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Abstract

The automatic control in Cyber-Physical-Systems brings advantages but also in-
creased risks due to cyber-attacks. This Ph.D. thesis proposes a novel reference
architecture for distributed control applications increasing the security against cyber-
attacks to the control logic. The core idea is to replicate each instance of a control
application and to detect attacks by verifying their outputs. The verification logic
disposes of an exact model of the control logic, although the two logics are decoupled
on two different devices. The verification is asynchronous to the feedback control
loop, to avoid the introduction of a delay between the controller(s) and system(s).
The time required to detect a successful attack is analytically estimable, which
enables control-theoretical techniques to prevent damage by appropriate planning
decisions. The proposed architecture for a controller and an Intrusion Detection
System is composed of event-driven autonomous components (microservices), which
can be deployed as separate Virtual Machines (e.g., containers) on cloud platforms.
Under the proposed architecture, orchestration techniques enable a dynamic re-
deployment acting as a mitigation or prevention mechanism defined at the level of
the computer architecture. The proposal, which we call ASiMOV (Asynchronous
Modular Verification), is based on a model that separates the state of a controller
from the state of its execution environment. We provide details of the model and a
microservices implementation. Through the analysis of the delay introduced in both
the control loop and the detection of attacks, we provide guidelines to determine
which control systems are suitable for adopting ASiMOV. Simulations show the
behavior of ASiMOV both in the absence and in the presence of cyber-attacks.
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Chapter 1

Introduction

This thesis focuses on the cyber-security of Cyber-Physical Systems. The
term Cyber-Physical System (CPS) is a generic way of referring to an integration
of computation, networking, and physical processes. Typically, in a CPS there are
physical systems that are remotely controlled, resulting in a distributed feedback
control system.

CPS can be found in critical infrastructure control (e.g., electric power, water
resources), distributed robotics (telepresence, telemedicine, automated manufactur-
ing), healthcare systems, assisted living, environmental control, traffic control and
safety, advanced automotive systems, unmanned vehicles, and others. Depending on
the specific context, the literature also refers to CPS as Power Networks, Industrial
Control Systems, Mass Transport Networks, Networked Control System, Sensor
Actuator Network, Wireless Industrial Sensor Network, or SCADA (Supervisory
Control And Data Acquisition). In some cases, both literature and common language
refer to CPS as to "Smart" or "IoT" scenarios (e.g., Smart Manufacturing or Industry
4.0, Smart Cities, Smart Grids).

CPS finds application in many critical aspects of human life. Hence their secu-
rity is a crucial aspect for all governments. In 2010 Stuxnet[29] damaged as many
as one-fifth of the nuclear centrifuges in Iran, making aware the community of the
fact that attacks to control systems can cause substantial damage. In the successive
years, twenty or so cases followed[38]. In 2014 Havex/Dragonfly successfully attacked
Power Networks. This kind of attack has the potential to disable primary services
in large geographical areas. Other attacks involved Industrial Control Systems [108],
with the potential of impairing the products’ quality and therefore damaging the
customers and the reputation of the manufacturer. According to Kaspersky Lab,
41.2% of factories were attacked by malicious software at least once in the first half
of 2018. For these reasons, there is an urgent need for new approaches that improve
the resiliency of CPS to cyber-attacks.

Ideally, all the devices of a CPS are protected by the strongest security measures
possible. In the real world, to prevent attacks to all the devices of a CPS may not
be feasible. Devices may have limited computational resources, maybe physically
exposed, or could be tampered by malicious insiders.
A cyber-attack that is not prevented, become a successful attack. Intrusion Detection
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Systems (IDS) are techniques for the detection of successful attacks. The field
of CPS security [43] is a multidisciplinary area, and involves sciences oriented to
both the "cyber" (e.g., Information Security, Computer Science) and "physical" (e.g.,
Control Theory) processes of a CPS. Independently on the disciplinary area, an
IDS works according to the concept of anomaly. An anomaly can be defined in
different ways, e.g., the behavior of an application (for the "cyber") part, or the
violation of a physical constraint. After an attack is detected, its effects should be
actively mitigated as soon as possible. The different disciplinary area takes different
approaches, e.g., an intervention may concern a component at any layer of computer
architecture, or appropriate management of physical systems realized trough control
action.

Among the “cyber” processes of a CPS, the most relevant one is that carried
out by the so-called control logic. A successful attack on the control logic (we
call Internal attack) gives control over the “physical” processes of a CPS - there-
fore, it can deliver damage. The so-called external attacks target sensors and
actuators in the attempt to deceive the control logic, and they may be detected
by considering physical constraints. For this type of attack, there exist IDS which
are based on Control Theory (CT-IDS). CT-IDS employs knowledge of physical
laws. Therefore they can detect a broader spectrum of attacks then IDS based
on Information Security or Computer Science, e.g., a CT-IDS working at the level
of the dynamics of a physical system may detect both Internal and External at-
tacks - since the dynamics of a control system deviates in both case. However,
since the typical CT-IDS employs a measure of anomaly that belongs to a met-
ric space, to employ a CT-IDS against Internal attacks introduces an unnecessary
uncertainty. Tampering of an execution environment should be exactly determinable.

CT-IDS are typically formulated as an abstract model in which the I/O of the
control logic (sensing and actuation) gets intercepted and analyzed. This thesis
investigates what happens when a CT-IDS is implemented and deployed. There are
discussed the following possibilities.

In case the CT-IDS is part of the control logic (i.e., it is host-based), it disposes of
exact knowledge about the state of the control logic. Therefore, the only uncertainty
in the detection process comes from the state of the controlled system. However,
being host-based, the CT-IDS is not reliable against unrestricted Internal attacks
(i.e., the device executing the control logic and the CT-IDS cannot be trusted).

In case the CT-IDS is network-based (i.e., it is in a different device then the
control logic), there is increased security against unrestricted attacks. However,
without proper coordination between the CT-IDS and the control logic, the CT-IDS
can only estimate the state of the control logic - hence detection accuracy is reduced
compared to the host-based case.

In our proposal, we investigate the possibility of gaining the benefits of the two
scenarios (i.e., host-based and network-based). A CT-IDS can be part of the control
logic (host-based), but the latter gets replicated and verified into a different host
(network-based). In order to make the proposed verification process useful, special
care is taken not to interfere (i.e., bottleneck) with the control process.
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Optimization-based techniques enable active control strategies that can reduce,
or even prevent, damage caused by attacks. If a control logic also implements active
defense strategies, having an estimate of the (maximum) time needed to detect an
attack (detection delay) is an advantage, because it opens up the possibility of in-
terfering as little as possible with the control process, i.e., only as much as is necessary.

This thesis proposes a software-engineering oriented solution for increasing
the resiliency of CPS to cyber-attacks. In particular, we propose a microservice
architecture to implement an event-based controller which outputs are verified
through redundancy. That is, we revisit the classic modular redundancy to be
employed in distributed control schemes. The introduced technique is named
Asynchronous Modular Verification (ASiMOV), and realizes both a controller and
an IDS, the latter having: ideal detection accuracy (no false negatives or positives)
against Internal attacks, and an estimable detection delay. We propose a model
describing the state of the controller at the level of an execution environment. The
model is implemented using an event sourcing pattern to allow the reconstruction of
the state of a controller from a history of events. The latter feature is exploited to
implement a mitigation and prevention strategy based on virtualization technologies.

The proposed solution is an approach of Information Security and Software
Engineering towards the security of control systems. Attention is paid to the
requirements of control systems, i.e., the need to employ state estimators, and the
need to avoid that the verification process increases the feedback-loop delay.

1.1 Cyber-Physical Systems
Cyber-Physical Systems are made of different enabling technologies, which generate
an autonomous, intercommunicating and intelligent system and, therefore, are able
to integrate different and physically distant entities. In a CPS there are the following
processes:

• Physical processes: are carried out by physical systems which are part of
feedback control systems.

• Computation processes: are carried out by so-called Control Applications,
having the goal of controlling the physical systems. The Control Applications,
together with the physical systems, form feedback control systems. The
computation processes require to collect, store and analyze histories of data
from/to the physical systems (i.e., actuation/sensing). The computation
processes may require to consider the notion of physical time in which data
from (to) systems is collected (produced), and to realize real-time control i.e.,
the timing in which actuation are produced for the physical system may be
critical.

• Communication processes: there are communication processes enabling
communication between Control Application(s) and physical system(s).

The computation processes of a CPS can be divided into real-time and offline.
The real-time processes realize direct control of systems employing techniques from
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control system engineering (e.g., time and frequency domain methods, state space
analysis, filtering, prediction, optimization, robust control). Offline processes (some-
times referred as to big-data analysis) involve aggregation and analysis of collected
data to support the human decision-making process and improve the direct control
processes e.g., define optimal strategic business decisions, to improve direct control
by refining the model employed, bug fixing. Techniques employed in offline process
can include system identification, data mining, neural networks.

1.2 Security of Cyber-Physical Systems

Cyber-Physical Systems (CPS) are modeled using the fundamentals principle of
feedback loop from traditional control theory, i.e., there are controllers producing
actuations signals upon receiving sensing signals, with the goal of directing the state
of systems toward a desired state.

A CPS is more complex than a traditional control system. The “cyber” processes
part of a CPS, containing the control logic, are complicated in their theoretical
definition. A CPS contains many physical systems, possibly of a different kind,
and distributed in a large geographic area. Therefore there is the need to adopt
distributed control schemes, and to deal with uncertainties arising both in the time
domain and in the utilized models.

Additional aspects of complexity of a CPS are related to the management of the
controllers, which are the applications executing the control logic. Controllers were
originally developed as ad-hoc hardware devices attached to the physical systems to
be controlled. In a CPS controllers are complex applications, possibly subjected to
the practice of software evolution, which instances have to be managed automatically
or semi-automatically. To this end, different technological solutions are required for
the execution environments supporting a controller. Different layers of computer
architecture (e.g., Operating System) are involved in the management of instances
of so-called Control Applications. An automated deployment, possibly based on
virtualization, may be required for a fault-resilient, evolvable and scalable control
infrastructure.

The described complexity introduces new challenges in the protection of a CPS
from cyber-attacks, as its surface of attack is enlarged compared to traditional
control systems. The first line of defense against cyber-attacks is implemented
by solutions from Information Security (e.g., authentication) aiming to reduce
drastically the probability that an attack becomes successful. However, there is
always the possibility that an attack becomes successful. This may happen trough
newly discovered vulnerabilities (zero-days) affecting any of the architectural layers
of the devices in a CPS, disclosed administrative credentials, or from the activities
of human insiders.

1.2.1 Classification of IDS for CPS

A successful attack modifies, or injects, data on the devices of a CPS, i.e., networked
devices realizing controllers, sensors and actuators. IDS are applications which
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Figure 1.1. Classification of CPS-IDS detection technique. Image taken from work[76].

seek for anomalies that may be interpreted as cyber-attacks. There are extensive
literature reviews about generic IDS [51, 40, 10] and IDS specific for CPS[41, 71, 76].

CPS is an interdisciplinary field. Therefore there are several different techniques
to realize an IDS. To provide a complete and coherent classification of all the possible
CPS-IDS techniques is not an easy task. We adopt the classification of work [76]
relatively to the existing class of CPS-IDS. In the cited work, the authors discuss the
advantages and disadvantages of different approaches. The conclusions drawn are Behavior-

Specification-
Based
IDS for CPS

that the so-called Behavior-Specification-Based techniques, which we briefly describe
in this Section, are the most effective for realizing CPS-IDS since they provide better
accuracy, i.e., false-negative (FN) and false-positive (FP) ratios. Furthermore, the
cited work underlines the importance of introducing new metrics for the performances
of CPS-IDS, such as the detection delay.

A CPS-IDS can be classified accordingly to two criteria (Figure 1.1 ): the Audit
Material, defining how the IDS collects data before data analysis, and the Detection
Technique, determining “what” is an anomaly.

• Audit Material: “how” data is collected

– Host-Based: the IDS is executed by the same device to be monitored.
Audit data may consist of any data regarding the activity of the device,
e.g., OS system calls, application dataflow, or the content of the network
traffic of the device.

– Network-Based: the IDS is executed by a different device than the one
to be monitored, and intercept and analyze the network traffic of the
monitored device.

• Detection Technique: “what” is an anomaly

– Knowledge-Based: the IDS looks for runtime features that match a
specific pattern of misbehavior. By definition, these approaches only react
to known bad behaviors.
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– Behaviour-Based: the IDS looks for runtime features that are out of
the ordinary. The ordinary could be defined with respect to the history of
the test signal (unsupervised) or with respect to a collection of training
data (semisupervised). This class of IDS includes, but is not limited to,
Statistics, Machine Learning, Clustering, and Neural Network approaches.
One particular sub-class of the Behaviour-Based IDS is the Behavior-
Specification-Based. In this case, the IDS is unsupervised, contains a
formal definition of legitimate behavior, and detects an intrusion when a
system departs from this model.

Host-Based approach has the advantage of distributing the computational load
over the devices of a CPS. Another advantage of this approach is the ability to accessAudit Material
each of the internal aspects of a device (e.g., OS) for a more in-depth inspection.
However, if a device is totally compromised (that is, captured by an attacker), the
IDS functionalities may be compromised, and deliver only FN.

Network-Based approach is the dual approach of the Host-Based in terms of
advantages and drawbacks. In particular, a network-based IDS could detect an
attack even in case of the device executing the controller is totally compromised.

Detection
technique Knowledge-based approach is effective for unsophisticated attacks and known

attacks, but ineffective for sophisticated attacks and zero-days. Therefore, given the
complexity of a CPS, it is not effective.

Behaviour-Based approach eliminates the need to specify all possible attacks,
hence may provide a good FN ratio, even against sophisticated attacks or zero-days.

• Behaviour-Non-Specification-Based approach is susceptible to FP as the
models of attacks could be too general. Semi-supervised methods are suscepti-
ble to attacks during training phases. In some cases, the requirements of these
techniques in terms of memory and computation are prohibitive.

• Behavior-Specification-Based approach has the potential to be the most
effective technique for CPS intrusion detection[76]. The effort required by
human experts in defining formally a legitimate behavior is the only disadvan-
tage. Once implemented, there is not the need of any training phase, and can
deliver good performance in terms of both FP and FN.

The performances of an IDS for an Information and Communication Technologies
(ICT) system are typically expressed in terms of accuracy, i.e., false-negative/positive
ration of a confusion matrix. Differently from the case of ICT systems, in CPS the
values of a confusion matrix alone do not fully characterize the actual performances
of a CPS-IDS. The detection delay[101], sometimes referred as detection latency,
is the amount of time required to detect a successful attack. More specifically, the de-
tection delay ΥDet is the time interval starting when a tampered actuation is injected
into a controlled system, ending when such malicious activity is detected. ΥDet is aDetection delay
fundamental metric to quantify the effectiveness of a CPS-IDS since the ultimate goal
of an attacker is to provoke (physical) damage. Intuitively, the amount of damage
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provoked by an attack is proportional to the time in which the attack remains
undetected. Any physical system requires some time to transit between two states.
Therefore some time is always necessary for a system to reach a state causing damage.

The definition of new IDS performances metrics for CPS-IDS is still an open
problem[76], and to the best of our knowledge, there are not CPS-IDS capable of
estimating, or better guaranteeing, a detection delay. We underline that estimating
the detection delay should not simply consist of averaging the time measured in a
series of tests or simulations. Rather, the detection delay should be expressed as a
function valid in the general case.

1.2.2 Classification of Attacks to CPS

In this work, successful attacks are modeled according to the compromise of devices.
A device is a computer architecture realizing one of the fundamental components of
a CPS, i.e., a controller, a sensor or an actuator. Successful

attacks
• Internal attack: the attack is originated from the device realizing a Controller.

Therefore the Control Logic may produce tampered actuation signals.

• External attack: There is one, or multiple, of the following conditions:

– the attack involves actuators devices or the network between the controller
and the actuators. As a result, the actuators provide tampered quantities
to the controlled system(s).

– the attack involves sensors devices or the network between the sensors
and the controller. As a result, the data from the sensor is tampered.

This work deals with Internal attacks, while External Attacks are kept into
consideration for the proposal of an IDS compatible with correspondent solutions
from control-theoretical methods. External attacks may be particularly dangerous
since, in certain conditions, they can become not detectable (stealth attacks[85]).
However, to provoke damage by means of an External attack is more difficult then
with an Internal attack. Indeed, an External attack requires the knowledge of a
model of the attacked System and its state, i.e., trivial attacks such as randomizing
the values of control signals are commonly considered ineffective. Conversely, in
an Internal attack the attacker can simply change the desired state, and let the
controller cause the damage.

