter from the previous year (2013) and exceeded an additional 100 million new 
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samples (McAfee, 2014).  McAfee’s 2015 Threat Report stated that malware rose by 

13% in first quarter (McAfee Labs, 2015). Advanced detection methods to detect new 

malware continues to be a major challenge for security researchers and commercial 

security companies given the growth and sophistication of malware (Qu & Hughes, 

2013).      

The ability to detect and classify malware provides a means to identify and stop 

the proliferation of malware across the network.  Today’s detection relies upon signatures 

of known malware to identify malware at the network and host (Cesare & Xiang, 2011).  

Signature detection of advanced malware is complicated by polymorphism (Muhaya, 

Khan, & Xiang, 2011).  However, signature detection alone does not provide adequate 

protection for networks and end points from polymorphic malware.  The McAfee Threat 

Report (2016) stated that on average the security saw almost 40 million new malware 

samples in each quarter for 2015.   

In order to understand the malware threat landscape – it is helpful to understand 

the various types of malware and the motivational factors driving malware development.  

Malware is often developed for a specific purpose to attack or disrupt a specific target or 

environment (Richardson, 2011).  Typically malware aims to steal information, 

compromise sensitive networks, and establish launch points for future attacks (Brenner, 

2008; Chu, Holt, & Ahn, 2010; Wall, 2012) . The term “malware” includes viruses, 

Trojan programs and other malicious tools installed on hosts or endpoints to automate 

some type of compromise that may lead to more sophisticated or complex intrusions 

(Brenner, 2008; Richardson, 2011; Wall, 2012).  Another type of malware – botnets 

extends this capability and combines multiple aspects of existing malware into a single 
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program enabling hackers to form a network of infected computers world-wide (Bächer, 

Holz, Kotter, & Wicherski, 2005).  Botnets can provide a foothold to create a number of 

attacks ranging from the distribution of spam, denial of service attacks, and advanced 

network scanning (Bächer et al., 2005).  There has been significant research involved 

with malware and role it plays in cybercrimes and the financial impact attacks play on 

organizations (Bächer et al., 2005; Wall, 2012).  Additional research has been involved 

with the social factors that influence the creation, distribution, and use of malware in the 

hacker community (Chu et al., 2010).  Sophisticated malware enables hackers to sell 

access or steal information from their botnets across the world (Bächer et al., 2005).  

Botnets have revolutionized attacks on infrastructures and has advanced the targeted 

attack on organizations (Chu et al., 2010).  Hackers have established forums and Internet 

Relay Chat (IRC) to sell and distribute malicious software, stolen data, and hacking tools 

that enable less skilled malware developers to gain direct access to advanced malware 

services (Chu et al., 2010). 

Ransomware has become major malware challenge within the last few years 

(McAfee Labs Threats Report, 2016).  Ransomware better known as “scareware”  has 

become quite popular with cyber criminals (Kharraz, Robertson, Balzarotti, Bilge, & 

Kirda, 2015).   Most ransomware is polymorphic in nature (McAfee Labs Threats Report, 

2016).  Ransomware malware and the criminals operating the malware see to take 

advantage of people’s fear of releasing private information, losing critical data, or facing 

irreversible hardware damage (Kharraz et al., 2015). In most cases ransomware locks or 

encrypts the victims’ computers until they make a payment to unlock or re-gain access to 

their data (Kharraz et al., 2015).  Ransomware has been on the malware landscape for 

over 10 years, however the volume of these attacks has dramatically increased over the 
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last few years -  500% in 2013, 550% in 2014 and nearly 600% in 2015 according to 

Kaspersky’s Threat Report (2016). The Crypto locker ransomware has been detected on 

over 750,000 computers in the United States (Gostev, Unuchek, Garnaeva, Makrushin, & 

Ivanov, 2016).  Ransomware attacks have migrated from individuals to organizations 

such as healthcare/hospitals and local governments.  Once such ransomware case 

involved an entire police department who had to pay the ransom in order to unlock or to 

decrypt the departments document repository (Gostev et al., 2016). This has led to new 

energy for detecting polymorphic ransomware and has mobilized many of the leading 

security vendors to share findings because of the levels of sophistication and the current 

ineffective defensive techniques (Gostev et al., 2016). 

In order to improve detection advances in malware classification and detection are 

needed to provide better end-point protection.  Malware detection has traditionally been 

largely signature-based (Qu & Hughes, 2013).  These signatures are based on the hashing 

of the malware files, executables or binaries (Sulaiman, Ramamoorthy, Mukkamala, & 

Sung, 2005).  Detection is then based on the a-priori signature or hash of the complete 

binary or partial characteristics of byte sequences of known malware samples (Wüchner, 

Ochoa, & Pretschner, 2014).  Security vendors collect, analyze and create extensive 

repositories of malware signatures that are used for detection within anti-virus and other 

security protection.  Signature-based detection continues to be one of the main tools used 

for detection on commercial anti-virus (Wüchner et al., 2014).  However, signature based 

detection suffers from several major limitations. The first major limitation is speed.  New 

malware released into the wild will not be detected until the signature is captured by 

some security mechanism and the executable/binary analyzed.  In reality, once the 

file/binary has been captured it can take weeks for one of the many security vendors to 



5 
 

publish the malicious reputation for a specific file.   Unfortunately, polymorphic malware 

can be developed and distributed via the internet across the world in minutes and hours 

(Mandiant Research, 2014).  Polymorphic malware can then self-generate new signatures 

in order to appear to security devices as a new file. These new signatures will need time 

to be discovered, analyzed (determined malicious or benign) and released by commercial 

security vendors for protection (Szor, 2005). Signature-based defense will always suffer a 

time gap between the release of a new or unknown malware types, determination of 

maliciousness by the security community and signatures for the corresponding malware 

(Wüchner et al., 2014).  Unfortunately, it is during this time gap that the malware goes 

undetected, reaches the intended targets and propagates itself throughout compromised 

networks. 

Malware developers understand the time gap and exploit malware determination 

frequency cycle referred to as  “catch, analyze, deploy” (Wüchner et al., 2014).  The 

challenge for malware researchers is to shorten this gap or approach the problem from a 

different perspective (Cesare, Xiang, & Zhou, 2007).  The second limitation of signature-

based detection is polymorphism.  Polymorphic malware is an umbrella term used to 

refer both polymorphic and metamorphic malware (Campo-Giralte, Jimenez-Peris, & 

Patino-Martinez, 2009). Polymorphic and metamorphic malware exploit the malware 

frequency determination cycle by dynamically creating a new executable and changing 

its signature.  By changing the signature, most current defensive technologies ignore the 

executable as it has a new identity.  The new executable will have a new signature and 

evade existing signature detection (Cesare, Xiang, & Zhou, 2013). Malware developers 

use the new signature to propagate and infect a large number of hosts (Wüchner et al., 
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2014).  The detection of malware is increasingly more difficult over time due to the 

sophistication of the malware programs (Guri, Kedma, & Sela, 2013).  Previous 

polymorphic detection rates using advanced classification range from 68.75% to 81.25% 

(Amos, Turner, & White, 2013).  These detection rates used Bayes and Multilayer 

Perceptron techniques to establish a baseline for effective detection of various types of 

polymorphic malware (Amos et al., 2013).   

Malware researchers have developed techniques to break the polymorphic 

malware executable into segments and attempt pattern matching on malware segments 

(David & Yahav, 2013).  This approach has been extremely helpful as malware 

developers tend to re-use and share functions (Rekdal & Bloemerus, 2013).  However, 

advanced malware developers understanding this approach employ other techniques to 

protect code from being analyzed by encrypting segments of execution code and 

leveraging other obfuscation techniques to avoid sub-function signature development 

(Campo-Giralte et al., 2009).  Malware developers design malware to invade, self-mutate 

and propagate malware throughout the infected network using advanced techniques that 

are generally used one-time making the research very difficult (Bossert, Hiet, & Inria, 

2014).  Detection of advanced malware grows increasingly more difficult because of the 

sophistication and concealment of the executable.   Malware detection and classification 

research methods must be advanced in order to detect new types of malware.  Advanced 

malware analysis methodologies need to be developed in order to improve detection and 

classification the evolving nature of polymorphic malware.   

Identification of malicious or benign programs (files, portable executables, etc.) 

must involve new discovery techniques and leveraging several types of advanced analysis 
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to identify malware (Cesare & Xiang, 2013).  There are typically two types of advanced 

analysis – static and dynamic.  Static analysis never executes the malware, but rather 

decodes the compiled code into human readable segments (Sulaiman et al., 2005).  

Dynamic analysis is typically conducted via a platform referred to as a “sandbox”.  The 

sandbox provides an environment to execute the program and captures each sequence of 

the runtime behavior (Cesare & Xiang, 2014).  Both analysis tools are extremely helpful 

during malware analysis as researchers are able to understand how the program executes 

and what functions are actually executed by the malware (Sulaiman et al., 2005).  Static 

and dynamic analysis allows researchers to evaluate and determine the intent of the 

malware programs and the potential targeted environment.  Researchers can then classify 

malware into families of malware based on the results from static and dynamic analysis. 

The ability for advanced analysis to produce classification and signature detection 

provides a means to perform advanced detection. 

Advanced detection relies on feature extraction of the malware being analyzed 

(Qu & Hughes, 2013).  Recent malware research has divided detection into two tasks: 

malware classification and malware detection (Qu & Hughes, 2013).  Classification of 

malware enables researchers to understand the family of malware and generally the intent 

of the attacker (Qu & Hughes, 2013).  Detection involves the identification of novel 

instances of malware and detecting copies or variants of known malware (Qu & Hughes, 

2013). Both classification and detection requires feature extraction of the malware binary 

and class features associated with the malware (Cesare & Xiang, 2013).  Detection of 

new malware relies heavily on statistical machine learning (Qu & Hughes, 2013).  

Searching for malware variants uses the concept of similarity searching to query a 
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database of known malware types and functions (Qu & Hughes, 2013). Similarity queries 

or nearest neighbor searches relies upon techniques within machine learning or referred 

to as instance-based learning (Yerima, Sezer, McWilliams, & Muttik, 2013). Instance-

based learning utilizes inherent distance functions within machine learning to highlight 

similarity or dissimilarity between objects (Yerima et al., 2013) .  These search 

algorithms use distance functions and develop mathematical metrics for various searches 

and are much more efficient than traditional database queries (Yerima et al., 2013).  

Traditional research and commercial malware detection systems have relied upon 

static string signature searching techniques to classify and detect malware (Cesare & 

Xiang, 2011).  This type of search relies upon capturing sections of malware executable 

code that uniquely identifies the malware (Cesare & Xiang, 2011). String signature 

searching performs well from a query performance and produces low false positive 

results.  Therefore, string searching is heavily utilized in real-time systems for malware 

detection (Cesare, Xiang, & Zhou, 2013). Unfortunately, string signature searching 

performs poorly when searching for polymorphic malware variants.  Poor string search 

performance for polymorphic malware variants is due to the closely related but non-

identical signatures (Cesare et al., 2013). Polymorphic malware variants have similar 

properties but the malware changes between instances causes ineffective searches.  

Additional research needs to be performed in order to find advanced search techniques 

for polymorphic and metamorphic malware.    

The advancement in functionality and behavior of computer malware can be 

categorized into five distinct generations (Noreen, Murtaza, Shafiq, & Farooq, 2009).  

The first-generation malware was quite simple, i.e., they caused infection by simply 
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attaching themselves to the code sections of benign executables (Noreen et al., 2009). 

The malware in second generation had some additional functionality such as self –

replication (Noreen et al., 2009). The malware of third generation had stealth capabilities 

that make this type more difficult to detect for signature-based detection (Noreen et al., 

2009).  The malware belonging to the fourth generation uses armoring techniques to 

protect the code from static analysis (Noreen et al., 2009). Finally, the malware of the 

current generation use polymorphic techniques to encrypt functions and obfuscate their 

code with every replication (Noreen et al., 2009).  Most of today’s polymorphic malware 

utilizes armoring and obfuscating protections to hide and propagate themselves across the 

environment. 

The development and analysis of today’s malware requires experienced 

programmers.   The development of malware requires years of experience due to the 

sophistication and nature of the programming.  Therefore, malware developers have 

“malware creation engines”, which generate different versions of malware in order to re-

use logic and functions through and a complex set of algorithms (Noreen et al., 2009).  

The malware creation engines use various techniques such as compression, function 

insertion and instruction substitution to develop a new variant (Noreen et al., 2009). 

However, these variants can be discovered through static and dynamic analysis as they 

have the same functionality and semantics (Noreen et al., 2009).  Thus, polymorphic and 

metamorphic malware retains similar functionality and executable code as it replicates 

itself.  These functions and code base can essentially provide genetic markers for 

detection (Pfeffer, Call, & Chamberlain, 2012).    
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The goal of polymorphic and metamorphic malware is to dynamically generate 

new versions of malware in order to evade signature detection techniques (Qu & Hughes, 

2013).  Today’s malware is capable of mutating or creating copies of itself making it very 

difficult for signature-based detection to be effective (Qu & Hughes, 2013).  Therefore, 

malware research must consider new techniques to identify and detect malware variants 

to improve endpoint or host security (Qu & Hughes, 2013).   

Problem Statement 

There is currently no single method to effectively detect polymorphic malware at 

the host or end-point. Advanced malware is spreading across the enterprise through 

internet downloads, email attachments and malicious hyperlinks, and mobile 

devices/hosts and is a major challenge for system-owners and cyber-security 

professionals (Campo-Giralte et al., 2009).  Signature-based defense approaches such as 

anti-virus software do not provide adequate protection from polymorphic malware 

(Campo-Giralte et al., 2009).  According to McAfee’s report (2016), the security vendor 

collects over 3 million new samples of malware per day.  Due to the overwhelming 

number of new and advanced malware, new detection techniques are needed to discover 

advanced malware and must be researched to provide improved detection (Borojerdi & 

Abadi, 2013).  New detection methods must be relied upon to examine untrusted 

programs and prevent malware from causing damage and disruption to computer systems 

(Cesare & Xiang, 2013).  Better detection malware detection methods may prevent the 

proliferation of end-point infections.  Identifying and preventing malware from executing 

improves overall system security and represents significant cost avoidance savings for 

organizations (Qu & Hughes, 2013).  New malware research must provide new detection 
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techniques to identify and classify today’s sophisticated malware (Qu & Hughes, 2013).  

The research must also understand the sophistication of today’s malware and the evolving 

nature of targeted malware attacks in the future (Mandiant Research, 2014).     

This research focused on developing improved detection rates using various 

machine learning cluster algorithms with a limited set of multidimensional topological 

features.  As part of the study, the research developed a feature extraction methodology, 

developed a prototype environment and leveraged a testing protocol to better understand 

advanced clustering algorithm performance and feature weighting to improve detection 

for host or endpoint protection.     

Dissertation Goal 

The goal for the research was to develop an experimental prototype system to 

provide improved detection for polymorphic malware.  The prototype system utilized 

various feature extraction methodologies for all types of samples.  These features were 

assembled and evaluated with advanced clustering algorithms within machine learning to 

deliver improved detection.   This study quantitatively examined and prototyped various 

techniques to test the theory that machine learning with advanced clustering can provide 

improved detection for polymorphic malware.  This study is grounded in previous 

quantitative experiments that leverage supervised and unsupervised machine learning for 

malware research (Boro, et al., 2012; Pradesh, 2014).  Further, previous research 

provided a basis for various feature extraction techniques and feature isolation models to 

enhance malware detection for previous research using machine learning (Chaumette, et 

al., 2011; Devesa, et al., 2010).  This study extends previous malware detection 

techniques by combining file properties, static and dynamic analysis for feature 
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extraction.  The feature extraction methodology used to assemble the multidimensional 

topological data and became the input (dataset) for machine learning. Based on the 

research of nearly 40 related and recent malware studies, it is believed that this is the first 

study to evaluate the multidimensional topological features (file properties, static analysis 

and dynamic analysis) using advanced clustering algorithms.  Ultimately, the detection of 

polymorphic malware was the focus and emphasis for the study.  Current literature offers 

detection rates for polymorphic detection using advanced classifiers range from 68.75% 

to 81.25% (Amos et al., 2013).  The study developed deliver detection rates of 99.43% 

well above 81.25% with better than acceptable accuracy rates.   

As part of the study, a feature extraction methodology used an integrated analysis 

environment to perform feature extraction from all samples (malware, benign and 

unknown) samples as input for machine learning.  The feature extraction methodology 

constructed produced a rich dataset for each sample.  Feature extraction was achieved 

through static analysis and dynamic analysis.  This multidimensional topologic approach 

delivered the unique dataset for each sample used for polymorphic malware detection.   

The study evaluated detection rates for three advanced clustering algorithms using 

machine learning within WEKA.  The clustering algorithms used for this studying 

included: 1) Advanced Ensemble Classification (Bootstrap Aggregating (Meta Bagging 

(MB)), 2) Instance Based k-Nearest Neighbor (IBk) and 3) Deep Learning Multi-Layer 

Perceptron (DLMLP). The study demonstrated improved malware detection based on 

advanced cluster analysis using multidimensional topological data that delivered true 

positive detection rates above the established baseline range of 68.75% to 81.25% for 

polymorphic malware (Amos et al., 2013).  Additionally, the research delivered improved 
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false positive rates well beyond the range 15.86% to 33.79% established by the same 

study (Amos et al., 2013).  The ability to achieve these goals was based on developing an 

environment to analyze, extract, assemble and classify the malware.     

    The Instance Based k-Nearest Neighbor (IBk) algorithm was chosen to replace 

LSH as the algorithm improves upon the “locality” aspects of the clustering algorithm. 

The IBk is a k-nearest-neighbor classifier that utilizes a similar distance metric used in 

the LSH algorithm. The calculated Euclidean distance function is used by IBk as a 

critical search parameter within the algorithm (Manikandan, Ramyachitra, Kalaivani, & 

Ranjani Rani, 2016).  The IBk algorithm was selected as it provided newer techniques for 

clustering outcomes.  

The Deep Learning Multilevel Perceptron (DLMLP) clustering algorithm was 

selected to replace the BP algorithm.  Recent literature discussed the benefits of DLMLP 

over BP as it improves upon the dimensions of belief for training and test datasets 

(Gruber, Cammerer, Hoydis, & Brink, 2017).  The main idea in replacing the BP 

algorithm with DLMLP was recently presented by Gruber et al. (2017).  New research 

has found that artificial neural networks (ANN) can leverage belief propagation for 

clustering or classification but do so inefficiently (Gruber et al., 2017).  ANN’s build 

networks of neurons, share information between neurons and propagate results 

throughout the network using weights or beliefs (Gruber et al., 2017).  This approach to 

propagation is done so inefficiently as it is done many times throughout the entire 

network (Gruber et al., 2017).  A more efficient way to achieve similar or better results is 

to establish shallow neural networks and combine other algorithms to achieve similar 

propagation (Gruber et al., 2017).  The goal was to utilize the DLMLP algorithm for 
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improved detection.  Given that the goal of this research was to establish new detection 

using advanced algorithms.  DLMLP was selected for model efficiencies and to leverage 

nascent algorithms that improved upon other algorithms.     

Research Questions and/or Hypotheses 

This study quantitatively examined and prototyped various techniques to test the 

theory that machine learning with advanced clustering can provide improved detection 

for polymorphic malware.  Therefore, the research question was - Can machine learning 

utilizing clustering algorithms with multidimensional topological feature extraction 

deliver improved detection for polymorphic malware?  The research did in fact deliver 

improved malware detection given multidimensional topological data extracted from 

static analysis, dynamic analysis and file properties. This study developed an 

experimental prototype that analyzed over 1M samples using MB, IBk and DLMLP.  

These samples were used to evaluate polymorphic malware detection using machine 

learning with advanced clustering.   

Previous results suggested that various cluster algorithms could deliver 

impressive detection results with limited datasets (Fraley & Figueroa, 2016). Initial 

research demonstrated various clustering algorithms produced impressive detection rates 

with machine learning for smaller datasets.  This study analyzed much larger datasets.  

Each algorithm was allocated a dataset containing 200,000 samples containing known 

malware, known benign and unknown or undetermined files. Earlier demonstration 

results produced well above the 81.25% for a small dataset (Fraley & Figueroa, 2016). 

The research produced detection rates for MB, IBk and DLMLP that exceeded 99.99%.  
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Feature extraction was accomplished using both static and dynamic analysis 

become the inputs for machine learning.  The multidimensional topological data 

contained file features, static analysis features and dynamic analysis features for input for 

the experimental research model to demonstrate improved detection (Liu, Chen, & Guan, 

2012; Tamersoy, Roundy, & Chau, 2014).  These features were utilized with machine 

learning with advanced clustering algorithms to produce the achieved detection rates.  

Based on the research of nearly 40 related and recent malware studies, it is 

believed that this is the first study to evaluate the combination of topological features (file 

properties, static analysis and dynamic analysis) with machine learning using advanced 

clustering.  Most studies use either static or dynamic analysis.  Ultimately, the focus of 

the study was to demonstrate improved detection rates for malware using 

multidimensional topological features with machine learning utilizing larger datasets.  It 

is important to note that polymorphic malware has the ability to change behavior and 

execute different embedded functions over time (Campo-Giralte et al., 2009).  Therefore, 

detection of polymorphic malware becomes more difficult and baseline detection rates 

range from 68.75% to 81.25% (Amos et al., 2013).  Using this approach, the study was 

able to produce detection rates for MB, IBk and DLMLP that exceeded 99.999%. 

This study developed a prototype to quantitatively evaluate malware detection 

effectiveness and accuracy.  Accuracy can be expressed as the Number of correct 

assessments divided by the Number of all assessments.  Effective detection rates were 

evaluated using standard statistical measures such as True Positive Rate (TPR), False 

Positive Rates (FPR), True Negative Rate (TNR) and False Negative Rate (FNR).  Using 

these statistical measures allowed deeper understanding for the various detection rates.   
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The focus of the experimental prototype was to evaluate detection rates for the 

various clustering algorithms given the various features, weighting of the features and the 

advanced cluster algorithms used with a series of machine learning tests.  There are a 

number of statistical measures to be utilized to evaluate malware detection performance.  

Sensitivity and Specificity are two standard measures that evaluate effective detection 

rate (Kolter & Maloof, 2006).  Sensitivity and Specificity statistical measures have been 

used to evaluate malware detection performance for a number of previous malware 

detection experiments (Kolter & Maloof, 2006).  This analysis is provided later in the 

report.  

Relevance and Significance 

There is currently no single method to identify and detect polymorphic malware at 

an endpoint.  Advanced malware affects almost every organization, business and 

government entity connected to a network and internet (Pramono & Suhardi, 2015).  

Traditional signature-based detection systems are ineffective due to the dynamic nature 

of polymorphic malware (Cesare et al., 2013).  Polymorphic malware can be delivered 

through a number of distribution channels: email, embedded files, program updates, and 

internet web sites (Cesare et al., 2007).  Major security companies spend billions of 

dollars to solve general malware issues (McAfee, 2014).  The detection of polymorphic 

malware is more difficult because of the sophistication of the malware programs (Guri et 

al., 2013).  Polymorphic malware developers continue to advance malicious programs to 

evade or avoid detection by security protection devices (Qu & Hughes, 2013).  There is 

no single answer for detecting polymorphic and metamorphic malware.  However, 

researching polymorphic malware may provide greater insight into classes of malware 
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and effective detection techniques for various classes.  Malware research continues to be 

needed in order to provide details regarding the evolving nature of polymorphic malware.  

Many of today’s cyber-criminal activities on the internet can be directly attributed 

to malware or malicious programs (Ulrich Bayer, Kirda, & Kruegel, 2010).   Malware 

comes in different sizes and shapes – Trojans, viruses, bots, etc. and give miscreants a 

wide range of possibilities for achieving nefarious activities (Ulrich Bayer et al., 2010).  

As a result, security companies see a huge number of new malware samples each day –

McAfee estimates at least 30 per second according their most recent report (McAfee, 

2014). Globally speaking, in 2014,  cybercrime is estimated to cost businesses more than 

$400 billion a year (McAfee Labs, 2015).  Other experts believe that a $400 billion 

estimate is conservative and the total cost of cybercrime in 2014 could have approached 

nearly $600 billion worldwide (McAfee Labs, 2015).   The rate of growth for cost impact 

has soared from $56 billion in 2004 to today’s $400 billion estimate (Schneidewind, 

2010; McAfee Labs, 2015).  In 2011, the Federal Bureau of Investigation (FBI) reported 

that on average, companies that report a network breach have lost an average of $150,000 

per incident (Richardson, 2011).  Data breaches today are estimated to cost US 

businesses at least $200 billion (McAfee Labs, 2015).  Many of these breaches have been 

attributed to unauthorized money transfers and account hijacking on mobile devices (A. 

Sharma & Sahay, 2014). Being able to detect and identify malware infections can deny 

hackers financial reward, improve security and reduce the organizational cost of 

mitigating these infections.  

  This research was built upon the current knowledge base for polymorphic 

malware research by improving detection through machine learning.  This research 

developed an experimental approach to improve advanced detection by leveraging 
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multidimensional feature extraction for three advanced clustering algorithms using 

machine learning.  By utilizing this experimental approach, this research extends the 

body of knowledge for detection of polymorphic malware.  By achieving improved 

detection rates for polymorphic malware there is the potential to reduce the financial 

impact on businesses worldwide. 

Barriers and Issues 

There were a number barriers and issues with the experimental research.  The first 

and most imposing issue is obtaining the malware data set.   In order to perform this 

research, the malware data set needed to contain representative samples of contemporary 

polymorphic malware.  These data sets are usually collected by large security commercial 

organizations and are shared with partners for a fee.  The researcher was able to obtain a 

sufficient sample datasets for known malware, known benign and a collection of 

unknown samples.  The researcher was able to secure over 2 million total samples in 

order to develop each of the sample datasets.  The collection consisted of 1,009,108 

known malware samples, 756,322 known benign samples and 748,976 unknown files.  In 

addition, the researcher ensured that known malware samples in the dataset were 

targeting Microsoft operating systems.  Obtaining the collection of samples required and 

consumed a significant amount of time, a number of transportable drives and long data 

transfer times.  

The second issue is that in addition to the malware data, the expanded data set 

must contain representative non-malware and unknown samples.  The non-malware data 

set must be included as part of the research in order to evaluate the effectiveness of 

detection.  A number of vendors were able to share a large amount of the benign files.  In 
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particular, Virus Total provided 90% of the 756,322 known benign samples.  Unknown 

samples also needed to be included as part of the study.  A number of vendors were able 

to share “undetermined” or “unknown” samples as part of this study.  Virus Total and 

Malwarebytes provided unknown files samples for this study.  Contemporary non-

malware has characteristics and behaviors that protect intellectual property of commercial 

software.  These non-malware behaviors and characteristics are often mimicked by 

malware developers in order to bypass detection.  This research evaluated known 

malware, known benign and unknown samples in order to evaluate overall detection 

effectiveness (False Positives and False Negatives).  Initially, it was thought that the 

benign samples and unknown samples would be more difficult to obtain than the malware 

samples.  This was not the case, the malware samples targeting Microsoft operating 

systems were much more difficult to obtain.     

A related dataset issue was storing and securing the experimental dataset. The 

objective of the research is to analyze millions of samples in order to evaluate efficacy 

and validate the proposed detection approach.  The study required over 2 million 

samples.  It was expected that the storage for malware and non-malware samples would 

not exceed 1 TB.  However, this was underestimated.  Malware samples are typically 

stored in a .zip compressed file format with a password.  In many cases, vendors who 

share samples also used the Unix TAR command to ship compressed files (30-35 GB for 

15 Tarballs).  This limited the network bandwidth and storage needed for these files.  

However, the uncompressed files consumed over 1.3 TB of hard drive storage.   

Once the various test data sets had been pseudo-randomly generated, the feature 

extraction process would simply use the unique id (file hash) associated with the sample 
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for feature extraction.  As a separate process, selected files needed to be unzipped and 

password supplied in order to access the sample.  Additional unique identifiers were 

developed as many of the files had a mixture of MD5, SHA1 and SHA256 hashes.  All 

files obtained, known malware, known benign and unknown files were stored in a secure 

and protected repository.  The secure storage of malware data set was needed to ensure 

non-detonation within the experimental storage environment.  The malware samples were 

kept in a state such that the malware did not detonate or infect the analysis 

platform/environment while stored.   

   Lastly, the software tools required for the prototype environment did have 

represent some challenges.  Sufficient software and hardware computing resources had 

been acquired prior to beginning study.  However, the open source version of Cuckoo had 

several new features as part of the new release.  Installing the new release presented some 

major challenges.  In addition, previous versions of Cuckoo processed samples in a 

different fashion and produced automatic dynamic analysis reports.  The upgraded 

version of Cuckoo provided some advanced features that were more suitable for this 

study.  Online resources were used to eventually assist with installing and configuring 

Cuckoo using the Ubuntu operating system (Kolo, 2016).  Details regarding installation 

dependencies, networking and configuring VirtualBox is provided in Appendix A (Kolo, 

2016). Managing the overall analysis environment was somewhat challenging but 

achievable.  Difficulties with installing Cuckoo impacted schedule by a few weeks.  

Assumptions, Limitations and Delimitations:  

 There were a number of assumptions, limitations and delimitations with the 

research conducted.  Each of these areas are discussed in detail below.  
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Assumptions  

There were a limited number of assumptions for this study.  The first assumption 

was that the dataset collected from across the malware repositories represent the malware 

population from across the internet.  The population of malware selected was malware 

captured relatively recently.  Secondly, there was no determination made regarding the 

genetic relationships for the polymorphic malware samples used for the study.  In other 

words, some samples may be related but the study assumes that these relationships do not 

matter for the purpose of detection.  Lastly, it was assumed that the samples collected and 

maintained in a secure .zip container does not disturb or alter the malware sample itself.  

The .zip container is a common industry protection mechanism that protects working 

environments from malware outbreaks.  All malware was secured and stored in a .zip file 

format in order to protect the prototype environment.  It is believed that these 

assumptions were minimal and did not affect the research outcomes.   

Limitations   

This study included malware samples from various communities of interest for 

malware research including Symantec, Virus Total, contagio, Virus Sign, and VxHeaven.  

There was a limitation regarding collecting samples across these available sites.  The 

limitation for this study was that only polymorphic samples with dates within the last 

eighteen months was used for detection research from these sites.  Therefore, the sample 

set may not be representative for older malware or other malware sites.  The purpose of 

study was to evaluate detection for current malware.  Older samples may have value but 

more recent malware will have more value.  Collecting samples from multiple sites and 
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then performing random selection should provide the needed sampling technique for 

generalizability.   

Delimitations  

Delimitations provide boundaries for the research or study (R. Yin, 2015).  

Delimitations include topics or areas that the study chose to intentionally exclude from 

consideration. For the purpose of this study, the three clustering algorithms have been 

selected due to demonstrated detection results from previous studies (Alam, Horspool, & 

Traore, 2013; Murphy, Weiss, & Jordan, 1999; Tamersoy et al., 2014). There are most 

certainly other advanced clustering algorithms that could have been used for this study.  

