39 research outputs found

    A Commemorative Issue in Honor of Professor Nick Hadjiliadis: Metal Complex Interactions with Nucleic Acids and/or DNA

    Get PDF
    This Special Issue of the International Journal of Molecular Science comprises a comprehensive study on “Metal Complex Interactions with Nucleic Acids and/or DNA”. This Special Issue has been inspired by the important contribution of Prof. Nick Hadjiliadis to the field of palladium or/and platinum/nucleic acid interactions. It covers a selection of recent research and review articles in the field of metal complex interactions with nucleic acids and/or DNA. Moreover, this Special Issue on "Metal Complexes Interactions with Nucleic Acids and/or DNA" provides an overview of this increasingly diverse field, presenting recent developments and the latest research with particular emphasis on metal-based drugs and metal ion toxicity

    Organophosphorus Chemistry 2018

    Get PDF
    Organophosphorus chemistry is an important discipline within organic chemistry. Phosphorus compounds, such as phosphines, trialkyl phosphites, phosphine oxides (chalcogenides), phosphonates, phosphinates and >P(O)H species, etc., may be important starting materials or intermediates in syntheses. Let us mention the Wittig reaction and the related transformations, the Arbuzov- and the Pudovik reactions, the Kabachnik–Fields condensation, the Hirao reaction, the Mitsunobu reaction, etc. Other reactions, e.g., homogeneous catalytic transformations or C-C coupling reactions involve P-ligands in transition metal (Pt, Pd, etc.) complex catalysts. The synthesis of chiral organophosphorus compounds means a continuous challenge. Methods have been elaborated for the resolution of tertiary phosphine oxides and for stereoselective organophosphorus transformations. P-heterocyclic compounds, including aromatic and bridged derivatives, P-functionalized macrocycles, dendrimers and low coordinated P-fragments, are also of interest. An important segment of organophosphorus chemistry is the pool of biologically-active compounds that are searched and used as drugs, or as plant-protecting agents. The natural analogue of P-compounds may also be mentioned. Many new phosphine oxides, phosphinates, phosphonates and phosphoric esters have been described, which may find application on a broad scale. Phase transfer catalysis, ionic liquids and detergents also have connections to phosphorus chemistry. Green chemical aspects of organophosphorus chemistry (e.g., microwave-assisted syntheses, solvent-free accomplishments, optimizations, and atom-efficient syntheses) represent a dynamically developing field. Last, but not least, theoretical approaches and computational chemistry are also a strong sub-discipline within organophosphorus chemistry

    Bioaccumulation potential of 'Meeker' and 'Willamette' raspberry (Rubus idaeus L.) fruits towards macro- and microelements and their nutritional evaluation

    Get PDF
    Raspberry (Rubus idaeus L.) is the most important type of berry fruit in the Republic of Serbia. The bioaccumulation factor (BF) for the elements detected in the fruits of the raspberry cultivars 'Willamette' and 'Meeker' was calculated to determine their bioaccumulation potential. In addition, the nutritional quality of fruits in relation to nutritionally essential elements was evaluated and compared with the recommended daily intake. For determining the concentrations of 19 macro- and microelements in fruits and the soil, the analytical technique of optical emission spectrometry with inductively coupled plasma was used. Among the analyzed elements, As, Cd, Co, Cr, Li and Mo were below the limit of detection in the fruits of both raspberry cultivars, whereas Na and Ni were detected only in fruits of the 'Meeker' cultivar. All analyzed elements were detected in the soil. The results of the work indicated the high potential of the studied cultivars to accumulate nutritional elements K and Ca. In both raspberry cultivars, there were no substantial differences in the bioaccumulation of most elements. However, two elements (B and Mn) can be singled out; the BF for B in the 'Willamette' fruit was 3 times lower compared to the BF in the 'Meeker' fruit, whereas, the BF value for Mn in the 'Willamette' fruit was almost 8 times higher compared to the BF value for the 'Meeker' fruit. Furthermore, the cultivars did not tend to accumulate potentially toxic elements such as Ba, Co, Cu and Ni. The nutritional evaluation revealed that the studied raspberry fruits are a good source of K, Ca, Mg, Fe, Mn and Cu. Based on the BF values, differences observed in the accumulation of B, Ba, Na, Ni and Mn may be attributed to the characteristics of the cultivars

    Computational understanding of heterocyclisation reactions and synthesis of fluorinated isoquinolines