1.2.3 Control-Theoretic IDS (CT-IDS)

IDS based on control-theoretic methods define an anomaly at the level of the
(physical) state of a feedback control system. We refer to these applications as CT-
IDS to distinguish them from the conventional IDS based on Information Security,
like the one proposed by this thesis. CT-IDS exploit knowledge of physical laws
(e.g., conserved quantities or known constraints) hence they can detect attacks that
have escaped to the detection of conventional IDS.
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CT-IDS include methods to perform attack identification, i.e., to tell what
control signals are causing an anomaly. Without these techniques, one could identify
an attack but not tell what control signals are providing bad data. In fact, the
same anomaly on the system’s state or on the system’s dynamics may be caused
interchangeably by tampered actuation or sensing signals. One example of well
established method for the detection and identification of attacks is based on the
so-called time-invariant descriptor representation[84, 86]. In this formulation, thereControl-

theoretical
IDS

are so called monitors, which are mathematical functions utilizable to identify the
particular control signals (i.e. actuation or sensing) provoking an anomaly. In this
formulation, a successful attack is modeled as:

• State attack: the state of the physical system is affected by means of bad
actuation(s), i.e., the actuators are delivering quantities subjected to tampering;

• Output attack: sensing signal(s) are bad, i.e., they do not transport the physical
quantities actually present in the system.

From this definition, it follows that monitors or similar techniques, do not explicitly
distinguish between Internal and External attacks (Section 1.2.2). As an example, the
identification of a specific set of compromised actuation signals could be originated
interchangeably by an External attack (i.e., the actuation devices are tampered) or
by an Internal attack (the control logic is tampered).

As already introduced at the beginning of Chapter 1, a concrete implementation
of network-based CT-IDS could not dispose of an exact model of the control logic -
thereby decreasing its accuracy.

To sum up, CT-IDS may detect and identify attacks based on the knowledge
of physics laws and may tell what control signals are involved. However, they
cannot distinguish between Internal and External attacks, and in case they are
network-based, the synchronization between their state and that of the control logic
should be considered.

1.2.4 Detection delay in control-theoretic techniques

The control logic may include solutions from control theory implementing run-time
optimization-based techniques for mitigating attacks to a CPS. As an example, in
[88], the Control Logic reacts accordingly to the detection of compromised sensors,
minimizing the damage sustained by a power grid.

There are also ways, at least in principle, to prevent damage from attacks by
means of control action. An intuitive example in this sense is given by the systemDetection delay

and prevention reachability, which is a fundamental concept in Control Theory. Broadly speaking,
the reachability of a system consists of all possible states that the system can reach,
starting from a given state and disposing of a given time. In works [28, 78] the
authors utilize reachability to assess the impact of different attacks to a CPS. By
computing the reachability of a controlled system at run-time, the control logic could
implement decisions that expose the system to lesser risks in the event of a future
successful attack.

The idea that a control logic can mitigate or prevent the damage from attacks is
based on general concepts from adaptivity and planning. These concepts, extensively
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studied by the Control Theory and applied to dynamical systems, led to the definition
of Autonomous Control Systems [6]. More recently, this kind of approach has laid the
foundations for the field of Timed Automata [5], which deals with systems having
both continuous and discrete state components (i.e., hybrid systems). The need for
equipping computer systems with the self-managing and self-healing capabilities led
to the Autonomic Computing [42], which deals with complex, distributed computer
systems. The common denominator of solutions from these scientific fields is the
ability of a control system to predict its future states, and thus to plan appropriate
sequences of commands and controls.

Predicting future states within physical systems cannot be separated from the
concept of physical time. We denote with detection delay the time required to
detect a successful attack. An estimable detection delay is fundamental information
in the protection of physical systems, as it enables to carry out effective prevention
strategies.

For readers who are familiar with dynamical systems, the following example
provides an intuitive way to visualize the importance of the detection delay in the
protection of physical systems. Consider a robotic arm or vehicle starting from state
x1 with the task of reaching state x2. Usually, in the phase of trajectory planning[30]
the control logic of a robotic system is allowed to choose one of many trajectories
in the state space leading to x2 (e.g., a specific motion for an arm, or a path for
a vehicle). The control logic will choose an optimal trajectory in the state space Prevention using

known detection
delay

accordingly to a criteria, e.g., the one that leads to x2 in minimum time. Tipically,
the control logic is instructed with hard or soft constraints defined in the state
space, i.e., to avoid the system passes through individual states along the trajectory
(forbidden states). In robotics, this problem takes the name of obstacle avoidance,
and the solution is a sub-optimal trajectory in the state space, which avoids passing
trough forbidden states. In this example, the forbidden states are those providing a
Euclidean distance with a value of 0 between any part of the robot and any obstacle.

Consider the following scenario:

• an attacker has the purpose of causing a collision with an obstacle;

• the attacker can take direct control of the robot at any time;

• there is an IDS with ideal detection accuracy (i.e., no FP or FN) against any
kind of attack;

• in case the IDS detect an attack, the robot is immediately stopped trough a
fail-safe command.

Under these conditions, the control logic can prevent any collision, given that: all
states belonging to the planned trajectory gives a sufficiently great Euclidean distance
with any obstacle. In order to let the planner find such trajectory, the detection
delay should be known (or estimated with sufficient precision). In particular, the
trajectory to reach x2 must be chosen such that, for each point of the trajectory,
there not exist any trajectory in the state space of the robot reaching an obstacle in
an amount of time smaller of ΥDet (the detection delay).
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There are not many literature works that use techniques from Control Theory,
Timed Automata, or Autonomic Computing for the mitigation or prevention of
cyber-attacks to CPS. Possibly, this is due to the complexity of CPS, which makes
it difficult to estimate the actual performance of such techniques in the real world.
However, this author believes that there will be extensive developments in this
direction. As the complexity of the controller process will increase, the control logic
will have to actively contribute to the mitigation and prevention of cyber-attacks. A
complete examination of the aspects related to the autonomicity of control systems
is outside the scope of this thesis. What is essential for the contributions of this
thesis is that a control logic should be verifiable with an estimable ΥDet.

1.3 Research problem and contributions
In this thesis, there are considered the following research questions relative to the
detection, mitigation, and prevention capabilities of a security system for CPS:

• Detection of Internal attacks:

– RQ1: how to detect Internal attacks with ideal accuracy even in case of
a total compromise of the device executing the controller?

• Mitigation and prevention of Internal attacks:

– RQ2: how to prevent and mitigate Internal attacks, at the level of the
computer architecture of the device executing the control logic?

• Detection, Mitigation and prevention of External attacks:

– RQ3: how to increase the level of security coming from control-theoretical
IDS (CT-IDS), and optimization-based prevention and mitigation methods
against External attacks?

The investigation of these questions led us to the proposal of ASiMOV (AS-
inchronous MOdular Verification), which is based on our previous works [35, 36].

ASiMOV is a self-protection mechanism [45, 44, 50] for industrial control appli-
cations capable of detecting and reacting to attacks that modify the outputs of the
control logic. ASiMOV includes an IDS with ideal accuracy performances (no false
positives or negatives) and response mechanisms that automatically restores a clean
instance of the control logic. Our solution is inspired by Triple Modular Redundancy
(TMR) [72] and realizes unsupervised behavior-specification-based detection [76].

ASiMOV enhances the state-of-the-art literature by proposing a self-protection
mechanism that:

• does not require knowledge about attack signature, or training on historical
attack traces or human-assisted decisions;

• has ideal accuracy in detecting tampering of the control logic;

• does not significantly increase the delay between the control application and a
controlled system (negligible increase in the control loop delay);



1.3 Research problem and contributions 11

• detects tampering in an estimable time (estimable detection delay);

• applies to any CPS that includes control applications and specifically to cloud-
based industrial control systems like in works [...];

• enables a deployment-based mitigation and prevention management capable
of reconstructing the state of control application into a different instance.

ASiMOV consists of a Control Application interfaced with a network-based
behavior-specification-based IDS (from now referred to as ASiMOV IDS, or IDS).
The proposed architecture for a Control Application can be used to implement
distributed (i.e., modular), event-based schemes for the control of physical systems.
The intrusion detection mechanism is inspired by the classic modular redundancy,
in which a Control Application and its replica(s) are used to detect inconsistencies
in their outputs. An implementation of the ASiMOV architecture is adapt to be
deployed and orchestrated on virtual resources, which enable deployment-based mit-
igation and prevention strategies. To the best of our knowledge, the cited features
have never appeared together in an CPS-IDS.

ASiMOV’s answers to research question RQ1 is to verify each of the outputs
of the Control Application using a dedicated device (i.e., different from the device
subjected to attacks). The proposed method realizes an IDS with ideal accuracy
against Internal attacks even in case of total compromise of the device executing the
Control Application.

The answers of ASiMOV to research question RQ2 is to enable a deployment-
based strategy based on virtualization technologies to mitigate or prevent Internal
attacks. ASiMOV separates by design the state of the Control Application from its
execution environment, i.e., it is possible to reconstruct an instance of the Control
Application from a history of control signals after an attack is detected. The following
strategies are employed:

• in case of attack, a fresh instance of Control Application can be provisioned
with a verified state, allowing to continue in the control operations, hence to
mitigate an attack;

• the state of a Control Application can be periodically transferred between
different devices, to prevent Control Logic attacks from becoming Successful.

Answers to RQ3 are investigated as follows.
Considering an IDS included into the control logic i.e., there is a CT-IDS sharing
data-structure and system clock with the algorithms that are actually controlling a
system. The control logic is executed on a device (field device), that is used for direct
control and is subjected to attacks. Assuming the presence of a different device
(i.e., security device), which has a reduced surface of attack (i.e., un-attackable).
Assuming that by means of ASiMOV the security device has a perfect knowledge
(i.e., replicates) the state of the control logic in the field device. Therefore, on the
replica on the security device, the CT-IDS maintains the same accuracy then that of
the field device. As a consequence, there is an increase in security of the detection
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process (since the CT-IDS is un-attackable). In alternative, there is an increase in
accuracy in the detection process, compared to the case in which the CT-IDS was
installed in a security device without a mechanism like ASiMOV to manage its state
synchronization.
In other words, ASiMOV answers to RQ3 if the following scenario is true. Assuming
a generic CT-IDS tested in a real-world scenario. The CT-IDS employs a dynamic
model to estimate the state of the control logic, because this is required by the
detection process. Defining a measure of error E in the detection process (e.g., vector
norm of the distance of the estimated and actual state of the control logic). Then,
there is a relation between the average norm of E and the detection accuracy, i.e.,
when E grows, the detection accuracy goes to zero.

The introduced features of ASiMOV are further developed in Section 3.1 “Re-
quirements”.

The second answer to RQ3 comes from the fact that ASiMOV IDS has an
estimable detection delay. Therefore, it enables optimization-based prevention tech-
niques to make decisions that increase security.

The last answer to RQ3 is given by the fact that the typical CT-IDS does not
distinguish between Internal and External attacks (i.e., identification at the level of
devices), but only between state and output attacks (i.e., identification at the level
of control signals, Section 1.2.3). Assuming the security devices un-attackable, the
accuracy performances of ASiMOV IDS is ideal against Internal attack. Therefore,
an attack identified at the level of the control signals by a CT-IDS can be mapped,
by exclusion, with an attack identified at the level of the devices (i.e., an Internal or
External attack).

1.4 Thesis organization

Chapter 2 (Background) provides backgrounds for the concepts required in the rest
of this thesis.

Chapter 3 (ASiMOV) introduces to the main characteristics of ASiMOV. The
adopted deployment model and the model of an attacker are defined.

Chapter 7 (Related Works) discuss how ASiMOV improves the current state-of-
the-art solutions for secure controllers in CPS, and in particular for the Smart Factory.

Chapter 4 (Model and architecture) proposes a formal model of the verifiable
controller realizing ASiMOV, a component-based description of its architecture, and
sufficient conditions for the verification of its outputs.

Chapter 5 (Implementation) details a micro-service implementation of ASiMOV,
accompanied with pseudo-code. Additionally, the Chapter describes how virtu-
alization technologies can be used to realize a deployment-based mitigation and
prevention strategy.
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Chapter 6 (Performances analysis) analyzes the performance of ASiMOV both in
the absence and in the presence of attacks. The effects of an attack on a dynamical
system are simulated. The delay introduced by ASiMOV in a feedback control loop,
and the detection delay estimated analytically and through simulation. This Chapter
also provides an analysis of how, in general, the introduction of a delay in a feedback
loop may affect the performances of a simple control system.

Chapter 8 (Conclusions) draw the conclusion and future developments of the
topics of this thesis.
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Controller System
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(e.g., desired state)

sensing

actuation

Figure 2.1. A control system is determined by a Controller and a System in a feedback
loop relation.

Chapter 2

Background

2.1 Feedback Control Systems

A System to be controlled (or plant) is an entity having an internal state, inputs
(actuation signal) and outputs (sensing signal). A Controller is an entity connected
in a feedback loop with a System i.e., the actuation and sensing signals are respectively
output and input for the Controller (see Figure 2.1). A feedback loop realizes a
feedback control system, where the sensing, actuation and parameters signals are
called control signals. The state of the System changes over time, i.e., it is subject
to dynamics that depend on the actuation signals. The task of the Controller is to
generate actuation signals that make the System’s state approach a desired state.
The desired state (or setpoint) is an input for the Controller, i.e., a parameter for Desired state
the control system. The primary metric to describe the performances of a control
system is the time required for the Controller to execute its task.

Conventional control theory dates from the 19th century and utilizes the concept
of transfer function. In a nutshell, the transfer function describes the effects on
the output of the System when the inputs are pure sinusoidal signals (frequency-
domain analysis). Conventional control theory is limited to linear, time-invariant,
single-input, single-output systems. Complex systems may have multiple inputs and
multiple outputs and may be time-varying. Because of: the necessity of meeting
increasingly stringent requirements on the performance of control systems, the
increase in system complexity, and easy access to large scale computers - modern
control theory has been developed since around 1960. This new approach is based
on the concept of state. Modern control theory is a generalization of conventional
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control theory and also applies to multiple-input, multiple-output systems, which
may be linear or nonlinear, time-invariant, or time-varying [82]. In modern control
theory, the time-domain analysis describes the effects on the output of a System
against any type of input (i.e., not necessarily sinusoidal).

The Controller contains a logic which employ a model of the System. An
appropriate representation of a state is utilized by the logic, depending on the
particular control system considered. The most utilized approach is the state space
representation, which makes use of Euclidean spaces and, therefore, is based on
linear algebra. Other state representations are employed by sciences deriving from
control theory, e.g., graphs are typically employed in the fields of Timed Automata
or Autonomic Computing to represent each possible state for a System. A controller
employ a dynamic system to describe the dynamics of a control system (i.e., controller
and system in a feedback loop). Based on its own state, and the input (e.g., sensing),
a dynamic system describe: the output (i.e., actuation); and the transition for its
own state (i.e. the transition function).Transition

function The Controller produces actuation signals over time by considering the current
state of the System, i.e., the state of the System, as known by the Controller at
the time of production of an actuation. Ideally, the current state reflects exactly
the actual state of the System. However, the state may be not exactly determined,
due to numerical noise in the value transported by control signals, or inaccuracies
in the System’s model. State estimation techniques aim in determining the most
probable state of a System at a given time. A well-known state estimation techniqueState estimation
is the Kalman filter. In its original formulation, a Kalman filter is recursive and based
on sensing, and thus it updates the estimate for each new sensing in a sequence.
More generally, time series analysis utilizes sequences of control signals. Time
series analysis may require multiple sensing and actuation, and their time-stamp,
data to provide a single state estimation with reasonable accuracy. An even more
upstream problem than state estimation is the problem of model estimation (e.g.,
the problem of system identification). Model estimation is typically required in
the presence of complex systems. The concept of time series analysis introduces
the definition of a knowledge of the Controller, which consists of observations
accumulated over time. In a controller, the knowledge differs from the logic in that
the former depends on the behavior of the System, while the latter depends on the
Controller’s current design choices or the current value of its parameters.

The control scheme of a control system is the particular logic adopted by
the Controller. The most basic control scheme is the proportional feedback controlProportional

control scheme scheme, which was initially defined by the traditional control theory. Despite its
simplicity, the proportional control scheme can be used as an example to describe
the essential ingredients of the process used by a modern control system. Being x
the current state of the System, x̂ the desired state, then actuation a is:

a = K(x̂− x) (2.1)

where K > 0 is a constant parameter influencing the performances of the control
system. In this case, x̂ and K are the two inputs for the control system, i.e., they
are parameter signals. The logic estimates x by considering an arbitrary history of
sensing and actuation signals, then determines the error x̂− x, and finally produces
a using Eq.2.1.
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The Controller (the System) is an entity producing (consuming) actuation signals
and consuming (producing) sensing signals. The control frequency is the rate Control frequency
in which control signals are produced and consumed. The control loop delay is Control loop

delaythe time interval starting from the time in which a sensing signal is produced, to
the time in which a correspondent actuation reaches the System. In networked
control systems, the control frequency and the control loop delay find an analogy,
respectively, in the bandwidth and the latency between two hosts.

A fundamental characteristic of a control system is its stability. A stable control
system maintains the state of a System in limited regions, with no possibility that
the state ceases to be under control. A control system that is not stable could
lead to unexpected and unrecoverable behaviors, possibly damaging the System.
Before it can be used, a control system must be analyzed in order to determine Stability
its stability and performance. In traditional control theory, control systems are
analyzed using mathematical frameworks in the frequency domain (i.e., in the so
called Laplacian domain). Typically, the analysis is idealized with respect to a
concrete implementation of a control system because it assumes an infinite control
frequency and a zero control loop delay. This assumption is reasonable in the
case of a Controller attached to the System, and working at a sufficiently high
control frequency. Conversely, in the case of networked control Systems, a concrete
implementation may affect both the performances (i.e., time to execute a task) and
the stability of a control system. For the problem of a limited control frequency,
modern control theory studies event-based control, which is a generalization of
a periodic-based control, i.e., there is not a constant control frequency but rather
an event-based production and consumption of control signals. For the problem of
control loop delay, modern control theory studies delayed control systems, in
which appropriate control schemes tries to restore the performance and the stability
in the presence of delay.