However, the intent of this research was to demonstrate that detection can be improved 

by adding a combination features from file properties, static and dynamic analysis.  The 

proposed research expands current detection body of knowledge by using proven 

clustering algorithms with the expanded features (static, dynamic and file properties) 

leveraging the machine learning environment.  Other delimitations include selecting only 

malware samples specifically targeting the Microsoft operating systems.  Malware 

targeting other operating systems was not a consideration for this study.  However, there 

were a limited number of samples collected that were not targeting Microsoft operating 

systems across the community (Symantec, Virus Total, contagio, Virus Sign, and 

VxHeaven).  Non-Microsoft malware samples collected were minimal.   Non-Microsoft 

malware samples were discarded prior to random selection.  Microsoft targeting malware 

is believed to represent a majority of the targeted polymorphic malware (Ahmadi, 

Ulyanov, Semenov, Trofimov, & Giacinto, 2016)  Therefore, this study focused on only 

samples targeting Microsoft.          
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Summary 

Malware represents some of the most serious security concerns for today’s 

Internet.  Security breaches and cyber-attacks can be directly attributed to malware or 

multi-stage cyber-attacks.  Malware can compromise networks and computers in the form 

of botnets, viruses, worms, ransomware and advanced persistent threats (APTs).  These 

cyber-attacks are launched using targeted and advanced malware techniques to steal 

personal, proprietary of financial information.  The high number of attacks and the 

associated negative notoriety make malware one of the most popular areas for advanced 

research.  Much of today’s advanced research has been concentrated on developing 

techniques to collect, study, and mitigate malware. This research focused on detecting 

“real” malware and samples found “live” on the internet.   As improved detection 

becomes a reality – mitigation or elimination of malware for end-points can be greatly 

enhanced.   Unfortunately, current host-based detection approaches that leverage 

signature-based detection is largely ineffective for new polymorphic malware.  

Polymorphic malware avoids or evades signature detection by using advanced 

obfuscation or encryption techniques.  This research set out to address these 

shortcomings, new research was conducted to develop dynamic detection approaches to 

identify potential malware threats.  This study proposed a novel malware detection 

approach that provided improved detection for polymorphic malware.  The research 

should enhance and compliment traditional end-point detection approaches.  This study’s 

approach extracted key features from file properties, static and dynamic analysis and 

through advanced cluster analysis determined the likelihood of files (samples) to be 

benign (good) or malicious (bad).  The proposed approach analyzed the malware 

executable (program) in a controlled environment in order to better understand behaviors, 
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function calls and the inclusion of dynamic libraries.  The research conducted leveraged 

this information through machine learning to improve detection.  In order to better 

understand the malware threat landscape, a review of past research literature and previous 

malware studies is provided next.   
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Definition of Terms 

Advanced Persistent Threat: A deliberately slow-moving cyber-attack that is 

applied quietly to compromise information systems.  

Anomaly detection:  The search for network connections which do not conform to 

an expected normal traffic.  

Bot: A term short for robot.  Criminals distribute malicious software that can turn 

a computer into a bot.  When this occurs, a computer can perform automated tasks over 

the Internet without one’s awareness.    

Botnet: Criminals use bots to infect large numbers of computers.  These 

computers form a network, or a botnet.  Criminals use botnets to send out spam email 

messages, spread viruses, attack computers and servers, and commit other kinds of fraud.    

Bring Your Own Device (BYOD): Mobile devices that are personally owned, not 

a corporate asset.  

Clustering: Method that organizes objects with similarities into one cluster, and  

objects with dissimilarities into other clusters.  

Crimeware: Tools that drive hackers’ attacks and fuel the black market (e.g., bots,  

Viruses, Trojan, spyware, adware, etc.) 

Cryptocurrency: A digital medium of exchange that uses encryption to secure the  

process involved in generating units and conducting transactions. 
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Cyber Attack: An attack, via cyberspace, that targets an enterprise’s use of 

cyberspace for the purpose of disrupting, destroying, or maliciously controlling a 

computer environment/infrastructure; destroying the integrity of the data; or stealing 

controlled information.     

Data Breach: An organization’s unauthorized or unintentional exposure, 

disclosure, or loss of sensitive PI, such as social security numbers; financial information, 

such as credit card numbers; date of birth; or mother’s maiden name.  

Data Breach: An organization’s unauthorized or unintentional exposure,  

disclosure, or loss of sensitive PI, which can include PII, such as social security numbers;  

or financial information, such as credit card numbers.  

Data Security Incident: A violation or imminent threat of violation of a computer  

security policy, acceptable use policy, or standard security practice 

Denial of Service (DoS): The prevention of authorized access to resources or the  

delaying of time-critical operations. 

Detection Rate: The percentage of the number of intrusion instances detected by 

the system over the total number of intrusion instances present in the test set.  

Distributed Denial of Service (DDoS):  An approach whereby the hacker attempts 

to make a service unavailable to its intended users by draining system or networking  

resources, using multiple attacking systems. 
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False Alarm Rate: The percentage of the total number of incorrectly classified 

normal instances over the total number of instances.  

Hacker: Unauthorized user who attempts to or gains access to an information 

system. 

Indicators of Compromise (IOCs): Pieces of forensic data, such as data found in  

system log entries or files, that identify potentially malicious activity on a system or  

network. 

Intrusion Detection System (IDS): Hardware or software that gathers and analyzes  

information from various areas within a computer or a network to identify possible  

security breaches, which include both intrusions and misuse. 

Intrusion Prevention System (IPS): Systems that can detect and attempt to stop an 

intrusive activity, ideally before it reaches its target. 

Malicious Code: Software or firmware intended to perform an unauthorized 

process that will have an adverse impact on the confidentiality, integrity, or availability 

of an information system.  

Malware: Programs or executables targeted to infect a user’s device.  When 

successful, the hacker is able to control the user’s device, which may lead to data loss or 

escalation in the hacker’s privileges on the information system. 

Mobile Device: Smart phones, tablets, portable cartridge/disk-based, removable  

storage media (e.g., floppy disks, compact disks, USB flash drives, external hard drives,  
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flash memory cards/drives that contain nonvolatile memory; NIST, 2013d, 2013e).  

Personal Information: Information from individuals that can uniquely identify a  

specific person. 

Personal Identifiable Information (PII): Information that can be used to 

distinguish or trace an individual’s identity, such as his or her name, social security 

number, or biometric records, alone, or when combined with other personal or identifying  

information that is linked to a specific individual, such as date and place of birth or  

mother’s maiden name.    

Privileged Account: An information system account with approved authorizations 

of a privileged user.  

Privileged User: A user that is authorized to perform security relevant functions 

on a computer server that ordinary users are not authorized to perform (NIST, 2013e).   

Ransomware: A type of malware that encrypts files and prevents the user from  

accessing data until the user pays a certain amount of money (ransom) to decrypt the files  

Rootkit: A set of tools used by an attacker after gaining root-level access to a host 

to conceal the attacker’s activities on the host and permit the attacker to maintain the 

access through covert means. 

Security Event: Any observable security occurrence in a system network. 

Security Incident: A violation or imminent threat of violation of a computer 

security policy, acceptable use policy, or standard security practice.  These include  
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an accessed occurrence that actually or potentially jeopardizes the confidentiality,  

integrity, or availability of an information system or the information that the system  

processes, stores, or transmits. 

Security Information and Event Management (SIEM) Tool: Application that 

provides the ability to gather security data from information system components and 

present that data as actionable information via a single interface.    

Spyware: Software that is secretly or surreptitiously installed on an information  

system to gather information on individuals or organizations without their knowledge. 

Testing Phase: A detection phase in which the distance (e.g. Euclidean distance)  

between each test instance and the normal cluster’s centroid is measured to determine  

whether or not that instance is normal.  

Training phase: A period in which a normal profile is built and or updated. 

Trojan: A computer program that appears to have a useful function, but also  

has a hidden and potentially malicious function that evades security mechanisms,  

sometimes by exploiting legitimate authorizations of a system entity that invokes the  

program.    

Unauthorized User: A user who accesses a resource that he or she is not 

authorized to use.    
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Virtualization: Hiding the discrepancy between the virtual and physical allocation 

of information technology resources.  

Virtual Machine: A separate logical instance of resources for a user or application  

that in reality is shared physical hardware.  

 Virus: A type of malicious software program that infects computer system 

programs, data or operating system files and is capable of replicating itself to other 

systems.      

Worm: A self-replicating, self-propagating, self-contained program that uses  

networking mechanisms to spread malicious code.    
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List of Acronyms 

ACC:   Accuracy  

API:  Application Programming Interface 

BP:   Belief Propagation 

CC:   Correlation Coefficient  

C&C:   Command and Control 

DLMLP: Deep Learning Multi-Layer Perceptron 

FNR:   False Negative Rate 

FPR:   False Positive Rate 

GUI:  Graphical User Interface 

LSH:   Locality Sensitive Hashing 

IBk:  Instance Based k-Nearest Neighbor 

MB:  Meta Bagging or Advanced Ensemble Classification (Bootstrap 

Aggregating (Meta Bagging) 

ML:   Machine Learning 

ROC:   Receiver Operating Characteristic curve (or ROC curve.) 

SDK:  Software Development Kit 

SCED:  Single Case Experimental Design 

SCED CCD:  Single Case Experimental Design Changing Criterion Design 
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SVM:    Support Vector Machine 

TNR:   True Negative Rate 

TPR:   True Positive Rate 
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Chapter 2 

Review of the Literature 

Overview of Topics 

New malware development techniques render current signature protections for 

polymorphic malware practically useless from a timeliness perspective (Rodríguez-

Gómez, Maciá-Fernández, & García-Teodoro, 2013).  Being able to detect polymorphic, 

metamorphic and zero-day malware requires advanced detection techniques that provide 

rapid adaptation, scalability and produce low false positive rates (Borojerdi & Abadi, 

2013).  There are numerous research studies that offer attractive alternatives for detecting 

polymorphic and metamorphic malware.  Given the security issues concerning malware, 

it is  not surprising that a majority of the today’s security research is focused on 

developing enhanced detection using techniques that collect, study, and mitigate 

malicious code  (Kolbitsch et al., 2009). Some studies are focused on botnets and botnet 

networks, others are focused the infected executables from websites and others study 

behavioral aspect of Windows and mobile devices (Seigneur & Kölndorfer, 2013).  There 

are other studies who strictly look at the Windows API or system calls (Ye, Wang, Li, 

Ye, & Jiang, 2008). New research attempts to capture a comprehensive snapshot of 

malicious behaviors and activities in order to classify the malware sample in question 

(Cesare & Xiang, 2013).   The crucial aspect for this and other malware research is to 

understand the significance of the malware problem, investigate new ways to detect the 

multitude of malware types and then benchmark those results against the current 

approaches.  An overview of malware and the various aspects of malware are presented 

next.   
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Malware is software or a set of programs whose sole purpose is to damage, 

disrupt or steal information from computer systems or networks (Kauranen & Makinen, 

1990). Malware is often a broader term that includes viruses, worms, Trojans, botnets, 

backdoors, exploits, etc.  The most well-known type of malware is a virus.  The term 

“virus” was initially used by Fred Cohen in 1983 while conducting research for his 

dissertation at the University of Southern California (Cohen, 1985).  The fundamental 

reason for creating such software or set of program is to create chaos, disrupt business or 

seek financial motives by harming computer systems (Kauranen & Makinen, 1990).   The 

creation of various types of malware has launched an entire commercial industry known 

as “anti-virus software” with revenues skyrocketing to several billion dollars (Noreen et 

al., 2009).  Malware has been a major threat to computer and networks since the early 

1990s (Noreen et al., 2009). However, the malware sophistication has significantly 

improved since the 1980’s when Fred Cohen coined the term.  Cohen’s virus-based 

research would propel numerous other researchers and discovery of “classes” of malware.   

Another type of malware is something referred to as a Worm.  A Worm is defined 

as a type of malware that exploits vulnerabilities of unpatched systems with self-

propagation means to spread pervasively throughout a network (Weaver, Paxson, 

Staniford, & Cunningham, 2003).  Nazario (2004) describes worms as having the ability 

to take advantage of system vulnerabilities that enable propagation via a network and 

allows the execution of arbitrary code on a remote system.  Largescale worm outbreaks 

have decreased significantly since the early 2000s. Panda Security (2014) report that 

Worm malware account for approximately 6% of all malware infections in the first 

quarter of 2013.  Zero-day worms are still today a real concern for system and security 
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professionals.  Zero-day worm attacks still represent a real threat to organizations due to 

the lack of detection and the availability of high speed networks (Kaur & Singh, 2014). 

Organizations that have highly interconnected networks are susceptible to such worm 

malware attacks and should be a major concern for Internet users (Kaur & Singh, 2014).  

Worms also can deliver other types of malware such as Trojans.   

Trojans invade systems and reside within the system in order to execute 

commands or instruction given by external threat actors (Gordon & Chess, 1998).  

Trojans enable threat actors to take control of compromised systems (K. Chen, Zhang, & 

Lian, 2013).  Trojans conceal themselves inside computer system with the hopes of not 

being discovered.  Some Trojans are active soon after being installed. Other types of 

Trojans wait for an instruction or some condition to be satisfied before executing (K. 

Chen et al., 2013).   After receiving remote instructions, Trojans can transact and receive 

commands in order to disrupt computer operations, gather and exfiltrate sensitive 

information or attempt to gain access and privileges on host computer systems (Gordon 

& Chess, 1998). Trojans tend to be detected readily by signature-based detection such as 

anti-virus and other end-point protection software.  However, systems are still susceptible 

to new Trojans attacks if user awareness and system hygiene are not addressed (K. Chen 

et al., 2013).  Zero-day attacks taking advantage of system vulnerabilities are still real 

possibilities.  However, systems policies requiring analysis of first time run executables 

make this type of attack less possible.  

Botnets represent one of the greatest infrastructure threat to the Internet (Barakat 

& Khattab, 2010).  For years, the research community has investigated and described the 

impending issues and proposed countermeasures for disarming this capable adversary.  
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Botnets is typically a term to describe a network of infected end-hosts that become bots 

under the control of a bot master (Barakat & Khattab, 2010).  The bot master represents 

known controls from a human or prescribed operations known as a bot-master.  Cyber 

criminals and adversaries use botnets to launch Denial of Service (DOS) attacks, 

Distributed Denial of Service (DDoS) attacks and aid in the propagation polymorphic 

across the enterprise (Li, Duan, Liu, & Wu, 2010).  Detection for bots come in the form 

in the form of monitoring for abnormal network, memory and system behavior.  

Unfortunately, botnet malware can remain dormant for long periods of time and become 

active for a short period of time for a special purpose (J. Zhang et al., 2011).  Unless 

systems are closely monitored, botnet malware has completed execution before 

notification and remediation action could be taken (Rodrigues, 2011).      

Backdoors represent a malware mechanism that allows attackers surreptitious 

access to a computer systems (Y. Zhang & Paxson, 2000). Backdoors have existed for 

many years and were initially designed into operating systems in order to facilitate access 

by system administrators (Bohra, Neamtiu, Gallard, Sultan, & Iftodet, 2004).  Today’s 

systems are supposed to be free of backdoors that facilitate unauthorized access to the 

computer systems (K. Chen et al., 2013).  Typically, malware backdoors embed 

themselves into systems and networks in order to provide a means of repeatable access 

for external attackers.  Backdoors can exist for both interactive and non-interactive 

services on systems (K. Chen et al., 2013).  Interactive services simply run commands or 

carry out instructions on the compromised system (Y. Zhang & Paxson, 2000).  Non-

interactive services include services such as relaying email spam or file transfer services 

for data to be exfiltrated outside the organization (Y. Zhang & Paxson, 2000).  Backdoors 
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are very difficult if not impossible to detect and they take advantage of authorized 

services, ports and protocols.    

Taking advantage of flaws within a computer system, network or mobile platform 

requires that a vulnerability exist and attackers have the means to exploit a weakness 

(Ritchey & Ammann, 2000).   Malware exploits target these vulnerabilities and seek to 

gain access to and somehow compromise the system or network (Rodrigues, 2011). 

Computer systems, networks and mobile devices will always have some underlying 

vulnerability.  System designers and developers try to minimize the exposure of such 

weaknesses (Ritchey & Ammann, 2000).  System and network vulnerabilities may be 

introduced by other activities such as system integration, system operations and 

maintenance or poor system or network hygiene (Kim & Hong, 2014).  However, today’s 

connectivity to networks make malware exploits more possible as attackers take 

advantage of network connectivity to probe and understand system vulnerabilities. 

Malware exploits target networks, servers and applications in order to disrupt operations 

or steal information for financial gain (Alam, Horspool, & Traore, 2014).  The detection 

for malware exploits is even more difficult as they appear to simply be using standard 

network and authorized system calls. 

Ransom Malware or “Ransomware” has become quite prevalent over the past few 

years.  Ransomware has also become known as scareware as cyber criminals use the 

malware to prey on the fears of infected computer users by stealing or encrypting user 

data (Kharraz et al., 2015).  Ransomware preys on people’s fear of losing control of 

personal or private information, losing access to highly critical or sensitive data or 

damaging hardware such that access is no longer possible (Kharraz et al., 2015).  Certain 
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types of ransomware will essentially encrypt data or system files such that access to the 

system or data can only be achieved by unlocking the system with a “key” (Gazet, 2010).  

Ransomware generally provides payment information and once the transaction is 

complete, users are provided decryption keys in order to regain access (Gazet, 2010).  

Payments are generally made in bitcoin or some other method that makes tracing the 

payment to the recipient more difficult or near impossible (Kharraz et al., 2015).  

Although ransomware has been around for over 10 years, not until recently has the 

volume of ransomware raised major concerns within the security community.   According 

to Symantec (2014), the number of ransomware attacks increased by over 500% on 2013.   

In addition, ransomware has been in the press with attacks on local police, hospitals and 

small municipalities.  In 2013, the Cryptolocker ransomware was in the press for 

infecting nearly 250,000 computers worldwide (Symantec Corporation, 2014).  Given the 

substantial growth and spotlight on ransomware attacks, developing protection and 

detection mechanisms should be a major research area for the security community. 

However, detecting ransomware and protecting organizations from this type of attack is 

difficult without having insight into the tactics and sophistication of these attacks. 

The discussion above highlights the various types of malware and the impact that 

they play on system owners, security professionals and ordinary end-users.  Protecting, 

detecting and remediating malware has become one of the fastest growing markets in the 

technology sector.  More research is needed in order to keep pace with the advanced 

malware and detection become more critical each day.     
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Synthesis of Current Literature 

Several researchers have described the history of malware in “waves” or levels of 

sophistication.  The first wave spans from the late 1970s through the early 1990s (T. 

Chen & Robert, 2004).  The first malware outbreak or “wave” can be described as 

inquisitive, exploratory and unsophisticated (Wüchner et al., 2014).  The first wave was 

really considered to be exploratory or accidental with no clear malicious intent (T. Chen 

& Robert, 2004).   This period can be symbolized by the first self-spreading internet 

malware (Morris Worm) that infected approximately 10% of the computers connect to 

the internet (T. Chen & Robert, 2004).   

The second and third wave covers almost eleven years from 1990 through 2001.  

The second wave covers the 1990 through 1999 and can be characterized as the first use 

of polymorphic malware and encryption techniques to evade detection by anti-virus (T. 

Chen & Robert, 2004). The third wave spanned only a couple of years 1999 through 2001 

and was consumed with malware being distributed through email (T. Chen & Robert, 

2004).  Malware such as the Melissa, PrettyPark, or LoveLetter viruses were distribution 

through email and executables had additional functionality that allowed to propagate and 

maintain persistence (T. Chen & Robert, 2004).  The third wave also was the first wave 

where malware achieved remote system access in order steal sensitive information.   

The fourth wave considered to take place from 2001 through 2009.  The rise of 

malware during this era was characterized by increasing sophistication of malware that 

leveraged multiple vulnerabilities to infect and propagate infections through instant 

messaging or peer-to-peer file sharing (Shafiq, Khayam, & Farooq, 2008).   
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The fourth wave also took advantage of unprotected applications and application 

interfaces by dynamically downloading macros and additional malicious payloads 

(Rafique & Chen, 2014).   The fourth wave also saw malware adapting to more effective 

detections and changes to malware developer goals and motivations.  Malware such 

CodeRed, Slammer, or Nimda took advantage of multiple host vulnerabilities to infect 

hosts and utilized email to propagate throughout networks to exploit system 

vulnerabilities (Rafique & Chen, 2014).  The fourth wave of malware also seized the 

opportunity to compromise unprotected network shares and served up drive-by infections 

via webservers (Rafique & Chen, 2014).   

The fifth wave raised the level of intent, targeting and sophistication of the 

malware (Wüchner et al., 2014).   During this time period, roughly 2010 until present 

day, malware has become more targeted and developed by highly skilled professionals 

(Wüchner et al., 2014).   Malware such as Stuxnet was developed and attacked 

Supervisory Control and Data Acquisition (SCADA) systems and was linked to 

sabotaging the Iranian nuclear program (Virvilis, Gritzalis, & Apostolopoulos, 2013).  

This wave was the first to have malware referred to as Advanced Persistent Threats 

(APTs) and Zero-Day exploits.  Malware from this period is designed to attack specific 

systems and targets and the level of sophistication goes beyond that of previous 

commodity malware developed by previous waves (Virvilis et al., 2013).  APTs such as 

Stuxnet, Duqu or Flame have been linked to Government sponsors (Wüchner et al., 

2014).   The motivation of these professional malware developers is economic, espionage 

or sabotage for targeted systems (Wüchner et al., 2014).  Motivations for commodity 

malware different and is more experimental and economic based (Wüchner et al., 2014).  
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Commodity malware is typically developed by amateurs and organized crime.  However, 

commodity malware developers will take advantage of collaborating and sharing with 

professional developers to gain insight into advanced exploit methods and techniques 

(Wüchner et al., 2014).  In addition to methods and techniques, these groups will often 

share concealment and obfuscation techniques needed to avoid detection (Wüchner et al., 

2014).  Zero-day and APTs will go unknown for long periods of time due to advanced 

stealth and concealment techniques (Kaur & Singh, 2014)  These waves represent an 

ongoing threat to organizations and the internet as a whole.  

In summary, the development of malware has changed over time in both 

motivation and sophistication.  There has been a radical shift from accidental outbreaks to 

very targeted and specific attacks.  Many of the malware attacks have economic and 

organizational motivational factors.  Malware developers have changed over time as well 

from amateurs to highly skilled and trained professionals.   The malware itself has 

adopted sophisticated exploitation, propagation and replication techniques to avoid and 

evade detection. Today’s advanced malware use various techniques such as encryption, 

environmental sensing and embedded compilers to hide functions from static and 

dynamic analysis.  Therefore, malware research spans years of research and has multiple 

topical areas.  The synthesis of current literature is organized by topic area and is 

organized sequentially.  The goal is to provide foundational as well as a time perspective 

for each malware research topic area.  In some cases, there have been and continue to be 

arguments from various researchers as to which characteristics constitutes certain 

malware types or classes.  The following is an overview of the foundational topics and 

related research in conducting malware detection research.  
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Virus Research 

John von Neumann was the first to develop the concept of today’s computer virus 

and is considered to be the seminal work for viruses (von Nuemann & Burks, 1966).  Von 

Neumann developed his theory of the computer virus during the mid-1960’s while 

speculating on the fact that programs could produce and generate “code”.  He conceived 

and developed the concept of computer programs self-replicating through what he called 

“reproducing automata” (von Nuemann & Burks, 1966).  Although von Neumann did not 

develop the actual computer program, he envisioned the idea of self-replicating automata 

that could go viral if not addressed (T. Chen & Robert, 2004).  In essence, von Neumann 

predicted the spawning of malware prior to the actual technical implementation of the 

concept (T. Chen & Robert, 2004).  In 1971, Bob Thomas created the Creeper program 

and was the first implementation of von Neumann’s virus concept (T. Chen & Robert, 

2004).  The Creeper program is considered to be the first virus and piece of malware 

released into the wild (T. Chen & Robert, 2004).  The Creeper program was not 

developed as a piece of malware but rather to test the concept self-replication through a 

network (Arpanet) and to inform users of its existence on the computer once it achieved a 

foothold (T. Chen & Robert, 2004).  The Creeper is not considered to be malware in the 

truest sense of the word as it was not designed to actually harm any computer system (T. 

Chen & Robert, 2004).  However. Thomas’s Creeper program is largely considered to be 

the “father” of all future worms and viruses for its self-replication techniques (T. Chen & 

Robert, 2004).  Although, Thomas’ program became the first program to actually achieve 

self-replication from a malware perspective – the study of such automata would not be 

studied for ten years. 



43 
 

Cohen’s research is considered the first formal work in the field of computer 

viruses (Noreen et al., 2009).  Cohen’s seminal research on “viruses” was conducted in 

1983 through 1984.  His research would be later published in late 1985.  Cohen is 

credited for bringing the attention of viruses to the larger computer community with this 

research (Noreen et al., 2009).  Cohen explored a number of approaches to detecting 

viruses.  His research also was aimed at not only detection but the removal of unwanted 

software/programs.  Cohen also started to classify various forms of viruses.  Cohen’s 

detection and removal methods did not rely upon the information sharing or transitivity 

of information flow (Cohen, 1985).  Instead his detection techniques were based on 

identifying various code traits used by viruses to exploit Turing machines (Cohen, 1985).  

Cohen’s research outlines several types of computer viruses and the ability of the attacker 

to quickly gain administrative rights to systems once infected (Cohen, 1985).  Cohen also 

began to describe future issues with malware and variants that would be difficult to 

detect.  Cohen’s research also described the problems with removing a virus from a 

system once the system was infected (Cohen, 1985).  Cohen also began the process to 

articulate advanced classes of viruses that could mutate to avoid detection and removal 

(Cohen, 1985).  Cohen’s research would serve to accelerate other malware research and 

begin to paint a picture for new attacks on computer systems.     

Research conducted in 1987 by Maria M. Pozzo and Terence E. Gray, provided 

an approach to detect modification of executable code – also known as viruses and a new 

type of malware known as Worms (P. K. Singh & Lakhotia, 2002).  Pozzo and Gray 

presented various methods for detecting changes in executable code and housing a virus.   

Their approach analyzed the run-time executable(s) and detected whether the 
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executable(s) had been modified since installation (P. K. Singh & Lakhotia, 2002). This 

early virus detection utilized encryption to store code values for the executable modules 

of a program (A. Singh, Walenstein, & Lakhotia, 2012).  The encrypted value for each 

module was used to create a hash value known today as “signature”.  These set of 

signatures would be used to enable the detection of modified executables as the hash 

values would no longer match the values of the original module.  Although the 

implementation approach would not be sufficient for today’s rapidly changing code 

environment, the signature concept would be used by an entire anti-virus industry to 

register, track and share virus hashes (A. Singh et al., 2012) .   

Fred Cohen, in 1989, advanced a number of malware theories regarding virus 

detection and protection through a series of published papers in order to highlight 

malware issues.  Cohen (1989) presented a formal model for defining computer viruses. 

Cohen’s virus model formally defines sets of transitive integrity-corrupting mechanisms 

called "viral-sets".  These viral-sets contained various characteristics that uniquely 

identified the virus and the type of attack (Cohen, 1989b).  Further, Cohen’s research 

explored the deeper computational properties for the defined viral-sets in order to expose 

the underlying code.  Additional research conducted by Cohen, shifts from detection of 

viruses to computer systems protection from attack of these viral sets (Cohen, 1989a). 

Cohen also presented additional research regarding the automated detection of modified 

executables in order to prevent the spread of viruses of networked computer systems 

(Cohen, 1989b).  His work illustrated various virus models and the detections needed by 

host computers (Kauranen & Makinen, 1990).  Further, Cohen’s models were used to 

simulate the infection and protection of trusted and untrusted systems (Kauranen & 
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Makinen, 1990).  These models were then used to demonstrate both theoretical and 

operational infections to illustrate the feasibility of viral attacks (Cohen, 1989b).  Cohen’s 

research provides greater insight into optimal protection mechanisms needed to stop the 

propagation of secondary infections to other systems (Kauranen & Makinen, 1990).      

In 1990, Kerchen et al. at the University of California – Davis proposed to 

analyze malware in new ways.  Their approach was to use static analysis techniques to 

discover whether code was indeed malware (Kerchen et al., 1990).  The tools and 

techniques used provided heuristic tools to detect malicious code in a UNIX 

environment.  The tools used could detect computer viruses prior to loading and 

executing the malware (Kerchen et al., 1990).  Kerchen et al. (1990) used two tools to 

accomplish malware detection.  The first detection tool searched for duplicate system 

calls in the compiled and linked program (Kerchen et al., 1990).  The second detection 

tool used static analysis of the executable to determine the files/libraries used by the 

program to write to during execution (Kerchen et al., 1990). Through the use of both 

tools, Kerchen et al. were able to understand whether the program could be identified as a 

malicious or benign.  The approach presented in this research would lead other 

researchers to investigate new ways to look the growing malware problem. 

In 1990, Kephart and White began to look at computer viruses from an 

epidemiological model similar to those being used to perform advanced disease research 

(J. Kephart & White, 1991).  Kephart and White performing research at the IBM Thomas 

J. Watson Research Center began to address malware from an immune system 

perspective.  Their research parallels viral outbreaks and infections of the human body for 

computer systems (J. Kephart & White, 1991).  This paper was the first published 
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research to compare the infection of the human body with computer virus epidemics. 

Their work began a theoretical discussion of viral propagation using deterministic and 

stochastic models (J. Kephart & White, 1991).  The study also describes the conditions 

under which widespread computer viral epidemics would likely occur across inter-

connected networks. One of the key outcomes of their research was to raise the argument 

that imperfect defenses can still be highly effective at preventing the widespread 

propagation of malware (J. Kephart & White, 1991).   

In 1992, Cohen presented some advanced findings regarding defensive models for 

computer viruses. Cohen proposed a formal definition of “computer worms” and detailed 

the properties that would define this class of virus. He defined “computer worms” as a 

malware subclass of viruses based on certain properties (Cohen, 1992).  Cohen presented 

an alternative formal definition of a virus based on the foundational work presented by 

Professor Len Adelman in 1989 (Spafford, 1991).  Cohen adopted Adelman’s definition 

of viruses based on set theory. Although these virus definitions were not specific the 

definition covered a broad range of replicating programs including Worms (Cohen, 

1992).  Cohen performed some analysis of internal code of Worms and viruses.  He later 

went on to discern the differences between viruses and worms by the nature of the 

functions and self-replication needed for sustainment.   Cohen demonstrated that viruses 

merely create replicas.  On the other hand, Worms were presented to be more purposeful 

viruses because of their reliability, ability to spread and their ability to maintain malicious 

functionality with replication (Cohen, 1992). This deeper analysis provided a stark 

contrast of Worms and viruses. These definitions launched additional research and 

created classes of malware based on executable functions.  The debate regarding the 
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characteristics for worms and viruses continues to rage throughout today’s research 

community.     

Kephart & Arnold (1994) provide extended research by identifying viral 

signatures from executable code using statistical methods for the various functions 

contained within the virus.  The researchers later used the analogy of a human body with 

the immune system to model viruses and viral attacks (J. Kephart et al., 1995).  The 

researchers believed that new viruses acting as “intelligent agents” could begin to infect 

and propagate themselves across connected networks in new ways (J. Kephart et al., 

1995).  In 1995, IBM was developing techniques to prevent computer infections by using 

biologically inspired anti-virus protection (J. Kephart et al., 1995).  The researchers were 

early adopters for implementing neural network-based virus detection (J. Kephart et al., 

1995).  This early research leveraged neural network learning to discriminate between 

infected and uninfected programs.  Further, this research was extended to identify new 

viruses and remove the infected files automatically (J. Kephart & Arnold, 1994).   

Spafford (1994) began to define how computer viruses operate and distinguish 

classes of malware based on these operations.  Spafford discussed the nature of true 

viruses and began to describe the capabilities contained in the malware. Spafford defines 

true viruses as having two major components: one that handles the spread of the virus, 

and the other delivering a payload task (Spafford, 1994). Spafford was one of the first 

researches to recognize that the payload task may follow an infection and not be present 

initially.  Instead, the payload task may await for a condition of a triggering event 

(Spafford, 1994).  Spafford describes how viruses work and how the virus must add itself 

to another piece of executable code (Spafford, 1994). Spafford’s research classified 
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various forms of computer viruses including Worms, shell code, intrusive code, and 

companion code (Trojans).  Spafford went to great lengths to highlight that companion 

viruses are not real viruses unless the more encompassing definition of virus is used.  

