104 research outputs found

    ASiMOV: Microservices-based verifiable control logic with estimable detection delay against cyber-attacks to cyber-physical systems

    Get PDF
    The automatic control in Cyber-Physical-Systems brings advantages but also increased risks due to cyber-attacks. This Ph.D. thesis proposes a novel reference architecture for distributed control applications increasing the security against cyber-attacks to the control logic. The core idea is to replicate each instance of a control application and to detect attacks by verifying their outputs. The verification logic disposes of an exact model of the control logic, although the two logics are decoupled on two different devices. The verification is asynchronous to the feedback control loop, to avoid the introduction of a delay between the controller(s) and system(s). The time required to detect a successful attack is analytically estimable, which enables control-theoretical techniques to prevent damage by appropriate planning decisions. The proposed architecture for a controller and an Intrusion Detection System is composed of event-driven autonomous components (microservices), which can be deployed as separate Virtual Machines (e.g., containers) on cloud platforms. Under the proposed architecture, orchestration techniques enable a dynamic re-deployment acting as a mitigation or prevention mechanism defined at the level of the computer architecture. The proposal, which we call ASiMOV (Asynchronous Modular Verification), is based on a model that separates the state of a controller from the state of its execution environment. We provide details of the model and a microservices implementation. Through the analysis of the delay introduced in both the control loop and the detection of attacks, we provide guidelines to determine which control systems are suitable for adopting ASiMOV. Simulations show the behavior of ASiMOV both in the absence and in the presence of cyber-attacks

    Cybersecurity issues in software architectures for innovative services

    Get PDF
    The recent advances in data center development have been at the basis of the widespread success of the cloud computing paradigm, which is at the basis of models for software based applications and services, which is the "Everything as a Service" (XaaS) model. According to the XaaS model, service of any kind are deployed on demand as cloud based applications, with a great degree of flexibility and a limited need for investments in dedicated hardware and or software components. This approach opens up a lot of opportunities, for instance providing access to complex and widely distributed applications, whose cost and complexity represented in the past a significant entry barrier, also to small or emerging businesses. Unfortunately, networking is now embedded in every service and application, raising several cybersecurity issues related to corruption and leakage of data, unauthorized access, etc. However, new service-oriented architectures are emerging in this context, the so-called services enabler architecture. The aim of these architectures is not only to expose and give the resources to these types of services, but it is also to validate them. The validation includes numerous aspects, from the legal to the infrastructural ones e.g., but above all the cybersecurity threats. A solid threat analysis of the aforementioned architecture is therefore necessary, and this is the main goal of this thesis. This work investigate the security threats of the emerging service enabler architectures, providing proof of concepts for these issues and the solutions too, based on several use-cases implemented in real world scenarios

    Digital provenance - models, systems, and applications

    Get PDF
    Data provenance refers to the history of creation and manipulation of a data object and is being widely used in various application domains including scientific experiments, grid computing, file and storage system, streaming data etc. However, existing provenance systems operate at a single layer of abstraction (workflow/process/OS) at which they record and store provenance whereas the provenance captured from different layers provide the highest benefit when integrated through a unified provenance framework. To build such a framework, a comprehensive provenance model able to represent the provenance of data objects with various semantics and granularity is the first step. In this thesis, we propose a such a comprehensive provenance model and present an abstract schema of the model. ^ We further explore the secure provenance solutions for distributed systems, namely streaming data, wireless sensor networks (WSNs) and virtualized environments. We design a customizable file provenance system with an application to the provenance infrastructure for virtualized environments. The system supports automatic collection and management of file provenance metadata, characterized by our provenance model. Based on the proposed provenance framework, we devise a mechanism for detecting data exfiltration attack in a file system. We then move to the direction of secure provenance communication in streaming environment and propose two secure provenance schemes focusing on WSNs. The basic provenance scheme is extended in order to detect packet dropping adversaries on the data flow path over a period of time. We also consider the issue of attack recovery and present an extensive incident response and prevention system specifically designed for WSNs