2.2 Computing Background

2.2.1 Virtualization and Cloud Platforms

A computer architecture is conceptually modeled as a stack of layers, where at each
layer there is a service interface providing functionalities. In standardized computer
architecture, the layers are (from top to bottom): Application, Library, Operating
System (OS), Hardware Abstraction Layer, Instruction Set - the latter providing an
interface to the hardware.

An interface of a computer architecture provides an abstraction over functionali-
ties to entities (users) located at higher layers, e.g., the Operating System (OS) offers Architectural

interfacesto applications the allocation of RAM without the need to deal with low-level details.
Virtualization is a concept intrinsically linked with the architecture of computers.
As an example, an OS implements virtual memory to offer applications a more
considerable amount of (virtual) RAM than the physically available. For doing so,
the OS utilizes lower interfaces to aggregate physical RAM and hard disk storage
memory as a single resource.

A virtualization layer is an overriding of one or more (concrete) architectural
interfaces to traduce them into different (virtual) interfaces. Trough a virtualization
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layer, a (concrete) interface becomes usable even if the user (e.g., an application,
an OS) is not designed for that interface. As an example, by using a virtualized
Hardware Abstraction Layer, an obsolete OS can run on modern hardware. The
role of a virtualization layer is to traduce each invocation to its interface into an
appropriate (sequence of) invocation(s) to lower interfaces. Virtualization layers
exist at any of the architectural layers of computer architecture.

An Hypervisor realizes virtualization at the Hardware Abstraction Layer. AVirtualization
Layers hypervisor is an OS (type-1 hypervisor) or an application (type-2 hypervisor), pro-

viding an execution environment to a guest OS. A guest in execution on a supervisor
is a Virtual Machine. For historical reasons, nowadays, the term Virtual Machine
(VM) refers to a guest OS (e.g., Linux) together with libraries and applications.
However, a Virtual Machine is an abstract concept whose meaning does not depend
on the particular level of virtualization employed. Real-world data centers show that
virtualization increases fault tolerance and enables distributed resource scheduling.
An example of highly innovative functionality introduced by system-level VMs is
their capability of being “migrated”, i.e., the execution of a VM is paused, then the
VM is transferred to a different data-center, the execution of VM is finally resumed.
It is pointed out that, in case a cyber-attack has compromised any functionality
above a virtual service interface, the threat continues to exist in the new VM.

Virtualization at the OS level is realized by so-called virtualization engines, which
allow the existence of multiple isolated user-space instances on the same OS kernel.
The most diffused virtualization engine is Docker, which defines a container as a set
of libraries and applications required to run into an isolated execution environment.
Compared to system-level VMs, containers have a smaller footprint, which brings
considerable improvements in terms of deployment time and execution performances.

Unikernels is a relatively new kind of Virtual Machine, in which software is
directly integrated with the kernel it is running on. In a nutshell, a unikernel is a
system-level VMs where the OS kernel is customized and compiled together with
a specific application. Preliminary studies of Unikernels show that under certain
conditions, they can exceed containers in terms of pure speed and response time[33].

In the definition of a "Virtual Machine" there are many different names to refer to
something conceptually similar. For example, from the point of view of functionality,Virtual Machines
a container can be understood as a system-level VM, though defined at a different
virtualization layer. Even within the same virtualization layer, there exist different
names to indicate a Virtual Machine, e.g., Solaris OS refers to "Zones" as an analog
of Containers.

A Virtual Machine (and not necessarily a system-level VM) has the following
characteristics:

• before being started, a VM consists of a image, which is a file containing
everything required by a virtualization layer to start the execution of the VM.

• when a VM is started, a configuration, can be provisioned to the VM. The
configuration characterizes the initial state of the VM after its execution begins.

A cloud platform [65] is a service that, in turn, renders the services belonging
to its user available. A cloud platform provides an abstraction over one or moreCloud Platforms
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layers of computer architecture, thus greatly simplifying the deployment of services.
Depending on what are the layers are managed, a cloud service takes a different
name. As an example, in an IaaS (Infrastructure as a Service) model, the user
instantiatesits own VMs at Hardware Abstraction Layer. Higher levels of abstraction
are possible. As an example, in a CaaS (Container as a service), the VMs are
containers. In a PaaS (Platform as a Service) model, the user composes its service
utilizing modules offered by the cloud platform. The IaaS model allows the maximum
level of flexibility, but also the higher degree of complexity in its use, as the cloud
platform provides fewer high-abstraction tools for service deployment.

An IaaS platform introduces the concept of Pool of resources which is an abstract Pool of resources
entity representing the aggregation of multiple physical resources, seen as a single
set of virtual resources. A Pool of resources finds different implementation names
in different cloud solutions. As an example, in Openstack [12] Pool of resources is
a “project”. There exist virtualization technologies which allow to interface with a
cloud platform, abstracting the user from the particular implementation of a cloud
platform. For example, in the case of an IaaS model, Apache LibCloud translates
high-level commands (e.g., to start a specific VM image) into commands and controls
for multiple implementations of cloud platforms (e.g., Apache CloudStack, Microsoft
Azure, Amazon Elastic Compute Cloud).

2.2.2 Microservices oriented architectures

Service-oriented architecture (SOA) is a concept for the design of applications
based on replaceable, decoupled components that possess unified interfaces for
standard protocol communication[9]. The origin of SOA is found in complex web
applications such as Google, Amazon, and eBay - and nowadays is at the basis
of cloud-based services[107]. The usage of SOA and cloud platforms for CPS is
nowadays a well-established topic[55], particularly for Industrial Control Systems[25].

Microservices [105] is a term describing the idea of manage growing complexity
by functionally decomposing large systems into a set of asynchronous services.
Microservice architectural style is an approach for developing a single service as a
set of small services components, each running within a process, and communicating
via messages[46]. A microservice is an autonomous process collaborating with other Microservices
microservices for a common goal. A Microservice Architecture (MSOA) is an SOA
where all components are microservices. Some studies[4, 27] define MSOA as the
most promising evolution of SOA. As discussed in work [113], MSOA is highly
modular, distributed, and made of reusable components through network-exposed
APIs. Being a distributed system, an MSOA has the following characteristics: 1)
the overall application state is unknown to individual nodes (i.e., microservices);
2) individual nodes make decisions based on the locally available information; 3)
failure of one node should not affect other nodes.

A message channel is established between a producer microservice and one or
more consumer microservice(s). Message channels can be established with a point-
to-point or publish-subscribe model. In point-to-point, a producer microservice
specifies the identity of the consumer. In a publish-subscribe model, a producer
can deliver the messages to one or more consumers without having to know their
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existence, i.e., to discover their location. The publish-subscribe model is enabled byMessage Broker
a message broker, which is an intermediary service managing all message channels.
An essential benefit of using a message broker is that the broker buffers messages
until the consumer(s) are able to process them[91]. This approach is well suited
to the usage of queues in message channels, which is commonly considered a best
practice for MSOA.

An MSOA can adopt two approaches for the coordination of microservice com-
ponents: orchestration-based or choreography-based. Orchestration requires a
central microservice sending requests to other microservices and oversee the process
by receiving responses. Choreography, on the other hand, assumes no centralization
and is based on a publish-subscribe mechanisms in order to establish collabora-Choreograpy
tion. The concept of choreograpy was defined prior to microservices to describe the
global behavior of SOA. In Distribuited Programming, choreographies are high-level
descriptions of expected interactions between components.

In Database theory, an ACID transaction is a sequence of operations updating the
state of an application while enforcing Atomicity, Consistency, Isolation, e Durability.
ACID transactions are essential to every enterprise application to maintain consis-
tency of its state. In a monolithic application with a single database, the enforcement
of ACID transaction is straightforward. In a microservice architecture, however, it
is possible that a transaction has to update the state of multiple microservices. It
is challenging to employ distributed transaction models (e.g., X/Open XA ) in an
MSOA, as these conflict with the principles of mutual decoupling and asynchronicity
of components. The main problem with the standard distributed transaction model
is that all the microservices have to be available to complete a distributed transaction.
Another problem is that many technologies that are fundamental to microservices,
such as NoSQL databases (e.g., MongoDB, Cassandra) or message brokers (e.g.,
RabbitMq, Kafka), do not implement distributed transactions models. Although
workarounds are possible in this sense, the microservice community defines the
concept of sagas to replace the functionalities provided by distributed transactions.
A saga is a sequence of local transactions (i.e., local to a microservices) that are
coordinated using asynchronous messaging. Each local transaction updates the state
of a single microservice using the familiar ACID transaction. Sagas maintain data
consistency across microservices, i.e., a saga defines a sequence of actions that are
performed atomically. Simple sagas can use a choreography-based approach, but the
orchestration is usually a better approach for complex sagas[92].

MSOA simplifies an automated deployment. Each microservice of an MSOA is
deployed as a separate VM, e.g., a container. Since microservices are distinct and
autonomous processes, they can be deployed independently with minimal centralized
management. An important concept related to the deployment of microservices is the
concept of immutable deployment. An architecture with immutable deployment
is entirely made of immutable microservices. That means that the instance of an
immutable microservice can be replaced (i.e., re-deployed) without any special care
in the management of its internal state. The state of the execution environment
of a microservice is not necessary to the consistency of an application. In case the
microservice needs to maintain a permanent state, an external database is used.
The term immutability originated from Functional Programming to describe theImmutable deploy-

ment
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behavior of a system not in terms of in-place mutation of objects, but in terms of
the immutable input and output values of pure functions[23]. Differently from pure
functions in Functional Programming, immutable microservices have a state, and
the immutability is defined only at the level of their deployment.

In a MSOA adopting the immutability principle, there are two kinds of microser-
vices:

• immutable microservice: it is dedicated to computing. In case it has a state, it
is memorized in a datastore microservice.

• datastore microservice: it is dedicated to memorization, and realize a data
store. It is a network database, or a network disk volume, offered to immutable
microservices.

The combination of the content of all the datastore microservices in an MSOA fully
captures the state of an instance of an MSOA.

There is an overhead introduced by the adoption of an MSOA. Being a distributed
architecture, the development of an MSOA is more difficult than in the case of a
monolithic application, and possibly require the usage of formal tools [87, 79] to
verify the absence of bugs. Bugs includes possible deadlock between microservices
(communication deadlock), and possible unexpected order in the reception of messages
(race). Having the components of an MSOA to communicate through network
messages (rather than shared memory), the computational performances decreases.
This problem is further complicated by the fact that, like any other SOA, the
microservices should employ end-to-end encryption in each component[13].

2.2.3 Event Sourcing Pattern

Event Sourcing is a pattern for capturing all changes to the state of an application
as a sequence of events. A event store is a data store containing a sequence of events
that can be used to determine the state of an application. An MSOA architecture
adopting the principle of immutability combines elegantly with the event-sourcing
pattern. The event store contains sufficient information to determine the content of Immutability and

Event Sourcingthe datastore microservices which, in turn, fully describes the state of an application.
Event Sourcing simplifies the usage of choreography-based sagas since the participant
to a saga reacts to events by producing new events. Therefore, to reproduce the
effect of a sequence of events, only require the provisioning of the same sequence of
events.

Event sourcing simplifies the following activities:

• debug, by reproducing the effects of each of the events leading to a problematic
state, e.g., an inconsistency in the application model;

• testing, by simulating the behavior of an application through the provisioning
of an appropriate sequence of events;

• state reversing, by reversing the effects of the final part of a sequence of events,
or by provisioning of a truncated sequence of events;
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• evolution, by provisioning a historical sequence of events to a new version(s)
of component(s) of an application.

2.2.4 Security of microservices oriented architectures

Virtualization can be a mechanism to increase the security of an application. An
attack performing lateral movement has the ability to spread among different com-
ponents of a system. Consider an application exposing endpoints, e.g., REST API.
Each of the endpoints introduces a potential vulnerability at the application level,Security of

microservices e.g., it is vulnerable to code injection. In the case of monolithic deployment of
the application, the modules communicate through shared memory. Therefore,
the compromise of a single endpoint renders lateral movement an easy task. i.e.,
the attack may spread trough other modules using the shared memory. Lateral
movement can be rendered more difficult by deploying each module on a separate
Virtual Machine, like in microservice oriented application (MSOA) - because there
is an increased isolation between the components. In MSOA, lateral movementis
possible if (at least one of the following):

• the attack can spread through the internal APIs utilized by the microservices

• the attack can surpass the virtualization layer(s)

The difficulty of surpassing a virtualization layer depends on the adopted virtualiza-
tion layer(s), and from the additional security measurements employed. Considering
system-level VMs, an attacker have to surpass the guest OS kernel and the hypervi-
sor. In the case of containers, however, the same OS kernel is shared among virtual
machines. For this reason, Unikernels provides better isolation than containers since
they do not share the same OS kernel [16]. In any case, the described isolation of an
MSOA can be further strengthened using dedicated frameworks (e.g., SCONE [8]
for containers).

Works [113] and [68] examines MSOA with a particular focus on its security
implications, and highlight the relation between immutability and security in MSOA.
As an example, in [113] the authors describe the automated immutable deploy-
ment property as: “services should be immutable: to introduce permanent changes to
microservices, services should be rebuilt and redeployed. Microservice’s immutability
improves overall system security since malicious changes introduced by an attacker to
a specific microservice instance are unlikely to persist past redeployment. Automation
should be leveraged in maintaining the security infrastructure. Immutability aids
the security of microservices similarly to how immutability promotes correctness in
programming languages. ”

Relation between immutability and security in MSOA is found in technical
guides related to the security of MSOA, e.g.in [22] the author define an immutable
infrastructure as: “immutable infrastructure consists of immutable components that
are replaced for every deployment, rather than being updated in place. Those compo-
nents are started from a common image that’s built once per deployment and can be
tested and validated. Image integrity is a core security requirement for an immutable
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infrastructure.”

2.2.5 Automated deployment tools

To “deploy” a service means to render the service available. This is typically realized
by starting a VM containing an application. The operations required to deploy a
service can be automated using appropriate tools and virtualization technologies.
Automation involve operations aiming to maintain acceptable QoS levels after the
initial deployment of a service. Automated deployment operations go under the
name of orchestration [7], which has become particularly useful with the advent
of lightweight VM such as containers. Cloud platforms utilize orchestration to
provide acceptable QoS of deployed user services, and at the same time to optimize
the usage of computational resources. Among the several functionalities enabled
by orchestrations, the main are: i) react to hardware failures by deploying new
instances of services; ii) optimize the usage of computational resources by deploying
replicas of service only when required (so-called "horizontal scaling"); iii) manage the
evolution of services without causing temporary disruption to the services (so-called
“continuous integration and delivery” in DevOps[48]).

In this thesis, we are particularly interested in orchestration because it enables a
mitigation and prevention strategy against cyber-attacks. There are two important
technologies related to automated deployment:

• A Configuration Management Engine (CME) maintains available services at
the OS layer in machines, e.g., ensures that specific packages are installed, and CME
specific OS services are running.

• A Container Cluster Manager (CCM) orchestrates the instances of containers
among the Nodes of a cluster. Orchestration activities have the final goal of CCM
exposing application services realized by the containers while respecting given
QoS levels.

CME and CCM are commonly employed “under the hood” by the implementation
of cloud platforms. There exist implementations of CME and CCM, which allow
specifying in a declarative manner what a desired state for their clusters is, and
have the ability of planning and actuating opportune actions when the desired
state is not met [58]. To be more specific, the current state of a cluster may be
undesirably changed by events that not depends on its management. When such
disturbances occur, a dedicated controller tries to manage the cluster such that the
desired state is met again, by means of a sequence of internal commands and controls.
This approach is reminiscent of the concepts of state of a System as understood in
Control Theory or Autonomic Computing. We are particularly interested in this
kind of approach since it enables to realize a self-healing system at the level of the
deployment, as proposed by the prevention and mitigation approach of this theis.
In what follows, we describe existing implementations of CME and CCM having
the common characteristic of accepting a declarative specification for their task, i.e.,
they accept a desired state for their cluster.
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SaltStack is a CME based on a master-slave model [94]. A Master is an appli-
cation responsible of configuring the OS of the Minion nodes. For each Minion, theCME Master,

Minion desired state consists of OS packages that must be installed, and OS services that
must be running. SaltStack periodically checks that all the Minions are in a desired
state. Consequently, SaltStack may decide to install packages and start OS services,
or re-start them if they are sensed to be not running (e.g. when a service crashes).
Among other configuration management engines, SaltStack is characterized by the
usage of asynchronous message queues.