Again, classification of viruses began to differentiate the malware properties.  The 

research also draws parallels how viruses meet properties associated with life as defined 

by some researchers in the area of artificial life and self-organizing systems (Spafford, 

1994). Spafford also begins describe an artificial "life" for viruses within computer 

systems and related environments (Spafford, 1994). 

In 1996, Bontchev presented a new threat vector and an approach for detecting the 

presence of macro viruses in Microsoft Word for Windows.  This type of attack was 

relatively new and the new “virus” would rely on the availability underlying program that 

supported “macros” (Bontchev, 1996).  Bontchev also began to dive deeper into the MS 

Word macro attack.  Bontchev found that the typical anti-viral software companies 

developed inadequate protections for this type of attack.   Bontchev also demonstrated 

that while typical virus replicate themselves in certain ways, the Word macros lived from 

document to document (Bontchev, 1996).  Bontchev also discussed the need for advanced 

integrity checking for application programs. This paper also discussed the significant 

threat that this type of attack could represent for application programs who enable macros 

and the needed protections to prevent such an attack (Bontchev, 1996). 

In 1997, Kephart et al. began to contemplate and research a decade of the growing 

computer virus problem. The authors believed that the anti-virus community was engaged 

in an escalating arms race with malware developers (J. Kephart, Sorkin, Swimmer, & 

White, 1999).  However, the authors believed that the “war” was still manageable and 
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winnable (J. Kephart et al., 1999).  Their solution was to develop a blueprint that 

automated the detection and remediation viruses on computer systems.  The authors 

believed that detection rates would increase and human experts would solve the problem 

in the long term using such a blueprint (J. Kephart et al., 1999). The researchers also 

acknowledge that the internet was becoming a fertile ground for new breeds’ malware (J. 

Kephart et al., 1999).  Kephart et al. believed that solution would be to develop a 

protection systems similar to the human immune system for computers (J. Kephart et al., 

1999).  Just as the human immune system senses the presence of previously unknown 

pathogens, the researchers envisioned protection for computer systems that would one 

day automatically detect and remove malware.  However, their estimation of the growing 

malware problem would be severely underestimated.   

In 1998, White began to identify and articulate the challenges of the growing 

computer virus problem (White, 1998).  White’s desire was to raise awareness and alarm 

the growing computer community of the many open issues facing researchers for virus 

detection and protection (J. Kephart et al., 1999). White’s research highlights five 

problematic issues:  1) development of new heuristics for virus detection, 2) the study of 

viral spread and epidemiology, 3) deploying distributed digital immune system for 

detecting new viruses, 4) detection of worm programs and 5) proactive versus reactive 

approaches towards detection of virus programs.  Many of these issues still exist today. 

In 1998, Bontchev extended his previous computer virus by expanding the 

definition of “viruses”. His research expanded the “virus” definition and pushed for 

greater understanding of the virus ecosystem.  Bontchev explored the incomplete nature 

of definitions of computer viruses (V. Bontchev, 1998). This work discussed advanced 
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classification and analysis of computer viruses.  Bontchev also discussed the incomplete 

nature of the anti-virus software and possible attacks bypassing anti-virus software.  

Further, Bontchev called for advanced testing methods for anti-virus software.  The 

research also discussed system issues and social aspects of the growing computer virus 

problem.  Bontchev also went on to discuss useful applications of using self-replicating 

software that are not malware. 

In 1999, Jeffrey Kephart and Steve White presented an update to their previous 

work conducted in 1993.  This updated research proposed two new epidemiological 

models of computer virus spread (J. Kephart et al., 1999). The two models were 

developed to explain epidemic and non-epidemic spread of viruses outside the laboratory 

environment.  This work was conducted in order to explain the non-existent outbreak of 

viruses in the workplace.  The researcher’s predicted a global virus outbreak in their 

previous study (J. O. Kephart, 1993).  However, the researcher’s interest was heightened 

because only a small fraction of all well-known viruses seemed to have appeared in real 

business environment (J. Kephart et al., 1999).  The researchers wanted to investigate 

whether the low rate of virus infections was real or if the theoretical epidemic threshold 

was too high and reporting was lost. The researchers develop localized model for 

software exchange in order to observe and explain the sub-exponential rate of viral 

spread (J. Kephart et al., 1999). 

Worms 

In 1989, Joyce Reynolds, in her work at the University of Southern California 

began to describe a new type of malware known as a Worm (Reynolds, 1989).  Reynolds 

describes the infection and cure of the newly released Internet Worm. Reynolds’ work 
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begins to envision the impact of a worm on the greater Internet community.  Her work 

describes how Worms could propagate through a series of inter-connected computer 

systems and begins to paint a picture of the damage that Worms could cause though such 

an attack (Reynolds, 1989).  Her work also evaluated the social and ethical issues of 

attacking the Internet ecosystem.  A large part of Reynolds’ work was based on 

reviewing and detailing the inadvertent release of the Internet Worm on the evening of 

November 2, 1988.   

Other malware research followed and began to leverage Cohen’s viral models.  

These models were used to describe and classify additional types of malware.  Additional 

research efforts began to classify malware by execution properties, executable traits, 

program characteristics and behaviors (Cohen, 1989b).  There began a debate over types 

of malware.  The classification of malware became a hot topic as researchers began to 

describe all malware as viruses.  Some researchers believed that a distinction between 

various classes of malware needed to be drawn.  The malware term Worm is largely 

credited to the work of Spafford (Spafford, 1989).  Spafford (1989) defined a worm as “a 

program that can run independently and can propagate a fully working version of itself 

onto other machines”.  Spafford’s work at Purdue University wanted to make sure that 

Worms were classified differently from viruses (Denning, 1989).  Spafford analyzed and 

described the characteristics of a Worm to self-replicate and spread itself to computer 

systems over a network.  Spafford also explored issues with Worm replication over the 

integrated network known today as the Internet.  Spafford is credited with dissecting the 

November 1988 Internet Worm incident that infected thousands of machines (Denning, 

1989).  Spafford describes how the Worm attack known as the Morris Worm worked its 
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way through a series of inter-connected computer systems. Spafford raises concerns with 

possible attacks on other computer systems/networks in which commerce, transportation, 

utilities, defense, space flight and other critical activities depended on system inter-

connectivity (Denning, 1989).  Other researchers would begin additional research into 

various malware classes. 

Eichin and Rochlis (1989) also began to analyze the inadvertent Internet Worm 

attack in 1989 at the Massachusetts Institute of Technology.  Their published paper 

defines the classification of the Internet "Worm" as a "virus" (Eichin & Rochlis, 1989).   

Their paper leverages some of the work from Cohen but began to deviate from 

classifying malware by executable code (Eichin & Rochlis, 1989).  Instead, Eichin and 

Rochlis begin to describe the possible intent of development teams of releasing malware 

to attack specific computer targets. Their research was the first published work that 

focused on the targeting strategies employed to execute a specific malware attack (Eichin 

& Rochlis, 1989).  This research also discussed the effective and ineffective defenses 

used by the larger “Internet” community as a whole (Eichin & Rochlis, 1989).  Their 

work at MIT detailed a step by step account of the Internet crisis of 1988. Their work 

outlined the various defensive security flaws that were exploited to attack the “inter-

connected” systems.  Their work also described the propagation of the Worm/Virus 

across the Internet.  This research emphasized the corrective actions needed to prevent 

future attacks. 

Seeley at the University of Utah also analyzed the same November 1988 Internet 

Worm incident.  Seeley analyzed the program, systems and the executables needed to 

propel the attack (Seeley, 1989).  Seeley examined the Worm program, a 99-line 
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bootstrap program written in the C language and a needed object file used in UNIX 

systems such as VAX and Sun (Seeley, 1989).  The basic goals of the attack was to locate 

systems across the network, penetrate those systems by exploiting security flaws with 

remote connections and replicate and execute the Worm (code) on the remote system 

(Seeley, 1989).  Penetration of a remote systems was accomplished in one of three ways; 

1) taking advantage of security flaws in the “listening” server, 2) exploiting the “trap 

door” in the SMTP mail service, or 3) guessing passwords for administrative accounts or 

taking advantage of non-set passwords to elevate credentials (Seeley, 1989).  Seeley also 

outlined the defensive measures used by the Worm to prevent detection by inhibiting 

analysis of the program.  The worm’s simplest means of hiding itself was to change the 

program name and directory (Seeley, 1989).  Seeley’s work set the stage for analyzing 

malware from an attacker’s defensive perspective.  

In 2002, other researchers continued to investigate the 2001 Worm attack. Moore 

et al. (2002) analyzed the Code Red worm which infected thousands (359,000) of hosts 

across the Internet in 2001 in less than 14 hours.  Additional research for more advanced 

Worm malware highlight how the Storm Worm can be used to create botnets used by bot 

masters to send spam emails or perform distributed denial of service attacks (DDOS) 

(Kanich et al., 2008). The estimated cost of the Code-Red malware epidemic to be in 

excess of $2.6 billion (Moore et al., 2002). The researchers used various techniques to 

analyze how multiple worm-infected computers worked to propagate the Code-Red 

Worm and consume network bandwidth in a targeted and coordinated manner (Moore et 

al., 2002). 
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In 2004, Williamson et al. presented the idea of Virus Throttling.  Virus 

Throttling was a technique used to slow the spread of worms and viruses by disrupting 

their propagation activities largely over TCP/IP (Williamson et al., 2004). This research 

was conducted in conjunction with Massachusetts Institute of Technology (MIT) and 

Hewlett Packard (HP).  The Virus Throttling concept was used to prevent an infected 

machine from infecting other machines on the same network (Williamson et al., 2004). 

The end result of such a technique was that there were fewer machines infected and there 

was less traffic generated by the virus over the network (Williamson et al., 2004). The 

technique worked well for Worms that used TCP/IP protocols and seemed to have 

promise for other protocols.  The propagation of Worms at this time was largely 

attributed to the use of Instant Messaging over corporate networks. Malware being spread 

over Instant Messaging was a growing concern and represented a significant threat at this 

time (Williamson et al., 2004).  Virus Throttling was a technique used to address a 

specific malware using certain protocols.  This was a step forward in terms of addressing 

specific malware behaviors.   

Trojans 

Ken Thompson, in 1984, wrote an additional seminal paper regarding Trojan 

malware (Thompson, 1984).  His lecture “Reflections of Trust” was widely publicized for 

identifying a problem known today as a Trojan malware.  His presentation was awarded 

the 1984 Turing Award for clearly presenting, explaining, and demonstrating a practical 

and dangerous Trojan attack using a UNIX standard compiler (Wheeler, 2005). His 

presentation demonstrated how to modify the Unix C compiler to inject a Trojan piece of 

code into an executable program (Wheeler, 2005).  The injected code modified the 
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operating system login program to escalate privileges and grant root access to the UNIX 

system (Wheeler, 2005). Thompson then demonstrated the ability to modify and 

recompile the compiler itself with additional code designed to detect the existence of 

Trojans in compiled code (Wheeler, 2005). Once the additional code was added, the 

“Trojan code” attack would be removed from the source code so that no source code 

could be detected (Wheeler, 2005).  Thompson presented that these Trojan attacks could 

persist through numerous recompilations and cross-compilations of the compiler 

(Wheeler, 2005). He then presented that no level of source-level verification or scrutiny 

will protect systems from such embedded malware code.  In fact, he described that the 

problem could exist at lower levels beyond the compiler such as assembly level code or 

even hardware microcode which would be harder to detect (Wheeler, 2005). Thompson 

implemented his attack on a Bell Labs UNIX C compiler and successfully launched the 

attack on another Bell Labs group computer systems (Wheeler, 2005).  His attacks were 

never detected within Bell Labs and the malicious compiler was never released outside of 

Bell Labs  (Wheeler, 2005).  This research began to propel other research into Trojan 

malware and investigation into detection methods for executable code.    

Botnets 

Botnets represent the greatest threat to the internet according to multiple 

researchers (Barakat & Khattab, 2010).   Bots represent an infected host that has a 

connection via a network to a botmaster (Barakat & Khattab, 2010).  A botnet represents 

a number of infected hosts end-hosts under the command and control (C&C) of a bot-

master (Barakat & Khattab, 2010). Botnets set out to infiltrate and connect more 

vulnerable machines to the botmaster.  Recruiting additional bots is usually done 
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exploiting various software vulnerabilities or by propagating malware to eventually 

exploit a host (Vogt, Aycock, & Jacobson, 2007).  All botnets are controlled by at least 

one command and control (C&C) channel tied to at least one botmaster but in many cases 

there are several primary and secondary botmasters (Vogt et al., 2007).  Communication 

channels are established in order to receive commands and funnel information back to the 

botmaster (Vogt et al., 2007).    These channel have become more sophisticated over time 

by encrypting traffic and exfiltrating key information about the end-points, 

configurations, platforms, networks and organization (Vogt et al., 2007). The main 

purpose of such a secure communication channel is to provide a command and control 

(C&C) medium for the botmaster’s commands (Vogt et al., 2007). Botnets are constantly 

recruiting new bots by exploiting different software vulnerabilities for end-points, 

replicating itself using the same malware to other hosts and using advanced propagation 

techniques to spread across various networks (Barakat & Khattab, 2010). Newly recruited 

hosts often download the latest version of the “bot code” and runs this code on the end-

point typically in the background.  However, this new software establishes connections to 

primary and secondary C&C servers.  Once established and going undetected usually by 

running as a known service infected machines communicate and execute the commands 

of the botmaster (Vogt et al., 2007).  Most C&C channels operate at the application layer 

and can establish IRC chat protocol to further hide their activities (Barakat & Khattab, 

2010).   Establishing IRC chat protocols and using open source P2P protocols can put 

organizations end-points and networks at great risk of being taken over by botnets and 

super-botnets (Barakat & Khattab, 2010).  Additionally, sophisticated botnets can also 

implement encryption and/or digitally sign instructions to make it almost impossible for 
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network security and defensive operations to detect and stop a botnet attack (Barakat & 

Khattab, 2010). 

Backdoors 

Landwehr et al. (1994) provide some additional definitions of security flaws that 

then could be used as an attack vector.  The researchers defined security flaws as "any 

conditions or circumstances that can result in denial of service, unauthorized disclosure, 

unauthorized destruction of data, or unauthorized modification of data” (Landwehr et al., 

1994).   These researchers developed a taxonomy for security flaws and detailed over 50 

actual security flaws. The goal for developing such a taxonomy was to organize or 

classify computer security flaws by type in order to prevent the exploitation of 

unintended security flaws and purposeful misuse of flaws to compromise computer 

systems (Landwehr et al., 1994).  This research was similar to the Research in Secured 

Operating Systems (RISOS) project and Protection Analysis project conducted by 

Information Sciences Institute of the University of Southern California (Landwehr et al., 

1994).  Moreover, the researchers wanted to bring attention to the inherent security flaws 

in software and the consequence of these security flaws in operating systems (Landwehr 

et al., 1994). 

Exploits 

In 2000, McGraw and Morrisett published a paper that presented the growing 

malware problem.  This paper detailed a historical perspective of malware and the 

various approaches to detect and remove malicious files (McGraw & Morrisett, 2000).  

McGraw and Morrisett (from Cornell University) chaired a group of over twenty 
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malware researchers from across the world to elevate a world-wide malware discussion 

and a call to action (McGraw & Morrisett, 2000).   The groups discussed such issues as 

the increasing complexity of computer systems and the networks that deliver 

connectivity.  The group also discussed the ease computer extensibility and the 

susceptibility of these “networked” computer systems to be attacked.  The group also 

concluded that any networked computing system is susceptible to malware or hostile 

code. However, the researchers also pointed out that an ever-present network, like the 

internet, provide attack vectors with ease (McGraw & Morrisett, 2000).  The group also 

came to the realization that attackers no longer have to gain physical access to computer 

systems to propagate attacks.  Networks, not physical access, become the highway to 

drive malware attacks (McGraw & Morrisett, 2000). Networks combined with rising 

system complexity provide more avenues for attack and complex systems make it easier 

to hide or mask malicious code (McGraw & Morrisett, 2000).  

Ransomware 

Ransomware has become quite popular for cyber-criminals over the past few 

years.  This type of malware has grown by some accounts by 500% each year since 2013 

(Symantec, 2014).  Ransomware has been classified as a Trojan variant or virus 

depending upon the particular malware variant infecting the system  (Khakhutskyy, 

2016). Although ransomware is thought to be fairly recent, ransomware has been around 

for nearly thirty years (Hampton & Baig, 2015).  Ransomware is used by cyber criminals 

infect and encrypt data/files such that access to this information is only granted once 

ransom or financial arrangements have been made to provide the “key” to unlock these 

files (Gazet, 2010).   However, these types of attacks are not new.  The PC CYBORG 
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(AIDS) as an example was delivered to many computers via a floppy disk in 1989 

(Hampton & Baig, 2015).  The PC CYBORG trojan then encrypted files and instructed 

users via a socially engineered message to pay a license fee with a $189 check to a 

company in Panama (Hampton & Baig, 2015).  Much of the 1990’s ransomware was 

driven by amateur hackers in order to test and demonstrate technical capability (Hampton 

& Baig, 2015).   

  Ransomware began to rise in the early 2000’s as malware developers started to 

sell their “bot-nets” (Bechtel, 2014).  Malware developers started to see a market for their 

“bot-nets” and began to profit from direct information theft and advertising revenue 

(Bechtel, 2014).  The early 2000’s also saw an increase in theft of banking credentials or 

sensitive passwords (Condon, 2012).  By the late 2000’s,  malware developers started to 

work together and share compromised assets for sale to the highest bidder (Hampton & 

Baig, 2015).  It was these networks of “bots” that enabled cyber criminals to launch 

large-scale attacks on organizations (Condon, 2012).  It was about this time that nation 

state organizations also started to realize the benefit of such networks (Carlson, Davis, & 

Leach, 2014).  Cyber criminals were now positioned to offer cyber-attacks to steal 

intellectual property, run sophisticated phishing campaigns and propagate networks 

further into targeted organizations (Hampton & Baig, 2015).    

Until 2011, ransomware attacks had been isolated and unsophisticated (Condon, 

2012).  In late 2011, ransomware began to directly attack end-users in mass (Hampton & 

Baig, 2015).  By 2012, ransomware launched a major cyber-attack attacking the more 

connected internet user base and prey on the hype of computer viruses (Hampton & Baig, 

2015).  In 2012, ransomware developers launched large-scale end-user attacks with “Fake 
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Anti-virus” (Kharraz et al., 2015).  These fake attacks tricked end-users into believing 

they had been infected by a serious virus and needed to pay for non-existent AV software 

to remediate the remedy and restore the compromised system (Krebs, 2012).  Information 

security companies and researchers alerted the public to the scam shortly after the attack,  

However, due to the sheer number of these attacks, the credit card companies responded 

to payments made to the “Fake AV” and this first ransomware attack was virtually shut 

down overnight (Krebs, 2012).   

More sophisticated ransomware attacks began to take place around 2005.  

Malware known as “lockers” began to emerge and stage denial of service attacks on 

infected systems (Young & Yung, 2016).  These early “lockers” attacked boot operations 

and would not allow the machine to initialize until the “ransom” request was paid (Young 

& Yung, 2016).  Early “lockers” did not attack our touch the file system and remained in 

memory after boot-up.  Most security companies responded to these “locker” attacks by 

extending Anti-Virus software to remove malicious software (Young & Yung, 2016). 

More advance “locker” attacks were seen in late 2005 with the PGPCoder/GPCode 

locker.  The PGPCoder/GPCode encryption locker was the first instance of ransomware 

where files and content was encrypted and released for payment (Young & Yung, 2016).   

Malware attackers released various versions of GPCode and many of these versions were 

released were greatly flawed.  The flawed GPCode had issues poorly implemented 

encryption routines, breakable encryption keys and recovery of deleted content (Hampton 

& Baig, 2015). Malware developers began to strengthen GPCode over time and improve 

the many issues with encryption and encryption keys (Young & Yung, 2016).  The 

GPCode malware was not the only limiting factor for ransomware.  Directly attacking 
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end-users required many points of contact including the end-user, end-user payment 

gateways, cyber-attacker payment gateway and ultimately the malware developer 

(Hampton & Baig, 2015).   This payment of ransom process was complex and risky.  The 

many points of contact could slow the pace of payment and encumber the extortion 

process by allowing law enforcement to intervene to stop or track payments (Hampton & 

Baig, 2015).  

In 2013, ransomware met with the perfect storm for delivering and executing 

ransomware around the world.  The perfect storm was represented by three components:  

1) strong and unbreakable encryption technology,  2) anonymous delivery and exchange 

of encryption keys and 3) untraceable methods to execute ransom payments (Hampton & 

Baig, 2015).  CTB-Locker was the first ransom malware to take advantage of the perfect 

storm. CTB stands for “Curve, TOR, and Bitcoin” (Hampton & Baig, 2015).  The 

“curve” represented the elliptic curve cryptography implemented to encrypt the targeted 

files/content. The Onion Routing (TOR) protocol enabled anonymous communication for 

key exchange.  Bitcoin provided secure and untraceable crypto-currency transactions in 

order pay ransom. The CTB-Locker model still provides the means for new generation of 

ransom malware to deny access, secure key exchange and make untraceable payments 

(Young & Yung, 2016).  According the Symantec ransomware grew at 500% in 2013 

likely due to the perfect storm (Symantec, 2014).  Large, medium and small organizations 

were hit with the CTB-Locker ransomware.  However, large corporate organizations had 

backup solutions that offer protection for a number of threats.  Many medium and small 

organizations did not and still do not have the financial or technical resources to develop 

the necessary backup solutions to address these threats. 
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Today’s malware researchers offer that the ransomware can be easily defeated 

with collaboration and sharing of malware (Kharraz et al., 2015).  However, many 

information security experts suggest that history should be a lesson for improving 

malware over time (Kharraz et al., 2015).   

Ransomware continues to own the media and prey on the public’s fear of losing 

access to their information (Hampton & Baig, 2015).  The security industry and academic 

community is always playing catchup with advanced malware threats such as 

ransomware (Wüchner et al., 2014).  Currently, ransomware has the technical and 

financial model for much larger payoffs (Kharraz et al., 2015).  It is imperative that 

ransomware be monitored and analyzed for new and improved releases (Hampton & 

Baig, 2015).  The ransomware financial model is simply too lucrative to ignore.  At some 

point, ransomware will migrate and target large corporate networks such as banks, 

hospitals and critical infrastructure.  Sooner rather than later, large enterprise 

organizations will have address the threat of ransomware within their operational 

environment.  

Advanced Persistent Threats (APTs) 

Advanced Persistent Threat (APT) is a term used to describe a new type of 

malware attack (Tankard, 2011).  The term Advanced Persistent Threat (APT) was 

originally identified as a specific type of malware by the United States Air Force in 2006 

(Rekdal & Bloemerus, 2013).  APT’s have been described as well-funded, technically 

advanced and well-organized with financial motivations (Rekdal & Bloemerus, 2013). 

APT attacks are typically unique and utilize multiple attack vectors to gain access to 

networks (Rekdal & Bloemerus, 2013).  APTs employ advanced techniques to avoid 
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detection and remain on infected systems for long periods of time before activation 

(Rekdal & Bloemerus, 2013).  In 2011, high profile APT attacks gained notoriety by 

attacking some of the who’s who for Government and technology organizations (Rekdal 

& Bloemerus, 2013). Commercial organizations such as Sony, RSA Security, Lockheed 

Martin, Citigroup, Fox Broadcasting and Public Broadcasting Service (PBS) were faced 

with new types of attacks (Nicho & Khan, 2014). United States Government 

organizations such as the National Aeronautics and Space Agency (NASA), Federal 

Bureau of Investigation (FBI) and Department of Treasury were also targeted (Nicho & 

Khan, 2014).  Europe also faced similar struggles with this new type of malware.  

European organizations such as the European Space Agency, the British and French 

treasuries were also targeted by APTs (Nicho & Khan, 2014).   

APT malware has quickly become a major issue for information security and 

leaders around the world (Molok, Ahmad, & Chang, 2012). APTs employ stealthy 

techniques to breach networks and establish long term surveillance within the network 

(Molok et al., 2012).  Malware developers for APTs are concerned with breaching 

systems and gaining unauthorized access to systems over time (Nicho & Khan, 2014).  

The first phase for an APT is typically breaching and evading detection for extended 

periods of time (Molok et al., 2012).  The second phase for APT’s is to gather 

intelligence and perform reconnaissance within the breached network (Molok et al., 

2012).   APT’s intelligence gathering and reconnaissance is sophisticated and literature 

suggests very targeted to the organization (Symantec, 2014). During the intelligence 

gathering phase, APTs try to gain insight into operational aspects of the organization such 

as information assets, business functions, approval authorities and “normal” 
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communications (Molok et al., 2012).   After the intelligence has been gathered, APTs 

begin to capture the necessary credentials, gain access or escalate privileges in order to 

achieve the target objective (Rekdal & Bloemerus, 2013).  APT attackers tend to target 

large organizations such as financial services, government and defense contractors 

(Symantec, 2014). In 2010, Google, Adobe and other large U.S. organizations were 

reportedly breached by Chinese APT attacks that stole intellectual property, email 

accounts, and other organizational information (Panda Security, 2014).  The APTs then 

sent the stolen information to Taiwanese IP addresses (Panda Security, 2014). APT’s 

remain a powerful malware and represent a major threat to businesses and Governments.  

However, APT’s remain the least studied and the least understood of all malware (Nicho 

& Khan, 2014).  It is understood that APT’s adapt constantly and take advantage of 

polymorphic techniques to evade detection for long periods of time (Kaur, 2014).  

Several studies and authors suggest that the sophistication and targeting of APT malware 

may represent the next wave of military conflict (Dunlap, 2011) .  

Analyzing and Detecting Malware 

In 1995, Lo et al. developed  detection tools for various types of malware 

including computer viruses, worms, Trojans, and logic bombs (Lo, Levitt, & Olsson, 

1995).  This research was one of the first detection approaches that included Static 

Analysis for the malware in question (Lo et al., 1995).   The detection method used was 

called the Malicious Code Filter (MCF).  MCF was used to detect malicious code and 

security related vulnerabilities in software (Lo et al., 1995).  MCF could be used to 

perform off-line analysis to determine indications of compromise.  The researchers 

proposed MCF to slice the program into small functions or “code pieces” in order to 
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analyze the overall program.  Each sub-function could be analyzed to determine the 

maliciousness.   Program slicing techniques were used to evaluate and collect the 

program properties (Lo et al., 1995). This approach enabled researchers to evaluate a 

number of sub-functions of a larger program to determine overall malicious behavior. 

The researchers also proposed an approach to defeat “program slicing” and the potential 

countermeasures needed to maintain detection rates (Lo et al., 1995). 

In 1998, Lee and Stolfo, working at Columbia University developed a general and 

systematic methodology for Intrusion Detection using data mining techniques.  The 

researchers leveraged pattern recognition and machine learning techniques in order to 

model program execution properties and user behavior (W. Lee & Stolfo, 1998). The 

techniques employed were able to analyze system call data with network tcpdump data in 

order to detect potential anomalies from both programs and user behavior (W. Lee & 

Stolfo, 1998).  The researchers were able to construct concise and accurate classifiers by 

using the association rules algorithm and the frequent episodes algorithm (W. Lee & 

Stolfo, 1998). These two algorithms were used to compare both intra-and inter-audit 

record patterns (W. Lee & Stolfo, 1998).  Using this approach, researchers could analyze 

both standard and abnormal program or user behaviors. The discovered patterns then 

could be used to facilitate additional feature selection to improve detection rates.  

In 2001, Wagner and Dean developed static and behavioral analysis methods for 

host-based intrusion detection.  The researchers working at University of California 

Berkeley developed methods to examine program specifications and behaviors exhibited 

at time of execution (Wagner & Dean, 2001).  Static analysis for the first time was being 

used for intrusion detection and the researchers recognized that attacks should have 
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atypical behavioral characteristics (Wagner & Dean, 2001).  Wagner & Dean developed a 

specification for a program based upon the results from static analysis.  Secondly, the 

authors used execution monitoring to determine whether the program executed as 

expected.  The primary challenge for the researchers was to develop an intrusion 

detection technique with low false positive rates (Wagner & Dean, 2001).  The 

researchers were able to develop a static analysis and execution monitoring approach to 

look for unexpected execution of functions. This approach was able to demonstrate 

positive results for host-based intrusion detection.  The authors highlight three distinct 

advantages for analysis using both static and dynamic analysis: 1) achieves a high degree 

of automation, 2) provides protection against a broad class of malware attacks based on 

corrupted code, and 3) limited false positives or “false alarms” (Wagner & Dean, 2001).   

In 2003, Linn and Debray working at the University of Arizona, researched 

techniques used to obfuscation executable code to avoid static disassembly.  Static 

analysis provides the ability to expose machine code into human readable functions that 

then can be used to reverse engineer software executables (Linn & Debray, 2003).  Static 

analysis, while helpful in malware research, creates deep insight into the logic of 

executables and the library of functions used by the software by detailing the step-

functions as the code executes.  This insight provides malware analysts the ability to look 

into the executable and look for malicious functions as they execute.  Static analysis also 

offers the opportunity for others to reverse engineer software and steal intellectual 

property from legitimate software providers (Linn & Debray, 2003).  As part of the 

reverse engineering, executable disassembly provides a translation from machine code to 

assembly code (Linn & Debray, 2003). Code and function obfuscation techniques are 
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used by software developers in order to disrupt reverse engineering and program 

disassembly by making programs harder to disassemble correctly (Linn & Debray, 2003). 

Linn and Debray concluded the paper with a discussion on two static disassembly 

algorithms that break obfuscation and various techniques used to impede these 

algorithms.   

In 2005, Gheorghescu, working at Microsoft Corporation, performed research that 

would automate malware classification.  The research conducted provided advanced 

malware classification methods to aid in the detection of malware.  Classification and 

naming of viruses is helpful for sharing discovered malware.  However, the anti-virus 

industry did not adhere to a standard naming convention causing issues with processing 

new malware samples (Gheorghescu, 2005). Standard naming conventions could 

significantly speed the determination of files being malware or benign.  The researchers 

introduced an innovative classification system for desktop computers.  The classification 

compared new and unknown samples with known database of malware within minutes.  

This approach would also track samples based on evolution of the malware sample 

(Gheorghescu, 2005).  Gheorghescu’s approach used three matching algorithms to 

process malware samples and based on the results made determinations of good or bad.  

The research also presented methods for malware-handling tasks including sample 

clustering, outbreak detection, automatic virus naming, and phylogeny tree 

(Gheorghescu, 2005). 

In 2006, Baecher et.al., working at the University of Mannheim, developed and 

presented a platform for processing a large-scale collection of self-replicating malware 

collected in the wild (Baecher, Koetter, Holz, Dornseif, & Freling, 2006),  At this point in 
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time, there was little empirical data (quantitative or qualitative) to describe self-

replicating malware.   The inability to harness empirical data hampered many counter-

measures for malware including network-based and host-based intrusion detection 

(Baecher et al., 2006).  The Nepenthes platform, provided an emulation platform to 

expose and capture attack data.  The Nepenthes platform also provided a means to 

capture empirical data about self-replicating malware and a means to analyze thousands 

of samples of previously unknown malware (Baecher et al., 2006).  The data collected by 

the Nepenthes platform provided the empirical data capture to vendors such as host-based 

IDS/anti-virus systems (Baecher et al., 2006). 