    Get PDF
    275 p.The present thesis deals with three different topics that have in common the formation of carbo- and heterocycles. The whole work is organized as a synergy of experimental and computational studies to provide a deep understanding of the systems of interest.The first chapter contains an introduction about computational chemistry with a particular focus on DFT and its application. The second chapter regards asymmetric catalysis and includes two works made in collaboration with the group of Prof. Palomo at the Universidad del País Vasco. Bifunctional catalysts are employed to afford good levels of stereoselectivity in the alpha-functionalization of challenging substrates, as substituted dienolates and trienolates, with olefins. Computational studies were performed mainly to rationalize the role of the catalyst. The third chapter in collaboration with the group of Prof. E. Occhiato at the Universitá degli Studi di Firenze presents two examples of gold catalysis applied to the [3,3]-rearrangement/Nazarov reaction of propargylic esters and the tandem Claisen Rearrangement/Hydroarylation reaction of propargyl vinyl ethers. The mechanism of the reactions were studied computationally, as well as the effect of particular features in the substrates or in the catalysts. The last two chapters concern the synthesis of fluorinated isoquinolines and computational studies on particular issues encountered experimentally. The strategy employed is a two step reaction that includes a Rh-catalyzed CH activation of oximes with difluoroalkenes and an electrocyclisation

    Visible-to-NIR-Light Activated Release: From Small Molecules to Nanomaterials

    Get PDF
    Photoactivatable (alternatively, photoremovable, photoreleasable, or photocleavable) protecting groups (PPGs), also known as caged or photocaged compounds, are used to enable non-invasive spatiotemporal photochemical control over the release of species of interest. Recent years have seen the development of PPGs activatable by biologically and chemically benign visible and near-infrared (NIR) light. These long-wavelength-absorbing moieties expand the applicability of this powerful method and its accessibility to non-specialist users. This review comprehensively covers organic and transition metal-containing photoactivatable compounds (complexes) that absorb in the visible- and NIR-range to release various leaving groups and gasotransmitters (carbon monoxide, nitric oxide, and hydrogen sulfide). The text also covers visible- and NIR-light-induced photosensitized release using molecular sensitizers, quantum dots, and upconversion and second-harmonic nanoparticles, as well as release via photodynamic (photooxygenation by singlet oxygen) and photothermal effects. Release from photo-activatable polymers, micelles, vesicles, and photoswitches, along with the related emerging field of photopharmacology, is discussed at the end of the review

    Non-covalent interactions in organotin(IV) derivatives of 5,7-ditertbutyl- and 5,7-diphenyl-1,2,4-triazolo[1,5-a]pyrimidine as recognition motifs in crystalline self- assembly and their in vitro antistaphylococcal activity

    Get PDF
    Non-covalent interactions are known to play a key role in biological compounds due to their stabilization of the tertiary and quaternary structure of proteins [1]. Ligands similar to purine rings, such as triazolo pyrimidine ones, are very versatile in their interactions with metals and can act as model systems for natural bio-inorganic compounds [2]. A considerable series (twelve novel compounds are reported) of 5,7-ditertbutyl-1,2,4-triazolo[1,5-a]pyrimidine (dbtp) and 5,7-diphenyl- 1,2,4-triazolo[1,5-a]pyrimidine (dptp) were synthesized and investigated by FT-IR and 119Sn M\uf6ssbauer in the solid state and by 1H and 13C NMR spectroscopy, in solution [3]. The X-ray crystal and molecular structures of Et2SnCl2(dbtp)2 and Ph2SnCl2(EtOH)2(dptp)2 were described, in this latter pyrimidine molecules are not directly bound to the metal center but strictly H-bonded, through N(3), to the -OH group of the ethanol moieties. The network of hydrogen bonding and aromatic interactions involving pyrimidine and phenyl rings in both complexes drives their self-assembly. Noncovalent interactions involving aromatic rings are key processes in both chemical and biological recognition, contributing to overall complex stability and forming recognition motifs. It is noteworthy that in Ph2SnCl2(EtOH)2(dptp)2 \u3c0\u2013\u3c0 stacking interactions between pairs of antiparallel triazolopyrimidine rings mimick basepair interactions physiologically occurring in DNA (Fig.1). M\uf6ssbauer spectra suggest for Et2SnCl2(dbtp)2 a distorted octahedral structure, with C-Sn-C bond angles lower than 180\ub0. The estimated angle for Et2SnCl2(dbtp)2 is virtually identical to that determined by X-ray diffraction. Ph2SnCl2(EtOH)2(dptp)2 is characterized by an essentially linear C-Sn-C fragment according to the X-ray all-trans structure. The compounds were screened for their in vitro antibacterial activity on a group of reference staphylococcal strains susceptible or resistant to methicillin and against two reference Gramnegative pathogens [4] . We tested the biological activity of all the specimen against a group of staphylococcal reference strains (S. aureus ATCC 25923, S. aureus ATCC 29213, methicillin resistant S. aureus 43866 and S. epidermidis RP62A) along with Gram-negative pathogens (P. aeruginosa ATCC9027 and E. coli ATCC25922). Ph2SnCl2(EtOH)2(dptp)2 showed good antibacterial activity with a MIC value of 5 \u3bcg mL-1 against S. aureus ATCC29213 and also resulted active against methicillin resistant S. epidermidis RP62A