Kubernetes is a CCM based on a master-slave model [39]. The Kubernetes
Master is an application realizing a scheduler to manage the deployment of ap-
plications. Kubernetes provides mechanisms for deployment, maintenance, and
scaling of containers. In Kubernetes terminology, a Cluster is composed of a set of
Nodes, each Node can host one or more Pods, a Pod represents a service made of
components. A Node is associated with a particular host machine (e.g., a physicalCCM Master,

Nodes machine or system-level VM). A Pod is modeled as a group of Docker containers
having shared namespaces and filesystem volumes. The concept of a Pod allows
informing the scheduler that a group of containers should be treated as a single
unit of deployment, i.e., co-located on the same Node and share the same resources
such as network, memory, and storage. Each of the container in a Pod is a single
microservice realizing part of the functionalities of an application service. Each Pod
gets a dedicated IP address that’s shared by all the containers belonging to it. A
Kubernetes Service is an invariant endpoint for Pods. These endpoints remain the
same, even when the Pods are relocated to different Nodes by the orchestration
activities.

Kubernetes allows to specify user-level constraints for the deployment, which
are considered during the orchestration activities. The constraints allow to specify,
for example, what Nodes are possible candidates to host a certain Pod. The citedCCM Labels
functionality is realized by allowing the user to attach Labels to Nodes, and then
define constraints associated to a Pod which restrict the deployment to Nodes
having certain Label(s). Other user-level constraints are related to the minimum
computational capabilities (e.g., number of CPU-cores) a Pod should have reserved.

Kubernetes objects are persistent entities in the Kubernetes system. Kubernetes
uses these entities to represent the state of a Cluster. Example of Kubernete’s
objects are: Node, Pod or Service. Instances of these object can describe:

• what containerized applications are running (and on which Nodes);

• the resources available to those applications (e.g., CPU, RAM);

• the policies around how those applications behave, such as restart policies,
upgrades, and fault-tolerance;

Kubernetes API allows to interact with objects, i.e., create, modify, or delete
them. Kubernetes API makes a distinction between the specification of a desired
state of an object using a field called spec, and its current state using field status.
As an example, a Service is specified to be deployed on a certain subset of the
available Nodes by specifying a certain spec for a Service object. In case the stateKubernetes

spec, status
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of the cluster don’t met the desired state, or the desired state is changed by the
user, Kubernetes automatically recover by re-deploying the Pods accordingly to the
specs.
From the Kubernetes documentation1:
“ when a new version of an object is POSTed or PUT, the "spec" is updated and
available immediately. Over time the system will work to bring the "status" into line
with the "spec". The system will drive toward the most recent "spec" regardless of
previous versions of that stanza. In other words, if a value is changed from 2 to 5
in one PUT and then back down to 3 in another PUT, the system is not required
to ’touch base’ at 5 before changing the "status" to 3. In other words, the system’s
behavior is level-based rather than edge-based. This enables robust behavior in the
presence of missed intermediate state changes.”

1https://github.com/Kubernetes/community/blob/master/contributors/devel/
sig-architecture/api-conventions.md#typical-status-properties

https://github.com/Kubernetes/community/blob/master/contributors/devel/sig-architecture/api-conventions.md#typical-status-properties
https://github.com/Kubernetes/community/blob/master/contributors/devel/sig-architecture/api-conventions.md#typical-status-properties
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Chapter 3

ASiMOV

The purpose of a defense system can be the prevention, detection, or mitigation of
attacks. Ideally, a defense system does not omit any of the above functionalities.
This thesis focuses on detection aspects, with a detailed model and implementa-
tion (ASiMOV). Moreover, we discuss a mitigation strategy, with a high-level of
abstraction architecture of a dedicated application (Deployment Manager). Aspects
of preventions are, in this thesis, are only hinted at, by considering the possible
advantages coming from the ASiMOV architecture for third-party systems. As an
example, deployment-based processes could employ N-version programming[81], i.e.,
a functionally equivalent CA replaces a tampered CA, using a different language,
however. This strategy is easily applicable through the provisioning of different VM
images.

Our main goal is to define an Intrusion Detection System (IDS) against Internal
attacks, that are tampering of the control logic in Cyber-Physical systems (CPS).
Section 3.1 provides and motivates the requirements for the proposed solution, named
ASiMOV. Section 3.2 introduces to ASiMOV (ASynchronous MOdular Verification).
Section 3.3 describes the characteristics of an infrastructure executing ASiMOV,
and a deployment model. The attacks that we consider are defined more formally in
Section 3.4.

3.1 Detection requirements

In our threat model, the devices executing the control logic (field devices) may be
successfully attacked in any of their functionalities (unrestricted attack), so that
they produce tampered actuation commands. Moreover, we assume the presence
of devices (security devices) in which attacks are prevented from becoming successful.

Table 3.1 provides the list of requirements for the proposed solution. Each of the
requirement traduces into a specification (Table 3.2), as detailed in what follows.

Requirement R1 comes from research question RQ1 of Section 1.3. As an answer,
we propose a network-based IDS executed by security devices. The motivation, is
that we are not allowed to trust any process carried out by field devices. Therefore,
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Requirements for the detection process
R1 detection of unrestricted attacks to the control logic of a CPS
R2 detection is behaviour-specification-based
R3 detection has ideal accuracy (i.e., 1)
R4 detection does not increase the control loop
R5 detection delay is estimable

Table 3.1. Requirements for an IDS against Internal attacks

Specifications from requirements of the detection process
from R1 ASiMOV is a network-based IDS

from R2,R3

ASiMOV employs an exact model of the control logic
defined at the level of the execution environment
(i.e., both the model and its current state are known without
any uncertainty)

from R4 detection processes of ASiMOV are decoupled from direct control
from R5 detection delay of ASiMOV is estimated trough a model

Table 3.2. Specification of the prosed IDS from the requirements

we let security devices to intercept and inspect the network traffic of the field devices.
Assuming that the field devices have a different human administrator than security
devices, having a replica of a field device into security devices may protect against
malicious insider attacks - that accordingly to [43] are one of the challenges for CPS.

Figure 3.1 places our solution (ASiMOV) in a classification of IDS, considering
the employed audit material (host/network-based) and the detection’s target (inter-
nal/external attacks).

We require a behavior-specification-based solution (R2) because, as described in
Section 1.2.1, its is currently considered the preferable approach in the protection of
CPS, that are complex systems (e.g., highly nonlinear, with a hybrid state), and

IDS for CPS

Internal Attacks

host-based network-based

ASiMOV

External Attacks

host-based network-based

Figure 3.1. IDS for Internal (External) attacks aim to detect tampering of the control
logic (sensors and actuators). Host-based (Network-based) IDS are executed on the
same device (on a different device) of that executing the control logic.
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Figure 3.2. Generic representation of a network-based Intrusion Detection System (IDS).
The control logic and the verification logic are in two different execution environments,
therefore their state may be not synchronized.

therefore difficult to protect with knowledge-based approaches.

In the presence of a network-based IDS, there are two distinct logics: the control
logic CL, that forms a feedback loop with a System; and the verification logic CLv,
that inspects network traffic. In general, CLv needs to consider both the influence
of the “cyber” processes (i.e., CL) and the “physical” processes (i.e., system(s)
under control) of a CPS (Figure 3.2). A known problem in literature regards the
undesired effects of having an inexact model of CL in CLv. In a trivial example, if
a parameter for CL (e.g., setpoint, or desired state) needs to change, CLv needs to
be informed. In their proposal of a network-based IDS against External attacks, the
authors of work[103] say: “ The results do not consider the influence of the feedback
controller. However, the results can be generalized by considering the augmented
system composed by the plant and controller dynamics, which is subject to future
work.”. In a nutshell, the authors consider to let CLv track the dynamics of CL
(i.e., the state of CL can be seen as a feed-forward signal). Requirement R3 is the
answer to the research question RQ3. The motivation follows. We aim to avoid any
uncertainty in the detection process, to obtain an ideal detection accuracy against
Internal attacks. The reason for the requirement is that in the presence of complex
control systems, e.g., highly-nonlinear - that are common in real-world CPS, the
slightest inaccuracy in a model may lead to very diverted dynamics in a short time.
Control-Theoretic IDS with a geometric approach, as well as knowledge-based IDS,
typically raise an alert when a particular value exceeds a given threshold (e.g., the
norm of a vector). Such threshold is a parameter for CLv that is chosen to be an
optimal trade-off between detection and false alarm rates - and accounts for any
modeled uncertainty (e.g., noise on sensors, numerical inaccuracies, and so on).

To better explain the considered problem, we consider a generic CT-IDS against
External attacks (e.g., attacks to sensors). We assume that the accuracy of CLv

is affected by two unrelated causes of inaccuracy: inaccuracy in determining the
state of the controlled system (e.g., sensors noise), and inaccuracy in determining
the state of CL. We argue that if the latter inaccuracy increases, the accuracy in
the detection process of CLv decreases. Our answer to research question RQ3 is
based on the intuition that the more a detection process has an accurate model of
the control system (i.e., including CL), the better is the detection accuracy (i.e.,
lower false postitve/negative). Without a formal proof, we assume that the following
comparison between the two scenarios is true:
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Figure 3.3. Network-based IDS realized by ASiMOV. The ASiMOV’s Control Application
and IDS are synchronized. The control logic can optionally include an IDS for the
detection of External attacks, e.g., a Control Theoretic IDS (CT-IDS) protecting the
sensors. In this case, and differently from Figure 3.2. the CT-IDS has an exact model of
the state of the control logic, since they are on the same execution environment.

• Without ASiMOV: the CT-IDS is network-based, and deployed in an infrastruc-
ture without the features introduced by ASiMOV (Figure 3.2). The production
and communication of control signals are subjected to network conditions and
independent timing policies (e.g., event-based control). Therefore CLv does
not employ an exact model of CL. The IDS displays accuracies of χE < 1 and
χI < 1, respectively against External and Internal attacks.

• With ASiMOV: the same IDS of the previous scenario is now a sub-component
of the control logic, and therefore disposes of an exact model of CL. ASiMOV
replicates the control logic, that include the CT-IDS, using a host we assume
un-attackable (Figure 3.3). Therefore, detection performances against Internal
attacks are ideal (i.e. 1). Assuming that the network conditions remain the
same of previous scenario, in this scenario the performances of the ASiMOV
IDS are χ̄E ≥ χE < 1 and χ̄I = 1.

Section 4.1.1 “Motivations for the replication of the control logic” deepens the
problem of an exact state estimation of CL.

We require that ASiMOV does not increase the control loop delay (requirement
R4) of the control system. ASiMOV is a network-based IDS. Therefore, we intend to
avoid the latency between CL and CLv to be a bottleneck for real-time control of
physical systems. Therefore, we require that CL never waits for CLv. In particular,
we propose a delayed synchronization of the CLv over CL, CLv is informed about
the exact state of CL but at a later time.

We require that the detection delay, i.e., the time required to detect an attack,
is estimable trough a model (requirement R5).
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CA

CA
Replica

System
IDS

Deployment
Manager

field host

destroy
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security host

alert

CA-Heal

field host

Figure 3.4. High-level representation of the ASiMOV architecture.

3.2 Introduction to ASiMOV
ASiMOV (ASynchronous MOdular Verification) is a reference architecture for :

• an event-based Control Application (CA) for Cyber-Physical Systems (CPS),
that enables a deployment-based mitigation and prevention mechanism against
Internal attacks.

• an Intrusion Detection System (IDS) detecting Internal attacks.

This Chapter describes the scenario in which ASiMOV operates. Section 3.2 intro-
duces, at a high level of abstraction, the protection mechanism realized by ASiMOV.
Section 3.3 describes the adopted deployment model. Finally, Section 3.4 defines
the model of the attacker considered by ASiMOV.

Figure 3.4 represents a single module in ASiMOV, that is composed by two
applications: a CA and an IDS. Multiple ASiMOV modules are interconnected to
realize a distributed control scheme governing a whole CPS. The IDS contains a
replica of the CA, which is provisioned with the history of the control signals to
verify runtime features that are out of the ordinary (i.e., unsupervised detection
method). The proposed detection technique requires that the inputs and outputs of

Figure 3.5. Logical representation of the dataflow between a System, a CA and a replica
of a CA.

the CA are replicated at the level of the network. Figure 3.5 represents the dataflow
between the CA and a replica. The detection consists in comparing the outputs of
the replica with the outputs of the CA: any discrepancy may be interpreted as the
consequence of a cyber-attack.
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The state of the CA and the replica are kept consistent by providing the same
inputs, i.e., control signals. The verification and direct control processes are asyn-
chronous to let the CA and the IDS work independently, hence to avoid the intro-
duction of a delay in the control loop. Being the CA and the replica asynchronous,
CA needs to push synchronization data toward the replica (C-I out arrow in Figure
3.5).

If an attack is detected, the mitigation mechanism consists of the redeployment
of a new instance of the CA (i.e., the CA-Heal in Figure 3.4), which is provisioned
with a previously verified state contained in the IDS. The proposed mitigation
mechanism can also be used as a preventive strategy, since periodic redeployment
and rejuvenation of the host executing the CA may prevent silent attacks not yet
detected to become successful.

3.3 ASiMOV Deployment model
A CPS contains systems controlled by CAs, where each CA implements a specific
control scheme, e.g., a proportional controller. A control scheme of a CPS corresponds
to the control schemes of the individual CAs and their interconnection. An instance
of a deployment model for a CPS contains sufficient information to deploy a control
scheme for a CPS, and the corresponding set of IDS (i.e., one IDS for each CA).

3.3.1 Deployment model for a CPS

Figure 3.6. UML deployment model for a CPS. A CA-Class represents a control scheme
assigned to the control of a System (relation controls) A System may be a physical
System or a CA-model (i.e., for a hierarchical control schemes). An IDS-Class represents
and IDS assigned to the verification of a CA-Class.

Figure 3.6 is the UML of the deployment model for a CPS. A CA is architected
using microservices and adopts an immutable deployment model. The CA-Class is a
generic a controller accordingly to the ASiMOV architecture, while an instance of CA-
Class characterizes a specific control scheme to be deployed. Before its deployment,
a CA is described by an instance of CA-Class, which contains everything required
by an execution environment to execute the CA, and characterizes the state of a CA
at the time of the deployment. A CA-Class consists of different components (class
Component). Each Component corresponds to a microservice, and an instance
of Component is characterized by a specific image of a Virtual Machine (attribute
VMimage), for example a container image; and attribute VMconfig, for example a
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configuration file. The attribute dConstraints contains the value for constraints
relative to the deployment, e.g., it allows to restrict the deployment of a CA to a
particular device. This aspect is clarified in Section 5.4.

In the UML model, the association controls represents the assignment of a
Controller to one or more Systems. The class System is a generalization of both CA-
Class and class PhySystem, the latter representing a physical System equipped with
a network interface. The introduced generalization allows describing a distributed
control scheme, i.e., where a CA controls a different CA. In a hierarchical control
scheme, the set of associations controls defines a tree where nodes are instances of
System, and leafs are instances of PhySystem.

IDS-Class represents and IDS assigned to the verification of a Controller. In an
instance of the model, the set of associations controlsIDS is consistent with the set
of controls, i.e., the IDS of two CA in a controls relation are in a controlsIDS
relation. As already mentioned, an instance of a System could represent a physical
system or a CA. However, in order to avoid disambiguation, we refer to a System as
a controlled entity. We refer to a controlling entity as a CA-Class, CA, or Controller.

3.3.2 The deployment process for a model

An instance of deployment model for a CPS is said deployed when:

• each instance of the CA-Class is deployed as a CA;

• for each CA, there is deployed a correspondent IDS;

• CAs, Systems, and IDSs are configured to establish the required communication
channels (e.g., a CA and a System are configured with their reciprocal

• the network enables the required communication channels (i.e., between CAs,
Systems, and IDSs);network addresses).

The deployment aspects regarding the achievement of the above conditions are part
of an automated or semi-automated process.

Devices can be either computing devices (e.g., a general-purpose computer, or
a micro-computer like a Raspberry PI) or networking devices (e.g., a router or
a switch). Utilizing virtualization technologies, both computing and networking
devices may be virtual. Depending on their purpose, devices are classified as:

• Field devices: realize the infrastructure dedicated to the direct control of the
Systems, i.e., executes CAs and realizes the network topology required by an
instance of the deployment model;

• Security devices: realize the infrastructure dedicated to the detection, mitiga-
tion, and prevention of attacks (i.e., including the IDS).

Some of the devices are remotely configured e.g., a field device is configured to
hosts a CA, a software-defined network switch is configured to enable the required
communication channels.

A specialized application, we name Deployment Manager (DMAN), is in execution
on the security devices. The DMAN realizes automated deployment and orchestration
of applications (both CAs and IDSs), and possibly the network.
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The management is realized trough the provisioning of configurations to ap-
propriate management client application(s) that are executed on the configurable
devices. As an example, consider a physical machine dedicated to the execution of
CA. The device is a Minion of a Configuration Management Engine (CME), hence
it is possible to deploy multiple CAs trough the management of the layers of the
computer architecture of the device. The management operated by the DMAN may
involve different layers of computer architecture and may require multiple steps to be
completed. In particular, it is possible that the DMAN needs to prepare the device
for the deployment (pre-deployment operations). After the devices are prepared,
they can be used to deploy a CA.

Figure 3.7. Representation of a CPS once a control scheme is deployed. For each CA there
is an IDS. There are streams a CA-System stream and a CA-IDS stream for each CA.