Kolter and Maloof (2006), describe the use of machine learning and data mining 

to detect and classify malicious executables found in the wild.  The researchers, from 

Stanford University and Georgetown, gathered nearly 2000 benign and 1,700 malicious 

executables to perform advanced classification research.  The researchers extracted more 

than 255 million distinct n-grams from these two sample sets.  N-grams are used to 

extract substrings of a file for a fixed length n.  These n-grams can be efficiently 

collected and analyzed for signatures.  The researchers processed and extracted feature 

for 3,700 files (Kolter & Maloof, 2006). The researchers evaluated a variety of inductive 

methods, including naive Bayes, decision trees, support vector machines, and boosting to 

process n-gram samples (Kolter & Maloof, 2006). The researchers found that boosted 

decision trees outperformed other algorithms with an area under the receiver operating 

characteristic (ROC) curve of 0.996. The researchers proposed an analysis methodology 

that should scale to larger collections of samples.  The conducted studies examined three 

key parameters: the size of n-grams, the size of words and the number of selected features 
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(Kolter & Maloof, 2006). Due to limited computational resources the study was unable to 

evaluate exhaustively all methods for all settings.  However, once the researchers applied 

detectors to 291 malicious executables the true-positive rate of 98% and a desired false-

positive rate of less than 5%. This was an important finding as the methodology 

suggested that the approach could be used in operational systems for detecting unknown 

malicious samples (Kolter & Maloof, 2006).  

In 2006, Lee and Mody presented methods for systems to automatically classify 

malware into families or categories.  Their approach monitored runtime behavior of 

applications and captured the series of functions as they were executed (T. Lee & Mody, 

2006).  Based upon these environmental parameters the system was able to categorize 

applications.  The system accurately classified malware based on execution properties 

and behavioral characteristics operating in a  Microsoft-based computer system (T. Lee & 

Mody, 2006). The researchers constructed a knowledge base of application groups by 

sampling a large population of applications.  Based upon the set of known functions and 

behaviors exhibited by prior classifications, the system was able to classify new 

applications into known application groups and render a verdict of whether the 

application was malware (T. Lee & Mody, 2006). 

In 2007, Bilar, from Wellesley College (Massachusetts), presented a paper to 

discuss detection mechanisms for malicious code through statistical analysis of operation 

code (opcode) distributions (Bilar, 2007).  The researcher analyzed, disassembled and 

performed opcode frequency distribution for 67 malware executables (Bilar, 2007).  

These results were compared to those of 20 non-malicious samples.  Bilar (2007) found 

that the malware opcode distributions did significantly differ from that of non-malicious 



70 
 

samples.  In addition, unique opcodes seem to be a stronger predictor as many of the 

malware samples had unique frequency distribution patterns (Bilar, 2007). The 

researchers found that sixty opcodes accounted for 99.8% of opcodes found in both 

malicious and benign samples.  However, 14 malicious opcodes accounted for 92% of the 

total extracted opcodes and the top 5 malicious opcodes accounted for 65% of the 

extracted opcodes.  This research would be used as the basis for using machine learning 

for detection of malware. 

In 2007, Martignoni, Christodorescu and Jha discussed the growing threat of 

malware due to the sophistication of malware evading signature-based detection 

(Martignoni, Christodorescu, & Jha, 2007).  The malware developers can easily evade 

detection by "packing" the malicious payload in layers of compression or encryption 

(Martignoni et al., 2007). The researchers describe state-of-the-art malware detection 

using both static and dynamic techniques to uncover the packed malware.  These 

techniques are slow due to off-line nature of the analysis and prove to be highly 

ineffective due to the metamorphic nature of the malware (Martignoni et al., 2007).  The 

researchers proposed a new technique known as OmniUnpack.  The OmniUnpack 

approach closely monitors the execution of a program in real-time and detects the 

“unpacking” when the program has removed the various layers of packing (Martignoni et 

al., 2007). OmniUnpack improved “packed” malware detection by analyzing the 

unpacked malicious payload during runtime execution. Experimental results 

demonstrated quite effective detection results with low overhead. 

In 2008, Ye, Wang, Li, Ye, & Jiang discussed the failure of the traditional 

signature-based anti-virus systems to detect polymorphic/metamorphic malware (Ye et 
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al., 2008).  The researchers also discussed that the traditional signature-based anti-virus 

systems were also blind to new and previously unseen malicious executables (Ye et al., 

2008). The researchers discussed that data mining techniques are needed due to large and 

growing collections of malware (Ye et al., 2008).  The research presented involved 

analyzing and developing profiles for Windows APIs called by PE files.  The researchers 

discuss the results of their Intelligent Malware Detection System (IMDS) using 

Objective-Oriented Association (OOA) mining based classification (Ye et al., 2008). 

IMDS consisted of three major modules: 1) PE parser, 2) OOA rule generator, and 3) rule 

based classifier. This study outperformed commercial software products such as Norton 

Anti-Virus and McAfee VirusScan (Ye et al., 2008).  This approach also outperformed 

previous data mining based detection systems using Naive Bayes, Support Vector 

Machine (SVM) and Decision Tree techniques (Ye et al., 2008). The study demonstrated 

a solid approach for polymorphic and metamorphic malware detection. 

In 2009, Rieck et al. present issues with malware variants (polymorphism) and the 

use of obfuscation to hinder detection at the file level (Rieck, Trinius, Willems, & Holz, 

2009).  The researchers acknowledge that the amount and diversity of malware variants 

render classic security defenses like anti-virus ineffective (Rieck et al., 2009).  The 

research suggested that the sheer volume of attacks from malware including viruses, 

worms and Trojans make detection more difficult by the day (Rieck et al., 2009).  The 

volume combined with obfuscation and polymorphism techniques require a new 

approach for detection.  The researchers believe that a machine learning approach was 

needed to solve the polymorphic malware growing problem.  The research presented 

offers a framework for automatically identifying novel classes of malware with similar 
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behavior (clustering) and assigning unknown malware to these discovered classes 

(classification) (Rieck et al., 2009). These techniques, clustering and classification, 

allowed for improved detection and an environment to process thousands of malware 

binaries.  Further, clustering and classification provided improved discovery of novel 

malware variants. 

In 2009, Bayer et.al., working on conjunction with University of California Santa 

Barbara and University of Vienna, developed automated environment to analyze malware 

samples in a controlled environment (U. Bayer, Milani-Comparetti, Hlauscheck, Kruegel, 

& Kirda, 2009).  This automated environment would also produce reports that detailed 

the program’s actions during execution.  These details were then used to analyze both 

benign and malware samples.  The researchers then explored clustering techniques to 

identify samples based on execution behavior. The researchers admitted that previous 

clustering techniques did not scale and failed to generalize the observed behavior (U. 

Bayer et al., 2009). The new approach proposed a scalable clustering approach to identify 

and classify malware samples.  The researchers performed dynamic analysis to capture 

execution traces for malware programs. Profiles for malware were generated using these 

execution traces in a generalized manner  (U. Bayer et al., 2009).  These profiles were 

then used as input into a scalable clustering algorithm capable of handling large datasets.  

Dai, Guha and Lee (2009) provide unique insight into malware classification by 

analyzing frequency distribution or unique call sequences for various types of malware.   

The researchers approach malware detection through extracting dynamic instruction 

sequences from malware through data mining techniques (Dai et al., 2009).  The 

researchers extracted runtime instruction sequences from unknown executables and 
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organized instruction sequences into basic blocks in order to evaluate malware (Dai et al., 

2009). The extraction techniques used were based on certain instruction sequence 

patterns based on instruction associations with derived basic blocks (Dai et al., 2009).  

The researchers used a data mining processes to perform feature extraction, feature 

selection and to build the classification model (Dai et al., 2009).  This approach yielded 

accurate, reliable and efficient predictive classification model for malware detection.   

In 2010, Devesa et al. presented that a significant security threat exists due to the 

exponential growth in malware (viruses, Trojans or worms) (Devesa et al., 2010).  The 

researchers define malware as any kind of program explicitly designed to harm or disrupt 

computer system operations (Devesa et al., 2010).  In order to mitigate the malware 

problem, all incoming code must be analyzed to classify these files as malware or benign 

software. The most common approach is to combine static and dynamic analysis 

techniques in order to extract execution properties for the unknown files (Devesa et al., 

2010).  However, due to the escalation in polymorphic and metamorphic malware attacks 

the manually analyzing thousands of suspicious files each day would be futile (Devesa et 

al., 2010). The researchers proposed an emulation environment for testing that provided 

secure and safe execution of suspicious code.  The environment properties to classify 

samples with several machine-learning algorithms (Devesa et al., 2010). The study tested 

the proposed system real malware samples. The initial results from the study reported 

reliable results with high performance for the malware sample set.   

In 2010, Paulevé et al. working in France, applied Locality Sensitive Hashing 

(LSH) to dramatically improve performance for processing pattern recognition to be 

applied to malware detection (Paulevé, Jégou, & Amsaleg, 2010).  The researchers 
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viewed traditional search schemes as computationally expensive and poorly fitting for 

real data sets (Paulevé et al., 2010).   Although several extensions had been proposed to 

address the limitations, there had not been a comprehensive review of the algorithms or 

recommendations for “real world data”.  The study conducted a comparison of several 

families of space hashing functions in a real world environment (Paulevé et al., 2010).  

The comparison included random projections, lattice quantizers, k-means and 

hierarchical k-means.  The finding demonstrated that the unstructured quantizer 

significantly improved the accuracy of LSH (Paulevé et al., 2010).  The study also 

discussed the previous findings concerning LSH, merits and limitations to the proposed 

LSH approach. 

In 2011, Bailey et al. presented a study to highlight the ineffectiveness of Anti-

Virus (AV) commercial products.  The researchers used a large collection of malware 

that spanned a variety of attack vectors (e.g., spyware, worms, spam) to demonstrate the 

ineffectiveness of  AV in an operational environment (Bailey, Oberheide, & Andersen, 

2011).  Further, the study showed that AV products mischaracterized malware and failed 

in large part to semantically define malware or classes of malware.  The authors proposed 

a new classification technique that describes malware behavior in terms of system state 

changes (e.g., files written, processes created) rather than in sequences or patterns of 

system calls (Bailey et al., 2011). The researchers developed a methodology to 

automatically categorize of malware into classes based on behaviors (Bailey et al., 2011).  

The study also demonstrated that behavior-based clustering provided a more direct and 

effective way to classify malware (Bailey et al., 2011). 
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Alam, Horspool and Traore (2013) extended malware research by examining 

dynamic binary obfuscation.  Dynamic binary obfuscation is used by metamorphic 

malware to generate a new sequence of opcodes in the memory in order to avoid 

detection (Alam et al., 2013). Polymorphic and metamorphic malware is very difficult to 

analyze manually because of the sophistication of such malware (Alam et al., 2013). The 

researchers developed an automated tool and language named MAIL (Malware Analysis 

Intermediate Language) to automate and optimize the analysis and detection process 

(Alam et al., 2013). MAIL provided an element of portability for building metamorphic 

malware analysis and detection due to the use of annotated control flow graphing used for 

pattern matching (Alam et al., 2013).   The study yielded detection rated for metamorphic 

malware of 93.92% and a low false positive rate of 3.02% (Alam et al., 2013).  This study 

also discussed the re-use of functions from previous successful malware exploits.  The 

researchers also discussed the use of embedded compilers and obfuscation by 

metamorphic malware to evade detection (Alam, et al., 2013). 

In 2014, Tamersoy and Roundy, presented research for detecting both 

polymorphic and metapmorphic malware.  Their researchers stressed the need for new 

detection methods due to the increasing sophistication of malicious software (Tamersoy 

et al., 2014).  The researchers call for new defensive techniques that are scalable and 

agile to malware.  The researchers propose a new algorithm that identifies malicious 

executable files by applying reputational data with the file (Tamersoy et al., 2014).  The 

researchers constructed a large dataset from Norton Community Watch and performed 

analysis for non-infected/infected machines and benign/malicious files resident on those 

machines.  The researchers then identified relationships that exist between machine and 
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malware (Tamersoy et al., 2014).  This algorithm “Aesop” leverages locality-sensitive 

hashing to measure the strength of these inter-file relationships (Tamersoy et al., 2014).  

These relationships were used to construct a bi-partite graph to infer benign or malacious 

(Tamersoy et al., 2014).  The study produced impressive results with a  99.61% true 

positive rate and a  0.01% false positive rate (Tamersoy et al., 2014). 

In 2015, Mohaisen and Alrawi presented an aproach to automatically detect 

metamorphic and polymorphic mawlare based on behavior exhibited during analysis.  

Automated Malware (AMAL) provides both analysis and labeling (classification and 

clustering) to improve malware detection (Mohaisen & Alrawi, 2015).  AMAL consists 

of two sub-systems, AutoMal and MaLabel.  AutoMal provides tools to collect detailed 

behavioral artifacts of file, memory, network and registry during execution (Mohaisen & 

Alrawi, 2015).  MaLabel uses the data provided by AutoMal to train and build classifiers.  

AutoMal can be used with unsupervised learning by leveaging multiple clustering 

algorithms for sample grouping (Mohaisen & Alrawi, 2015). The research presented 

achieved a precision rate of 99.6%. The researchers also discussed several benchmarks, 

costs estimates and measurements highlight and support the merits and features of 

AMAL. 

The foundational studies presented above were intended to provide a historical 

perspective and context for malware research.  Advanced detection studies are provided 

below.  Advanced detection studies provide deeper insight into designing, conducting and 

evaluating malware experimental research.  Additional details regarding advanced 

detection studies referenced below are presented in Appendix A.     
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Research Methods 

Malware research is typically conducted using quantitative research methods 

(Rossow et al., 2012).  Quantitative studies have been used to observe and collect 

datasets for a wide array of experiments (Creswell, 2007).  In many cases, quantitative 

malware experiments have been designed to improve detection models, study 

longitudinal behaviors and validate prior malware research (Rossow et al., 2012).  The 

study was aligned with Rossow’s (2012) three basic concerns for conducting malware 

research:  1) following a research methodology and being transparent with the study 

details, 2) developing an experimental framework that uses the correct and representative 

data and 3) the experiment must take due consideration to not harm the research, 

resources or contaminate findings.  Each of these concerns were addressed and discussed 

in detail later in the study’s approach.   

The experimental design and approach enabled for this research to advance the 

study in stages.  The staged approach enabled the research to conduct experiments and 

validate results at various checkpoints.  This approach provided flexibility for the 

researcher and allowed the feature set and clustering algorithms to be utilized and 

adjusted over time.  The developed prototype environment was able to discover 

polymorphic malware with multiple datasets – training datasets and experimental 

datasets. The developed prototype environment was designed to inspect and determine 

the malicious or benign attributes of files and compare results.  The focus of this study 

was to identify and detect Windows-based polymorphic malware. Windows has become 

primary target for malware attacks and represents the largest population of end-points at 

the enterprise level.  An illustration of the proposed environment is provided below. 
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This malware research followed the single-subject experimental approach 

outlined by Neuman and McCormick (1995).  Single-subject experimental design has 

evolved over time to facilitate researchers quest to answer different types of questions 

under varying experimental circumstances (Neuman & McCormick, 1995). The most 

common single-subject experimental designs include are reversal designs, multiple-

baseline designs and multi-element designs (Neuman & McCormick, 1995).  The purpose 

of using the single-subject design for this experiment was to develop a protocol that 

worked nicely with the malware research subject area.  It was believed that malware 

research closely resembles that of medical research and thus can be used to evaluate 

incremental treatments and measure results for drug treatment and patient care protocols. 

Single-subject experimental design was used for this study as it paralleled baseline testing 

with incremental treatment testing.  This study achieved the desired goal to improve 

malware detection given multidimensional topological data extracted from static analysis, 

dynamic analysis and file property.  This study further improved detection rates by 

adding weighted multidimensional features from static analysis, dynamic analysis and 

file properties to evaluate detection rates.  This study was designed to answer two basic 

research questions:   

1) Can detection rates be improved by increasing the quality and quantity of 

multidimensional features for the machine learning advanced clustering algorithms from 

file properties, static and dynamic analysis? 

2) Which of the machine learning advanced clustering algorithms performed 

better given the multidimensional features from file properties, static and dynamic 

analysis?  
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The single-subject design provided a standard and widely accepted protocol to answer the 

research questions posed for this study.  The study followed the basic single-subject 

protocol throughout the study: 

1. Establish baseline data – established a baseline for detection given a standard 

feature dataset with a standard clustering algorithm for polymorphic malware through 

multiple measurements before an intervention. Currently the detection rates for 

polymorphic detection rates using advanced classifiers range from 68.75% to 81.25% 

(Amos et al., 2013).  Three datasets were generated that allowed detection rates to exceed 

the baseline detection rates of 68.75% to 81.25%.     

2. Manipulate feature set – the standard feature dataset was augmented to evaluate 

whether detection rates are improved after the intervention of features. A number of 

studies examined dynamic analysis (Rieck, Trinius, Willems, & Holz, 2011), static 

analysis (Kerchen et al., 1990) and file properties (Subramanya & Lakshminarasimhan, 

2001).  The study examined three multidimensional datasets.  The three datasets were 

generated by combining known malware, known benign and unknown samples into 

single feature dataset.  Once the baseline was generated, the feature weighting was 

manipulated to see if detection rates would improve (Siddiqui, 2008).     

3. Controlled procedures and environment – the developed prototype environment 

and datasets were controlled to ensure the extracted feature dataset remained static over 

time and the automated feature extraction process remained unaltered (Rossow et al., 

2012).  
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4. Standard measurement approaches – a standard measurement approach was 

completed after performing baseline detection measurements for known (malware and 

benign) and unknown samples using multidimensional topological data with baseline 

clustering.  The study established baseline detection rates for each of the three clustering 

algorithms:  1) Advanced Ensemble Classification (Bootstrap Aggregating (Meta 

Bagging (MB)), 2) Instance Based k-Nearest Neighbor (IBk) and 3) Deep Learning 

Multi-Layer Perceptron (DLMLP).  Standard measurements included such measures as 

Accuracy (ACC) and the Correlation Coefficient (CC), True Positive Rate (sensitivity 

measure), and False Positive Rate (specificity measure).   As specified by the standard 

protocol, these measurements were established as a permanent observational recording 

(Rossow et al., 2012).  

5. Weighting of features – as part of this testing protocol the inputs were 

manipulated and assessed.  Within a single dataset, features were weighted in a structured 

methodology, evaluated and assessed.  The weighting of static features, dynamic to static 

features and file properties to dynamic to static features were assessed to evaluate 

improved detection rates for polymorphic malware. 

6. Capturing testing results - All testing data were captured in terms of ACC, CC, 

True Positive Rate (TPR) and False Positive Rate (FPR).  

7. Graphing results - All testing data were graphed and presented in terms of 

ACC, CC, True Positive Rate (TPR) and False Positive Rate (FPR).   

8. Evaluating results – results from test data was collected after each test.  Each 

test was analyzed with rigor to understand the ACC, CC, True Positive Rate (TPR) and 
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False Positive Rate (FPR).  The test results from each test was evaluated and changes to 

inputs were documented to understand detection rate improvement.  The test results were 

generated after each test and provision were made to ensure that the results were 

accurately reported.     

9. Test controls - the specific design for this study required that test controls 

remain in place from one test to another such that the test data, interpretation of the data 

test and conclusions reached from testing were reliable and believable. 

The experimental design and approach enabled the researcher to advance the 

study through a defined testing protocol.  The testing protocol enabled the researcher to 

conduct baseline testing and perform experimental testing with the various clustering 

algorithms.  The testing protocol also provided the researcher with a means to select, 

weight feature sets, conducting testing and document results for the various clustering 

algorithms.   The testing protocol allowed the researcher to validate detection results in 

stages and evaluate effectiveness.  The experimental research methodology was 

consistent with previous quantitative malware studies (Creswell, 2007).  The study’s 

methodology was constructed to improve detection models and validate test results prior 

to conducting additional research (Rossow et al., 2012).  The research design utilized a 

widely accepted quantitative approach for conducting experimental studies similar to 

those conducted in healthcare, drug trials and other medical studies (Rizvi & Nock, 

2008).   

Gaps in Current Literature 

 In both the foundational research and advanced detection studies there exists a 

number of gaps for ongoing malware research.  As the war against malware (Trojans, 
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viruses, worms, APT’s, etc.) continues to escalate and spiral into unknown dimensions 

some perspective is needed to understand the threat landscape.  It is important to 

understand and recognize that malware attacks are causing businesses and Governments 

to lose billions of dollars (McAfee Labs, 2015).  Malware research is unfortunately not 

keeping pace with the adversary and the rapid escalation of polymorphic and 

metamorphic malware has continued evade today’s detection techniques (Hansen, Mark, 

Larsen, Stevanovic, & Pedersen, 2016).    

In reviewing nearly six-hundred (584) articles and studies, roughly one fifth (124) 

of those studies conducted advanced polymorphic malware research.  However, 

polymorphic malware remains a major threat for ransomware and other types of malware 

(Kaur, 2014).  More research is needed for polymorphic malware as the threat has 

become more advanced.  Polymorphic malware is thought to represent at least half of the 

new malware released annually (Symantec, 2014).  In addition, polymorphic malware 

growth in 2012 was 392% (Qu & Hughes, 2013) and greater than 500% in 2015 (Gostev 

et al., 2016).  Due to the changing nature of polymorphic malware, additional malware 

research is needed to identify the evolving characteristics of the malware in order to 

provide better and different detection approaches. New techniques are needed to identify 

and classify the evolving polymorphic families of malware (Kaur, 2014).      

 Another research gap identified is the dataset or “samples” used for conducting 

malware research.  There are many variations for collecting and testing malware datasets.  

Some of the major malware researchers from industry and academic continue to make 

samples available for consumption.  Some of the major industry contributors include 

McAfee, Symantec, Virus Total, etc.   There are also a number of unaffiliated sites that 
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offer malware for research as well.  The unaffiliated sites include contagio, Virus Sign, 

VxHeaven and others.  The majority of reviewed studies collected and used malware 

from these community of interest sites.  In doing so, researchers leveraged known 

malware samples for detection purposes and experiments.  Researchers were able to 

leverage these known malware datasets and validate new detection techniques with “live” 

malware samples.  However, few studies mentioned the use of benign samples in order to 

validate detection.  A majority (24 of 33) of the advanced malware detection studies 

referenced “labeled” test data – meaning that the study knows all the samples submitted.  

A minority of advanced malware detection studies used both known malware and known 

benign samples in order to evaluate and validate detection rates. However, in reviewing 

over thirty advanced malware studies not a single study evaluated a dataset with 

unknown samples.  Several leading researchers suggest that using unknown samples 

would strengthen the study and offer additional validation for detection techniques 

(Hansen et al., 2016).  It is well understood that assembling a malware dataset for 

research purposes is difficult.  Finding additional benign and unknown samples makes 

the task of assembling a rich dataset much more difficult.  As Hansen (2016) points out, 

there are significant benefits with constructing datasets that contains known malware, 

known benign and unknown samples.            

 Due to the use of polymorphic and metamorphic techniques utilized by malware 

developers, the number of unique malware files has exploded (Tamersoy et al., 2014). It 

is the sheer number of these unique files that render signature detection essentially 

useless (Fraley & Figueroa, 2016).  However, there exists some number of unique 

features that can identify “families” of malware (Wüchner et al., 2014).  The challenge 
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for improving malware detection is to find the right combinations that lead to better 

results (Wüchner et al., 2014).   Malware researchers have been utilizing varying 

techniques to identify “clusters” of related malware families and use the proximity of the 

clusters for detection (Tamersoy et al., 2014).  Several researchers have offered that the 

files can be clustered based on the result static or dynamic analysis (Hansen et al., 2016; 

Kaur, 2014; Qu & Hughes, 2013).  Other researchers have demonstrated unique file 

properties and executable location may be used to detect malware (Mohaisen & Alrawi, 

2015).  Taking feature extraction outputs from both static and dynamic analysis would 

allow the construction of a rich dataset.  In addition to static and dynamic analysis 

features, values such as file characteristics, environmental properties and file 

relationships could be used for additional analysis (Mohaisen & Alrawi, 2015).  Further, 

advanced algorithms such as Meta Bagging (MB), Instance Based k-Nearest Neighbor 

(IBk) and Deep Learning Multi-Layer Perceptron (DLMLP) use proximity clustering 

algorithms to understand file-properties affinity and maliciousness (Yedidia, et al., 2003).  

Thus, if one file is known as malicious with certain features it could be associated with 

like files and features.  Advanced clustering techniques such as General Belief 

Propagation, Loopy Belief Propagation, Dynamic Bayesian Networks, Hidden Markov 

Model (HMM), and Markov Random Field (MRF) could be examined and evaluated 

using the rich dataset offered by combining the results of static and dynamic analysis 

with file properties.  These techniques have been examined by previous studies and 

should prove to be a solid approach for future study. The benefit of advanced clustering 

algorithms is that they may provide additional fidelity for analyzing feature clusters 
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  In summary, there are a number of gaps in current literature.  The first issue is 

there is not sufficient research for polymorphic malware.  Polymorphic malware 

continues to grow at rates that far exceed the ability to industry and academia to keep 

pace.  The second issue concerns the datasets used for research.  The datasets should have 

representation from three all types of files: 1) known malware, 2) known benign and 3) 

unknown samples.  Constructing dataset in this manner should yield more “real world” 

detection results.  Lastly, many of the malware studies have utilized advanced algorithms 

based on either static or dynamic analysis.  None of the studies reviewed combined the 

features of both types of analysis in order to improve detection.  By combining the 

feature dataset and using advanced clustering algorithms should provide improved 

polymorphic malware detection. 

Strengths and Weaknesses of Current Studies 

  The research conducted for previous studies include both foundational malware 

research (discussed in the previous section) as well as advanced detection studies in order 

to establish a baseline for this study.  It was important to establish a baseline of topics and 

emerging malware research.  It was also important to expand the understanding of 

contemporary experimental research leading to advanced malware detection.  For the 

purpose of this discussion, the research referred to in this section is the Advanced 

Malware Detection Studies presented later in this chapter.  In researching, reviewing and 

evaluating over thirty contemporary malware detection studies that span seven years 

(2010-2016), researchers presented unique malware detection and classification using a 

number of experimental approaches.  The majority of the studies presented an 

experimental framework for conducting the malware research.  A number of the studies 
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selected a sufficient sample size for conducting the research.  Some of the better studies 

conducted malware research and thoroughly evaluated detection findings.  These findings 

and results were analyzed to evaluate achieved detection rates in terms of True Positive 

and False Positive rates.   

  The thirty-three (33) studies presented in the Advanced Malware Detection 

Studies were reviewed and evaluated with the intent to leverage those positive aspects of 

the for this study.  These studies were reviewed and evaluated based on a number of 

factors.  The strengths of these studies include:  1) most of the studies (32 of 33) 

performed the study through an experimental framework, 2) almost all the studies (31 of 

33) surveyed were focused on improving malware detection with “live” or real malware 

samples, 3) a majority of the studies (27 of 33) used dynamic analysis or static analysis to 

perform feature extraction for their study, 4) almost all of the studies (32 of 33) utilized 

advanced algorithms to aid or boost detection rates using features extracted from static or 

dynamic analysis and 5) most of the studies (30 of 33) analyzed detection results with a 

quantitative evaluation of study results.  In most cases, the studies evaluated findings 

with several statistical measures to evaluate detection effectiveness.  These criteria are 

typically used as statistical quality measures with machine learning.  The statistical tests 

used to evaluate the performance various algorithms can be evaluated with Accuracy 

(ACC) and the Correlation Coefficient, True Positive Rate (sensitivity measure), and 

False Positive Rate (specificity measure).    

Upon deeper inspection, the studies collectively also had some weaknesses or 

issues with conducting the research.  The weaknesses for advanced malware studies 

include:  1) malware sample storage - there is little to no discussion regarding the 
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working with or securing “live” malware for the study or experiment, 2) sample size - the 

range of malware samples tested was very large - nearly 23 million (from a low of 90 

samples to a high of 24 million samples), 3) feature selection - not a single study (0 of 

33) combined the features from both static and dynamic analysis – many of the studies 

performed either static (14) or dynamic analysis (13), 4) malware classification or types 

of malware used for the experiment was not disclosed or the study only worked with 

known malware – there were no unknown samples to further test detection rates from a 

blind study perspective and 5) the use of training datasets for machine learning – there 

were varied and differing approaches to selecting, maintaining and using training 

datasets.  The weaknesses outlined here should not discount any work conducted.  

However, addressing these issues can only help to improve future research.     

Similar Research Methods  

Researchers who choose to pursue quantitative research methods seek to 

understand complex models and make knowledgeable claims regarding the subject matter 

(Creswell, 2007).  Researchers develop and apply strategies of inquiry or develop 

evaluation methodologies to analyze complex models or to better understand phenomena 

(Creswell, 2007).  Strategies of inquiry or evaluation methodologies assist with the 

overall research approach by focusing on the experiments, quasi-experiments or 

correlational studies (Creswell, 2007).  Quantitative research strategies design and 

execute complex experiments with many variables and specialize in the treatment of 

interdependent variables (Creswell, 2007).  Quantitative studies seek to explain 

experiments through structural equation models that explain and prototype experimental 

outcomes (Creswell, 2007).    
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Malware research is typically conducted using quantitative research methods 

(Rossow et al., 2012).  In the past, malware researchers have relied on quantitative 

experimental designs to understand how malicious code behaves during execution 

(Rossow et al., 2012).  Quantitative studies have been used to observe and collect 

datasets for a wide array of malware experiments.  In many cases, malware experiments 

were designed to improve detection models, study longitudinal behavior and validate 

prior research (Rossow et al., 2012).  The previous advanced malware detection 

quantitative research methods have been reviewed and will be presented later in this 

section.   

Malware research, similar to other types of research, needs to construct the 

appropriate framework for the experimental study.  The research design must address a 

number of basic concerns.  The first concern is the research methodology.  According to 

Rossow (2012), the research methodology must be described sufficient detail in order to 

enable allow other researchers to reproduce the approach.  In addition, the methodology 

must  be transparent with the study’s details in order to fully share findings (Rossow et 

al., 2012).  Secondly, the experimental framework must have the correct and 

representative dataset.  Researchers must be careful with selecting and using datasets 

such that bias is not introduced into the experiment (Rossow et al., 2012)   Lastly, the 

experiment must take due consideration to not harm others (Rossow et al., 2012).  

Malware research must be very careful as these experiments are dealing with live 

samples, similar to medical virus research.  An outbreak of malware can harm not only 

the experiment but also those resources around or supporting the research (Rossow et al., 

2012). 
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The thirty-three (33) studies presented in the Advanced Malware Detection 

Studies section were reviewed to understand:  1) the research methodology, 2) the dataset 

and 3) the safeguards put in place in order to do no harm.  Almost all the studies (32 of 

33) performed the study through a quantitative experimental framework.  The one study 

that did not follow an experimental framework conducted an observational study.  

Almost all studies (31 of 33) performed malware detection research with “live” or real 

malware samples.  A majority of the studies (27 of 33) used either dynamic or static 

analysis as part of the experiment to extract further data for analysis.  Almost all of the 

studies (32 of 33) utilized advanced algorithms to aid or boost detection rates.  However, 

the majority of the studies did not provide sufficient details to replicate the study.  Most 

of the previous studies (30 of 33) analyzed detection results.   In most cases, the findings 

were evaluated with several statistical measures to evaluate detection effectiveness.  

Overall, the Advanced Malware Detection Studies provided the necessary framework and 

were fairly consistent with the experimental methodology and using representative 

datasets.    

Advanced Malware Detection Studies 

 Over sixty (60) contemporary malware detection studies were surveyed that 

spanned seven years (2010-2016).  These studies surveyed and reviewed to understand 

the unique detection and classification approaches presented by the researchers. In order 

to address current malware detection research for the proposed research were analyzed to 

understand:  

1) research approach or framework for the study; 

2) sample size – both lableled and unlabled samples; 
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3) feature selection - based on static or dynamic analysis; 

4) use of machine learning (supervised/unsupervised training) or advanced 

algorithms used to support detection; 

5) evaluation of detection results.   