    INTRUSION PREDICTION SYSTEM FOR CLOUD COMPUTING AND NETWORK BASED SYSTEMS

    Get PDF
    Cloud computing offers cost effective computational and storage services with on-demand scalable capacities according to the customers’ needs. These properties encourage organisations and individuals to migrate from classical computing to cloud computing from different disciplines. Although cloud computing is a trendy technology that opens the horizons for many businesses, it is a new paradigm that exploits already existing computing technologies in new framework rather than being a novel technology. This means that cloud computing inherited classical computing problems that are still challenging. Cloud computing security is considered one of the major problems, which require strong security systems to protect the system, and the valuable data stored and processed in it. Intrusion detection systems are one of the important security components and defence layer that detect cyber-attacks and malicious activities in cloud and non-cloud environments. However, there are some limitations such as attacks were detected at the time that the damage of the attack was already done. In recent years, cyber-attacks have increased rapidly in volume and diversity. In 2013, for example, over 552 million customers’ identities and crucial information were revealed through data breaches worldwide [3]. These growing threats are further demonstrated in the 50,000 daily attacks on the London Stock Exchange [4]. It has been predicted that the economic impact of cyber-attacks will cost the global economy $3 trillion on aggregate by 2020 [5]. This thesis focused on proposing an Intrusion Prediction System that is capable of sensing an attack before it happens in cloud or non-cloud environments. The proposed solution is based on assessing the host system vulnerabilities and monitoring the network traffic for attacks preparations. It has three main modules. The monitoring module observes the network for any intrusion preparations. This thesis proposes a new dynamic-selective statistical algorithm for detecting scan activities, which is part of reconnaissance that represents an essential step in network attack preparation. The proposed method performs a statistical selective analysis for network traffic searching for an attack or intrusion indications. This is achieved by exploring and applying different statistical and probabilistic methods that deal with scan detection. The second module of the prediction system is vulnerabilities assessment that evaluates the weaknesses and faults of the system and measures the probability of the system to fall victim to cyber-attack. Finally, the third module is the prediction module that combines the output of the two modules and performs risk assessments of the system security from intrusions prediction. The results of the conducted experiments showed that the suggested system outperforms the analogous methods in regards to performance of network scan detection, which means accordingly a significant improvement to the security of the targeted system. The scanning detection algorithm has achieved high detection accuracy with 0% false negative and 50% false positive. In term of performance, the detection algorithm consumed only 23% of the data needed for analysis compared to the best performed rival detection method

    Dagstuhl News January - December 2008

    Get PDF
    "Dagstuhl News" is a publication edited especially for the members of the Foundation "Informatikzentrum Schloss Dagstuhl" to thank them for their support. The News give a summary of the scientific work being done in Dagstuhl. Each Dagstuhl Seminar is presented by a small abstract describing the contents and scientific highlights of the seminar as well as the perspectives or challenges of the research topic

    Unknown Threat Detection With Honeypot Ensemble Analsyis Using Big Datasecurity Architecture

    Get PDF
    The amount of data that is being generated continues to rapidly grow in size and complexity. Frameworks such as Apache Hadoop and Apache Spark are evolving at a rapid rate as organizations are building data driven applications to gain competitive advantages. Data analytics frameworks decomposes our problems to build applications that are more than just inference and can help make predictions as well as prescriptions to problems in real time instead of batch processes. Information Security is becoming more important to organizations as the Internet and cloud technologies become more integrated with their internal processes. The number of attacks and attack vectors has been increasing steadily over the years. Border defense measures (e.g. Intrusion Detection Systems) are no longer enough to identify and stop attackers. Data driven information security is not a new approach to solving information security; however there is an increased emphasis on combining heterogeneous sources to gain a broader view of the problem instead of isolated systems. Stitching together multiple alerts into a cohesive system can increase the number of True Positives. With the increased concern of unknown insider threats and zero-day attacks, identifying unknown attack vectors becomes more difficult. Previous research has shown that with as little as 10 commands it is possible to identify a masquerade attack against a user\u27s profile. This thesis is going to look at a data driven information security architecture that relies on both behavioral analysis of SSH profiles and bad actor data collected from an SSH honeypot to identify bad actor attack vectors. Honeypots should collect only data from bad actors; therefore have a high True Positive rate. Using Apache Spark and Apache Hadoop we can create a real time data driven architecture that can collect and analyze new bad actor behaviors from honeypot data and monitor legitimate user accounts to create predictive and prescriptive models. Previously unidentified attack vectors can be cataloged for review

    Holistic security 4.0

    Get PDF
    The future computer climate will represent an ever more aligned world of integrating technologies, affecting consumer, business and industry sectors. The vision was first outlined in the Industry 4.0 conception. The elements which comprise smart systems or embedded devices have been investigated to determine the technological climate. The emerging technologies revolve around core concepts, and specifically in this project, the uses of Internet of Things (IoT), Industrial Internet of Things (IIoT) and Internet of Everything (IoE). The application of bare metal and logical technology qualities are put under the microscope to provide an effective blue print of the technological field. The systems and governance surrounding smart systems are also examined. Such an approach helps to explain the beneficial or negative elements of smart devices. Consequently, this ensures a comprehensive review of standards, laws, policy and guidance to enable security and cybersecurity of the 4.0 systems
    • …
    corecore