Figure 3.7 represents the devices of a CPS in the deployment model proposed
by ASiMOV. A host is an environment executing and exposing the endpoints of a
service-oriented application. We assume that physical systems are equipped with a
networked application interface, hence they are hosts. A CPS contains computing
devices which, after a remote configuration, become hosting services. Hosting services
can be used to deploy VMs (e.g., containers). The hosting services are classified
depending on their purpose:

• Field hosts: used to deploy CAs into field devices

• Security hosts: used to deploy IDSs into security devices

Inter-host communication takes place entirely through separate, non-synchronized
data streams. Considering a single CA, there is a communication with each of the
systems under control, and with the associated IDS. In particular, a CA participates
in the following communications:

• Communication with System(s): for each System, there is a bilateral com-
munication made of streams containing control signals. Considering a single
System, there are the following streams:

– C-S out: a stream produced by the CA containing actuation for the
System
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– C-S in: a stream produced by the System for the CA containing sensing
from the System

• Communication with the IDS: a set of streams named C-I out is produced by
the CA for the IDS, carrying data required to synchronize the state of the CA
and its replica (i.e., control signals metadata).

The streams between the CA and the System (i.e., C-S out, C-I in) are subjected
to mirroring toward the IDS, i.e., the streams are intercepted, copied and forwarded to
IDS. Depending on the network infrastructure, the required mirroring functionalities
may be realized employing configurable networking devices (e.g., CISCO router with
SPAN technology) or employing dedicated physical devices (e.g., network TAPs).

3.4 Considered attacks
An attacker has the goal of providing tampered actuation to System(s). We do not
consider timing attacks, i.e., to slow down the provisioning of actuation signals. An
attacker is capable of tampering the device(s) which execute the CAs. We assume
that an attack can only occur on the field computing devices. All the networking
devices and security devices are assumed safe from attacks, i.e., each IDS receives
the same streams produced and consumed by System(s), and cannot be tampered.
An Attack is any tampering of the computer architecture of field computing de-
vices(s), i.e., the tampering may occur at any layer of the computer architecture.
Indipendently from the specific technique employed by the attacker (e.g., code
injection, execution of malware, tampering of the memory, substitution of code by a
malicious insider), an Attack leads to the production of malicious actuation.

ASiMOV protects each CA separately and independently. Therefore, in what
follows the description of an Attack is relative to a single field computing device.

3.4.1 Security assumptions in ASiMOV

The detection of attacks in ASiMOV is based on the concept of modular redundancy,
which is commonly employed against random faults, i.e., when the probabilities of
failures of instances (replicas) of an application are independent. Differently from
traditional modular redundancy, we differentiate the reliability of two instances of a
controller based on the surface of attack of computing devices hosting a CA and a
replica, i.e., respectively field and security devices. This assumption is based on the
fact that, under the conditions that follow, a security device has a smaller surface of
attack than a field device. For the security devices, we assume:

• an attacker does not have physical access to a security device, i.e., the device
is in a segregated environment;

• a security device adopts strong security policies, e.g., strong encryption, host
hardening, SGX enclaves, and the likes.

The above conditions do not apply to a field device, because:
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Figure 3.8. UML model representing the specializations of an Attack into different kinds.

• to maximize the performances of direct control, the communication delay
between the controlled System and the CA should be minimized, specifically
for soft and hard real-time control. Therefore, the CA must be near the
System, i.e., in terms of network latency. It is unfeasible to segregate each
of the field devices, in particular considering the vast amount of controlled
physical Systems and their localization in an IoT scenario;

• strong security policies may introduce performance degradation (e.g., [57]),
which may be variable and difficult to be estimated. Hence, the highest possible
degree of security policies may introduce a (variable) delay within the control
loop, which is problematic primarily for real-time control.

Attacks to networking devices (e.g., switches) are outside the scope of ASiMOV.
A tampered networking device may result in an External attack (i.e., attack to
the sensor and actuation data), which may be detected by control-theoretical IDS
(CT-IDS) integrated into the control logic and therefore protected by ASiMOV.

3.4.2 Model of the Attacker

A tampered device may experience different malfunctions that may not be observable
from the outputs. An attack is specialized in different kinds depending on what can
be determined from the outputs of a CA (Figure 3.8).
An attack is successful when it tampers the C-S streams, i.e., the stream from a CA
to a System. The main task of ASiMOV is to detect and possibly mitigate successful
attacks.

Depending on what functionalities of a device have been tampered, also the C-I
stream(s) may get tampered as well. Therefore we distinguish between two kinds of
successful attacks:

• Confined to Control Logic: the C-S streams have been tampered, while the
C-I streams are authentic.

• Unrestricted: both the C-S and the C-I streams have been tampered.
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Figure 3.9. Any of the multiple architectural layers of a device can be compromised, as
can any sub-module of a CA. Depending on what outputs of a device get tampered (red
arrows) a Successful Attack is Unrestricted or to the Control Logic.

Figure 3.10. In a Latent Attack a device is tampered, but there is not an observable
malfunctioning.

Figure 3.9 represents the two introduced kinds of a successful Attack. When an
Attacker can do nothing more than an attack confined to the Control Logic, this
means that the attack is confined to the subcomponent(s) of the CA dedicated to the
computation of actuation signal. An attacker capable of carrying out an unrestricted
attack may have full control over the tampered device. Such an attack could be caused
by vulnerabilities at the OS level (e.g., administrative escalation), hypervisor (e.g.,
compromised isolation), or at the hardware level (e.g., CPU microcode vulnerability).

An attack that is not (yet) successful is referred as a latent attack (Figure 3.10),
which is undetectable by ASiMOV. However, ASiMOV may be able to prevent a
latent attack from becoming successful. Although a latent attack has no impact
on a System at the current time, it is dangerous as it could become successful in
the future. In particular, a coordinated attack on multiple devices could inflict
significant damage.

as a possible advantage within strategies employed by leveraging the functionali-
ties introduced by ASiMOV.
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Chapter 4

Model and Architecture

This Chapter details the design of ASiMOV, to realize the following functionalities:

• Control of Systems, possibly employing event-based and state estimation
control schemes.

• Detection of Internal attacks, by verifying the outputs of the Controller.

• Mitigation and Prevention of cyber-attacks, by reconstructing the state of
the Controller from a history of control signals.

Section 4.1 provides the model of a verifiable Controller. Section 4.2 defines
an architecture to implement the proposed model and the detection of successful
Internal attacks. Section 4.4 describes how the proposed architecture can use a
state-preserving deployment-based mitigation and prevention mechanism.

The usefulness of the protection mechanism of ASiMOV in a real-world scenario
derives from the assumption that the security devices can be made much more
difficult to tamper, then the field devices. For economic, computational, or logistical
constraints, it is typically impossible to equip all the devices in a CPS with the most
robust security measures, e.g., physical surveillance, strong cryptography, and the
likes. Indeed, the devices are typically too many, may have reduced computational
capabilities, and some of them must work in real-time with the physical systems. As
a difference, we assume it is much easier to protect few, powerful security devices,
which are not required to work in synch with the controllers or the physical systems.
To provide a concrete example, a single data center could execute the replicas of
thousands of controllers, while employing the most robust security measures (e.g.,
against code injection, exploit O.S. vulnerability, etc.. ).

4.1 Model of ASiMOV

Section 4.1.1 motivates the needs for an exact model of the state of a Controller.
In particular, we discuss the usefulness of ASiMOV in avoiding loss of accuracy
in the detection of External attacks when a Control-Theoretic IDS (CT-IDS) is
rendered network-based. Section 4.1.2 proposes the conceptual model of a verifiable
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Controller. The model includes a definition of the State of the Controller, presented
in Section 4.1.3.

4.1.1 Motivations for the replication of the control logic

ASiMOV describes the control logic (CL), and the verification logic (CLv), as two
systems which state include that of an execution environment. We aim to realize the
operative condition in which CLv disposes of an exact model of CL. Not only the
mentioned condition enables an ideal detection accuracy against Internal attacks but
- as already introduced in Sections 3.1 (requirement R3) and 1.3 (research question
RQ3) - it may prevent decreasing of detection accuracy of an IDS due to a lack of
coordination between CL and CLv.

In a conventional CT-IDS, CL and CLv are two dynamic time-invariant systems.
We argue that, in the case of an event-based implementation of CL, and a network-
based implementation of CLv, the two instances require a sharing of information,
i.e., what are the input sensing consumed by the two models during the time, what
is their notion of the current time. Without such information, the usage of a CT-
IDS is limited to the case of trivial control timing policies, e.g., an actuation is
always produced using one sense, and the notion of current time is not used. In an
event-based control scheme, without proper coordination between CL and CLv, the
CT-IDS may divert from its ideal dynamic trajectory, therefore not representing
anymore the real cyber-physical system. In this case the detection accuracy of the
CT-IDS may decrease (i.e., increase in false positives, negatives, or both).

In the proposed model for a Controller (Section 4.1.3), the equivalent of a
transition function is named, to disambiguate from the control theoretic terminology,
update of the Execution State function. Differently from a conventional dynamic
system, such function takes as an input a set of timestamped control events (i.e., a
piece of information of a knowledge).

The first considered cause for CLv–CL state inconsistency is a difference in the
notion of the current time, as measured by two different hosts. Control techniques
such as state estimators (e.g., Kalman filters) may require as an input time-stamped
control events (possibly remote in the past), and the notion of the current time.
Besides, even assuming that the clocks of two hosts can be exactly synchronized,
two instances of a transition function could be invoked at different time instants.
The second cause for state inconsistency comes from the adoption of an event-based
control scheme. In this case, CL adopts self-triggering policies for the production of
actuation, that may depends on factors unknown to CLv e.g., the time in which a
sensing payload became available, the set of sensing events available at a specific
time.

In what follows, we assume, without explicitly mentioning it, the presence of an
IDS against External attacks (e.g., a Control-Theoretic IDS, or CT-IDS) inside CL.
The mentioned possibility does not require any further mention, because whatever is
the mode of communication between a CT-IDS and the Controller, we assume that
there is a shared execution environment between the two (e.g., they are implemented
as the same component CL).
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System’s Model System’s State State Estimation
Dynamic system Point in a state-space rep-

resentation
Kalman filter

Finite state machine Graph node of a state di-
agram

Markov model

Knowledge-based Set of facts Probabilistic logic

Table 4.1. Examples of System’s models, System’s state and estimation techniques
implemented by a logic.

4.1.2 Model of a verifiable Control Application

Actuation, sensing and parameters are control signals. A Controller is an entity
connected in a feedback loop with a System, i.e., the actuation and sensing signals
are respectively output and input (input and output) for the Controller (for the
System). An entity containing the payload of a control signal accompanied by a
timestamp value is a control event. A Controller utilizes both control events and
control logic to produce actuation for the System. We aim to define the model for a
Controller capable of describing a broad spectrum of control schemes. In particular,
we consider the following features required by a control scheme:

F1: the logic utilizes the notion of current time and prior knowledge made of
control events to produce actuation for the System;

F2: the logic is subjected to time-varying parameters, e.g., the desired state
for the System is time-varying.

The first two columns of Table 4.1 shows examples of models employed by a logic
accordingly to feature F1 and the corresponding representation of a System’s state
in the System’s model.

A control scheme utilizing a state space and state estimation, e.g., Kalman filter,
may require feature F1. The proposed model envisages control schemes not strictly
requiring feature F1. As an example, a conventional Proportional Integral Derivative
controller (PID) reacts to sensing without considering the notion of the current time.
However, the timestamps associated with sensing events are still required to enable
the functionalities of ASiMOV.

ASiMOV defines a Control Application (CA) containing the following compo-
nents:

• Control Knowledge (CK): a data store containing control events (e.g., times-
tamped sensing).

• Control Logic (CL): an executable software implementing a control scheme
(e.g., a PID).

There are defined the following abstract entities.

Knowledge : a set of control events k , which models the data store CK. A control
event can be a timestamped sensing, actuation, or parameter (e.g., desired
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state for the System). The Knowledge contains the complete raw information
available to the CA i.e., it is the history of events to be consumed, already
consumed and produced by the CA. A query to the CK data store is modeled
with a function q.

Algorithm : represents the stateless part of CL, which is logic without memory.
Actuation payloads are produced based on the notion of the current time and
a subset of the Knowledge x ⊆ k. The Algorithm corresponds to the program
memory of software CL.

Execution State : represents the state of the execution environment hosting CL.
Precisely, the Execution State models the stateful part of CL, which contains,
for example, data-structures storing the values of the variables used by the
Algorithm. The Execution State is the result of the processing of the Knowledge
as done by the Algorithm in a sequence of iterations. A single iteration is
modeled with a function c usable to produce a single actuation payload. The
Execution State corresponds to the data memory of software CL.

State of the Controller : the combination of the Execution State and the Knowl-
edge.

The production of actuation is a recurring operation carried out by a task of the CA,
called Actuate task hereafter. An iteration of the Actuate task produces a single
actuation payload a, and is defined by the following workflow:

1. a subset x of the Knowledge k (e.g., recent sensing events) and the notion of
the current time r are provisioned to the Algorithm;

2. the Algorithm updates the Execution State (e.g., estimates the current state
of the System) then computes an actuation payload.

Figure 4.1 (a) shows the abstract entities of a CA, and x, r input to CL used to
produce actuation a.

Figure 4.1 (b) shows the interaction between CK and CL during the i-th iteration
of the Actuate task, which spans the time interval [ti, ti+1), where ti is the time in
which the iteration begins, i = 1, 2 · · · .

Depending on the adopted process to produce actuation (e.g., event-driven), an
iteration is initiated by a notification event ("notif." in the Figure), which is fired
when new events enter the Knowledge (event-driven), or periodically (time-driven).
The sequence of operations leading to the production of ai, i.e., the i-th actuation
payload, is:

1. CL receives the set xi ⊆ k from CK i.e., CL selects a subset of the Knowledge
k by means of query function q

2. CL receives the notion of current time ri

3. CL uses xi, ri for updating the Execution State and producing ai by means of
function c
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Figure 4.1. (a) The abstract entities (dotted boxes) and the components of a Controller,
and the inputs to the CL component. (b) Interaction diagram between CK and CL.
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Figure 4.2. Dataflow to produce a control event from a control signal (“t.stamp”), to
store a control event m in k, to select x ⊆ k (function q), and to produce actuation
a (function c). The outputs a of the controller and av of its replica are compared to
detect cyber-attacks to the control logic. The diagram is a simplification that considers
synchronized the system clock and the I/O ports of the Controller and its Replica. For
the sake of simplicity, the parameter signal p is not shown.

The State of the Controller (i.e., Knowledge and Execution State) changes during
the i-th iteration. We assume that:

• the selection criteria for obtaining xi (i.e., any parameter for function q)
depends solely on the Execution State at time ti

• ai and any changes to the Execution State depend exclusively on the Execution
State at time ti, and on the inputs to the Algorithm xi, ri

Figure 4.2 shows how a controller and its replica act and communicate. The
Knowledge k is accessed to store (unite operator ∪ in the Figure) any control event
m. In turn, control events m are timestamped version of control signals a, s, or p
(the latter not shown in the Figure for the sake of simplicity). When an iteration
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of the Actuate task begins, the function q selects x. In turn, x and the notion of
current time r are used by the function c to update the Execution State and produce
actuation a. The outputs a of the controller and av of its replica are compared to
detect successful cyber-attacks to the controller.

The comparison a ?= av is effective in detecting cyber-attacks depending on the
assumptions relative to the synchronization of the controller and its replica. Ideally,
the two are always synchronized over time. However, in ASiMOV the controller
and its replica as asynchronous - because the controller never waits for the replica.
Therefore, at a given time t the controller and its replica have, in general, a different
Execution State. Moreover, the controller and the replica have two different notions
of the current time (i.e., we do not assume clock synchronization). The diagram in
Figure 4.2 represents a simplified version of ASiMOV, since it assumes clock and
I/O synchronization between the internal component of the controller and its replica.
Without the definition and implementation of appropriate sufficient conditions, the
controller and the replica may produce different outputs in the absence of cyber-
attacks. In what follows, we provide a model representing the time evolution of
the State of the Controller, which is used in §4.3.1 to provide sufficient conditions
for the verifiability of the controller’s outputs using an asynchronous replica. In
particular, we realize the following conditions, for each iteration of the controller
(Actuate task) and the correspondent iteration in its replica:

• the two Execution State coincide

• functions c, q are provided with the same inputs x, r

4.1.3 State of the Controller

We define E the set of all possible Execution States and M the set of all possible
control events. A control event m ∈M could carry the timestamped payload of an
actuation, sensing, or parameter. Ma ⊆M is the set of possible actuation events,
M e its complement, i.e., sensing and parameter. P indicates the powerset operator.
The following functions of time t ∈ < describe the inputs for the controller:

r(t) ∈ < : a measure of current time

g(t) ∈M e : a sensing s or parameter p event

a(t) ∈Ma : an actuation event a

The following functions describe the State of the Controller over time:

k(t) ∈ P(M) : the events in the Knowledge

e(t) ∈ E : the Execution State

A selection of an element of the Knowledge is modeled by the function q defined as:

q : {m ∈M} × E → {m} ∪ ∅ (4.1)

q(m, e) provides m or the empty set, depending on m and on the content of e(t),
the latter determining a selection criteria. By definition:

∀t, q(k(t), e(t)) ⊆ k(t) ∪ ∅
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We are interested in describing the State of the Controller only at the time instants
ti in which the i-th iteration of the Actuate task begins. For that reason, we consider
the following discretized version of introduced entities:

ri := r(ti)
ki := k(ti)
ei := e(ti)

Considering the initial time t0 and the time interval:

∆i := [ti−1, ti)

Defining gi ∈ P(M e) the set of sensing and parameter control events entering the
Knowledge during ∆i:

gi :=
⋃

t∈∆i

g(t)

The Algorithm is modeled with the function c(x, r, e):

c : P(M)×<× E →Ma (4.2)

Function 4.2 provides the payload of an actuation event based on a set of control
events (i.e., selected knowledge x), the notion of current time (i.e., r) and an
Execution State (i.e., e). The update of the Execution State is the function u(x, r, e):

u : P(M)×<× E → E (4.3)

Function 4.3 represents each of the changes in ei introduced by the Algorithm during
the i-th iteration of the Actuate task, and it provides a new Execution State ei+1.
The update of the State of the Controller is:

k1 := g1

xi := q(ki, ei)
ai := c(xi, ri, ei)

ki+1 := ki

⋃
gi+1

⋃
{ai}

ei+1 := u(xi, ri, ei)

(4.4)

where e1 is the initial Execution State i.e., when iteration 1 of the Actuate task
begins, Si := [ki, ei] is defined as the State of the Controller when i-th iteration of
the Actuate task begins.