After reviewing sixty studies, it became clear that number of studies had strengths and 

weaknesses. However, studies that had severe weakness needed to be eliminated from 

further review as they provided little or suspect value.  Studies that did not provide a 

solid research approach, a reasonable sample size or set and an evaluation of detection 

results were eliminated from further review.  In many cases, the evaluation 1) research 

approach, 2) sample set and 3) evaluation of results were pass/fail.  Based upon the 

criteria above - twenty-seven (27) of the studies were eliminated from further review.  

Some of the studies were eliminated due to the fact that they lacked sufficient detail 

regarding the experimental research approach or how the experiment was conducted.   

Other studies were eliminated due to the fact that they were unclear or vague about the 

malware samples used for the experiment. Some of the eliminated studies had 

contradictory discussions regarding the experimental research and the results.  These 

studies either did not specify or did not directly address the research approach for 

conducting the malware study.  Studies were also eliminated due to the fact of how the 

malware detection results were either presented at a high level or not evaluated.  In many 

cases, the studies eliminated presented results but did not quantitatively present an 

evaluation of the detection results achieved.   Lastly, studies were eliminated because of 

the malware sampling or how the malware was collected for the study.  Only the studies 

that clearly specified research framework, provided sufficient malware samples, 
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evaluated detection results and remained as part of the next phase of reviewing current 

research.       

The remaining thirty-three (33) studies then reviewed and data extracted for 

evaluation purposes.  These studies were reviewed and evaluated based on a number of 

factors.   

1. Most of the studies (29 of 33) performed the study through an 

experimental research framework;  

2. All remaining studies (33 of 33) surveyed were focused on improving 

malware detection with “live” malware samples; 

3. A majority of the studies (27 of 33) used dynamic analysis or static 

analysis to perform feature extraction for their study; 

4. Almost all of the studies (32 of 33) utilized advanced algorithms to help or 

boost detection rates and, 

5. Most of the studies (30 of 33) analyzed detection results with a 

quantitative evaluation of study results.   

The highlights for the remaining malware experimental studies are presented in Table 1 

below. 
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Table 1 Advanced Detection Studies 
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Summary 

Detecting polymorphic and metamorphic malware continues to be a challenge for 

the security community.  A majority of the today’s security research is focused on 

developing enhanced detection using techniques that collect, study, and mitigate 

malicious code  (Kolbitsch et al., 2009). However, new polymorphic malware and the 

detection evading techniques render many of the current signature protections useless and 

therefore leave end-points unprotected (Rodríguez-Gómez et al., 2013).  The speed at 

which polymorphic malware is advancing threatens enterprise computing and internet 

operations (Symantec Corporation, 2016).  Being able to detect polymorphic, 

metamorphic and zero-day malware requires advanced detection techniques that provide 

rapid adaptation, scalability and produce low false positive rates (Borojerdi & Abadi, 

2013).  This study offers an attractive alternative for detecting polymorphic malware 

specifically targeting Windows operating systems.  This study offers a single data set 

containing known malware, known benign and unknown samples, feature extraction 

methodology, a prototype environment and detection approach that far exceeded today’s 

accepted baseline.  The proposed methodology, experimental framework and 

experimental design is presented next.   
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Chapter 3 

Methodology 

Overview 

The purpose of this study was to develop a quantitative experimental prototype 

using multidimensional topological data with machine learning using advanced clustering 

to provide improved detection for polymorphic malware.  The study ultimately yielded a 

detection methodology for polymorphic malware with true positive detection rates well 

above the established baseline range of 68.75% to 81.25% (Amos et al., 2013).  

Quantitative methods were chosen in order to provide objective measurements for 

malware detection (Babbie, 2010).  The statistical, mathematical, or numerical analysis of 

the data collected through the proposed malware experiments were conducted using 

standard and accepted computational techniques (Babbie, 2010).  Previous malware 

research highlighted the need for correct and representative use of the datasets, proper 

experimental methodology design such that there is sufficient transparency to enable 

reproducibility, and safely conducting experiments such that no harm is caused to others 

while performing the research (Rossow, 2013).  This study leveraged past research for 

selecting supervised and unsupervised machine learning training and experiments (Kaur, 

2014).      

Malware research relies mainly on observing or analyzing malicious code (H. 

Yin, Song, Egele, Kruegel, & Kirda, 2007).  Malware research methods must be cautious 

in designing and conducting experiments that observe and analyze the execution of 

malware within a real or virtual environment (Rossow, 2013).  Malware experiments 

must carefully and thoughtfully select datasets, detection models, and research 
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methodologies in order to evaluate effectiveness (Hu, Wang, Li, Bai, & Jing, 2014).  

Malware experiments must also study the longitudinal behavior and validate various 

aspects of the research (Rossow, 2013). The experimental methodology utilized was 

mindful of these requirements and carried out in a series of steps outlined below.   

The experimental methodology had four components:   

1) Secure dataset – The prototype protected the dataset (samples), data (feature 

extraction from samples), experiment (cluster analysis) and experimental 

resources with secure storage of malware, benign and unknown samples (over 2M 

total samples) (Rossow et al., 2012). 

2) Automated malware feature extraction – the prototype system processed, 

analyzed, extracted and assembled multidimensional topological features from the 

sample datasets through an automated means using both static and dynamic 

analysis (Tamersoy et al., 2014),  

3) Supervised and unsupervised machine learning – the developed prototype used 

multidimensional topological features and applied advanced clustering algorithms 

to demonstrate improved detection rates with training and extended datasets 

(Kaur, 2014), and 

4) Results Validation -  the developed prototype evaluated detection effectiveness 

using various accepted quantitative methods (Mohaisen & Alrawi, 2015).    

This novel research developed a unique detection methodology using 

multidimensional topological features in a machine learning environment.  The 

multidimensional topological features approach combined static and dynamic analysis in 

addition to unique file properties.  Extensive research of over 500 studies over the last six 
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years has not produced a single study that leverages multidimensional topological 

features using static and dynamic analysis with file properties.  In addition, the developed 

prototype produced repeatable feature extraction for various malware binaries such that 

new sample datasets could be analyzed over time.  The study analyzed and evaluated 

results with the rigorous quantitative evaluation measures described by Mohaisen and 

Alrawi (2015).    

Research Design 

In this study, the researcher sought to understand the role of multidimensional 

topological features plays on improved malware detection.  The study employed a 

quantitative experimental approach using the Single-Case Experimental Design (SCED).   

SCED has been chosen for this study as it enables the researcher to study small groups (in 

this case unique polymorphic malware) and generalize findings to a larger population 

(malware classes) (Neuman & McCormick, 1995).  SCED provided a methodology for 

establishing a baseline and measuring interventions or changes over time (Neuman & 

McCormick, 1995).  SCED was chosen because each polymorphic malware sample may 

be unique and can be treated as individual subject for research purposes.  Therefore, the 

features extracted through static and dynamic analysis from the individual malware 

become criterion for further study.   Instead of using control groups, Changing Criterion 

Design (CCD) was selected for this study as it allows the researcher to add or subtract 

features to better understand and manipulate detection rates based on adding/subtracting 

or weighting of features.  SCED CCD was chosen as control groups are not be 

appropriate for this malware study.  In drug and disease treatment protocol studies, 

control groups are commonly used to evaluate treatment over time.  Detection is binary 
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and will not improve or decline over time. The SCED CCD allowed the researcher to 

introduce incremental changes in terms of multidimensional topological features and 

measure those changes in terms of detection rates throughout the study (Neuman & 

McCormick, 1995).  Parallel studies in both the Educational and Clinical arenas use 

SCED research design with changing criterion design to understand behaviors, drugs and 

treatment for certain conditions (Neuman & McCormick, 1995).  SCED CCD allows 

experimental controls to be demonstrated by a consistent shift in the rate of targeted 

outcome with each successive test or measurement (Neuman & McCormick, 1995).  In 

theory, each achieved criterion of a behavior can function as the baseline for the next 

targeted criterion for successive studies (Neuman & McCormick, 1995).  Given that each 

malware samples may represent a unique malware sample and unique features may 

improve detection the design is appropriate. 

Research Procedures 

The study randomly selected and assigned three test datasets of 200,000 samples.  

These datasets were constructed via a pseudo-random program that composed the 

datasets on a stratified sample basis (malware, benign and unknown).  The test datasets 

developed maintained the distribution profile on a percentage basis:  malware (40%), 

benign (30%) and unknown (30%).  The datasets were then used to conduct baseline and 

further testing with the three clustering algorithms (MB, IBk and DLMLP).  The study 

ran a series of baseline tests with unweighted multidimensional topological features to 

determine baseline detection rates.  Baseline detection rates were documented for each 

clustering algorithm.  The datasets were used as part of SCED CCD testing process for 

manipulating feature weighting for each clustering algorithm.  After establishing the 
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baseline for each algorithm, incremental tests were conducted with weighted 

multidimensional topological features to evaluate improved or decreased detection rates.   

The study established an effective detection rate for polymorphic malware 

detection ranges from 68.75% to 81.25% (Amos, Turner, & White, 2013).  Each of the 

three clustering algorithms produced detection rates well above 81.25%.  Additional 

experiments were conducted to tune and document the effects of feature weighting on 

detection rates.  Additional tests were used to better understand the how weighting of 

multidimensional topological features improved or reduced the effective detection rate.   

Baseline Testing.  Initial baseline experimental testing was conducted for each 

clustering algorithm using unweighted multidimensional topological features. These 

features were derived through extracting static analysis, dynamic analysis and file 

properties features.  Baseline testing enabled the researcher to establish training dataset 

for each clustering algorithm.  Baseline testing supported further investigation of cause 

and effect to enable the researcher to develop manipulation or intervention strategies 

(Neuman & McCormick, 1995).        

Weighted Occurrence Testing.  The first set of experimental tests conducted 

utilized weighted multidimensional topological features derived from static analysis.  

These tests are similar to experiments presented by Bilar in 2007.  Bilar (2007) 

performed a series of experiments with weighted features based on frequency of 

occurrence using static analysis various malware samples.  Bilar (2007) used the 

weighted features in a series of Support Vector Machines (SVM) experiments.  The study 

performed both weighted features and frequency of occurrence testing from static 

analysis using the three clustering algorithms (MB, IBk and DLMLP).     
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Dynamic-Static Occurrence Testing.  The next set of experiments involved 

leveraging Bilar’s weighted occurrence tests (derived from static analysis) with features 

derived from dynamic analysis.  Polymorphic malware can encrypt functions and have 

embedded library calls which can be hidden from static analysis (Hansen, Mark, Larsen, 

Stevanovic, & Pedersen, 2016).  Other studies have observed that malware developers 

have padded or introduced “junk” code to bypass static dynamic thus making the function 

call tracing very difficult (Jasiul, Śliwa, Gleba, & Szpyrka, 2014). Therefore, linking 

static and dynamic analysis may serve to enhance detection by linking dynamic 

occurrence of functions to those function calls observed in static analysis.  This study 

extended Bilar’s weighted feature study (2007) by linking opcodes observed in an actual 

execution environment (dynamic analysis) with those observed through static analysis.  

The weighting of features was directly correlated to frequency of occurrence in dynamic 

to static analysis.  The experiments performed evaluated the detection results linking the 

static to dynamic features for all three advanced clustering algorithms (MB, IBk and 

DLMLP).     

Extended Static-Dynamic Occurrence Testing.  Polymorphic malware may call 

libraries or use functions available through the operating system such as Microsoft’s 

dynamic link libraries (DLLs) (Egele, Scholte, Kirda, & Kruegel, 2012).  The intended 

use or abuse of such functions by malware can be linked to file properties of the malware 

itself (Hansen et al., 2016).  Therefore, experiments conducted during this phase, added 

various features from file properties to those of dynamic-static occurrence tests 

performed previously.  Previous research has shown that there exists a number of 

“metadata” properties that can be used for malware detection (Kamongi, Kotikela, Kavi, 
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Gomathisankaran, & Singhal, 2013) and (A. Singh et al., 2012).  This study found similar 

results.  This study performed extended static to dynamic occurrence testing with all three 

advanced clustering algorithms (MB, IBk and DLMLP).     

The research process evaluated and demonstrated effective detection rates for 

polymorphic malware.  The detection rates for each algorithm exceeded the established 

ranges for polymorphic malware of 68.75% to 81.25% (Amos, Turner, & White, 2013).  

It was anticipated that each of the clustering algorithms with weighted features would 

deliver detection rates above the baseline test results.  Additional weighting and 

experiments conducted did in fact deliver higher detection rates.  The developed 

prototype environment to extract and assemble test datasets is presented next.  

Prototype Environment 

In order to consistently, accurately and safely extract multidimensional 

topological feature information, the study developed an integrated system to perform 

automated feature extraction for analysis for all datasets. This integrated system delivered 

the capability to extract features for file properties, static and dynamic analysis.  The 

integrated system then constructed one dataset for each clustering algorithm.  The feature 

extraction framework consisted of five modules: 1) a pre-process module that extracts 

and generates topological features based on static analysis of machine code and file 

characteristics, 2) a behavioral analysis module that extracts behavioral characteristics 

based on file execution (dynamic analysis), 3) a post-processing module that reviewed 

results from the pre-process and behavioral modules, 4) an input file construction and 

submission module, and 5) a machine learning module that employs various clustering 

techniques to be specified at run-time.  As with most signature-based or behavior-based 
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detection mechanisms, careful attention was paid to false positive and false negative rates 

which can serve to reduce overall detection effectiveness.   

 

 

Figure 1. System Overview 

Data Acquisition.  The first step was to acquire sufficient samples needed to 

conduct study’s experiments.  This study needed to acquire three types of samples:  1) 

known malware, 2) known benign files and 3) unknown files.  Known malware and 

benign files was acquired through industry partnerships and open source repositories 

available for malware researchers.  However, this required more effort and time than 

anticipated.  This study leveraged malware repositories from across industries and 

communities of interest.  The malware samples were acquired through relationships with 

Virus Total, VirusShare, VXHeaven and Contagio. There are a number of such malware 

repositories that contain polymorphic and metamorphic samples specifically for malware 
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research.  Symantec had previously agreed to share samples.  However, due to personnel 

changes at Symantec this was no longer possible in time for the study.  A majority of the 

malware and benign samples were acquired through Virus Total and VirusShare.  These 

databases provided deep metadata and samples to track various types of malware.  This 

database also provides other details such as unique files, cloned files and file identifiers.  

Working with Virus Total and VirusShare, the researcher was able to obtain samples 

(malware, benign and unknown), metadata/labels and other key malware classification 

information.  Unknown files were acquired through the same means and other open 

source repositories for malware research.  The unknown files were acquired from 

VirusShare, VXHeaven and Contagio.  

Analysis and Feature Extraction.  As discussed previously, static and dynamic 

analysis provides a means to observe and identify malicious behaviors and characteristics.  

Pre-processing of samples is needed to identify obfuscated malware variants.  This step 

provides the ability to gather multidimensional topological data from malware samples.  

This step extracts file properties and other detailed features extraction via static and 

dynamic analysis.  The integrated prototype system confirmed the inventory of functions 

through static analysis.  The integrated prototype system evaluated execution and observed 

execution of behaviors through dynamic analysis.  While many families of malware 

obfuscate and encrypt modules, many commercial vendors have incorporated “malware-

like” obfuscation techniques to protect intellectual property.  Pre-processing was needed 

to ensure the dataset contains representative samples for all three data types. As expected, 

static and dynamic analysis provide sufficient details, features and characteristics for 

identifying samples.  These dynamic malware features consisted of observing malicious 
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behaviors, triggered behaviors and malicious characteristics.  

The integrated prototype system produced an environment to conduct both static 

and dynamic analysis tools in order to extract multidimensional features from known and 

unknown samples.  The integrated prototype used the static tool known as IDA SDK v6.95 

(IDAPro) in order to extract static features and topological information.  An example of 

static analysis is shown in Fig. 3.  However, the extraction software development kit (SDK) 

provides a means to submit and extract feature information.  As discussed in the literature 

review (Bilar, 2007), previous research suggests that there exists a limited set of operations 

that may point to malware; operations such as MOV, ADD, LEA, SUB, AND, INC, OR, 

NEG, XOR, ASSIGN (XCHG), STACK (POP), and CONTROL_C (JMP) have been used 

for malware detection in other studies.  Bilar (2007) observed that the total universe of 

Microsoft 32-bit executables was 398 opcodes.  Upon deeper inspection, Bilar (2007) 

observed that non-executable opcodes account for 192 of the 398 opcodes.  Further, Bilar 

(2007) found that malware accounted for 141 of the 398 opcodes.  Analyzing the 141 

malware opcodes further, Bilar (2007) found that 72 opcodes accounted for over 99% of 

the malware opcodes, 14 opcodes accounted for over 92% malware opcodes, and 5 opcodes 

accounted for over 65% malware opcodes found (Bilar, 2007).  Thus, based on Bilar’s 

research (2007) the number of opcodes needed for improved detection was somewhere 

between the 14 and 72 opcodes.  The opcodes captured during feature extraction was used 

for the static feature component of the multidimensional topological data.   
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Fig. 3. Static Analysis - IDAPro 

 
As discussed previously, Dynamic Analysis is needed to collect additional features 

during execution.  Dynamic Analysis was performed on the basis of system-wide 

quantitative data flows from previous research (Wüchner et al., 2014).  System-wide data 

flow analysis allows the researcher to capture the actual processes executed and the context 

of the system calls within a specific time frame within an operating environment (Wüchner 

et al., 2014).  System calls were captured and aggregated as part of the integrated prototype 

environment.  Dynamic Analysis features were captured for the purpose of augmenting the 

dynamic feature component of the multidimensional topological data.  As previous 

researchers found, features such as File Size (FSize), File Type (Ftype), Malware Type 

(Malware_Type), Virtual Machine Aware (VM_Aware), Compiler Type (Comp_Type), 

Internal or External Libraries (Libraries) and Encryption Function (EncrypFunction) have 

been proven in the past to be good indicators of malware during execution (Ulrich Bayer 

et al., 2010; Devesa et al., 2010; Wüchner et al., 2014). The dynamic analysis information 

was augmented with both the file and static feature information for a complete data set for 

a single sample.  An example output from an open source dynamic analysis tool – Cuckoo 

– is shown in Fig. 4.  During the dynamic analysis step, a sample was placed into an 

operational virtual machine environment and system calls were captured.  The dynamic 

analysis features were combined with file and static analysis data and stored into a single 
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repository for the dataset being processed.  Some programming/scripting enabled the 

automated data collection and dataset construction.   

 
Fig. 4. Dynamic Analysis - Cuckoo 

 

Binary Feature Extraction. The study utilized three types of multidimensional 

topological data:  1) file features, 2) static analysis features, and 3) dynamic analysis 

feature for detection.  The study treated input features as independent variables for the 

study.  The emphasis of the study was to improve detection rates for polymorphic 

malware.  Currently, detection rates range from polymorphic detection rates using 

advanced classifiers range from 68.75% to 81.25% (Amos et al., 2013).  These detection 

rates used Bayes and Multilayer Perceptron techniques to establish a baseline for 

effective detection of various types of polymorphic malware (Amos et al., 2013).  Due to 

the polymorphic nature of the malware the study (dependent variable) controlling for 

time (control variable) for polymorphic malware samples that have been collected from 

the malware analysis community. The independent variables file features, static analysis 

features and dynamic analysis features were used as a single input of features for the 

sample in question.  In other words, the topological file properties/features extracted from 
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the executable/sample, the static analysis features – the topological properties/features 

extracted from code analysis for the executable/sample and dynamic analysis features– 

the observational behavioral features extracted from the execution of the sample were all 

used for detection purposes.  The detection rate dependent variable was defined as the 

effective detection rate for malware in terms of Accuracy (Number of correct 

assessments)/Number of all assessments) and the control variable can be defined as time 

(control variable) – as polymorphic samples mutate changes occur and the intervening 

variable defined as external calls/libraries. 

Feature Aggregation and Detection.  All information collected during file 

property, static and dynamic analysis was compiled into a single database.  The researcher 

explored various tools and databases (e.g. Elasticsearch) to store extracted features from 

the various modules based on a unique identifier.  Elasticsearch enabled the construction 

of linked features and enabled analysis to be conducted multiple times.  Ultimately, the 

database (all features linked to the MD5 hash) was converted into an Attribute-Relation 

File Format (ARFF).  The ARFF file was used as an input file for the Weka Open Source 

Machine Learning tool.  Weka was used to perform cluster analysis on the ARFF input file 

for each dataset.  Weka is a collection of machine learning algorithms for data mining tasks. 

The algorithms were directly applied to the three datasets through a programming 

application interface (API) or graphical user interface (GUI).  Weka was used to perform 

a number of functions and to perform advanced analysis on the experimental datasets.  

Weka was used to conduct additional analysis regarding feature isolation and hidden 

feature dependencies.  Weka was used to advance the understanding of the relationships 

between the features for each of the three datasets.  Weka algorithms available were used 



107 
 

to perform advanced functions such as data mining pre-processing, data classification, 

regression analysis, clustering, association rules, attribute selection and data visualization.  

An example of Weka is shown in Fig. 5.  

 

 
Fig. 5. Weka User Interface 

 

The extracted multidimensional topological features in the form of an ARFF file 

were then submitted to Weka using the various clustering algorithms.  Weka was used 

to perform detection based on both supervised and unsupervised learning.  A malicious 

feature matrix was constructed and used to train the three clustering algorithms in 

Weka.  These algorithms were then used for detection to identify known malware, 

benign and unknown files.  These features were correlated with attributes in the Weka 

machine learning environment.  The study considered and evaluated the three cluster 

algorithms to explore, weight and strengthen possible detection techniques.  A number 

of other algorithms have been researched and explored in Weka.  This study focused on 

MB, IBk and DLMLP.  These were selected based on a number of factors including 

recent studies, new approaches and new techniques.   

Other machine learning algorithms considered included Belief Propagation (BP), 

General Belief Propagation, Loopy Belief Propagation, Dynamic Bayesian Networks, 

Hidden Markov Model (HMM), and Markov Random Field (MRF).  It was believed 
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that the combination of MB, IBk and DLMLP provided the study with sufficient and 

broad types of algorithms for detection purposes.  IBk provided advantages over LSH 

by leveraging connectivity-based and proximity-based clustering.   DLMLP improved 

BP techniques.  New research has found that artificial neural networks (ANN) can 

leverage belief propagation for clustering or classification but do so inefficiently 

(Gruber et al., 2017).  ANN’s build networks of neurons, share information between 

neurons and propagate results throughout the network using weights or beliefs (Gruber 

et al., 2017).  DLMLP improves the ANN approach be creating localized networks to 

share “beliefs” (Gruber et al., 2017).  The DLMLP approach builds localized or 

shallow nets and distributes beliefs locally (Gruber et al., 2017).  These shallow 

networks work more efficiently as new “beliefs” do not need to be propagated 

throughout an entire network (Gruber et al., 2017).   

In addition to IBk and DLMLP, an ensemble technique such as Bootstrap 

Aggregating (Meta Bagging) was also be evaluated.  Meta Bagging may provide a model 

in which the ensemble voting can be done with equal weights or weighted attributes for 

various features extracted. This approach may allow the evaluation model to promote 

variance based on training data to improve malware detection.  Once satisfied with the 

approach (through a series of techniques), the approach was tested against a larger dataset 

to evaluate the efficacy for detection. 

Threats to Validity 

Researchers who use and quantitative measures and experimental methods to 

explore hypothetical questions are categorized as quantitative research (Hoepfl, 1997).  

Quantitative research emphasizes the measurement and analysis of causal relationships 
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between variables (Denzin & Lincoln, 2006).  Quantitative research uses numbers, charts 

and graphs to explain or describe relationships that exist between variables (Bogdan & 

Biklen, 1998). Quantitative research use charts and graphs to illustrate relationships 

between variables, populations and results of tests (Bogdan & Biklen, 1998).  The 

quantitative research process allows the researcher to understand the problem, develop a 

methodology to study the problem and if needed generate hypotheses to be tested in 

terms of numbers that can be quantified and summarized (Bogdan & Biklen, 1998).  

Quantitative research utilizes a mathematical process to explore, analyze and explain 

findings (Charles, 1995).   Generally, quantitative research “…supported by the positivist 

or scientific paradigm, leads us to regard the world as made up of observable, measurable 

facts” (Glesne & Peshkin, 1992, p. 6).   Quantitative research attempts to segment and 

control the experimental environment such that the research can be generalizable to wider 

populations and similar situations (Winter, 2000). Quantitative researchers must construct 

an experiment to study the problem and use standard measures if the research is to be 

useful (Crocker & Algina, 1986).  In simple terms, quantitative research design must 

ensure the validity of the test and measurements (Crocker & Algina, 1986).  Special 

attention must be made to ensure replicability or repeatability of the experimental results 

(Crocker & Algina, 1986).   

Internal Validity 

  Internal validity is concerned with the rigor of the study design (Crocker & 

Algina, 1986).  Internal validity can be determined by the degree of control over the 

potential extraneous variables impacting the quantitative study (Crocker & Algina, 1986).  

Researchers must control such issues as confounding variables in order to minimize the 
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potential for alternative explanations for results (Crocker & Algina, 1986).  Researchers 

must also control such issues as variable treatment for testing inputs such that there is 

more confidence that the effects observed are due from research manipulation (Crocker & 

Algina, 1986).   Campbell & Stanley (1963) have provided the research world with the 

most authoritative source for understanding threats to internal validity.   

Threats to internal validity compromise the study’s confidence in establishing 

relationships exists between the independent and dependent variables (Morse, Barrett, 

Mayan, Olson, & Spiers, 2008).  Campbell & Stanley (1963) identified eight threats to 

internal validity: history, maturation, testing, instrumentation, regression, selection, 

experimental mortality, and an interaction of threats.  Each are described and addressed 

below.  

History. History becomes a threat to validity when other factors impact the study, 

subject or findings by the passage of time (Campbell & Stanley, 1963).  For the purpose 

of this study, the research conducted and the malware samples do not suffer from this 

threat as malware remains in effect for long periods of time. History is not an internal 

validity concern to be addressed for this study.  

Maturation.  Maturation becomes an issue when changes occur for subjects or 

testing procedures and impact the outcomes or findings for the study (Campbell & 

Stanley, 1963).  History and maturation are both major concerns for longitudinal studies 

(Campbell & Stanley, 1963).  For the purpose of this study, the malware samples and 

procedures will remain static throughout the study.  Therefore, maturation is not an 

internal validity concern to be addressed for this study.  
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Testing. The testing process may introduce issues with studies and test results 

because of repeated testing and not the intervention or manipulation of variables by the 

researcher (Campbell & Stanley, 1963).  Testing issues often occur as a result of 

researchers administering pretests and posttests. For the purpose of this study, the 

malware samples are extracted through a single repeatable process (Campbell & Stanley, 

1963).  The features are extracted and subjected to testing.  The feature dataset remains 

static but not influenced by repeated testing.  Therefore, testing is not an internal validity 

concern to be addressed for this study.  

Instrumentation. Instrumentation issues arise when instrument calibration or 

measurement protocols change and the results seemingly change due to measurement 

rather than to a true treatment effect (Campbell & Stanley, 1963).  Measurement and 

evaluation protocols must remain constant for over the course of all experiments 

(Campbell & Stanley, 1963).  For the purpose of this study, all testing protocols and 

clustering algorithms used for detection will remain the same across all tests.  Only 

features sets will change as part of the experimental testing.  Therefore, instrumentation 

is not an internal validity concern to be addressed for this study.  

Regression. A regression threat occurs when subjects have been selected on the 

basis of previous test scores (low and high) (Campbell & Stanley, 1963).  Issues with 

regression occur for studies that have test scores move closer to the mean as a result of 

repeated testing (Campbell & Stanley, 1963).  For the purpose of this study, repeated 

testing will have no effect on testing outcomes.  Malware samples are subjected to a 

standard single extraction process.  The features are extracted and subjected to testing.  
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The feature dataset remains static but not influenced by repeated testing.  Therefore, 

regression is not an internal validity concern to be addressed for this study.  

Selection. The selection threat is of utmost concern for many experimental studies 

(Campbell & Stanley, 1963).  Studies that cannot be randomly assigned subjects to test 

groups or treatment groups have issues with measurement before and after treatment 

intervention (Campbell & Stanley, 1963).   For the purpose of this study, each of the test 

groups have both random selection and random assignment.  The test groups remain 

static throughout the study.  The study design and testing protocol specifically addresses 

the internal validity issue of selection.  Therefore, selection is not an internal validity 

concern to be addressed for this study.  

Experimental mortality. The issue with experimental mortality occurs when 

testing groups suffer from attrition, withdrawals, or dropouts (Campbell & Stanley, 

1963).  Experimental mortality becomes problematic with ongoing testing by losing 

subjects from comparison groups subsequent to random selection (Campbell & Stanley, 

1963).  For the purpose of this study, each of the test groups will remain static after 

random selection and random assignment.  The test groups will remain static and will not 

suffer from mortality throughout the study.  Therefore, experimental mortality is not an 

internal validity concern to be addressed for this study.  

Interaction of Threats.  The final issue threatening internal validity is the 

interaction of the threats across the study (Campbell & Stanley, 1963).  Most 

experimental studies are concerned with the interaction of selection and maturation 

(Campbell & Stanley, 1963).  Internal validity can be impacted when subjects are 

selected and assigned to groups based on the subject maturation (Campbell & Stanley, 
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1963).  For the purpose of this study, random selection and random assignment to parallel 

groups address the interaction of threat issues directly and effectively.  Random selection 

and random assignment address most internal validity issues except experimental 

mortality. Differential selection is controlled for this study as random assignment creates 

groups that are equivalent with respect to known and unknown variables (Campbell & 

Stanley, 1963).   Lastly, influences of maturation on other variables can be ruled out 

because of static and consistent test groups.  Other issues considered for interaction of 

threats include the reactive or interaction effect of testing subject multiple times.  

Reactive validity issues concern pretesting procedures and the potential increase or 

decrease of a subject's sensitivity or responsiveness to the experiment (Lana, 1959; 

Willson & Putnam, 1982). Again, malware samples are subjected to a standard single 

extraction process.  The features are extracted and the data is subjected to testing.  The 

feature dataset remains static but not influenced by repeated testing.  Therefore, reactive 

issues are not an internal validity concern needed to be addressed for this study.   

External Validity 

Campbell and Stanley (1963) provided the foundational groundwork for 

examining issues related to external threats to validity.  Smith & Glass (1987) classified 

threats to external validity in a number of related issues concerning 1) population 

validity, 2) ecological validity and 3) external validity of operations (Smith & Glass, 

1987). Population validity and selection treatment concerning the sampling and selection 

process that impact generalizability (Smith & Glass, 1987). The ecological validity issues 

concern experimenter effects, multiple-treatment interference, reactive arrangements, 

time and treatment interaction, history and treatment interaction (Smith & Glass, 1987).  
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Lastly, issues for external validity of operations concern specificity of variables and 

pretest sensitization (Smith & Glass, 1987).  Each of these are discussed below.   

Population validity. Population validity refers to the extent to which findings can 

be generalized from the study sample to that of the larger target population and 

potentially to subgroups within the larger target population (Smith & Glass, 1987). 

Utilizing sufficiently large and random samples will increase the population validity of 

results.  For the purpose of this study, sample size far exceeds the minimum sample size 

requirement.  Further random selection and random assignment reduces the concern for 

this external validity threat.  Unfortunately, population validity is a threat in virtually all 

experimental studies.  The collection of malware samples from various malware 

collaboration sites may under-represent new or emerging malware.  Most researchers are 

forced to use samples from accessible populations.  In most cases these samples represent 

the best group of participants available for a study.   Therefore, the degree of 

representativeness depends on how large the accessible population is relative to the target 

population.  In this study, the collection of samples exceeds one million and should be 

sufficiently large to satisfy this concern.      