    Comprehensive Overview of Bottom-up Proteomics using Mass Spectrometry

    Full text link
    Proteomics is the large scale study of protein structure and function from biological systems through protein identification and quantification. "Shotgun proteomics" or "bottom-up proteomics" is the prevailing strategy, in which proteins are hydrolyzed into peptides that are analyzed by mass spectrometry. Proteomics studies can be applied to diverse studies ranging from simple protein identification to studies of proteoforms, protein-protein interactions, protein structural alterations, absolute and relative protein quantification, post-translational modifications, and protein stability. To enable this range of different experiments, there are diverse strategies for proteome analysis. The nuances of how proteomic workflows differ may be challenging to understand for new practitioners. Here, we provide a comprehensive overview of different proteomics methods to aid the novice and experienced researcher. We cover from biochemistry basics and protein extraction to biological interpretation and orthogonal validation. We expect this work to serve as a basic resource for new practitioners in the field of shotgun or bottom-up proteomics

    Visible-light metallaphotoredox strategies for organic transformations through the cleavage of Csp3-Cl bonds

    Get PDF
    Recentment, la generació de radicals actius mitjançant metodologies fotocatalítiques amb llum visible ha permès la construcció d’una gran varietat d’enllaços CC. La inèrcia dels cloroalcans ha impedit el seu ús com a socis d'acoblament predominants tant en reaccions d'acoblament creuat convencionals com fotocatalítiques. De fet, s’han desenvolupat escassos exemples que utilitzin clorurs d’alquil inactivats com a fragments de síntesi, els quals presenten limitacions a l’hora d’aplicar-se de manera general. En aquesta direcció, aquesta tesi descriu el desenvolupament d’una nova família de complexos tetradentats de Co i Ni capaços d’activar diferents clorurs d’alquil. La disponibilitat, versatilitat i modelatge d’aquests lligands ens permet la modificació controlada de la primera esfera de coordinació del metall a partir del canvi de les propietats electròniques i estructurals del lligand. La col.lecció de divuit nous complexos de Co i Ni significa un nou escenari per al desenvolupament de metodologies sintètiques.Recientemente, la generación de radicales activos mediante metodologías fotocatalíticas con luz visible ha permitido la construcción de una gran variedad de enlaces CC. La inercia de los cloroalcanos ha impedido su uso como socios de ensamblaje predominantes tanto en reacciones de ensamblaje cruzado convencionales como fotocatalíticas. De hecho, se han desarrollado escasos ejemplos que utilicen cloruros de alquilo inactivados como fragmentos de síntesis, que presentan limitaciones a la hora de aplicarse de forma general. En esta dirección, esta tesis describe el desarrollo de una nueva familia de complejos tetradentados de Co i Ni capaces de activar diferentes cloruros de alquil. La disponibilidad, versatilidad y modelado de estos ligandos permite la modificación controlada de la primera esfera de coordinación del metal a partir del cambio de las propiedades electrónicas y estructurales del ligando. La colección de dieciocho nuevos complejos de Co i Ni significa un nuevo escenario para el desarrollo de metodologías sintéticas.Recent photocatalytic methods based on the visible-light-induced generation of reactive radicals have allowed the construction of a large variety of CC bonds. The inertness of chloroalkanes has precluded them as prevailing coupling partners in both conventional and photocatalytic cross-coupling reactions. In fact, few examples of using unactivated alkyl chlorides as building blocks have been developed, presenting limitations in their applicability for a general methodology. In this line, this thesis describes the development of a new familiy of tetradentate aminopyridine Co and Ni complexes able to activate different chloroalkanes. The ligand availability, modularity and versatility let us the tune the first coordination sphere of the metal by changing the electronic and structural features of the ligand. A collection of eighteen new Co and Ni complexes have been studied presenting a playground for synthetic methodology development
    corecore