The key idea of the proposed model is that an Execution State is reproducible
using an initial Execution State and the sequence of inputs to the Algorithm i.e.,
the following mapping is realizable:

q, c, e1, x1···i, r1···i 7→ ei+1
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Figure 4.3. The architecture of ASiMOV and the related exchange of messages between
its components. Symbols are defined in Section 4.1 and Section 4.3.

4.2 Architecture of ASiMOV

This Section proposes the architecture of a verifiable Controller, implementing the
model of the previous Section. The architecture consists of two application: the CA
(§4.2.1) and the IDS (§4.3). Section 4.3.1 details the detection of attacks confined to
the Control Logic, while Section 4.3.2 describes, at a high-level of abstraction, the
detection of unrestricted attacks.

4.2.1 Control Application

Figure 4.3 shows the architecture of ASiMOV. The CA and the IDS applications
(dashed boxes) include respectively, the controller and the replica. In the Figure,
each arrow is a data stream, where all data streams are reciprocally asynchronous.
The streams from the CA to IDS, i.e., m and meta (C-I streams of Figure 3.7),
enable the IDS to reproduce the same subset of Knowledge x and the notion of
current time r utilized by the controller at each iteration of the Actuate task. In
particular, control events m carries the same payload and timestamp utilized by the
controller, while meta enables the replica to reproduce the same xi and ri of the i-th
iteration of the Actuate task, and therefore to verify ai without the need to inspect
the state of the CA.

ASiMOV assumes the presence of a network device (e.g., a switch or Terminal
Access Point device) replicating control signals p, s, a to the IDS. Our choice depends
on the fact that a network device is assumed more secure than a computing device. A
software-defined switch decouples a particular instance of a CA and the System [56],
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Figure 4.4. Architecture of a CA connected with a networked system and a father CA.
The CA and CAfather are protected by 9 two distinct IDSs.

which allows performing a hot-swap of the CA as foreseen by our mitigation strategy.
The data streams carrying p, s, a are employed by the IDS to verify the consistency
of the data stream carrying m.

It makes sense to consider a hierarchical control scheme in which two CAs may
be in a father-child relationship. In this case, CAfather produces actuation that is
parameters p for CAchild, and CAfather receives as sensing a view d over the state of
CAchild. In Figure 4.3, CA plays the role of a CAchild.

Figure 4.4 shows a service-oriented view of the architecture. The CA offers to a
human user or a CAfather the following services: the realization of a control action
driving the state of the System (or the CAchild) toward a desired state specified by
parameters p; and the provisioning of a view d over the state of the System (or the
CAchild).

4.3 Detection of Cyber-attacks

In what follows, a superscript v or w indicates an entity belonging to the IDS. The
IDS consists of: replicas of CK, CL, and SW, here referred to as CKv, CKw, CLv

and SWw; and the Logic Verifier (LV). The SW is configured to push the same
control events to both CK and LV. The latter, in turn, forwards the messages to
CKv.

The IDS performs two tasks using control events in CKv and CKw:

• Compare task: LV compares the actuation produced by CL and CLv to detect
tampering of m ∈Ma i.e., actuation produced by CL (§4.3.1).

• Match task: LV verifies the consistency of m ∈ M received by LV with the
signals p, s, a received by SWw i.e., to detect tampering of signals and events
produced by SW (§4.3.2).
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The two tasks correspond to two tests: the failure of one or more tests is interpreted
as the consequence a tampering of the Knowledge, the Algorithm, or the Execution
State of the controller.

4.3.1 Compare task

The detection of tampering to the actuation produced by CL is based on sufficient
conditions for interpreting a 6= av as a cyber-attack. The conditions are summarized
in Table 4.2 and detailed in what follows.

Condition Description

C1 the controller and the replica have the same
initial Execution State

C2
the replica verifies the i-th actuation using the
same ri used by the controller during the i-th
iteration of the Actuate task

C3

the replica verifies the i-th actuation using the
same xi used by the controller during the i-th
iteration of the Actuate task (holds if C4-C6
holds)

C4 control events enter in k and kv in the order of
their timestamps

C5 the timestamp of events in k is unique

C6
at the time in which q selects xv

i ⊆ kv on the
Replica side, kv contains an event having times-
tamp τM

i (i.e., the maximum timestamp in xi)

Table 4.2. Sufficient conditions for an asynchronous detection of attacks to the logic

The Compare tasks of the IDS corresponds to the Actuate task of the CA. At
the i-th iteration of the Compare task, the LV interacts with CLv and CKv to verify
ai, which is the payload of the actuation produced by CL during the i-th iteration
of the Actuate task.

Being e1 and ev
1 the initial Execution State of respectively the controller and its

replica, we define the following conditions:

e1 = ev
1 (C1)

∀i, ri = rv
i (C2)

∀i, xi = xv
i (C3)

If conditions C1–C3 holds, and assuming that the controller and the replica implement
identical functions c and q, from Eq. 4.4 we have:

∀i, ei = ev
i

and therefore:

∀i, ai = av
i (4.5)
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The case where Eq. 4.5 is not true is interpreted as a cyber-attack.

We assume condition C1 always true, i.e., the components CL, CLv, CK and
CKv are instantiated (i.e., deployed) to determine the same initial Execution State.

The fact that the controller and its replica are asynchronous complicates the
achievement of conditions C2 and C3. Condition C2 requires that CLv provides
to function c the same value for current time r used by CL. In our proposal, C2
is achieved by attaching as metadata to ai the value of current time ri used by
CL, which is then provisioned to CLv. Condition C3 requires that CLv provides to
function c the same set of control events xi used by CL, which in turn are selected
by function q based on their timestamps. Complications are:

• a timestamp does not reflect the actual availability of control events in CK,
i.e., after being produced an event must be transmitted from SW to CK, and
rendered available by CK; and

• events xi must be available in CKv at the time in which CKv performs the
query (i.e., the function q); and

• CKv must not provide to CLv any extra-event from those appearing in xi.

Condition C3 is achieved by attaching as metadata to ai the timestamp of the
most recent event found in xi, which is then used for determining xi from kv

i on the
replica side. In particular, stream meta (Figure 4.3) is sufficient to determine xi and
kv

i . In what follows we detail how condition C3 is achieved utilizing meta.
Condition C3 is rewritten as follows. Defining τ(m) the function providing the
timestamp of event m. Defining f(t, x) the function providing all the events in set x
having timestamp less or equal to t. Defining:

τM
i := max

m∈xi
τ(m)

we redefine xi of Eq. 4.4 for the Replica as:

xv
i := f(τM

i , q(kv
i , e

v
i )) (4.6)

Introducing the following conditions:

Control event m enters in k and kv in the order of their timestamps (C4)
∀i, τM

i is unique (C5)
∀i, ∃m ∈ kv

i | τ(m) = τM
i (C6)

we have that condition C3 holds if C4–C6 holds and Eq. 4.6 is used. In words,
conditions C4–C6 implies that kv

i contains at least all the events in xi. Eq. 4.6
determines that events with timestamp more recent than τM

i are removed from xv
i .

Stream meta (Figure 4.3) carries ri and τM
i . Condition C4 holds assuming

that SW uses a reliable order-preserving communication protocol for each stream
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established with the IDS (i.e., m and meta streams).

Condition C5 is achieved by designing the SW with a single FIFO queue for
the timestamping and forwarding service, which, assuming a host’s system clock
sufficiently accurate, ensures a unique timestamp for each control event.

Condition C6 is implemented as follows. Function q is implemented both by
datastore CK (query server) and CL (query user). CK takes as a parameter the
time interval ∆f = (ts, te], and serves a selection of control events having timestamp
in ∆f , where ∆f is a selection criteria determined by an Execution State. CK has
different behavior depending on the value of te: in case te =∞, CK serves the query
as soon as possible (unbounded query) using the events currently available in the
Knowledge. On the contrary, in case te is finite the query is served only when a
event with timestamp te is available (bounded query). In an event-driven production
of actuation, the Algorithm is supposed to produce an actuation payload as soon
as possible after new control events enter the Knowledge. Therefore, in this case,
CK produces unbounded queries since they guarantee maximum reactivity. The
Algorithm typically requires to receive only control events it has not already seen.
Therefore, to produce ai, the Algorithm requests all events more recent than the
most recent event seen in the previous iteration, i.e., the query selection criteria
interval is:

∆f = (τM
(i−1),∞) (4.7)

which determines an unbounded query.
Bounded queries are used to realize condition C6 on the replica side. In particular,
LV intercepts the queries of CLv (i.e., Eq. 4.7) and substitutes te to produce the
selection interval:

∆f = (τM
(i−1), τ

M
i ] (4.8)

The newly obtained bounded query of Eq. 4.8 is provisioned to CKv, which imple-
ments Equation 4.6.

Being the CA and the IDS executed in distinct hosts with possibly different
computer architectures, differences in the result of arithmetic operations involving
real numbers may lead to false positives in the detection. Assuming such differences
estimable [47], Eq. 4.5 can be redefined as: h(ai, a

v
i ) ≤ εv , where h provides a

distance (e.g., Euclidean distance) between the payload of actuation events, and εv
is arbitrarily small.

4.3.2 Match task

This Section discusses the detection of unrestricted attacks to the host executing
the controller, e.g., the SW may also be tampered. In this scenario, an intruder may
send a tampered actuation to the System but a genuine actuation to LV. In order to
detect such kinds of attacks, the IDS uses CKw and CKv for verifying the consistency
of the streams involving SW and the network switch (lower part of Figure 4.3). In
particular, the network switch is configured to push the payloads to both SW and
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SWw. Component SWw produces control events for CKw with different timestamps
of those assigned by SW. However, the events and their timestamps preserve their
relative order compared to those of SW. The LV verifies the consistency between
CKv (i.e., kv) and CKw (i.e., kw).

Control Events in kv determines a sequence for each kind of events (e.g., actuation)
for a total of three sequences. Similarly, three sequences are determined by events
in kw. An attack is detected if at least one of the following conditions C7–C9 do not
hold:

The payload of control events is consistent. (C7)

The timing of control events is consistent. (C8)

The presence of control events is consistent. (C9)

Condition C7 is verified as follows. Given a sequence of a certain kind in kv (e.g.,
sequence of actuation), and the sequence of the same kind in kw, the two sequences
are identical despite the value of the timestamps (in case kv and kw have a different
number of elements, the extra elements are not considered).

Condition C8 is verified as follows. Considering a sequence S of events of a
certain kind in kv. We have: ∑

m∈S

∥∥τ(m)− τ(m′)
∥∥ < δ (4.9)

where m’ is the element in kw corresponding tom, and δ > 0 is an arbitrary threshold
for the cumulative difference of timestamps of corresponding events. The value of δ
can be properly assigned by considering the average difference of system clocks of
SW and SWw, the time duration of S, and the delays and jitter of the network links
employed by CA and IDS, we assume known.

Condition C9 consists in verifying the discrepancy between the number of elements
in the sequences of a certain kind in kv and kw. In particular, the difference of
sizes of two sequences should not exceed a certain threshold, which can be properly
assigned by considering the jitter of the network links used by SW and SWw.

4.4 Mitigation and Prevention of attacks
ASiMOV adopts an immutable deployment model for the microservices, which
improves system security since malicious changes introduced by an intruder to a
specific microservice instance are unlikely to persist past redeployment [113]. The
usage of cloud technologies, e.g., Container as a Service platforms [54] and orches-
tration layers [18] (e.g., Kubernetes) enables to actuate a cyber-attack mitigation
and prevention strategy based on a redeployment of a compromised CA. In [15], the
authors describe a generic microservice architecture by the mean of a set of images
of containers and network parameters. In particular, a specific application made
of microservices (in our case, the CA) determines a set of declarative primitives
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dynamically provided to an orchestrator, that is DMAN in Figure 5.2 (e.g., an
application that includes a container cluster manager, such as Kubernetes). By
adopting the above approach, the ASiMOV mitigation and prevention strategy are
reconfiguration policies executed by DMAN, i.e., to stop, start and reconfigure images
of the container(s) involved in a cyber-attack. The redeployment of a container can
be done on its original host or in a different host in order to prevent a new attack in
the short term. Typically, such redeployment takes a few seconds (2-5) to start its
execution.

The model proposed by ASiMOV enables to reconstruct the State of a Controller
S = [k, e] of a CA into a new instance of a CA (named CA-Heal, or “healed CA” as
in Figure 3.4).
The controller state migration process is defined as the following mapping:⋃

t∈∆c

m,meta 7→ kh, eh (4.10)

where the left argument of the mapping are the control events and metadata from a
CA to the IDS during time interval ∆c (see Figure 4.3) and kh, eh are respectively
the Knowledge and Execution State of a healed CA at the end of the migration
process. The migration operates at the application level and therefore does not
propagate any tampering possibly occurring at the level of the execution environment
(e.g., tampering of the OS). The proposed mechanism offers the opportunity not
only to mitigate detected attacks but also to prevent attacks not yet detected. In
particular, we argue that periodic state migration may prevent tampering to the
execution environmment of CA (e.g., malware stealthily waiting to participate in a
coordinated attack involving multiple CAs).
The state migration process recreates the State of a Controller of a CA into a fresh
instance of a CA (named CA-heal). During the operation, the IDS transfers control
events and metadata (as received by a CA) to an application called CA-Heal-temp,
which, at the end of the process, is the CA-heal.

4.4.1 Controller state migration

This Section presents the state migration process, which is further detailed in Section
5.2.1 of Chapter 5 “Implementation”. In the Controller state migration process, an
application named CA-Heal-temp receives a history of control events (and associated
metadata). CA-Heal-temp is made by the same components of the IDS. During the
migration, the State of the Controller Sh = [kh, eh] of CA-Heal-temp updates upon
receiving from IDS a Knowledge (that is a set of control events previously produced
by CA) and metadata (that are associated to the actuation control events). At the
end of the state migration process, CA-Heal-temp is reconfigured as a CA (we name
CA-Heal to disambiguate from CA) and connected with the System. At the end of
a controller state migration process, the execution environment of a healed CA is a
sanitized version of that of CA.

The steps of the state migration process realizing Eq. 4.10) are:

1. a fresh instance of CA-Heal-temp is deployed, i.e., instances of components
CLh, CKh, SWh, and LVh are started. The components are configured to
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cooperate in a state migration process (i.e., additional tasks of those of Figure
5.1).

2. LVh is provisioned with kv and metadata from the IDS. LVh forwards kv

to CKh. Concurrently, components CLh, CKh, and LVh interact as in the
Compare task of IDS, until LVh consumes kv and metadata. The migration
process discards the actuation produced by CLh since the purpose is only to
update the Execution State of CA-Heal-temp.

3. Once CLh has recomputed each of the actuation in kv, the state migration
is completed. The CA-Heal-temp application is reconfigured as a CA i.e.,
components CLh, CKh, SWh are reconfigured and connected as a CA, and
LVh is stopped. The obtained application, named CA-Heal, becomes the new
CA for the System.

A prototype implementation was employed to validate the described state migra-
tion process.
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Chapter 5

Implementation

This Chapter details the implementation of the ASiMOV architecture regarding its
main functionalities, i.e., to realize direct control over a System while verifying the
outputs of the Control Logic (Section 5.1). Besides, the deployment-based mitigation
and prevention mechanism are described (Section 5.2).

5.1 Implementation of ASiMOV

The proposed implementation of ASiMOV adopts a microservice architecture [92].
The components CL, CK, SW, LV in Figure 4.3 are microservices. Hereafter, the
terms “microservice” and “component” are used interchangeably. The interaction
among microservices is driven by message events, where a message event occurs
at the production or the consumption of a message, e.g., a message could carry a
control event m, or the notion of current time r. A message broker employing a
publish-subscribe model manages the transmission of messages. Each microservice
is deployed into an application container [75]. Our choice is motivated by the fact
that containers have a small footprint, are portable, and fast to deploy.