Ecological validity. Ecological validity refers to the extent that findings from one 

study can be generalized to another experimental setting (Rossow et al., 2012; Smith & 

Glass, 1987).  The experimental setting must accurately and in sufficient detail allow 

other researcher to understand settings, conditions, variables, and contexts extent that 

findings from one study can be generalized to another experimental setting (Rossow et 

al., 2012; Smith & Glass, 1987).  Therefore, ecological validity represents the extent to 

which findings are independent from the setting or location in the study was performed 
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extent that findings from one study can be generalized to another experimental setting 

(Rossow et al., 2012; Smith & Glass, 1987).  For the purpose of this study, ecological 

validity is not a concern.  The environment, settings, hardware, and software (including 

versions) was disclosed as part of the study.   

Temporal validity. This external validity issue refers to the ability for the 

research and findings to be generalized across time (Smith & Glass, 1987). Researchers 

conducting experimental research rarely mention temporal validity because most studies 

are conducted within a relatively short period of time (Smith & Glass, 1987).  For the 

purpose of this study, the timeframe is sufficiently short such that issues with 

experimental design and data collection are minimized.  It should be noted that only 

malware sample and benign samples created within the past eighteen months was used 

for the study.  Also, the single case experimental design was selected for this study as the 

protocol facilitates the time to select, conduct and analyze results.  Therefore, temporal 

validity is not a concern for this study.    

Multiple-treatment interference. This external validity issue occurs when the 

same research subjects are exposed to multiple interventions (Smith & Glass, 1987)..  

Multiple treatment interference also occurs when subjects are selected for multiple 

studies with multiple interventions (Smith & Glass, 1987)..  Thus, test results or 

outcomes may not be generalizable for the target population because of the sequence of 

interventions that was administered prior to or during the experiment (Smith & Glass, 

1987).  For the purpose of this study, the sample groups are each distinct with a 

population of 200,000.  However, the sampling technique to be used is random selection 

without replacement across three types of samples. The total sample size is over 2 million 
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and assuming the selector is not repeated the probability of being selected is remote - 

malware (1:1 million), benign samples (1:750,000) and unknown (1:300,000).   In 

addition, the single case experimental design selected for this study facilitates the 

manipulation of variables over time.  However, the feature dataset remains static and not 

influenced by repeated testing.  Therefore, multiple-treatment interference is not an 

external validity concern to be addressed for this study.  

Researcher bias. This external validity issue arises due to processes or 

procedures the researcher introduces while conducting the experiment (Smith & Glass, 

1987). Researcher bias is an external validity issue as the study’s finding may be 

dependent upon the researcher and thus not generalizable for the intended target 

population (Smith & Glass, 1987).  The more unique the researcher's process, protocol 

and procedures are the more they interfere with findings (Smith & Glass, 1987).  The 

single case experimental design was specifically selected for this study as the testing 

protocol facilitates the manipulation of variables and testing over time.  SCED is an 

accepted testing protocol for unique subjects such as polymorphic malware.  The testing 

protocol and procedures are consistent with each test.  The dataset remains static and not 

influenced by repeated testing.  Therefore, researcher bias is minimized for this study.  

Reactive Arrangements. This external threat to validity occurs when subject 

response changed due to the fact that they know they are being studied (Smith & Glass, 

1987).  Reactive arrangements reduce external validity because findings may become less 

generalizable as the results have been compromised or interventions not properly 

measured (Smith & Glass, 1987).  For the purpose of this study, certain malware samples 

are sophisticated enough to know the they are being analyzed.  For example, advanced 
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malware will check environmental conditions prior to executing in a virtual environment 

like dynamic analysis.  In this case, the additional static analysis and file property 

analysis provide missing pieces as part of the standard feature extraction process.   

Therefore, reactive arrangements have been dealt with as part of the feature extraction 

process.  External issues dealing with reactive arrangements have been adequately 

compensated for and is not an external validity concern to be addressed for this study.  

Order bias. This external validity issues occurs when observed findings become 

dependent upon the order in which the multiple interventions are administered (Smith & 

Glass, 1987). In this case, findings resulting from the administering interventions in a 

particular order may not be confidently generalized to situations in which the 

interventions are applied differently (Smith & Glass, 1987).  The single case 

experimental design was specifically selected for this study as the testing protocol 

facilitates performing various tests in a structured protocol.  However, the dataset, 

clustering algorithms and testing procedures are not structured such that order dictates 

findings or outcomes.  Therefore, order bias is not a concern for this study.  

Matching bias. This external validity issues arises in cases where subjects tested 

do not match those in the accessible population (Smith & Glass, 1987).  Thus, matching 

bias is a threat to external validity to the extent that findings cannot be generalized to 

general population (Smith & Glass, 1987).  This issue is a concern when the subjects 

studied fall out of the sampling frame (Smith & Glass, 1987).  For the purpose of this 

study, the samples collected and selected become the subject studied.  Therefore, study 

findings will directly correlate to sample frame and reduces the concern for this external 

validity threat.  
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Specificity of variables. This issue is a threat to external validity to almost every 

study.  Researchers attempt to define and control a number of variables within the 

experiment in order to generalize findings (Smith & Glass, 1987).  However, the number 

of variables that impact generalizability is large and include 1) a specific type of 

individual, 2) at a specific time, 3) at a specific location, 4) under a specific set of 

circumstances, 5) based on a specific operational definition of the independent variable, 

6) using specific dependent variables, and 7) using specific instruments to measure all the 

variables. Experiments with unique participants, testing time frames, developed context, 

testing conditions, and other variables, the less likely the experiment will produce 

findings that are generalizable.   In order to counter threats of specific variables, the 

researcher must operationally define variables and be able to represent the contextual 

aspects of the study setting and use extreme caution when generalizing findings. The 

single case experimental design was specifically selected for this study as the testing 

protocol facilitates the study setting, baseline testing, manipulation of variables and 

producing findings over time.  SCED is an accepted testing protocol for unique subjects 

such as polymorphic malware.  The setting, setting variables, testing protocol and 

procedures are consistent with each test.  Therefore, the consistency of variables held 

constant and the threat posed by specificity of variables is minimized for this study.  

Treatment diffusion. This external validity threat arises as subjects are exposed 

to multiple interventions and these manipulations become diffused or impact other 

treatments threating the researcher’s ability to generalize findings (Smith & Glass, 1987).  

In essence, the manipulation of testing variable contaminate one or more of the treatment 

conditions and prevents the study from being replicated in the future (Smith & Glass, 
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1987).  SCED is an accepted testing protocol for manipulating treatments for 

experiments.  The establishing of baselines, applying treatments and measuring the 

impact of treatments is consistent with each test.  Therefore, the external validity of 

treatment diffusion is minimized for this study. 

Pretest x treatment interaction. This external validity threat arises when the 

administering of pretests changes the participants’ responsiveness (sensitivity increases 

or decreases) and renders the observed findings for the pretest group generalizable to 

only that group and not to the untested group or larger population (Smith & Glass, 1987).  

In order to utilize generalizable pretest findings, researchers must carefully choose pretest 

conditions and treatments, characteristics of the research participants, the duration of the 

study, and nature of the independent and dependent variables. SCED was specifically 

selected for this study as the testing protocol facilitates performing various baseline 

testing (pre-tests) in a structured protocol.  The proposed baseline tests will not influence 

further testing post intervention or manipulation.  The baseline tests are quantitative in 

nature and not attitudinal so future influence from pretest is non-existent. Therefore, 

pretest x treatment interaction is not a concern for this study.  

Selection x treatment interaction. This external validity threat arises when 

treatment groups differ non-treatment groups and thus findings cannot be generalizable to 

the larger population (Smith & Glass, 1987).  The selection-treatment interaction threat 

occurs more often when randomization is not used for selecting intervention and test 

groups (Smith & Glass, 1987).  However, this external threat to validity can still prevail 

when randomization is used as it does not guarantee that the group selected is 

representative of the target population (Smith & Glass, 1987).  For the purpose of this 
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study, there are a number of groups selected for testing from a sample population.  The 

sample set is large (over 1 million samples) and the multiple individual test groups far 

exceeds the required minimum sample size.  Therefore, the likelihood that the population 

studied do not represent the larger population is remote is not an external validity concern 

for this study.  

An experiment is deemed to be valid as long as relationships can be established 

and the results possess internal and external validity (Campbell & Stanley, 1963).  The 

proposed experiment has addressed internal validity concerns from an experimental 

design, sampling and a replicative perspective.  Internal validity is maintained when 

conditions are changed or manipulated and the results are measured or observed 

(Campbell & Stanley, 1963).  Thus, internal validity provides assurances that results are 

in fact due to direct treatment and not due to other circumstances (Campbell & Stanley, 

1963).  As such, he proposed research has also addressed internal and external validity 

concerns from a number of perspectives.  The proposed study has a controlled approach 

and environment and experimental design addresses generalizability of findings.   There 

has been considerable amount of thought given to how the results and findings can be 

extended to broader populations, groups, environments, and contexts outside the 

experimental setting (Rossow et al., 2012; Smith & Glass, 1987).  Consequently, the 

proposed experimental design and approach should satisfy the issues raised for internal 

and external validity.  The proposed experimental design has addressed the number of 

issues raised concerning internal and external validity as defined by Campbell and 

Stanley (1963).  A number researchers have contributed to addressing threats to internal 

and external validity not only from analyzing the results but more importantly addressed 
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by quantitative research and the experimental design (Smith & Glass, 1987).   The 

proposed study kept internal and external validity in mind by selecting an accepted 

experimental design (SCED), designing the experiment with a testing protocol, adopting 

a sampling strategy and insuring any possible outside influences are controlled or 

mitigated such that to the greatest extent possible concerns with validity have been 

addressed ensuring the validity of study. 

Sample 

The sample used for this study is an unrestricted probability sampling or simple 

random sampling or pseudo-random sample.  The study conducted a random selection 

and random assignment of files for the three datasets.  However, the dataset is considered 

to be stratified dataset.  The sample set (files) included three data types or strata on a 

percentage basis:  1) known bad samples – known malware (polymorphic/metamorphic), 

2) known good samples – known benign samples and 3) unknown samples – files that are 

unknown to the researcher but was determined post- test.  Although, malware detection is 

a straightforward bi-partite problem (malware or non-malware) the study also included a 

“blind” dataset for validating detection results.   

Known Malware Dataset.  The study had a sample set of over 1 million malware 

samples of polymorphic malware targeting 32-bit and 64-bit malicious executables. 

Although, there are a number of malware types, this study will group the distinct malware 

types into a single class - malware.  A majority of malware samples were acquired from 

Virus Total, Virus Sign, and VxHeaven.  The samples used represented various malware 

types including: backdoors, Trojans, bots, worms, and viruses.  According to Symantec 

(2016), there are approximately 1 million new malware samples released and discovered 
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daily.  In conducting a simple sizing analysis, a sample size of at least 666 yields 99% 

confidence level and 5% confidence interval for a population of one million.  A total 

collection of 1,009,108 malware samples were acquired for the study.  Therefore, the 

study dataset far exceeded the required number of malware samples needed for 

developing a valid sample size and representative dataset.   

Known Benign Dataset.  The known benign samples were collected from Virus 

Total and Virus Sign.  These files were tested as “clean” from the providers and probably 

were collected from clean installation disks and other known clean distribution sites.  

Special attention was made to collect vendor software with valid digitally signed 

installation files. In conducting a simple sizing analysis, a sample size of at least 666 

yields 99% confidence level and 5% confidence interval for a population of 1 million. A 

total collection of 756,322 known benign samples were acquired for the study.  

Therefore, the study dataset far exceeded the required number of known benign samples 

needed for developing a valid sample size and representative dataset.   

Unknown Dataset.  The unknown samples were collected from Virus Total,  

Virus Sign and VirusVx.   A majority of these samples were collected from Virus Total.  

Users can submit files to sites like Virus Total as unknown and eventually these files 

would be determined as malware or benign.  Until the files are determined to be malware 

or benign they remain in an unknown status until a determination has been made. Again, 

in conducting a simple sizing analysis, a sample size of at least 666 yields 99% 

confidence level and 5% confidence interval for a population of 1 million.   A total 

collection of 748,976 of unknown samples were acquired for the study.  Therefore, the 
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study dataset far exceeded the required number of known benign samples needed for 

developing a valid sample size and representative dataset.   

In summary, the dataset for the study was developed as a simple stratified random 

sample.  The study performed a pseudo-random selection via a python script for selecting 

and generating datasets on a percentage basis.  The random assignment from a stratified 

sample of three sample subsets: 1) known malware (40%), 2) known benign (30%) and 3) 

unknown (30%).  The study’s sample size far exceeded the 666 samples required for a 

confidence level of 99%.  The three data subsets had the following sample size: 1) 

malware – over 1 million samples, 2) known benign – over 750,000 samples and 3) 

unknown samples – just under 750,000 samples. 

Data Analysis 

Data analysis was conducted throughout the experiment.  The focus of the 

experiments was to evaluate detection rates given the various features, weighting of the 

features and the advanced cluster algorithms leveraged during testing.  There were a 

number of data analysis tools that were used to evaluate detection performance.  

Sensitivity and specificity were two statistical measures that were used to evaluate 

malware detection performance  (Kolter & Maloof, 2006).  Sensitivity is the statistical 

measure used to understand and evaluate the proportion of True Positives in an 

experiment (Kolter & Maloof, 2006).  The True Positive Rate (TPR) represents the 

proportion of correctly identified malware samples within a given test.   Specificity is 

another important statistical measure and is used to represent the True Negative Rate 

(TNR) (Kolter & Maloof, 2006).  Specificity measures the proportion of true negatives 

(non-malware) correctly identified within an experiment (Kolter & Maloof, 2006).  The 
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two measures – Sensitivity and Specificity provide insight into detection rates from a true 

positive rate (sensitivity) and true negative rate (specificity).  For any experiment, there is 

usually a trade-off between the two measures in terms of usability of results.  Too many 

false positives or false negatives can erode the confidence of the detection approach.  

Depending upon detection goal, one of the measures may be more important than the 

other.  In some cases, false positives (false alarms) significantly impact detection rates 

and experimental outcomes.   On the other hand, false negatives (non-detection) allow 

researchers to evaluate characteristics and issues with missed detections.  In a perfect 

world, sensitivity and specificity would both be 100%.  However, achieving 100% for 

both is usually not achievable.  Both measures can be graphed in order to analyze the 

tradeoffs between sensitivity and specificity.  Receiver Operating Characteristic (ROC) 

depicts the curve between sensitivity and specificity.  An example of ROC is provided 

below. 

 

Figure 2.  ROC Results 
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In order to evaluate other aspects of detection results, other statistical measures 

can be used to evaluate detection effectiveness that go further that sensitivity and 

specificity.  Accuracy (ACC) and the Correlation Coefficient (CC) are additional 

statistical quality measures with machine learning used to explore deeper understanding 

of detection rates (Kolter & Maloof, 2006).  In order to gain additional insight into 

detection rate with Accuracy and Correlation Coefficient the study must produce the 

results in a confusion table format.  The confusion table allows the results to be fully 

examined.  An example of the confusion table is provided below.   

Table 2 Confusion Matrix 

 

The confusion matrix presented in Table 2 is an easy concept to evaluate detection 

outcomes and was generated for each test.  Each entry in the table was used to evaluate 

the detection algorithm effectiveness.  As part of the confusion matrix or truth table as it 

is also referred to, each of the rates were measured.  The four entries in the confusion 

matrix were used to evaluate testing outcomes: 1) True Positive Rate, 2) True Negative 

Rate, 3) False Positive Rate and 4) False Negative Rate.  The True Positive Rate is 

defined as the number of malware that was correctly classified as malware.  In other 

words, the True Positive Rate (TPR) represents the proportion of positive instances of 

malware correctly detected.  The True Negative Rate (TNR) represents the number of 

benign samples that were correctly detected as Benign.  The TNR represents the 

proportion of negative instances detected correctly. The False Positive Rate (FPR) 

TRUE ACCEPT FALSE REJECT
TRUE (T) True Positive True Negative
FALSE (F) False Positive False Negative
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represents the number of non-malware samples that were classified as malware.  The FPR 

is in essence the proportion of negative instances incorrectly detected as positive 

(malware).  The False Negative Rate (FNR) represents malware that was classified as 

Benign. Thus, the FNR is the proportion of positive instances wrongly classified as non-

malware.  The equations for each statistical measure are provided below: 

𝑇𝑇𝑇𝑇𝑇𝑇 =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹
 

𝑇𝑇𝑇𝑇𝑇𝑇 =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹
 

𝐹𝐹𝐹𝐹𝐹𝐹 =
𝐹𝐹𝐹𝐹

𝐹𝐹𝐹𝐹 + 𝑇𝑇𝑇𝑇
 

𝐹𝐹𝐹𝐹𝐹𝐹 =
𝐹𝐹𝐹𝐹

𝐹𝐹𝐹𝐹 + 𝑇𝑇𝑇𝑇
 

 

Once the confusion matrix had been fully populated, the additional statistical measures of 

Accuracy and Correlation Coefficient were then applied.  The equations for these two 

measures are provided below: 

𝐴𝐴𝐴𝐴𝐴𝐴 =
𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 + 𝐹𝐹𝐹𝐹
 

𝐶𝐶𝐶𝐶 =
(𝑇𝑇𝑇𝑇× 𝑇𝑇𝑇𝑇) − (𝐹𝐹𝐹𝐹 ×𝐹𝐹𝐹𝐹)

(𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹) (𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹)(𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹)
 

 

The malware detection effective rate was analyzed based on the results from the 

testing for the three clustering algorithms.  These measurements were largely concerned 
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with correctly classified sample based on the statistical measures described above.  The 

proposed study used these measures to evaluate detection results based on the various 

datasets for detection purposes.   

Additional analysis was performed using Sensitivity, Specificity, Accuracy and 

Correlation Coefficient information for the various tests.  Developing the confusion 

matrix provided a solid understanding of the results for each test.  The various types of 

analysis were conducted to compare and evaluate detection rates across the three 

algorithms used during testing.  Also, the results were evaluated using various sample 

sets, feature set and weighting of features.  There were three tests conducted per 

algorithm.  The testing approach used a benchmark test with two other tests for weighted 

feature testing per algorithm. The formatting of test results for the various experiments 

are presented in the next section.  

Data Formats for Results 

Once the base data (TPR, TNR, FPR and FNR) had been captured, additional data 

analysis was conducted using the ACC, CC, and ROC curve methodology.  The detection 

model had the possibility of two classes – positive (malware) or negative (benign).  The 

malware detection effective rate used analyzed the results from the three algorithms in 

terms of correctly classified sample based on the statistical measures described above.  

The study evaluated detection results based on mapping those results into a single 

classification set (p, n) – positive and negative.  Given a confusion matrix, there are four 

possible outcomes given the set: 1) detected as a positive and correctly classified 

therefore classified as a True Positive (TP), 2)  detected as a negative and correctly 

classified and correctly classified therefore classified as a True Negative (TN), 3) 
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detected as a positive but should have been classified as a negative therefore this is a 

False Positive (FP), and 4) detected as a negative but should have been classified as a 

positive therefore this is a False Negative (FN).  The confusion matrix illustrates the set 

of instances in a two-by-two confusion matrix.  The following example show the various 

rates achieved by clustering algorithm (MB, IBk and DLMLP). 

        Table 3 Example Confusion Matrix 

 

 Further, the following example demonstrates the preliminary results for MB, IBk 

and DLMLP algorithms each with 20 unweighted features:  

Table 4 Example Unweighted Testing Results 

 

From this data, a graph can be generated to demonstrate the effective rates achieved 

comparing the results across the three clustering algorithms.  The graph below 

demonstrates the baseline testing and the achieved results across the three algorithms 

MB TRUE ACCEPT FALSE REJECT
TRUE (T) 0.9630 0.0010
FALSE (F) 0.0031 0.0060

IBk TRUE ACCEPT FALSE REJECT
TRUE (T) 0.9780 0.0012
FALSE (F) 0.0080 0.0017

DLMLP TRUE ACCEPT FALSE REJECT
TRUE (T) 0.9970 0.0000
FALSE (F) 0.0000 0.0000

True Positive False Positive True Negative False Negative ACC CC
IBk 0.9630 0.0031 0.0010 0.0060 0.9741 0.0010
DLMLP 0.9780 0.0012 0.0080 0.0017 0.9971 0.0078
MB 0.9970 0.0000 0.0000 0.0000 0.9970 0.0000
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Figure 3.  Comparative Baseline Testing Results. 

Additionally, based on the result from the confusion matrix, the ROC graph can be 

constructed using a two-dimensional graph.  The TP rate is plotted on the Y axis and the 

FP rate is plotted on the X axis.  Overall the ROC graph enables the visualization of 

relative trade-offs between benefits (true positives) and the associated costs with 

detection (false positives) (Fawcett, 2006).  The graph below demonstrates the ROC with 

the three classifiers (MB, IBk and DLMLP).  



130 
 

 

Figure 4.  ROC Analysis. 

Data analysis will provide a means to evaluate achieved results.  Each experiment 

will provide a series of data sets for each experiment:  Sensitivity, Specificity, Accuracy, 

Correlation Coefficient and ROC.  These standard statistical measures provide deeper 

insight into the TPR, TNR, FPR and FNR produced by each experiment.  The malware 

detection effective rate will analyze the result from the three clustering algorithms in 

terms of correctly classified sample based on the statistical measures described above.   

Resource Requirements 

The study has a number of resource requirements.  The most critical resource for 

conducting the proposed study was the dataset.  A number of unaffiliated websites 

(contagio, Virus Sign, VxHeaven, Virus Total, and others) contributed samples in order 

to achieve the 1 million malware sample target.  Malware samples collected from the 

various websites were checked via the MD5 hash to avoid duplication.  It is common for 

these websites share and collaborate on samples.  Malware researchers from industry and 
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academia frequently find interesting samples and share finding across the community.  In 

doing so, researchers leverage known malware samples for detection purposes and 

experiments.   

The second issue was that of constructing a dataset with sufficient number of non-

malware (unknown and benign) samples.  Fortunately, Virus Total provided a majority of 

benign samples for the research.   Virus Total also was able to provide unknown samples. 

Both sample types – unknown and benign were needed in order to evaluate the algorithm 

detection effectiveness.  However, these samples were identified by the SHA256 hash 

versus MD5.  Sample Identifiers (SampleIDs) were then generated for tracking purposes.  

All samples were collected, uniquely identified, analyzed and screened.  All samples 

were analyzed to ensure that they contained contemporary characteristics and behaviors 

that protect intellectual property for commercial software.  Duplicate samples were 

removed.  These non-malware behaviors and characteristics are often mimicked by 

malware developers in order to bypass detection.  In order to conduct a realistic 

evaluation, malware, benign and unknown samples were used for testing.  Over 1 million 

benign samples were collected, analyzed and screened.  Benign samples historically had 

been more difficult to obtain than the malware data set.  For the collected 1 million 

benign sample collected only roughly 75% passed the screening criteria.    Over .5 

million unknown samples were collected, analyzed and screened. Roughly 50% of the 

unknown samples passed screening criteria.  These samples were then used to create 

basis for the generation of the datasets used for testing.  These non-malware samples 

were then used to evaluate overall detection effectiveness (False Positives and False 

Negatives) during testing.   
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A related data set issue was simply the storage of the malware data set.  Once the 

various data sets had been collected, the malware and non-malware samples were stored 

in a secure and protected repository.  The secure storage of malware data set needed to 

ensure non-detonation of samples within the experimental storage environment.  The 

malware samples were kept in a .zip file with password to prevent detonation or infect the 

analysis platform/environment.  Another issue is the size and number of malware 

samples.  The objective of the research is to analyze millions of samples in order to 

evaluate efficacy and validate the proposed detection approach.  This study acquired over 

2 million total samples.  The storage will require over two terabytes of storage for 

malware and non-malware samples.  

   Lastly, the tools required to perform the analysis had issues.  IDAPro did not 

ultimately provide the necessary API for bulk analysis.  Open Source tools such as 

Capstone provided better programmatic access and was readily available.  These tools 

provided static and dynamic analysis and was used to extract features from the sample 

repository.  The number of modules were developed to extract the various static and 

dynamic features.  The seven feature extraction modules included:  1) Compiler Extractor 

(Embedded Compiler, Compiler Type, Compiler Used), 2) Encryption Extractor 

(Encrypted Indicator, Encrypted Type), 3) Library Call Extractor (Call Indicator, Call 

Counter, Library Call) , 4) Malware Extractor (Malware Indicator, Malware Type), 5) 

Virtual Machine Aware Extractor (VM Aware Indicator), 6) OpCodes Extractor (MOV, 

ADD, LEA, SUB, AND, INC, OR, NEG, XOR, XCHG, POP, and JMP) and  7) File 

Properties Extractor (File Type and File Size).  The dynamic analysis tool (Cuckoo) was 

leveraged for some feature extraction and detection.  The tools used for these upgrades 
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did impact schedule but did not affect other tools such as IDAPro and Weka.  Managing 

the overall analysis environment was challenging and but was technically achievable.    

The researcher had a mitigation plan or alternative plan for all issues raised.  In 

terms of malware samples, the researcher had collected a majority of the malware 

samples.  Virus Total was able to supply both benign and unknown samples.  There were 

a number of blogs which offer malware samples as well.  However, the researcher had a 

strong desire to work with mainstream malware research data sets.  In corresponding with 

both Symantec and Virus Total, there is a high degree of confidence that at least one of 

the firms would deliver the number of benign samples needed.  The researcher has also 

found a number of malware research sites that provide “benign” samples as well.  

Therefore, the non-malware data set may have to be constructed using samples from 

Virus Total. Additional analysis was required to ensure that the samples represent the 

types of samples needed for the research.  The additional analysis has been factored as 

part of the proposed effort.  Mitigating the secure storage of malware was a process that 

checks and changes file extensions to prevent file execution.  In addition, shipments of 

malware were done via third-party compression software such as WinZip.  Each set of 

Zip files transferred will also be password protected in order to prevent file execution.  In 

terms of meeting storage requirements for the project, a high performance 24 TB 

Network-Attached Storage (NAS) device was purchased to house both malware and non-

malware data sets.  The only remaining concern for storage was a backup for 

experimental data set.  The researcher did explore cloud-based backup solutions.     

In order to construct a solid analysis environment, the researcher began with the 

latest releases of a number of static analysis tools (IDAPro, Capstone and objdump), 
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Open Source dynamic analysis tool (Cuckoo) and the Open Source machine learning tool 

(Weka).  The researcher had sufficient understanding of the computing requirements for 

the various tools as well as the underlying operating system compatibility issues. This 

approach allowed and enabled the researcher to begin the assembly of the analysis 

environment and provided a programmatic means to investigate integration issues with 

the latest releases. The assumption is that the latest releases will have a vibrant technical 

support network and issues raised were supported by the community of interest.  Most of 

the other resources are in place or can be easily secured.  A full description of the 

resources needed is provided below. 

Table 5 Experimental Resource Requirements 

 

Most of the resources needed fall into the software category.  The researcher had 

developed risk mitigation for each item.  The only issue that presented itself was Weka 

during experimental time period.  WEKA had a major upgrade and release that took time 

to configure.  Yara and Volatility are tools for analysis.  Volatility is an advanced 

memory analysis framework for deeper inspection of memory. This software can be used 

to analyze memory dumps after malware has been detonated through dynamic analysis.  

Type Resource Description Possess? Risk Assessment
Dataset Malware Samples Semantec Agreement No Other Sources are available

Hardware Server
Dell Server i7 64bit 
w/Linux 16GB RAM Yes New Server/No Warranty

Hardware Workstation
Toshiba i3 
64bitw/Windows7 Yes Current Laptop/No Warranty

Hardware Storage 4 TB Storage No To be Purchase
Hardware Network Internet Connectivity Yes Wifi Enabled
Software IdaPro v6.6 Yes Education Version/Limited Version
Software Volatility v2.3 Yes Education Version/Limited Version
Software Yara v3.2 Yes Researcher owned
Software Weka v3.7.9 Yes Open Source
Software Cuckoo v1.1 Yes Open Source
Software Python v2.7 Yes Education Version/Limited Version
Software Microsoft Office 2010 or better Yes Education Version/Limited Version
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Yara is a tool that assists malware researchers to identify and classify malware samples.  

Contingencies for most issues were use or leverage academic or demonstration licenses 

offered by the software vendor.  No issue arose during integration or testing.   

Summary 

This research developed a unique detection methodology using multidimensional 

topological features in a machine learning environment.  The multidimensional 

topological features approach combined static and dynamic analysis in addition to unique 

file properties.  The study was designed to develop a quantitative experimental prototype 

using multidimensional topological data with machine learning using advanced clustering 

that provided improved detection for polymorphic malware above 81.25% for 

polymorphic malware.  The study utilized quantitative methods to provide objective 

measurements for experimental results as described by Babbie (2010).  The proposed 

data collection, data analysis and presentation experimental results were conducted using 

standard and accepted computational techniques (Babbie, 2010). The study was designed 

with correctly assembled and representative datasets, proper experimental methodology 

design such that the experiment can be reproducible and safely conducting experiments 

such that the malware cannot infect the research environment (Rossow, 2013).  The 

experimental methodology was designed to establish, capture, analyze and evaluate 

results with the rigorous quantitative evaluation measures offered by Mohaisen and 

Alrawi (2015).    
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Chapter 4 

Results 

Research Goals  

The goal of this study was to develop an experimental prototype system to 

provide improved detection for polymorphic malware.  Today’s effective detection rate 

for polymorphic malware detection ranges from 68.75% to 81.25% (Amos et al., 2013). 

The prototype system developed performed various feature extraction and assembled the 

datasets.  This study conducted various tests within testing SCED protocol.  The test 

results were then quantitatively examined and evaluated detection rates for polymorphic 

malware.  This study leveraged previous quantitative experiments for supervised machine 

learning for malware research (Boro, et al., 2012; Pradesh, 2014) to better understand 

how a limited set of multidimensional topological information can be used for malware 

detection.    

Review of the Methodology  

The single-subject experimental design provides a standard framework and has 

been widely accepted protocol for research questions posed for this study.  The study 

followed the basic single-subject protocol throughout the study.  The protocol follows the 

following steps.  

1. Establish baseline test data – established a testing baseline for detection given a 

standard feature dataset with a standard clustering algorithm for polymorphic malware 

through multiple measurements before an intervention. The number of standard features 

included file properties, static analysis and dynamic analysis.   
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2. Manipulate feature set – the standard feature dataset was manipulated to 

evaluate whether detection rates improved or deteriorated after the intervention.  The 

study examined three multidimensional datasets – one dedicated for each algorithm.  The 

three datasets were generated by combining known malware, known benign and 

unknown samples into single feature dataset of 200,000 samples.   

3. Controlled procedures and environment – the developed prototype environment 

and datasets were controlled to ensure the extracted feature dataset remained static over 

time and the automated feature extraction process remained unaltered (Rossow et al., 

2012).  

4. Standard measurement approaches – a standard measurement approach for 

documenting and capturing baseline testing data and subsequent test results.  Detection 

measurements were conducted in the same fashion for all tests.  The study established 

baseline detection rates for each of the three clustering algorithms.  Standard 

measurements were documented to evaluate Accuracy (ACC), Correlation Coefficient 

(CC), True Positive Rate (sensitivity measure), and False Positive Rate (specificity 

measure).   As specified by the standard protocol, these measurements were established 

as a permanent observational recording (Rossow et al., 2012).  

5. Weighting of features – as part of this testing protocol the inputs were 

manipulated and assessed.  Within a single dataset, features were removed based on an 

attribute selection algorithm (e.g. greedy stepwise) and then evaluated for each algorithm.   

6. Capturing testing results - All test results were captured in terms of ACC, CC, 

True Positive Rate (TPR) and False Positive Rate (FPR).  