In what follows, firstly, we describe the tasks carried on by the CA and IDS
(Section 5.1.1). Then, we describe the choreography’s roles of the microservices to
produce and verify actuation payloads (Section 5.1.2). Finally, we illustrate the
design of the core routine for all the microservices, that defines how they react to
message events (Section 5.1.3).

ASiMOV Task

Verify (IDS)

MatchCompareStore

Control (CA)

ActuateAcquire

Figure 5.1. Classification of the tasks and sub-tasks performed by ASiMOV’s applications
CA and IDS.



56 5. Implementation

5.1.1 Implementation of the CA and IDS models

An instance of the ASiMOV architecture executes two tasks: the Control task and
the Verify task, as shown in Figure 5.1. For the sake of simplicity, the Figure does
not show the tasks relative to the control state migration process.

The microservices of the CA carry out the Control task, which consists of the
following concurrent sub-tasks:

• Acquire task:

– CA creates control events m, i.e., CA timestamps control signals p (pa-
rameter), s (sensing) and a (actuation);

– CA stores m into CK and forwards them to the IDS.

• Actuate task:

– CA utilizes m from the CK to produce a for the System;
– for each produced a, CA produces a metadata message for the IDS.

The Acquire task is active independently of the Actuate task, i.e., control
signals are always timestamped, stored, and forwarded to the IDS. In an event-
driven production of actuation, the Acquire task activates the Actuate task, i.e.,
an iteration of the Actuate task begins upon acquiring s or p. In the proposed
implementation, the Algorithm performs a selection of events as in Eq. 4.7.

The microservices of the IDS carry out the Verify task, which consists of the
following concurrent sub-tasks:

• Store task:

– IDS stores any control event m and metadata, transmitted from CA to
CKv;

– LV stores any received a (i.e., the payload of m that are actuation) and
metadata from CA into local FIFO queues to be used in the Compare
task.

• Compare task:

– IDS uses the knowledge in CKv, and the metadata in the local FIFO queues
of LV, to reproduce the execution environment operations performed by
the CA. The described process is realized using a trusted instance of the
Control Logic (i.e., CLv). The so produced i-th actuation is compared
with the i-th actuation as received by the CA, as described in Section
4.3.1.

• Match task:

– IDS attempts to match m from the CA with the control signals p, s, a
forwarded by the network switch, as described in Section 4.3.2.
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Figure 5.2. Detailed view of the Control Application and IDS.

Class Attributes Description
Time Double value implements a value of time (e.g., ri, τM

i )

Pload Double value
implements the payload of a
control event s, a or p

Cmsg
Pload pload
Time tstamp
String type

implements a control event m
type is ’act’, ’sen’, or ’par’

Notif Boolean value notification of an event
SetCmsg <Set>Cmsg set a set of Cmsg (i.e., xi)

Query
Time start
Time end

time interval ∆f used to select xi

within an iteration

Meta
Time rI
Time tauM

meta-data relative to the production
of an actuation, i.e., [ri, τ

M
i ]

Table 5.1. Classes that extend the BusIO abstract class and that implement the communi-
cation messages

5.1.2 Microservices Choreography

This Section details the Actuate and Compare tasks, i.e., to produce and verify
actuation. Figure 5.2 represents the CA and IDS applications, where each of their
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Figure 5.3. Interaction diagram for an iteration of the Actuate task.

components is a block with input and output ports (respectively on the left and
right of a block). For simplicity, the CKw is not shown, as it is required for the
Match task only (i.e., LV uses port IN 5 and OUT 7 to verify conditions C7–C9 of
Section 4.3.2). In the Figure, the DMAN on the IDS side is an application managing
the deployment of the CA (e.g., a container cluster manager like Kubernetes), which
is used for mitigating or preventing cyber-attacks, as detailed in Section 4.4.1.

Each component has a number of inSize and outSize ports. In Figure 5.2, a
port is indicated inside the parenthesis when a component does not need to use such
port, e.g., CK of CA does not use ports IN 1 and 2, which are instead utilized by
CKv in IDS.

Each connection between two ports is a communication channel consisting of a
FIFO queue managed by a message broker. Condition C4 of Section Section 4.3
requires an order-preserving delivery of messages. In a message broker like RabbitMQ
there are proper ways to guarantee the order of messages within subscriptions.

Messages are extension of the abstract class BusIO, and are described in Table 5.1.
A control event m is transported by message Cmsg having three attributes: the
type i.e., sensor, actuator or parameter; the payload, containing a value i.e., sensor
reading, actuation command or parameter value; and the timestamp. As an example,
a message produced by SW at time 1.25 transporting a sensor reading with value
3.4 is: m = [sen, 1.25, [3.4]].

In what follows, we describe the microservices choreography during an iteration
of the Actuate and the Compare tasks.

Actuate task

Figure 5.3 is the interaction diagram for an example of an iteration of the Actuate
task. During a single iteration, each component passes through a certain number of
internal synchronization phases, starting from phase P0. When all components are
in phase P0 the CA is idle: CL waits for a Notif and SW waits for Pload at IN 3
or 4 . SW produces Notif upon consuming Pload (s in Figure 5.3), then SW enters
in phase P1. The timestamping and forwarding of s is not shown in the Figure as
it is part of the Acquire task. Upon consuming a Notif message, CL produce a
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Figure 5.4. Interaction diagram for an iteration of the Compare task.

Query message for CK. Then, CL enters in phase P1 i.e., waits for xi and ri. When
queried, CK produces a SetCmsg message containing xi i.e., CK computes function q.
We assume CL performs a query with selection criteria ∆f = (τM

(i−1),∞) (Eq. 4.7),
which determines an unbounded query as defined in Section 4.3.1. Therefore, xi is
the set of control events entered in the Knowledge after x(i−1) was served, which in
this example consists merely in s. Moreover, CK produce a Time message τM

i on
OUT 1 for SW (i.e., maximum timestamp in xi). This ends the role of CK for the
current iteration.

Upon receiving τM
i SW accesses its host’s system clock to produce the notion

of current time for CL (i.e., Time message ri). Then, SW produces Meta message
for LV (i.e., [τM

i ,ri]). Finally, SW enters in phase P2 i.e., it waits for an actuation
payload from CL.

CL updates its Execution State (e.g., estimates the current state of the System)
and compute actuation Pload ai upon consuming xi and ri, then returns to phase
P0.

During the Acquire task, SW timestamps ai to produce m for both LV and
CK (the latter transmission is not shown in Figure 5.3). We emphasize that the
timestamp assigned to ai is in general different (i.e., successive) from ri. This may
be an advantage in terms of performance of the control system since, in a successive
iteration of the Actuate task, a state estimator will see a timestamp for ai accounting
for the time taken by CL to produce ai.

In case that during the current iteration additional Pload(s) was consumed in
the Acquire task (e.g., s′ in Figure 5.3), SW immediately goes back to phase P1
and produces an additional Notif. This continues until CL have consumed any new
payload i.e., until:

max
∀i,xi

τM
i = max

∀m∈ki

τ(m) (5.1)

When Equation 5.1 holds the Actuate task is suspended (i.e., SW return to phase
P0).

Compare task

This section describes how conditions C2 and C3 of Section 4.3.1 are achieved. We
assume C1 true, e.g., the components CL, CLv, and CK, CKv are always deployed
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Listing 5.1. Pseudo-code of the microcycle

1 this \\ a datastructure containing persistent state
2 List <BusIO >[] inFIFO \\ array of lists of messages
3 while True:
4
5 \\ COMPUTE JOB
6 BusIO [] in = new BusIO[ inSize ] \\ init as Null
7 FOR i = 1 TO inSize : \\ unconsumed first -out inputs
8 in[i] = inFIFO [i]. read () \\ previously reiceved
9 BusIO [] out = new BusIO[ outSize ] \\ init as Null

10 Bool [] consumed = new Bool[ inSize ] \\ init as False
11 compFunct (this , in , consumed , out)
12 removeConsumed (consumed , inFIFO )
13
14 \\ COMMUNICATE JOB
15 transmit (out) \\ push to message broker
16 reiceve ( inFIFO ) \\ pull from message broker

using the same immutable container images.
Figure 5.4 provides the interaction diagram for an iteration of the Compare

task. On the IDS side, instances of the components CK and CL (i.e., CKv and CLv)
interface with LV. During the Store task (not shown in Figure 5.4) LV forwards the
received Meta and Cmsg (i.e., at ports IN 3 ,4 ) to CKv. Additionally, LV stores the
same Meta, and the Cmsg that are actuation, into local FIFO queues to be consumed
during the Compare task. Upon disposing of an actuation and the correspondent
Meta, LV initiates an iteration of the Compare task by producing a Notif for CLv.
As described in Section 4.3.1 LV modifies the unbounded query of CLv (Eq. 4.7) into
the bounded query of Eq. 4.8. Finally, LV provides CLv with the time ri contained
in the metadata.

Upon receiving the bounded query, CKv may need to enter in phase P1, i.e., to
wait for a message with timestamp τM

i , we assume eventually provisioned by the
Store task. Being CLv provisioned with the same ri and xi used by CL, conditions
C2 and C3 of Section 4.3.1 holds.

LV compares the actuation Pload av
i produced by CLv with the corresponding

actuation Cmsg received by CL (Eq. 4.5). The result of the comparison may produce
an Alert at OUT 4, which triggers the mitigation mechanism.

5.1.3 Microcyle routine

Microservices CL, CK, LV, and SW execute a routine, named microcycle, imple-
menting the reaction to message events according to the specific component. The
function compFunct is part of the microcycle and characterizes the behavior of a
component. All the microservices execute the same microcycle and differ for the
implementation of compFunct. Listing 5.1 is the pseudocode for the microcycle.

A microservice maintains the following persistent variables (lines 1,2 of Listing
5.1):

• this: data structure characterizing the state of an instance of a component
(i.e., variables of Table 5.2);
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C. State Var Description
SW
CL
CK
LV

Int phase
value used for a choreography-based
coordination of components

CK SetCmsg k history of Cmsg k (Knowledge)

CK List<Meta> km
FIFO of Meta maintained only in CKv

and used only for state migration

CL SetCmsg x
set of Cmsg for the current iteration
of the Actuate task

CK Query pendQ
query pending for current iteration
of the Actuate or Compare task

SW
CL Time mRecC

greatest timestamp among Cmsg ever
consumed by CL (Eq. 5.1)

SW Time mRecP
greatest timestamp among Cmsg ever
produced by SW

CL params
data-structure containing run-time values
of the control scheme e.g., desired state,
estimated state of the System

LV List<Meta> metas
List<Cmsg> acts

FIFO queues used in the Compare task

Table 5.2. State variables and related components. Non-primitive datatypes are defined in
Table 5.1.

• inFIFO: an array of lists of BusIO objects. The i-th array cell maintains the
FIFO queue relative to the i-th input port of the component.

The microcycle perpetually executes two jobs: Compute and Communicate.
The Compute job (lines 6-12) consists of the following steps:

1. initializes the following volatile arrays, i.e., variables valid within a single cycle:
in, containing the "first-out" element of inFIFO; out, containing the messages
(if any) produced in the cycle; and consumed, boolean flags signaling what are
the inputs ports from which messages was consumed in the cycle (if any);

2. invokes function compFunct characterizing the computation of a particular
micro-service (line 11). The function does side-effect on variables this, out
and consumed, based on the content of this and inFIFO;

3. invokes function removeConsumed which, for each element True in consumed,
remove the first-out messages from the correspondent inFIFO queue.

The Communicate job (lines 15-16) consists of the following steps:

1. transmit: push asynchronously all messages contained in out array to the
message broker;

2. reiceve: pulls one or more messages (if any) from the message broker, which
are appended to the corresponding inFIFO queues.
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Figure 5.5. High-level view of the four applications CA, IDS, DMAN and CA-Heal-temp.
The latter two applications have a role in the mitigation and prevention strategy.

As described in Listing 5.1 the microcycle is perpetually executed i.e., the reiceve
function is part of a polling cycle toward a message broker. This is an oversimplifica-
tion introduced for the sake of clarity. In the real implementation, the microcycle
sleeps until there are new messages to process.

The pseudo-code of the compFunct for CL, CK, LV and SW is presented in the
Annex, Listings 9.1, 9.2, 9.3 and 9.4 respectively. Table 9.5 (in the Annex) describes
the functions used in the pseudo-code. Tables 9.1 to 9.4 provides I/O the ports
definition and description for all the components.

5.2 Mitigation and prevention of cyber-attacks

Figure 5.5 provides a high level of abstraction representation of ASiMOV during
normal operations. The Figure is a higher level of abstraction view of Figure 5.2,
showing DMAN (Deployment Manager of Section §3.3.2) and CA-Heal-temp (Section
4.4.1). DMAN realizes a deployment-based mitigation and prevention mechanism.
CA-Heal-temp is a temporary application, utilized for the state migration process
(introduced in §4.4.1) At the end of the process, CA-Heal-temp is reconfigured as a
CA i.e., it is a healed instance of CA (i.e., CA-Heal in Fig. 3.5).
When the DMAN receives an Alert, it makes sure that an instance of CA-heal-temp
is ready to receive the State of the Controller. The state migration is triggered
when DMAN provides back an Alert to the SWv in the IDS, which in turn starts
provisioning a history of Meta and Cmsg to CA-Heal-temp.

5.2.1 Controller state migration

The state migration introduces additional functionalities to the already described
components CK, SW, LV, while CL remains unchanged. In particular, there are



5.2 Mitigation and prevention of cyber-attacks 63

Pload
Cmsg

IDS

DMAN

LV-o:3 Alert

CK-o:2
CK-o:3

Meta
Cmsg

CK-i:1

Alert

Query
1
2
(3)

4
5
6

LVh

1
2

3
4

CLh

1

2
2
3

1
Pload Notif

Time

Query

Cmsg

(7)

CA-Heal-temp

Meta [τM
i , ri]

Cmsg m

CKh

(2)

3
4 4

(2)
(1) (1)

(3)(5)

(1)

(2)

3

(4)

(1)
(2)
(3)
4
(5)

(6)

SWh m

System

SetCmsg

Pload

fail-safe

Figure 5.6. CA-Heal-temp is a different application then CA, and is used to update an
execution environment (Step 2 of the state migration process) accordingly to a Knowledge
with associated metadata, provided by the IDS. At the end of the process, CA-Heal-temp
is reconfigured as a CA, which receives the so obtained State of the Controller.

additional phases in the microcycles of the components that work in a similar way
to those described in Section 5.1.2. In what follows, we detail how ASiMOV realizes
the state migration using a choreography-based interaction between components of
CA-Heal-temp and IDS. In the description, we consider the case of a mitigation of a
cyber-attack. The same process with minimal changes is adopted for a prevention
process.

Figure 5.6 shows the communication channels established between components
during the state migration process. When an attack is detected, the IDS provides
an Alert message to DMAN. Therefore, the compromised CA is immediately
disconnected from the System. We assume that after its disconnection from CA, the
System is governed by an emergency control scheme, i.e., a (sequence of) pre-recorded
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commands.
We elaborate in more detail the three steps for the migration of the state introduced
in Section 4.4.1.

• Step 1: DMAN starts the orchestration operations to prepare a new instance
of CA-Heal-temp, containing components CLh, LVh, SWh and CKh connected
as in Figure 5.6. During the process, the sensing signals from the System could
be stored in a proper component within the Security devices for later usage,
or discarded. As soon as SWh and CKh instances in CA-Heal-temp are ready,
the sensing signals begin to be routed to IN 3 of SWh of CA-Heal-temp. For
simplicity, we assume that there are no changes of parameters during the state
migration, hence IN 4 of SWh is disconnected. The SWh and CKh carry out
the Acquire task with the fresh data from the System.

• Step 2: when all the components in CA-Heal-temp are ready, DMAN sends an
acknowledge Alert to IDS, i.e., CKh IN1 . The Alert triggers the provisioning
of the entire content of control events and metadata contained in the IDS
(CKv OUT 2 , 3 ) to CA-Heal-temp (LVh IN 3 , 4 ). Therefore, the CK of
CA-Heal is provisioned both with fresh sensing from the System and with
historical sensing, actuation and parameters from the IDS (i.e., circled cross
at IN 3 of Figure 5.6). The LVh, CKh, and CLh carry out the Compare task.
In particular, LVh triggers CLh to produces actuation while it modifies its
query accordingly to metadata as done with a replica on the IDS side. The
produced actuations are discarded. While CLh updates its Execution State,
the conditions C1–C3 of Section 4.3.1 must apply. For this purpose, the system
clock used by SWh of CA-Heal must be in advance of that used by CA, SW.
Under this assumption, no fresh messages from the System can be included in
the set xi result of a query made by CLh.

• Step 3: Once the entire historical Knowledge is processed by CLh, DMAN
sends reconfigures the components of CA-Heal-temp as in CA (i.e., the upper
part of Figure 5.2). Finally, the LVh is removed, and CA-Heal-temp become
CA-Heal (i.e., it is connected with the System).