138 
 

7. Graphing results - All test results were graphed and presented in terms of ACC, 

CC, True Positive Rate (TPR) and False Positive Rate (FPR).   

8. Evaluating results – All test results were evaluated after each test.  Each test 

was analyzed with rigor to understand the ACC, CC, True Positive Rate (TPR) and False 

Positive Rate (FPR).       

9. Test controls – All tests were conducted using the required test controls.  Test 

controls regulated the test environment, test data, and test results.   

The experimental design and approach enabled the researcher to conduct 

experiments in a staged and systematic manner.  The standard testing protocol provided a 

means to plan, prepare, execute, document and analyze the test results.  The testing 

protocol allowed the researcher to document the detection results for the various testing 

algorithms (Rossow et al., 2012).  The results were collected in stages and results were 

evaluated for effectiveness at the end of each experiment (Rossow et al., 2012).  The 

experimental research methodology was consistent with previous quantitative malware 

studies (Creswell, 2007).  The study’s methodology provides a means to introduce new 

measures and systematically evaluate test results prior to conducting additional testing.  

The quantitative experimental approach for conducting this study leveraged other testing 

techniques conducted in healthcare, drug trials and other medical studies (Rizvi & Nock, 

2008).   

Experimental Outcomes 

 The following test cases were executed as part of the SCED protocol for each 

algorithm (MB, IBk and DLMLP). 
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Test Case 1 

As with all test cases, the SCED testing protocol was used to structure and guide 

the execution of the various experiments.  Test Case 1 utilized Dataset 1 with the 

Metabagging (MB) cluster algorithm.  Dataset 1 was generated through a pseudo-random 

selection of samples representing a stratified sample.  The stratified sample contained 

three sample types: malware, benign and unknown.  Dataset 1 was selected and generated 

on a percentage basis:  Malware (40%), Benign (30%) and Unknown (30%).  Dataset 1 

was automatically selected and generated from a 2.5 million sample population.  

However, the generation of the final file required some manual intervention to generate 

the final Comma Separated Values (CSV) file.  Once the CSV file was generated, Weka 

was used for data validation purpose and to convert the CSV file to ARFF file.  Once 

completed, the dataset was found to be “clean” or validated.  Dataset 1 was then saved 

into a controlled directory for validated ARFF files.  Dataset 1 was validated prior to the 

beginning of any baseline testing.  The 26 features were validated and included all 

attributes from file properties, static analysis and dynamic analysis. 

1. Establish baseline test data – Dataset 1 was validated through processing the 

features through Weka.  Upon file import, it was discovered that Dataset 1 had several 

features/attributes mistyped.   The fields are typed as part of validated upon import of the 

CSV file into Weka.  A number of numeric features (typically counts) were incorrectly 

typed or imported as nominal values.   In order to use these features for detection these 

typing errors needed to be corrected.  Errors introduced through automated parsing was 

fixed through searching and eliminating leading spaces and/or special characters 

embedded in the field.  These errors were removed from the entire dataset and all features 
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were checked for leading spaces and embedded special characters.  Validation was 

conducted on all 200,000 rows and 26 features.  Once completed, the dataset was found 

to be “clean” or validated.  Dataset 1 was then saved into a controlled directory for 

validated ARFF files.  Dataset 1 was validated prior to the beginning of any baseline 

testing.  The 26 features were validated and included all attributes from file properties, 

static analysis and dynamic analysis. 

2. Manipulate feature set – Once the Dataset 1 was validated, Dataset 1 was used 

to produce three distinct datasets - Dataset 1-1, Dataset 1-2, and Dataset 1-3.  These three 

datasets would be used to perform testing for the metabagging algorithm in various ways.  

Dataset 1-1 was used for MB Baseline experimental testing.  Dataset 1-2 would be used 

for MB Reduced Features and Dataset 1-3 MB Information Gain.  Dataset 1 was used as 

the basis for all MB training and test datasets.   

Dataset 1 was then used to generate Dataset 1-1 (baseline – no manipulation).  

Dataset 1-1 was used as a “full-feature” dataset and all 26 features were used with the 

MB algorithm to establish a detection baseline.  The baseline testing did not filter and did 

not use any feature analysis to improve any test results. Upon completion of baseline 

testing, the dataset was exposed to further feature analysis.   

Dataset 1 was also used to generate Dataset 1-2 Reduced Features dataset.  

Dataset 1-2 was generated by analyzing the features in Dataset 1 to better understand 

relationships and possible feature interdependencies. The full Dataset 1 – was analyzed 

and all 26 features were processed by the Greedy Stepwise algorithm to understand data 

relationships and interdependencies.  This algorithm analyzes various features from the 

dataset based on analyzing relationships that exist between features.  Previous studies 
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have analyzed and discovered that features or attributes can have relationships of various 

types including irrelevant, weakly relevant or strongly relevant feature relationships 

(John, Kohavi, & Pfleger, 1994).  The output of the Greedy Stepwise algorithm suggested 

that of the 26 original features within Dataset 1, could be reduced to 6 features/attributes. 

The Greedy Stepwise algorithm produced a .793 Merit of Subset value.  The features 

selected by this algorithm included:  1) File Size, 2) File Type, 3) Compiler Type, 4) 

Library Calls, 5) Encryption, and the Op Code 6) XCHG.  The next step was to reimport 

the entire Dataset 1and remove extraneous features/attributes – this became Dataset 1-2.  

Dataset 1-2 removed all features except for File Size, File Type, Compiler Type, Library 

Calls, Encryption, and XCHG.   Dataset 1-2 was then processed with the MB algorithm.   

The third and final dataset (Dataset 1-3) was analyzed utilizing another feature 

analysis tool to evaluate features and relationships.  The Information Gain algorithm 

seeks to amplify certain features within a dataset to potentially improve model outcomes 

(C. Lee & Lee, 2006).  In this case, the intent was to use information gain to provide a 

reduced feature set that potentially increases the detection rate.  The information gain 

algorithm was used to analyze the entire Dataset 1 – all 26 original features.  The 

information gain algorithm suggested that the top seven attributes/features included: 1) 

Compiler Type (1.50537), 2) Malware Type (1.35976), 3) MOV (1.15211), 4) File Size 

(1.07808), 5) Encrypt Type (0.89771), 6) File Type (0.88218), and 7) Library Calls 

(0.79424).  Dataset 1-3 used the full dataset and reduced the features to only the top 

seven features to potentially improve detection results.  Therefore, Dataset 1-3 used these 

seven features for detection within MB.  Further, Compiler Type could be used as a 
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leading detection indicator or attribute.  Dataset 1-3 then used Compiler Type as a 

selected attribute and was then processed with the MB algorithm.   

After running various experiments with Datasets 1-1, 1-2 and 1-3, it was 

determined that the results being produced delivered higher than anticipated results.  

After researching the issues, it was determined that the models were potentially 

experiencing training data saturation as noted by Zhu (2012).   These higher than 

expected results produced were attributed to using a subset of Dataset 1 for training 

purposes.  The initial training approach was to use a subset of the dataset for training the 

classifier with widely accepted 10 fold cross validation (Kohavi, 1995).  This approach is 

a standard supervised learning practice and has been used many times to build the 

internal estimation training models within machine learning (Kohavi, 1995).  Based on 

the previous research (Zhu, 2012), a new training dataset was generated and MB testing 

was repeated to evaluate testing outcomes.   

Previous research has shown that datasets too closely related can produce higher 

than expected results (Zhu, 2012).  Therefore, a new training dataset was generated 

similar to Dataset 1. The training dataset that was selected and generated in the same 

manner as Dataset 1.  However, the training dataset was allowed to have overlapping 

samples from Dataset 1.   Based on a re-run of the MB Baseline test, the newly generated 

training dataset seemed to correct the training set saturation issue.  Based on the MB test 

results, additional training datasets were generated in a pseudo-random stratified fashion 

for use with the other two algorithms.   Training Dataset 1 was used for MB testing.  

Training Dataset 2 and Training Dataset 3 were generated and used for the other cluster 

algorithm experiments.  
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3. Controlled procedures and environment – the developed prototype environment 

and datasets were controlled to ensure the extracted feature dataset remained static over 

time and the automated feature extraction process remained unaltered (Rossow et al., 

2012). Dataset 1-1, Dataset1-2 and Dataset 1-3 remained unaltered during any and all 

testing.  Additional precautions were taken to ensure that the Datasets 1-2 and 1-3 

remained static after removal of extraneous features.  All datasets were exported in ARFF 

format after validation and manipulation using naming standard conventions identifying 

the dataset.   

4. Standard measurement approaches – a standard measurement approach was 

used to document and capture testing results.  Test results for Baseline testing (Dataset 1-

1), Reduced Feature Selection (Dataset 1-2), and Data Amplification (Dataset 1-3) were 

collected and captured.  Detection measurements were conducted for all tests.  Per the 

testing protocol, the study established a baseline detection rate for MB.  Subsequent tests 

results were captured and analyzed.  Results were analyzed using standard measurements 

including Accuracy (ACC), Correlation Coefficient (CC), True Positive Rate (sensitivity 

measure), and False Positive Rate (specificity measure).   As specified by the standard 

protocol, these measurements were captured as a permanent observational recording 

(Rossow et al., 2012).  

5. Weighting of features – as part of this testing protocol the inputs were 

manipulated and assessed.  Using the baseline dataset (Dataset 1-1), features were 

removed based on an attribute selection algorithm (e.g. greedy stepwise) and then 

evaluated for MB.  Likewise, using the baseline dataset (Dataset 1-1), features were 

removed based on the information gain for data amplification.  The three tests for MB 
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included MB Baseline (Dataset 1-1), MB Reduced Feature Selection (Dataset 1-2), and 

MB Data Amplification (Dataset 1-3). 

6. Capturing testing results - All results were captured in terms test and 

measurement.  Each test (MB Baseline, MB Reduced Feature Selection, and MB Data 

Amplification) was captured with the associated measurement - ACC, CC, True Positive 

Rate (TPR) and False Positive Rate (FPR).  The results are provided below: 

Table 6 MB Baseline Classification Results 

Experimental Results   
MB Baseline Dataset 1-1  
Correctly Classified 
Instances 

198,866 99.433% 

Incorrectly Classified 
Instances 

1,134 0.567% 

 

Table 7 MB Baseline Experimental Results 

MB Baseline 
Measurement Result 

True Positive Rate (TPR) 0.99983 
True Negative Rate (TNR) 0.99983 
False Positive Rate (FPR) 0.00017 
False Negative Rate (FNR) 0.00017 
Accuracy (ACC) 0.99983 
Correlation Coefficient (CC) 0.00001 
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Table 8 MB Reduced Feature Classification Results 

Experimental Results   
MB Reduced Feature 
Selection 

Dataset 1-2  

Correctly Classified 
Instances 

199,994 99.997% 

Incorrectly Classified 
Instances 

6 0.003% 

 

Table 9 MB Reduced Feature Selection Experimental Results 

MB Reduced Feature Selection 
Measurement Result 

True Positive Rate (TPR) 0.99991 
True Negative Rate (TNR) 0.99995 
False Positive Rate (FPR) 0.00005 
False Negative Rate (FNR) 0.00009 
Accuracy (ACC) 0.99992 
Correlation Coefficient (CC) 0.00001 

 

Table 10 MB Data Amplification Classification Results 

Experimental Results   
MB Data Amplification Dataset 1-3  
Correctly Classified 
Instances 

199,997 99.9985% 

Incorrectly Classified 
Instances 

3 0.0015% 
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Table 11 MB Data Amplification Classification Experimental Results 

MB Data Amplification 
Measurement Result 

True Positive Rate (TPR) 0.99999 
True Negative Rate (TNR) 0.99998 
False Positive Rate (FPR) 0.00002 
False Negative Rate (FNR) 0.00001 
Accuracy (ACC) 0.99998 
Correlation Coefficient (CC) 0.00001 

 

7. Graphing results - All test results were graphed and presented in terms test (MB 

Baseline, MB Reduced Feature Selection, and MB Data Amplification) and measurement 

for True Positive Rate (TPR) and False Positive Rate (FPR) are shown below.  Accuracy 

essentially followed the same trendline as TPR.  CC as a constant .0001 for all three 

experiments MB Benchmark, MB Reduced Features and MB Amplified Features.    

 

  

Figure 5. MB Graph Results 
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8. Evaluating results – All test results were evaluated after each test.  Each test 

was analyzed with rigor to understand the ACC, CC, True Positive Rate (TPR) and False 

Positive Rate (FPR). 

Table 12 MB Experimental Results 

 
Measurement 

 
MB Baseline 

MB Reduced 
Feature 
Selection 

MB Data 
Amplification 

True Positive Rate 
(TPR) 

0.99983 0.99991 0.99999 

True Negative Rate 
(TNR) 

0.99983 0.99995 0.99998 

False Positive Rate 
(FPR) 

0.00017 0.00005 0.00002 

False Negative Rate 
(FNR) 

0.00017 0.00009 0.00001 

Accuracy (ACC) 0.99983 0.99992 0.99998 

Correlation 
Coefficient (CC) 

0.00001 0.00001 0.00001 

 

9. Test controls – All tests were conducted using the required test controls.  Test 

controls regulated the MB test environment, MB test data (Training Datasets 1-1, 1-2, 1-3 

and Test Datasets 1-1, 1-2, 1-3), and test results (MB Baseline, MB Reduced Feature 

Selection and MB Data Amplification).   

Test Case 2 

As with all test cases, the SCED testing protocol was used to structure the 

experiment.  Test Case 2 utilized Dataset 2 with the IBk Nearest Neighbor clustering 

algorithm (IBk).  The Instance Based k-Nearest Neighbor (IBk) algorithm was chosen to 

replace LSH as the algorithm improves upon the “locality” aspects of the clustering 

algorithm. The IBk is a k-nearest-neighbor classifier that utilizes a similar distance metric 
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used in the LSH algorithm. The calculated Euclidean distance function is used by IBk as 

a critical search parameter within the algorithm (Manikandan et al., 2016).  Dataset 2 was 

generated through a pseudo-random selection of samples representing all three types of 

samples: malware, benign and unknown.  Dataset 2 was automatically generated based on 

the same random selection algorithm that generated Dataset 1.  Dataset 2 was selected 

and generated on a percentage basis:  Malware (40%), Benign (30%) and Unknown 

(30%).  Dataset 2 was automatically selected and generated from a 2.5 million sample 

population.  However, the generation of the final file required some manual intervention 

to generate the final Comma Separated Values (CSV) file.  Once the CSV file was 

generated, Weka was used for data validation purpose and to convert the CSV file to 

ARFF file.  Once completed, the dataset was found to be “clean” or validated.  Dataset 2 

was then saved into a controlled directory for validated ARFF files.  Dataset 2 was 

validated prior to the beginning of any baseline testing.  The 26 features were validated 

and included all attributes from file properties, static analysis and dynamic analysis. 

1. Establish baseline test data – Like Dataset 1, Dataset 2 was validated through 

processing the features through Weka.  As was seen in Dataset 1, several of the numeric 

features within Dataset 2 were typed incorrectly as nominal.  These errors were 

highlighted upon importing the Dataset 2 CSV file into Weka.  Data validation was 

conducted and data errors were corrected in exactly the same fashion as Dataset 1.  

Again, these errors were introduced into the dataset through automated parsing during the 

extraction process. These errors were fixed through searching and eliminating leading 

spaces and/or special characters embedded in the field.  These errors were removed from 

the entire dataset and all features were validated.  Once completed, the dataset was found 
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to be “clean” or validated.  Per the testing protocol, the dataset was validated prior to the 

beginning of baseline testing.  The features (26) included attributes from file properties, 

static analysis and dynamic analysis.  As noted above, a Training Dataset 2 was 

generated, validated and used as part of the classifier training protocol. 

2. Manipulate feature set – The manipulation of the feature set produced three test 

datasets – Dataset 2-1, Dataset 2-2, and Dataset 2-3.  Similarly, the training dataset was 

developed from the Training Dataset 2 for each test.  After both datasets (training and 

test) were validated, Training Dataset 2-1 and Test Dataset 2-1 (baseline – no 

manipulation) were processed with all 26 features using the IBk algorithm to establish a 

detection baseline.  The baseline testing did not filter and did not use feature any analysis 

to improve test results. Upon completion of baseline testing, the dataset was exposed to 

further feature analysis.   

The second set of datasets – Training Dataset 2-2 and Test Dataset 2-2 were 

generated by analyzing the features to better understand relationships and possible feature 

interdependencies. The full Dataset 2-1 – all 26 features were analyzed with the Greedy 

Stepwise algorithm.  The output of the Greedy Stepwise algorithm suggested that of the 

26 original features, the dataset could be reduced to 7 features/attributes. The Greedy 

Stepwise algorithm produced a Merit of best subset of 0.896.  The predictive attributes 

for this dataset included 1) File Size, 2) File Type, 3) Compiler, 4) Compiler Type, 5) 

Library Calls, 6) Encryption and the Op Code 7) XCHG.  The next step was to reimport 

the both the Training Dataset 2 and Dataset 2 and remove extraneous features/attributes.  

The classifier training was conducted using Training Dataset 2-2.  Experimental testing 

was conducted using Dataset 2-2.  In both cases, Training Dataset 2-2 and Test Dataset 2-
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2 removed all features except for File Size, File Type, Compiler, Compiler Type, Library 

Calls, Encryption, and XCHG.   Dataset 2-2 was then processed with the IBk algorithm.   

The third and final dataset (Dataset 2-3) was analyzed utilizing another feature 

analysis tool to evaluate features and relationships for Dataset 2. The Information Gain 

algorithm seeks to amplify certain features within a dataset to potentially improve model 

outcomes (C. Lee & Lee, 2006).  In this case, the intent was to use information gain to 

provide a reduced feature set that potentially increases the detection rate.  The 

information gain algorithm was used to analyze the entire Dataset 2 – all 26 original 

features.  In this case, the intent was to use information gain to provide a reduced feature 

set that potentially increases the detection rate.  The information gain algorithm 

suggested that the top seven attributes/features included 1) Compiler Type (1.55744), 2) 

Malware Type (1.40863), 3) XCHG (1.26408), 4) File Size (1.09264), 5) Encrypt Type 

(0.88897), 6) File Type (0.86818), and 7) Library Calls (0.77946).  Dataset 2-3 used the 

full dataset and reduced the features to only the top seven features to potentially improve 

detection results.  Therefore, Dataset 2-3 used these seven features for detection within 

the IBk classifier.  Further, Compiler Type could be used as a leading indicator attribute.  

Dataset 2-3 then used Compiler Type with the IBk classifier to deliver experimental 

results.     

3. Controlled procedures and environment – the developed prototype environment 

and datasets were controlled to ensure the extracted feature dataset remained static over 

time and the automated feature extraction process remained unaltered (Rossow et al., 

2012). Training Datasets (Training Dataset 2-1, Training Dataset 2-2 and Training 

Dataset 2-3) and Test Datasets (Test Dataset 2-1, Test Dataset 2-2 and Test Dataset 2-3) 



151 
 

remained unaltered during any and all testing.  Additional precautions were taken to 

ensure that the Test and Training Datasets 2-2 and 2-3 remained static after removal of 

extraneous features.  All datasets were exported in ARFF format after validation and 

manipulation using naming standard conventions identifying the dataset.   

4. Standard measurement approaches – a standard measurement approach was 

used to document and capture testing results.  Test results for Baseline testing (Dataset 2-

1), Reduced Feature Selection (Dataset 2-2), and Data Amplification (Dataset 2-3) were 

collected and captured.  Detection measurements were conducted for all tests.  Per the 

testing protocol, the study established a baseline detection rate for IBk.  Subsequent tests 

results were captured and analyzed.  Results were analyzed using standard measurements 

including Accuracy (ACC), Correlation Coefficient (CC), True Positive Rate (sensitivity 

measure), and False Positive Rate (specificity measure).   As specified by the standard 

protocol, these measurements were captured as a permanent observational recording 

(Rossow et al., 2012).  

5. Weighting of features – as part of this testing protocol the inputs were 

manipulated and assessed.  Using the baseline dataset (Dataset 2-1), features were 

removed based on an attribute selection algorithm (e.g. greedy stepwise) and then 

evaluated for IBk.  Likewise, using the baseline dataset (Dataset 2-1), features were 

included IBk Baseline (Dataset 2-1), IBk Reduced Feature Selection (Dataset 2-2), and 

IBk Data Amplification (Dataset 2-3). 

6. Capturing testing results - All results were captured in terms test and 

measurement.  Each test (IBk Baseline, IBk Reduced Feature Selection, and IBk Data 
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Amplification) was captured with the associated measurement - ACC, CC, True Positive 

Rate (TPR) and False Positive Rate (FPR).  

Table 13 IBk Baseline Classification Results 

Experimental Results   
IBk Baseline Dataset 2-1  
Correctly Classified 
Instances 

199,872 99.936% 

Incorrectly Classified 
Instances 

128 0.064% 

 

Table 14 IBk Baseline Experimental Results 

IBk Baseline 
Measurement Result 

True Positive Rate (TPR) 0.99984 
True Negative Rate (TNR) 0.99991 
False Positive Rate (FPR) 0.00009 
False Negative Rate (FNR) 0.00016 
Accuracy (ACC) 0.99986 
Correlation Coefficient (CC) 0.00001 

 

Table 15 IBk Reduced Feature Selection Classification Results 

Experimental Results   
IBk Reduced Feature 
Selection 

Dataset 2-2  

Correctly Classified 
Instances 

199,923 99.962% 

Incorrectly Classified 
Instances 

77 0.038% 

 

  



153 
 

Table 16 IBk Reduced Feature Selection Experimental Results 

IBk Reduced Feature Selection 
Measurement Result 

True Positive Rate (TPR) 0.99992 
True Negative Rate (TNR) 0.99997 
False Positive Rate (FPR) 0.00003 
False Negative Rate (FNR) 0.00008 
Accuracy (ACC) 0.99993 
Correlation Coefficient (CC) 0.00001 

 

Table 17 IBk Data Amplification Classification Results 

Experimental Results   
IBk Data 
Amplification 

Dataset 2-3  

Correctly Classified 
Instances 

200,000 100.0000% 

Incorrectly Classified 
Instances 

0 0.0000% 

 

Table 18 IBk Data Amplification Experimental Results 

IBk Data Amplification 
Measurement Result 

True Positive Rate (TPR) 0.99999 
True Negative Rate (TNR) 1.00000 
False Positive Rate (FPR) 0.00000 
False Negative Rate (FNR) 0.00001 
Accuracy (ACC) 0.99999 
Correlation Coefficient (CC) 0.00001 

 

7. Graphing results - All test results were graphed and presented in terms of test 

(IBK Baseline, IBK Reduced Feature Selection, and IBK Data Amplification) and 

measurement for True Positive Rate (TPR) and False Positive Rate (FPR).  The results 

are shown below.  Accuracy essentially followed the same trendline as TPR.  CC was a 



154 
 

constant of .0001 across all three experiments IBk Benchmark, IBk Reduced Features and 

IBk Amplified Features.     

 

 

Figure 6. IBk Graph Results 
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Table 19 IBk Experimental Results 

 
Measurement 

 
IBK Baseline 

IBk Reduced 
Feature 
Selection 

IBk Data 
Amplification 

True Positive Rate 
(TPR) 

0.99984 0.99992 0.99999 

True Negative Rate 
(TNR) 

0.99991 0.99997 1.00000 

False Positive Rate 
(FPR) 

0.00009 0.00003 0.00000 

False Negative Rate 
(FNR) 

0.00016 0.00008 0.00001 

Accuracy (ACC) 0.99986 0.99993 0.99999 

Correlation 
Coefficient (CC) 

0.00001 0.00001 0.00001 

 

9. Test controls – All tests were conducted using the required test controls.  Test 

controls regulated the IBk test environment, IBk test data (Training Datasets 1-1, 1-2, 1-3 

and Test Datasets 1-1, 1-2, 1-3), and test results (IBk Baseline, IBk Reduced Feature 

Selection and IBk Data Amplification).   

Test Case 3 

As with all test cases, the SCED testing protocol was used to structure the 

experiment.  Test Case 3 utilized Dataset 3 with the Deep Learning Multilevel Perceptron 

(DLMLP) clustering algorithm.  The DLMLP algorithm was chosen to replace the BP 

algorithm as it improves upon the dimensions of belief for training and test datasets.  The 

main idea in replacing the BP algorithm with DLMLP was recently presented by Gruber 

et al. (2017).  ANN’s can leverage belief propagation for clustering or classification 

inefficiently (Gruber et al., 2017).  ANN’s build networks of neurons, share information 

between neurons and propagate results throughout the entire network (Gruber et al., 
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2017).  Gruber (2017) proposed using shallow neural networks with deep learning to 

achieve similar or better propagation results.  The deep learning approach established 

shallow neural networks and combined other algorithms such as MLP to achieve similar 

propagation (Gruber et al., 2017).  The goal was to utilize the DLMLP algorithm for 

improved detection.  Given that the goal of this research was to establish new detection 

using advanced algorithms.  DLMLP was selected for model efficiencies and to leverage 

nascent algorithms that improved upon other algorithms.  Dataset 3 was generated 

through a pseudo-random selection of samples representing all three types of samples: 

malware, benign and unknown.  Dataset 3 was automatically generated based on the 

same random selection algorithm that generated other datasets.  Dataset 3 was selected 

and generated on a percentage basis:  Malware (40%), Benign (30%) and Unknown 

(30%).  Dataset 3 was automatically selected and generated from a 2.5 million sample 

population.  However, the generation of the final file required some manual intervention 

to generate the final Comma Separated Values (CSV) file.  Once the CSV file was 

generated, Weka was used for data validation purpose and to convert the CSV file to 

ARFF file.  Once completed, the dataset was found to be “clean” or validated.  Dataset 3 

was then saved into a controlled directory for validated ARFF files.  Dataset 3 was 

validated prior to the beginning of any baseline testing.  The 26 features were validated 

and included all attributes from file properties, static analysis and dynamic analysis. 

1. Establish baseline test data – Like previous datasets, Dataset 3 was validated 

through processing the features through Weka.  As was seen in previous datasets, several 

of the numeric features within Dataset 3 were typed incorrectly as nominal.  These errors 

were highlighted upon importing the Dataset 3 CSV file into Weka.  Data validation was 
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conducted and data errors were corrected in exactly the same fashion as previous 

datasets. Again, these errors were introduced into the dataset through automated parsing 

during the extraction process. These errors were fixed through searching and eliminating 

leading spaces and/or special characters embedded in the field.  These errors were 

removed from the entire dataset and all features were validated.  Once completed, the 

dataset was found to be “clean” or validated.  Per the testing protocol, the dataset was 

validated prior to the beginning of baseline testing.  The features (26) included attributes 

from file properties, static analysis and dynamic analysis.  As noted above, a Training 

Dataset 3 was generated, validated and used as part of the classifier training protocol. 

2. Manipulate feature set – The manipulation of the feature set produced three test 

datasets – Dataset 3-1, Dataset 3-2, and Dataset 3-3.  Similarly, the training dataset was 

developed from the Training Dataset 3 for each test.  After both datasets (training and 

test) were validated, Training Dataset 3-1 and Test Dataset 3-1 (baseline – no 

manipulation) were processed with all 26 features using the DLMLP algorithm to 

establish a detection baseline.  The baseline testing did not filter and did not use feature 

any analysis to improve test results. Upon completion of baseline testing, the dataset was 

exposed to further feature analysis.   

The second set of datasets – Training Dataset 3-2 and Test Dataset 3-2 were 

generated by analyzing the features to better understand relationships and possible feature 

interdependencies. The full Test Dataset 3-1 – all 26 features were analyzed with the 

Greedy Stepwise algorithm.  The output of the Greedy Stepwise algorithm suggested that 

of the 26 original features, the dataset could be reduced to 7 features/attributes. The 

Greedy Stepwise algorithm produced a Merit of best subset of 0.807.  The predictive 
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attributes for this dataset included 1) File Size, 2) File Type, 3) Compiler, 4) Compiler 

Type, 5) Library Calls, 6) Encryption and the Op Code 7) XCHG.  The next step was to 

reimport the both the Training Dataset 3 and Test Dataset 3 and remove extraneous 

features/attributes.  The classifier training was conducted using Training Dataset 3-2.  

Experimental testing was conducted using Dataset 3-2.  In both cases, Training Dataset 3-

2 and Test Dataset 3-2 removed all features except for File Size, File Type, Compiler, 

Compiler Type, Library Calls, Encryption, and XCHG.   Dataset 2-2 was then processed 

with the DLMLP algorithm.     

The third and final dataset (Training and Test Dataset 3-3) was analyzed utilizing 

another feature analysis tool to evaluate features and relationships for Dataset 3.  The 

Information Gain algorithm seeks to amplify certain features within a dataset to 

potentially improve model outcomes (C. Lee & Lee, 2006).  In this case, the intent was to 

use information gain to provide a reduced feature set that potentially increases the 

detection rate.  The information gain algorithm was used to analyze the entire Dataset 3 – 

all 26 original features.  In this case, the intent was to use information gain to provide a 

reduced feature set that potentially increases the detection rate.  The information gain 

algorithm suggested that the top seven attributes/features included 1) Compiler Type 

(1.69143), 2) Malware Type (1.51408), 3) XCHG (1.37264), 4) File Size (1.10192), 5) 

Encrypt Type (0.91679), 6) File Type (0.78658), and 7) Library Calls (0.71794).  Dataset 

3-3 used the full dataset and reduced the features to only the top seven features to 

potentially improve detection results.  Therefore, Dataset 3-3 used these seven features 

for detection within the DLMLP classifier.  Further, Compiler Type could be used as a 
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leading indicator attribute.  Dataset 3-3 then used Compiler Type with the DLMLP 

classifier to deliver experimental results.     

3. Controlled procedures and environment – the developed prototype environment 

and datasets were controlled to ensure the extracted feature dataset remained static over 

time and the automated feature extraction process remained unaltered (Rossow et al., 

2012). Training Datasets (Training Dataset 3-1, Training Dataset 3-2 and Training 

Dataset 3-3) and Test Datasets (Test Dataset 3-1, Test Dataset 3-2 and Test Dataset 3-3) 

remained unaltered during any and all testing.  Additional precautions were taken to 

ensure that the Test and Training Datasets 3-2 and 3-3 remained static after removal of 

extraneous features.  All datasets were exported in ARFF format after validation and 

manipulation using naming standard conventions identifying the dataset.   

4. Standard measurement approaches – a standard measurement approach was 

used to document and capture testing results.  Test results for Baseline testing (Dataset 3-

1), Reduced Feature Selection (Dataset 3-2), and Data Amplification (Dataset 3-3) were 

collected and captured.  Detection measurements were conducted for all tests.  Per the 

testing protocol, the study established a baseline detection rate for the DLMLP classifier.  

Subsequent tests results were captured and analyzed.  Results were analyzed using 

standard measurements including Accuracy (ACC), Correlation Coefficient (CC), True 

Positive Rate (sensitivity measure), and False Positive Rate (specificity measure).   As 

specified by the standard protocol, these measurements were captured as a permanent 

observational recording (Rossow et al., 2012).  

5. Weighting of features – as part of this testing protocol the inputs were 

manipulated and assessed.  Using the baseline dataset (Dataset 3-1), features were 
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removed based on an attribute selection algorithm (e.g. greedy stepwise) and then 

evaluated for DLMLP.  Likewise, using the baseline dataset (Dataset 3-1), features were 

removed based on the information gain for data amplification.  The three tests for 

DLMLP included DLMLP Baseline (Dataset 3-1), DLMLP Reduced Feature Selection 

(Dataset 3-2), and DLMLP Data Amplification (Dataset 3-3). 

6. Capturing testing results - All results were captured in terms test and 

measurement.  Each test (DLMLP Baseline, DLMLP Reduced Feature Selection, and 

DLMLP Data Amplification) was captured with the associated measurement - ACC, CC, 

True Positive Rate (TPR) and False Positive Rate (FPR).  

Table 20 DLMLP Baseline Classification Results 

Experimental Results   
DLMLP Baseline Dataset 3-1  
Correctly Classified 
Instances 

199,903 99.952% 

Incorrectly Classified 
Instances 

97 0.048% 

 

Table 21 DLMLP Baseline Experimental Results 

DLMLP Baseline 
Measurement Result 

True Positive Rate (TPR) 0.99994 
True Negative Rate (TNR) 0.99995 
False Positive Rate (FPR) 0.00005 
False Negative Rate (FNR) 0.00006 
Accuracy (ACC) 0.99994 
Correlation Coefficient (CC) 0.00001 
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Table 22 DLMLP Reduced Feature Selection Classification Results 

Experimental Results   
DLMLP Reduced 
Feature Selection 

Dataset 3-2  

Correctly Classified 
Instances 

199,996 99.998% 

Incorrectly Classified 
Instances 

4 0.002% 

 

Table 23 DLMLP Reduced Feature Selection Experimental Results 

DLMLP Reduced Feature Selection 
Measurement Result 

True Positive Rate (TPR) 0.99999 
True Negative Rate (TNR) 0.99998 
False Positive Rate (FPR) 0.00002 
False Negative Rate (FNR) 0.00001 
Accuracy (ACC) 0.99999 
Correlation Coefficient (CC) 0.00001 

 

Table 24 DLMLP Data Amplification Classification Results 

Experimental Results   
DLMLP Data 
Amplification 

Dataset 3-3  

Correctly Classified 
Instances 

199,999 99.9995% 

Incorrectly Classified 
Instances 

1 0.0005% 
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Table 25 DLMLP Data Amplification Experimental Results 

DLMLP Data Amplification 
Measurement Result 

True Positive Rate (TPR) 0.99999 
True Negative Rate (TNR) 1.00000 
False Positive Rate (FPR) 0.00000 
False Negative Rate (FNR) 0.00001 
Accuracy (ACC) 0.99999 
Correlation Coefficient (CC) 0.00001 

 

7. Graphing results - All test results were graphed and presented in terms test 

(DLMLP Baseline, DLMLP Reduced Feature Selection, and DLMLP Data 

Amplification) and measurement for True Positive Rate (TPR) and False Positive Rate 

(FPR).  The results are shown below.  Accuracy essentially followed the same trendline 

as TPR and was not graphed for that reason.  CC was a constant of .0001 across all three 

experiments DLMLP Benchmark, DLMLP Reduced Features and DLMLP Amplified 

Features and did not provide substantial value. 

 

Figure 7. DLMLP Graph Results 
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    8. Evaluating results – All test results were evaluated after each test.  Each test 

was analyzed with rigor to understand the ACC, CC, True Positive Rate (TPR) and False 

Positive Rate (FPR).       

Table 26 DLMLP Experimental Results 

 
Measurement 

 
DLMLP Baseline 

DLMLP 
Reduced 
Feature 
Selection 

DLMLP 
Data 

Amplification 

True Positive Rate 
(TPR) 

0.99994 0.99999 0.99999 

True Negative Rate 
(TNR) 

0.99995 0.99998 1.00000 

False Positive Rate 
(FPR) 

0.00005 0.00002 0.00000 

False Negative Rate 
(FNR) 

0.00006 0.00001 0.00001 

Accuracy (ACC) 0.99994 0.99999 0.99999 

Correlation 
Coefficient (CC) 

0.00001 0.00001 0.00001 

 

9. Test controls – All tests were conducted using the required test controls.  Test 

controls regulated the DLMLP test environment, DLMLP test data (Training Datasets 3-

1, 3-2, 3-3 and Test Datasets 3-1, 3-2, 3-3), and test results (DLMLP Baseline, DLMLP 

Reduced Feature Selection and DLMLP Data Amplification).   

Data Analysis  

 The purpose of this study was to evaluate the effective malware detection rates 

using multidimensional topological features with advanced cluster algorithms.  Previous 

research (Fraley & Figueroa, 2016) provided some insight into detection rates using 

multidimensional topological features with using advanced clustering algorithms.  
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However, previous research was limited to a few thousand files/samples.  This study 

greatly expanded both the training and test datasets.  Having larger datasets provided 

deeper insight into how each of the various algorithms perform given a limited set of 

topological features.  This study also provided insight into how algorithms perform given 

a full (26) and optimized features (6 or 7).  Experiments were performed with full data, 

reduced features and amplified features.  This process provided an understanding of how 

detection performed given some algorithm tuning.  This study established baselines for 

all three cluster algorithms (MB, IBk and DLMLP). The MB classifier out performed 

other algorithms (LSH and BP) in previous studies (Fraley & Figueroa, 2016).  However, 

given the larger dataset, both the IBk and DLMLP classifiers out performed MB in 

almost every respect.   

This study also provided a test case for detecting malware using multidimensional 

topological data.  The baseline testing included processing the full set of features that 

included file properties, static analysis and dynamic analysis.  The features include File 

Size, File Type, Malware Type, VM Aware, Compiler, Embedded Compiler, Compiler 

Type. Library Import/Export, Library Call, Encryption, Encrypt Type, and Op codes – 

ADD, AND, INC, LEA, MOV, NEG, OR, SUB, XOR, POP, JMP and XCHG.  The 

testing from this study supports the concept that effective malware detection can be 

achieved using multidimensional topological data.  Further, experimental testing has 

shown that a reduced feature set (6 or 7) delivered better and more effective detection 

rates than the full data set for this dataset.  The features that delivered optimal detection 

rates include: 1) File Size, 2) File Type, 3) Compiler Type, 4) Library Calls, 5) 

Encryption, 6) Malware Type and the Op Codes 6) XCHG or MOV.      
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 In terms of algorithm performance, IBk and DLMLP delivered impressive true 

positive test results given this dataset.  The IBk classifier scored almost a perfect 

detection rate with the Amplified Feature training and test dataset (Dataset 2-3).  The IBk 

true positive detection rate (.99999) has been validated and repeated several times to 

ensure the results.  This far exceeded the initial study expectations.  In addition, the study 

considered training dataset saturation and developed separate training datasets in order to 

not artificially increase detection rates.  The near perfect detection rate should also 

validate the selection of this algorithm for replacing LSH for the study.   

 Evaluating algorithm performance in terms of false positive rates, both IBk 

Amplified Data and DLMLP Amplified Feature delivered impressive results.  The false 

positive rates for both of these classifiers was near zero.  It is difficult to improve false 

positive rates of zero.  Again, several tests were repeated in order to validate these rates 

for both IBk and DLMLP. 

 It should be noted that both the IBk and DLMLP algorithms are expensive in 

terms of observed processing time.  The MB algorithm would typically process and 

deliver test results (200,000 samples) in under 240 seconds.  The IBk and DLMLP by 

contrast would process and deliver results in excess of 2,800 and 10,000 seconds 

respectively.  The infrastructure was not tuned for processing any algorithm.  Memory 

allocation and processor allocations remained constant and unchanged throughout the 

testing process.      

 Lastly, ACC and CC were not discriminators for the various algorithms.  It was 

originally thought that ACC and CC would provide greater insight into algorithm 

performance over and above true positive and false positive rates.  However, because of 
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the high true positive and low false positive rates, the evaluation of algorithms based on 

ACC and CC was not as useful as anticipated.       

Findings 

 There were a number of substantial findings from this study.  The study 

does answer the two basic research questions posed previously.   

1) Can detection rates be improved by increasing the quality and quantity of 

multidimensional features for the machine learning advanced clustering 

algorithms from file properties, static and dynamic analysis? 

Research findings suggest that reduced multidimensional topological feature set using file 

features, static and dynamic analysis delivered better overall results than the full dataset 

(7 feature vs 26 features).  The reduced and amplified datasets delivered better results.  

While all three algorithms delivered above target results, less or selected features 

provided better detection results (99.99%) across all three algorithms.   

2) Which of the machine learning advanced clustering algorithms performed 

better given the multidimensional features from file properties, static and 

dynamic analysis?  

It should be stated that the experiments conducted for this study demonstrated that 

multidimensional topological data can be used to improve malware detection.  The 26 

selected features did help to establish and improve overall detection rates.  The 

experimental approach demonstrated impressive detection rates of 99.99% (MB, IBk and 

DLMLP) for all experimental datasets.  The lowest detection rate delivered in 

experimental testing was 99.43% (MB Baseline). The experimental detection rates 
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produced delivered far above the 81.25% target for polymorphic malware (Amos et al., 

2013).   

It should be noted that this study was concerned with recent malware (within the 

previous 18 months) and used a malware dataset specifically targeting Microsoft 

operating systems.  Lastly, feature selection and data amplification both reduced the 

number of features processed by the algorithm.  In performing the research for both the 

IBk and DLMLP algorithms, the theoretical aspects of both algorithms should perform 

well with an abundance of data.  It was thought that the 26 multidimensional features 

would provide sufficient data features to enhance classifier performance.  However, both 

algorithms performed incredibly well given a reduced and amplified dataset.  Both 

produced near perfect true positive rates (99.99%) and near zero false positive rates.               

Summary of Findings 

The goal of this study was to develop an experimental approach for improved 

detection for polymorphic malware.  The experimental detection rates delivered for this 

study were as high as 99.99% and the low was 99.43%.  These experimental testing 

results far exceeded the current detection rate of 81.25% for polymorphic malware 

(Amos et al., 2013). The hypothesis for the study was that detection could be achieved by 

combining file properties, static and dynamic analysis features.  Experimental testing 

with this dataset delivered effective detection using file properties, static and dynamic 

analysis features. This study leveraged the SCED protocol for performing various 

experimental tests. The test results were then quantitatively examined and evaluated.  

This study leveraged previous quantitative experiments for supervised machine learning 
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for malware research (Boro, et al., 2012; Pradesh, 2014) to better understand how 

multidimensional topological information can be utilized for malware detection.    

The study’s target was to develop an approach that would deliver an effective 

detection rate of higher than 81.25% using multidimensional topological data for 

malware detection.  The prototype system performed various feature extraction and 

assembled the datasets for training and testing.  The study sought to establish baselines 

for three advanced cluster algorithms (MB, IBk and DLMLP) and then manipulate 

feature weighting to exceed the target effective rate.  In all cases (MB, IBk and DLMLP) 

the feature weighting delivered better detection performance.   
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Chapter 5  

Conclusions, Implications, Recommendations, and Summary 

Conclusions 

There were a number conclusions reached in for this study.  The study 

demonstrated that multidimensional topological data can be effectively used for 

detection.  Secondly, the study demonstrated that the various algorithms used delivered 

solid detection results using multidimensional topological data.   The study also 

demonstrated that high malware detection rates can be achieved using reduced or 

amplified multidimensional topological features.  A brief explanation for each conclusion 

is provided below.     

This study produced experimental evidence that multidimensional topological 

data can be used for improved malware detection.  The initial premise for the study was 

that by combining multidimensional features from file type, static and dynamic analysis 

with machine learning effective malware detection rates could be improved.  

Experimental testing with three algorithms successfully demonstrated detection rates 

greater than 99.99% with the experimental datasets.  In addition, the algorithms did not 

suffer from an increase in false positive rates which is usually the case with algorithms 

that produce high detection rates.  Given the high true positive rates and low false 

positive rates it can be safely stated that multidimensional topological data can be used to 

improve detection rates.  

The study also produced highly effective malware detection rates by leveraging 

the advanced algorithms (MB, IBk and DLMLP).  All three algorithms produced and 
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delivered effective detection results given the experimental datasets:  MB (99.985%), IBk 

(100%) and DLMLP (99.9995%).   All three algorithms produced and delivered low false 

positive rates given the experimental datasets:  MB (0.00002%), IBk (0.0%) and DLMLP 

(0.0%).   It can be safely concluded that these algorithms produced effective detection for 

the experimental datasets. 

The study also produced evidence that very high malware detection rates can be 

achieved with reduced or amplified features.  IBk and DLMLP both produced 99.999% 

effective detection rates with using a minimum number of features (6 or 7).  Both the IBk 

and DLMLP algorithms are designed to process volumes of data.  It was assumed that 

these algorithms would produce better results with more data.  The opposite was found to 

be true for this study.  Both algorithms produced better effective detection rates with the 

reduced features or amplified dataset.  In addition, neither algorithm suffered from 

increased in false positive rate which normally is associated with algorithms that deliver 

higher detection rates. Therefore, it can be safely concluded that given the high true 

positive rate and the low false positive rate for both IBk and DLMLP it can be safely 

concluded that high malware detection rates can be achieved with reduced or amplified 

features leveraging multidimensional topological data with advanced algorithms.  

As seen above, there are three valuable conclusions reached for this study.  The 

conclusions reached for this study include leveraging multidimensional topological for 

detection, utilizing advanced algorithms to improve detection, and using reduced or 

amplified features produced higher than anticipated detection rates.  These three 

conclusions are supported by both the experimental protocol and test results from various 

experiments presented earlier.     
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Implications 

There are two major implications that can be gleaned from this research.  First, 

malware detection can be accurately detected using multidimensional topological data.  

This means that a combination of file properties, static and dynamic analysis did provide 

impressive detection rates for this study.  The implication is that detection for 

polymorphic malware targeting Microsoft platforms can be readily achieved through 

extracting multidimensional features and subjecting those features to a clustering 

algorithm.  This implication may extend or augment current endpoint detection 

techniques and/or approaches. 

The second implication is that endpoint protection could be greatly improved 

using reduced or amplified multidimensional topological features.  The experimental 

results with these datasets demonstrate that by using a few features (reduced or amplified 

features) with advanced algorithms did produce impressive malware detection rates – 

approaching 100%.  Further, the implication of using only a few features (6 or 7) for 

detection purposes for executable files may change or enhance how endpoint protection is 

currently performed.  Endpoint detection for malware could embed a feature extraction 

and machine learning modules to process minimal features.    

These two major implications for malware detection may change endpoint 

strategies.  Machine learning is being incorporated into many commercial products.  The 

study demonstrates that endpoint protection could and should use multidimensional data 

for advanced protection.  Secondly, endpoint protection could use a few or minimal 

number of features (6 or 7) for detection purposes.  The study also illustrates the case that 

reduced features or amplified features could dramatically improve malware detection at 
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the endpoint. These two implications could easily improve or enhance the way endpoint 

detection is conducted today across the enterprise.      

Recommendations 

There are three areas in which additional research is recommended.  Two areas 

deal with an understanding the various functions or opcodes inherent in the executable.  

This study extracted and counted the associated opcode for each sample through a 

dynamic analysis process.  For each sample, all opcodes were extracted and counted on 

an execution basis.  This study focused on Bilar’s (2007) top twelve Op Codes.  The total 

universe of opcodes is approximately 398 depending on the code set.  Just as Bilar (2007) 

observed, there were samples that executed a high number of opcodes.  However, in 

some cases the number of instances a particular opcode was executed was incredibly high 

in comparison to other samples.  As an example, one sample executed ADD nearly 

10,000 times.  Likewise, other opcodes such as LEA was executed over 7,000 times.  The 

average for most opcodes was under 1,000.  While not the focus of this study, further 

research could evaluate why the execution of some or all opcodes were performed so 

many times.  As it turns out, the particular sample in question was indeed malware.  

Additional research needs to conducted to further understand whether this is typical for 

poorly written malware thus making it noisy or is it something else more menacing like 

performing reconnaissance activities for detection at the endpoint.  It is interesting from a 

research point of view as to why these opcodes are executed so many times.  

Similarly, additional research needs to be conducted for two specific Op Codes: 

MOV and XCHG.  This study focused Bilar’s top 12 Op Codes.  Bilar’s research 

demonstrated that these 12 Op Codes represent 95% of the malicious Op Codes.  Bilar’s 
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(2007) research profiled ADD, AND, INC, LEA, MOV, NEG, OR, SUB, XOR, POP, 

JMP and XCHG.  In performing attribute analysis, reduced feature selection and data 

amplification, MOV and XCHG were the only two Op Codes that were selected from an 

attribute perspective.  Feature analysis routinely highlighted MOV and XCHG as 

interesting attributes.  This study used the MOV and XCHG attributes in both reduced 

feature selection and amplified features to perform advanced detection.  These two 

attributes produced highly effective detection rates for several experiments.  These two 

attributes provided improved detection across all algorithms in this study.  Additional 

research should be conducted to understand the nature of both Op Codes for malware and 

benign samples.     

The last research area is single-layer packed and multi-layer packed executables.  

A substantial number of samples for this study used packing algorithms to avoid or evade 

further analysis.  Packing algorithms commonly used for packing malware and hiding 

execution routines (Jeong, Choo, Lee, Bat-Erdene, & Lee, 2010).  As previously 

discussed packing is also utilized to protect intellectual property for legitimate purposes.  

Packed executables essentially encode the data sections so that dynamic analysis cannot 

view results (Jeong et al., 2010). As these executables are loaded into memory, packed 

executables dynamically change the size and content of the data (Jeong et al., 2010).  

There were a number of samples in this study that exhibited single-layer packing, re-

packing and multi-layer packing.  This made feature extraction more difficult or in some 

cases impossible.  This study did not find a single benign sample that used multi-layer 

packing.  Therefore, additional research should be conducted to understand the nature of 

single-layer packed and multi-layer packed executables for malware detection.  It is 
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believed that classification of packing algorithms could lead to better detection for 

advanced malware. 

Summary 

Malware represents some of the most serious security concerns for today’s 

Internet.  Security breaches and cyber-attacks can be directly attributed to malware or 

multi-stage cyber-attacks.  Malware can compromise networks and computers in the form 

of botnets, viruses, worms, ransomware and advanced persistent threats (APTs).  These 

cyber-attacks are launched using targeted and advanced malware techniques to steal 

personal, proprietary of financial information.  The high number of attacks and the 

associated negative notoriety make malware one of the most popular areas for advanced 

research.  Much of today’s advanced research has been concentrated on developing 

techniques to collect, study, and mitigate malware. This research focused on detecting 

“real” malware and samples found “live” on the internet.   As improved detection 

becomes a reality – mitigation or elimination of malware for end-points can be greatly 

enhanced.   Unfortunately, current host-based detection approaches that leverage 

signature-based detection is largely ineffective for new polymorphic malware.  

Polymorphic malware avoids or evades signature detection by using advanced 

obfuscation or encryption techniques.  The goal of this research was to address these 

malware detection shortcomings.  New research was conducted to develop new dynamic 

detection approaches.  New approaches demonstrated that using machine learning with 

advanced algorithms can correctly and efficiently identify potential malware threats.    

This study demonstrated a novel malware detection approach that provides 

improved detection for polymorphic malware.  The research should enhance and augment 
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traditional end-point detection approaches.  This experimental study extracted key 

features from file properties, static and dynamic analysis.  Machine learning using 

advanced algorithms correctly determined the likelihood of files (samples) to be benign 

(good) or malicious (bad).  The prototype environment analyzed malware executables 

(program) in a controlled environment in order to better understand behaviors, function 

calls and the inclusion of dynamic libraries.  Features were extracted and assembled for 

further analysis by three different cluster algorithms.  Experiments were conducted to 

better understand the malware threat landscape in terms of file properties, static and 

dynamic analysis.  Foundational and experimental reviews of previous research literature 

was conducted and summarized.   

Detecting polymorphic and metamorphic malware continues to be a challenge for 

the security community.  A majority of the today’s security research is focused on 

developing enhanced detection using techniques that collect, study, and mitigate 

malicious code  (Kolbitsch et al., 2009). However, new polymorphic malware and the 

detection evading techniques render many of the current signature protections useless and 

therefore leave end-points unprotected (Rodríguez-Gómez et al., 2013).  The speed at 

which polymorphic malware is advancing threatens enterprise computing and internet 

operations (Symantec Corporation, 2016).  Being able to detect polymorphic, 

metamorphic and zero-day malware requires advanced detection techniques that provide 

rapid adaptation, scalability and produce low false positive rates (Borojerdi & Abadi, 

2013).  This results from this study offers an attractive alternative for detecting 

polymorphic malware specifically targeting Windows operating systems.  This study 

performed analysis on over a sample population of 2.5M files.  This study assembled a 
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single data set containing known malware, known benign and unknown samples, 

performing feature extraction and developed a prototype environment for detection that 

far exceeded today’s accepted baseline (Amos et al., 2013).  This study successfully 

demonstrated a feature extraction methodology, a prototype detection environment and 

conducted a number of experiments within an accepted testing protocol.   

This study developed a unique detection methodology using multidimensional 

topological features in a machine learning environment.  The ability to extract unique 

multidimensional topological features utilizing file properties, static and dynamic 

analysis is a new approach for feature extraction.  The study uses this information to 

develop a quantitative experimental prototype using multidimensional topological data 

with machine learning utilizing advanced algorithms.  This approach and every 

experiment conducted for this study provided ample evidence based on the experimental 

dataset delivered improved detection for polymorphic malware far above 81.25%.  All 

experiments used quantitative methods to provide objective measurements for 

experimental results as described by Babbie (2010).  Experimental data collection, data 

analysis and presentation of results was conducted using standard and accepted 

computational techniques (Babbie, 2010). The study was carefully designed and executed 

using the SCED testing protocol.  The study paid particular attention to assembly of 

representative datasets and the execution of the various experiments within the testing 

protocol.  The testing methodology followed an approach that can easily be reproduced.  

All experiments were conducted in a safe environment such that the malware could not 

escape and infect the research environment (Rossow, 2013).  The experimental prototype 
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was designed to assemble, capture, analyze and evaluate results with the rigorous 

quantitative evaluation measures discussed by Mohaisen and Alrawi (2015).    

The goal of this study was to develop and demonstrate an experimental approach 

for improved detection for polymorphic malware that exceeded the effective detection 

rate of 81.25% for polymorphic malware (Amos et al., 2013).  The experimental 

detection rate delivered across all three algorithms exceeded 99.99%.  A number of the 

experiments (IBK & DLMLP) delivered effective detection results as high as 99.999%.  

The lowest effective rate observed through testing 99.43% for MB.  The hypothesis for 

the study was that detection could be achieved by combining file properties, static and 

dynamic analysis features.  The study successfully demonstrated through multiple 

experiments that multidimensional topological can deliver effective malware detection.  

Experimental testing with this dataset delivered effective detection using file properties, 

static and dynamic analysis features. This study leveraged the SCED protocol for 

performing and documenting various experimental tests. The test results were then 

quantitatively examined, evaluated, analyzed and presented testing outcomes.  This study 

leveraged previous quantitative experiments for supervised machine learning for malware 

research (Boro, et al., 2012; Pradesh, 2014) to better understand how multidimensional 

topological information can be utilized for malware detection.    

The study’s target was to develop an approach that would deliver an effective 

detection rate of higher than 81.25% using multidimensional topological data for 

malware detection.  The developed prototype system performed various feature 

extraction and assembled the datasets for training and testing.  The study sought to 

establish baselines for three advanced cluster algorithms (MB, IBk and DLMLP) and 
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then manipulate feature weighting to exceed the target effective rate.  In all cases, each 

algorithm at baseline testing delivered higher than target detection rates.  Additionally, 

feature weighting through reduced feature selection and amplified features delivered 

substantially better detection performance over baseline results.  

Although this study was successful in addressing the research goal there were a 

number of important conclusions, implications and recommendations that stemmed from 

this research. In terms of conclusions, this study produced three important conclusions: 1) 

multidimensional topological features did effectively demonstrate effective malware 

detection with machine learning algorithms, 2) advanced algorithms using 

multidimensional topological features delivered impressive detection results (MB 

(99.985%), IBk (100%) and DLMLP (99.9995%)) and 3) advanced algorithms (IBk and 

DLMLP) with reduced or amplified features delivered near perfect (99.9999%) malware 

detection results.  These three conclusions provide greater insight into how 

multidimensional topological can be used to enhance endpoint detection.      

There were two major implications from this study.   The first implication is that 

polymorphic malware targeting Microsoft platforms can be readily detected through 

machine learning with multidimensional topological data.  This is the first study to 

evaluate and successfully demonstrate malware detection using multidimensional 

topological data with machine learning.  The second implication is that endpoint 

protection could potentially be augmented with minimal features (6 or 7) and machine 

learning for malware detection.  This implication could change or expand how detection 

is conducted at the endpoint.  Both implications could potentially expand enterprise 
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malware detection by commercial security endpoint products as well as network 

boundary devices scanning and evaluating executable transport at the network layer.     

There are three areas in which additional research was recommended.  Two of the 

three areas deal with executable functions or Opcodes.  This study extracted and studied 

over 2M samples through a dynamic analysis process.  Leveraging prior research (Bilar, 

2007), only the top twelve Op Codes were collected, analyzed and counted.  In some 

samples, these Op Codes were executed in abnormally high numbers (e.g. ADD nearly 

10,000 times).  Abnormally high counts may be another indication of maliciousness for 

detecting malware.   The second area requiring additional research is for two specific Op 

Codes: MOV and XCHG.  In over 2M samples, using reduced feature selection and data 

amplification these two Op Codes were found to provide additional indications of 

maliciousness for this dataset.  However, additional research would have to be conducted 

to understand the nature of both Op Codes for malware and benign samples.  The third 

research area involves packed executables.  This study observed over 25% of the sample 

analyzed used either single-layer packed or multi-layer packed executables.  Packing 

algorithms are commonly used for packing malware and hiding execution routines (Jeong 

et al., 2010).  Packed executables encode aspects of execution to hide routines so that 

dynamic analysis cannot view results. This study did not find a single benign sample that 

used multi-layer packing.  Therefore, additional research should be conducted to 

understand the frequency of single-layer packed and multi-layer packed executables for 

malware detection. (Kim & Hong, 2014). (Zhu et al., 2012)  
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Appendix A – Advanced Detection Studies 

Lead 
Author 

Year Study 
Type 

 Dataset   Malware 
% 

Labeled 
Samples 

Static 
Analysis 

Dynamic 
Analysis 

Park, Y. 
(2010) 

2010 Experiment 200 55% Yes Yes   Yes 

Shamili, A. S. 
(2010, 
August). 

2010 Quantitative 
Experiments  

897,922 33% No None None 

Sun, X. 
(2010) 

2010 Experiment 90 67% Yes None Yes 

Wang, Z. H. 
(2010, May) 

2010 Iterative 
Experiment 

5,223 68% Yes Yes None 

Ye, Y. 
(2010).  

2010 Experiment 50,000 70% Yes None None 

Caballero, J. 
(2011) 

2011 Experiment 313,791 Not 
Specified 

Yes Yes None 

Jacob, G. 
(2011) 

2011 Experiment 37,572 Not 
Specified 

Yes None Yes 

Jang, J. 
(2011) 

2011 Experiment 20,000 100% Yes Yes Yes 

Kolbitsch, C. 
(2011) 

2011 Experiment Not 
Specified 

Not 
Specified 

Yes Yes Yes 

Rossow, C. 
(2011) 

2011 Experiment 100,000 85% Yes Yes None 

Zhang, J. 
(2011) 

2011 Experiment Not 
Specified 

Not 
Specified 

Yes None None 

Chen, Y. 
(2012) 

2012 Experiment 10,000 60% Yes Yes None 

Eskandari, M. 
(2012). 

2012 Experiment 956 52% Yes Yes Yes 

Ghiasi, M. 
(2012) 

2012 Experiment 1,211 68% Yes None Yes 

Zhuang, W. 
(2012) 

2012 Experiment 75,000 78% Yes None None 

Borojerdi, H. 
R. (2013) 

2013 Experiment 360 67% Yes None Yes 

Jha, S. (2013) 2013 Experiment 961 95% Yes None Yes 
Naval, S. 
(2013) 

2013 Experiment 1,296 37% Yes Yes None 

Ponomarev, 
S. (2013) 

2013 Experiment 1,544 54% Yes Yes None 

Tsuruta, H. 
(2013) 

2013 Experiment 23,234,538 27% Yes Yes None 
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Lead 
Author 

Year Study 
Type 

 Dataset   Malware 
% 

Labeled 
Samples 

Static 
Analysis 

Dynamic 
Analysis 

Wang, H. T., 
Wei, T. E., & 
Lee, H. M. 
(2013) 

2013 Experiment 3,000 96% Yes Yes Yes 

Xiao, X. 
(2013) 

2013 Experiment 3,401 53% Yes None Yes 

Zolotukhin, 
M. (2013) 

2013 Experiment 1,089 55% Yes Yes None 

Adebayo, 
O.S. (2014) 

2014 Empirical 
Study 

1,500 67% Yes Yes None 

Dornhackl, H. 
(2014) 

2014 Observation Not 
Specified 

Not 
Specified 

No None None 

El Attar, A. 
(2014) 

2014 Experiment Not 
Specified 

Not 
Specified 

No None None 

Elaziz, P. E. 
A. (2014) 

2014 Experiment 80,077 Not 
Specified 

No None None 

Li, J. (2014) 2014 Experiment Not 
Specified 

Not 
Specified 

No None None 

Pramono,Y.
W.T. (2014, 
August) 

2014 Experiment 1,059,419 Not 
Specified 

No None None 

Pramono,Y.
W.T. (2014, 
September) 

2014 Experiment Not 
Specified 

Not 
Specified 

No None None 

Li, Y.H. 
(2015) 

2015 Experiment Not 
Specified 

Not 
Specified 

No None Yes 

Hansen, S.S. 
(2016) 

2016 Experiment 270,837 100% Yes None Yes 
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Appendix B – Cuckoo Installation and Configuration 

Eugene Kolo’s blog  - Provided useful information for installing and configuring Cuckoo 
(Kolo, 2016).   

https://eugenekolo.com/blog/installing-and-setting-up-cuckoo-sandbox/ 

Installation dependencies for Cuckoo 

sudo apt-get install python   

sudo apt-get install mongodb   

sudo apt-get install g++   

sudo apt-get install python-dev python-dpkt python-jinja2 python-magic python-
pymongo   

python-gridfs python-libvirt python-bottle python-pefile python-chardet python-pip   

sudo apt-get install libxml2-dev libxslt1-dev   

sudo pip2 install sqlalchemy yara   

sudo pip2 install cybox==2.0.1.4   

sudo pip2 install maec==4.0.1.0   

sudo pip2 install python-dateutil 

sudo apt-get install python-dev libfuzzy-dev   

sudo pip2 install pydeep 

sudo apt-get install tcpdump # If not installed   

# Allow tcpdump to read raw TCP data without root: 

sudo setcap cap_net_raw,cap_net_admin=eip /usr/sbin/tcpdump 

wget http://downloads.volatilityfoundation.org/releases/2.4/volatility-2.4.zip && unzip 
volatility-2.4.zip && cd volatility-2.4   

sudo python setup.py install   

# Install the libraries that volatility wants: 

sudo pip2 install distorm3   

 

  

https://eugenekolo.com/blog/installing-and-setting-up-cuckoo-sandbox/
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Install Cuckoo and Virtual Box 

git clone git://github.com/cuckoosandbox/cuckoo.git   

wget http://download.virtualbox.org/virtualbox/5.0.14/virtualbox-5.0_5.0.14-
105127~Ubuntu~trusty_i386.deb   

sudo dpkg -i virtualbox-5.0_5.0.14-105127~Ubuntu~trusty_i386.deb   

sudo apt-get install -f   

 
Networking 

sudo iptables -A FORWARD -o eth0 -i vboxnet0 -s 192.168.56.0/24 -m conntrack --
ctstate NEW -j ACCEPT;   

sudo iptables -A FORWARD -m conntrack --ctstate ESTABLISHED,RELATED -j 
ACCEPT;   

sudo iptables -A POSTROUTING -t nat -j MASQUERADE;   

sudo sysctl -w net.ipv4.ip_forward=1;   
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