During Step 3 of the controller state migration, CA-Heal-temp is reconfigured
as a CA, i.e., there are modification to the structure of the application during its
execution. Dynamic changes may lead to an application’s state inconsistency [53].
One way to avoid inconsistencies is to suspend each component in a consistent state,
before proceeding with a reconfiguration. The remaining of this Section details
how ASiMOV avoids inconsistencies during Step 3 of the controller state migration,
employing a choreographic approach in which also DMAN participates.

The components of CA-Heal-temp communicate with DMAN trough dedicated
channels transporting acknowledges messages (not shown in Figure 5.6). A dummy
message is a message with an irrelevant but unambiguously distinguishable payload,
which only serves the purpose of synchronizing two components.
Component CKv (on the IDS side) appends to the history of control events trans-
mitted to LVh (IN 4 of LVh) a dummy Cmsg denoted with m′. The message enables
LVh to distinguish the last Meta of the history, denoted as [τM

i
′
, r′i]. Upon reiceving
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m′, LVh waits for the query with selection interval ∆ = (τM
i
′
,∞) from CLh. Upon

receiving the query, LVh is informed that CLh completed the update of its internal
state (i.e., it consumed the whole history).

At this stage, CLh waits for SetCmsg and has a consistent state (i.e., CLh is
suspended). LVh procedes with the following operations:

• 1: LVh produces a dummy Query for CKh

• 2: LVh produces an acknowledge for DMAN, telling that LVh and CLh are
suspended, then LVh suspends

Upon receiving the acknowledge from LVh, DMAN produces an acknowledge for SWh.
Upon receiving the acknowledge from DMAN, SWh proceeds with the following
operations:

• 1: SW stops consuming Pload from System

• 2: SW produces a dummy Cmsg for CKh, denoted m′′, then SW suspends

During its execution, CKh awaits for the following two messages: the dummy Query
from LV (step 1 of operations of LVh), and the dummy Cmsg m′′.
At the time in which CKh receives the two cited messages, there is the following
situation:

• CLh, LVh, and SWh are suspended in a consistent state

• all the message queues used for intra-host communication within the application
are empty

• there may be Pload messages accumulated for the port IN 3 of SWh, that are
the messages produced by System and unconsumed since SW is suspended
(i.e., step 1 of operations of SWh)

Component CKh procedes with the following operation:

• CKh produces an acknowledge for DMAN, telling that CKh is ready to receive
a new configuration, then CKh suspends

At this stage, all the components of CA-Heal-temp application are suspended in a
consistent state, and their reciprocal message queues are empty. Upon receiving the
acknowledge from CKh, DMAN reconfigures each of the components as described
in Step 3 of the controller state migration (i.e., LVh is stopped). Upon being
reconfigured, CLh, CKh, and SWh produce a final acknowledge for DMAN. After
producing the acknowledge for DMAN, SWh still does not consume any Pload from
the System. After receiving the acknowledge from all the components, DMAN sends
a further acknowledge to SWh, which finally starts consuming Pload messages from
the System and hence producing Notif for CLh.
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Simulation Parameter Value
Delay: CA to/from IDS hosts 600 ms.
Delay: CA host to/from System 200 ms.
Delay: IDS host to System 1000 ms.
Delay: message broker transmission delay (both CA and IDS) 2 ms.
Time required for any microcycle of any microservice 0.0001 ms.
System sensing messages produced every second 10
System sensing noise gaussian standard deviation 0.1
System actuator max. absolute value (i.e., saturation) 3
Controller proportional gain 2

Table 5.3. Simulation parameters used to produce Figure 5.7

5.3 Dynamics of an attacked System
In this Section, we show the results of a simulated successful Internal attack to
the CL component. More specifically, we show the effects of the attack and the
mitigation mechanism on the state of a physical System and on the Execution States
of a CA and a CA-Heal-temp.

As an explicative example, we consider a System’s model of a tank of liquid,
i.e., a first-order system. In the considered model, the System is the ensemble of
the physical liquid level, together with sensors (e.g., the measure of liquid level)
and actuators (e.g., valves to enter or to eject liquid). The state of the System is
described with a single real number (i.e., the level of liquid). The control system
adopts a Proportional feedback control scheme. In particular, being s the current
state of the System, ŝ the desired state, then the produced actuation is a = K(ŝ−s)
, where K > 0 is the proportional gain parameter.
The ASiMOV microservices are implemented as continuous-time Matlab Simulink
blocks using the SimEvents library and connected as in Figure 5.2.

Table 5.3 provides the parameters utilized in the simulation. Figure 5.7 shows
the time evolution of the state of the System (black line in Figure). The desired state
for the System (i.e., setpoint) is 1, and the System’s state value at the initial time
is −1. The control action drives the state of the System trough discrete actuation
commands. A red circle in the Figure represents an actuation received by the System
at a certain time.

The sensor values from the System are subjected to Gaussian noise. Therefore
CL implements a simple state estimator consisting of a weighted average of the
past 3 sensor readings. The System’s state estimation is an example of information
contained in the Execution State (i.e., not in the Knowledge).

In the simulation, we model an attack to the CL component. At the time tM = 8,
an intruder starts producing a sequence of malicious actuation payloads. In this
example of an attack, the actuator is saturated to its minimum possible value, i.e.,
−3. At the time tD, the attack is detected by the IDS. Hence the compromised CA is
disconnected from the System, and a fail-safe actuation command is provided to the
System, i.e., an actuation command with payload value 0. A fail-safe command is
an example of an additional mitigation strategy that can be employed while waiting
for the preparation of CA-Heal.
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Figure 5.7. Simulated attack to the Control Logic controlling a first order System, and
the mitigation. The attack moves the System’s state away from the setpoint. After the
attack is detected and mitigated, the setpoint is reached again by the System.

The state of the System is under the intruder’s control during the time window
spanning from the reception of the first malicious actuation command to the reception
of the fail-safe actuation command. Several factors influence the length of this
time window, like the delay between CA host and IDS, and the message broker
communication delay - that we analyze in Chapter 6.

Interval [tD,tR1) models the time required for the mitigation mechanism to
instantiate CA-Heal. During time interval [tR1,tR2) the mitigation mechanism
consists of a controller state migration from the IDS to CA-Heal, as described in
Section 4.4.1. The Figure shows the System’s state estimation as done by CA-Heal
(yellow line) during the process. The Execution State of CA-Heal updates exactly
as the attacked CL during interval [0, tM ). The update process of CA-Heal takes
less time then the CA since the only limitation is the computation capabilities of
the host executing the CA-Heal. From time tR2 CA-Heal restores a correct control
action over the System.

5.4 Deployment-based Mitigation and Prevention
An application (CA, IDS) is operative after its components are operative. In
turn, a component (microservice) is immediately operative after its deployment.
ASiMOV architecture adopts the principle of immutable deployment. Therefore, the
information required for the deployment is immutable, and entirely contained in an
instance of the deployment model for a CPS (see UML model of Figure 3.6, Section
3.3.1). The usage of cloud platforms may bring benefits to a CPS, in particular when
the “cyber” processes require much computational capacity. The biggest obstacle to
the adoption of virtualization technologies in a CPS is the possible conflict between
the sharing of computational resources and the ability to meet time deadlines, which
is a fundamental aspect in real-time control systems.

A Smart Factory is an example of a CPS where the adoption of virtualization
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technologies is nowadays in an advanced stage. Considering the control scheme of a
Smart Factory, at the highest hierarchical levels (compared to lower levels):

• controllers need more computational capacity, e.g., for estimating the state of
a complex systems determined by a sub-tree of the hierarchical controllers;

• controllers produce actuation with lower frequencies;

• controllers are less adapt to control physical systems due to the latency.

In case the computational capabilities of the device(s) running a cloud platform
are opportunely dimensioned (i.e., concerning the number of CAs, and the frequency
with which the CAs must produce actuation), the interference between different CAs
does not lead to the violation of their deadlines.
Relatively to direct control, the usage of cloud platforms is adapt to the highest
levels of a hierarchy (i.e., not for the control of physical systems), while at lower
levels each of the CA may need to use a dedicated device, such as a microcomputer.
Relatively to the verification of ASiMOV, a cloud platform could contain the IDS(s)
of all the controllers of a CPS (i.e., also the replica of the physical system’s con-
trollers). In ASiMOV the verification does not influence real-time control, because
the former is decoupled with the latter (requirement R4 of Section 3.1).

5.4.1 Deployment Manager

This Section describes the internal architecture of the Deployment Manager (DMAN),
introduced in Section 3.3.2. The DMAN is an application responsible for the deploy-
ment of CAs on the field devices and of IDSs on the security devices. Depending
on the network infrastructure, the DMAN may also be responsible for (part of)
the configuration of the networking devices, e.g., to establish site-to-site VPNs, to
configure software-defined switches, or routers enabling the required communication
channels between applications. For the sake of simplicity, we omit considering the
configuration of the network.

We distinguish between two different kinds of computing devices in a CPS:

• Pool of resources: realized by a cloud platform (e.g., OpenStack) using powerful
computing devices. A pool of resources consists of multiple physical devices to
be shared between multiple CAs (or multiple IDSs).

• Microcomputer device: a computing device that is not part of a Pool of
resources, to be assigned to the control of few, or only one System(s).

Depending on the particular virtualization technology chosen for the deployment
of applications, appropriate interfaces, configuration, and orchestration tools have
to be employed. Based on work [15], the rest of this Section describes how the
DMAN manages the deployment of a containerized implementation of the ASiMOV
architecture.

The DMAN can be seen as a controller (i.e., autonomic computing) having the
goal of maintaining deployed the instance of a deployment model for a CPS. Sensing
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of DMAN is probing signals defined at different layers of computer architecture
(from the Hardware Abstraction Layer to the Application layer) from the devices of
an infrastructure. An alert from an IDS is also sensing. Actuation of the DMAN is
commands and controls aiming to maintain available the control scheme of a CPS
also in the case of cyber-attacks. To accomplish this task, the DMAN includes the
following service components:

• IaaS Interface: an IaaS interface for cloud platforms i.e., Apache LibCloud

• Configurator: a service integrating logic with the Master of a Configuration
Management Engine (CME) operating at the OS level, i.e., SaltStack

• Orchestrator: a service integrating logic with the Master of a Container
Cluster Manager (CCM), i.e., Kubernetes

• Deployment Controller: a service integrating logic with the previously
defined IaaS Interface, Configurator, and Orchestrator services.

Figure 5.8 shows the relation between the components of the DMAN. The logic in
the Configurator traduces a high-level representation of the desired state defined at
the OS level (entering arrow "setMinions") into the desired state for a CME Master.
Practically speaking, the Configurator customizes templates configuration files (i.e.,
YAML files) and provision them to a SaltStack Master, which is internal to the
Configurator itself. Similarly, the Orchestrator traduces a high-level representation
of the desired state, defined at the level of Kubernetes objects, into sequences of
invocations to the Kubernetes Master API.

The following conditions render the DMAN operative:

• there is one pool of resources made of field devices (field pool) , and a pool of
resources made of security devices (security pool).

• DMAN can instantiate VMs in each of the two pool of resources;

• each of the microcomputer devices is a Minion of the CME Master.

The two introduced pools of resources should be highly isolated e.g., they should
belong to two different cloud tenants or, ideally, are realized by two different cloud
platforms.

At the time of the deployment, the DMAN performs the following operations,
which are preliminary to the actual deployment process.

• On each pool of resources:

– DMAN starts, trough the IaaS interface, a certain number of VMs in
the field and security pools. The provisioned VM image consists of a
lightweight OS, which is pre-configured to realize a Minion of the CME
cluster, having its Master in the Configurator component;

– DMAN configures (trough the Configurator) each of the newly instantiated
VMs as a Node of the CCM cluster, having its Master in the Orchestrator
component.
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Figure 5.8. Components of the Deployment manager, their internal API invocation, and
the relation with computational resources of a CPS.

• On each Microcomputer device:

– similarly to what done on the field pool, the DMAN configures the
microcomputer devices as Nodes of the CCM cluster.

• For each newly created Node of a CCM cluster (both on pools of resources
and Microcomputer devices):

– DMAN assigns (trough the Orchestrator) appropriate Kubernetes Labels
to the Nodes. The labels allow distinguishing if a field or a security device
hosts is hosting the Node. The Nodes receives one or more Kubernetes
labels.

The preliminary operations described above are executed in steps, where at
each step the Deployment Controller waits for a desired state (e.g., IaaS state, OS
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Figure 5.9. Finite State Automata representing the state of the Deployment Controller
during the deployment operations, starting from an empty CME cluster.

state) to be reached. Figure 5.9 represents the internal state of the Deployment
Controller as a Finite State Automata. Table 5.4 describes the APIs offered by
the internal components and utilized by DMAN in the described process. The
preliminary deployment operations start in state S1, and the transition between
S1 and S2 represents a request for the IaaS interface to instantiate VMs (i.e., the
invocation of setIaaS API). In S2, the Deployment Controller waits until the desired
IaaS state is reached (i.e., repeatedly invokes infoIaaS API). Also, all the Minions
(each one in VMs) have to join the CME cluster (i.e., repeatedly invokes infoMinions
API). During the waiting time, the state of the Configuration Controller may retreat
to S1, e.g., previously started VM ceases to run unexpectedly.

Once all the Minions are ready, the Deployment Controller transits to S3 by
providing a configuration for each of the Minion. The configuration aims to realize
a Node of a CCM cluster in each of the Minion. In S3, the Nodes are waited to
join the CCM Master while continuing checking that the desired state at IaaS level
remains reached.

Once the Nodes are ready, they are configured (transition between S3 and S4).
In particular, Labels are assigned to the Nodes. Once the Nodes are configured, the
preliminary operations for the deployment are completed (state S4).

At state S4, there is a unique CME cluster made of Minions, which are both
system-level VMs (deployed in the pools of resources) and Microcomputer devices.
Moreover, there is a unique CCM cluster made of Nodes spanning in both the
pools of resources and the Microcomputers (see the lower part of Figure 5.8). The
Nodes are labeled accordingly to their localization (field or security). Nodes on
Microcomputers has a label with the ID of the device.

We highlight that for increased isolation, and therefore security, multiple clusters
should be employed instead of one. The clusters could be made to communicate
through a federation mechanism.

The deployment of CA(s) and IDS(s) consists of publishing a set of Kubernetes
Services, represented by transition S4–S5 of Figure 5.9. The invocation of setService
API is done accordingly to the instance of a deployment model provided as an
input to the DMAN. For each Service, the correspondent Kubernetes spec parameter
enforces the deployment constraints arising both from the ASiMOV architecture
and from user-level constraints. The deployment constraints from the ASiMOV
architecture define a Pod for each CA and IDS. The Labels previously assigned to the
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Component Offered API Func-
tions Description

IaaS
Interface

infoIaaS(pId) Provides the state of IaaS Pool of re-
sources identified by pId

setIaaS(img,pId,vmId)
Starts VM image img into pool of re-
sources pId, provisioning the file vmID
which acts as an ID for the VM

Configurator
infoMinions

Provides the set of available SaltStack
minions, their vmId, and if they met
their desired OS state or not

setMinion(c, minId) Assigns to minion minId the configura-
tion c (desired OS state)

Orchestrator

infoNodes

Provides information about all the
Nodes of the Kubernetes cluster. This
includes diagnostic information from
the Kubernetes node status

setNode(nId,lab)
Assigns a spec to the Kubernetes Node
nId. In particular, specifies the set of
labels lab for the Node

infoServices

Provides information about all the Ser-
vices running on a Kubernetes Cluster.
This include the Kubernetes pod status
information for each Pod exposed as a
Service

setService(dMod,p)

Publish a Service consisting of a Pod ac-
cordingly to the instance of deployment
model dMod. The parameter p enforces
the deployment constraints (both de-
riving from the ASiMOV architecture,
and user-level)

Table 5.4. Components of the Deployment Manager

Nodes, united to the value of the spec parameters provided by the Orchestrator, force
the CAs to be deployed (and orchestrated) on field devices, while the IDSs stay on
security devices. User-level constraints allow, for example, to force the deployment of
a specific CA on a particular subset of microcomputer devices, having a low latency
with the assigned physical System, which enables to reduce the control loop delay to
acceptable levels. For the same need, a CA can be forced to be deployed on a Node
that reserves a certain number of CPU-Cores. The attribute dConstraints of the
CA-Class in a deployment model contains the user-level constraints defined for each
CA.

Once the deployment is completed, the Pods realizes the CAs and IDSs of a
CPS. Therefore, the Deployment Controller remains in state S5 of Figure 5.9 and
repeatedly checks the Kubernetes status (i.e., infoService API) to check that all the
Pods are “healthy”. While in S5, each of the desired state defined for the layers of
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computer architecture (Hardware Abstraction Layer, OS, Application) are reached.
The state remains in S5 until at least one of the desired states is not reached anymore.
As already mentioned, if a VM stops unexpectedly, the state retreat from S5 to
S1. For simplicity, we do not describe the possibility of random faults or other
unintentional malfunctions.

As envisioned by ASiMOV, for mitigation and prevention purposes, the DMAN
receives an Alert determining a specific CA to heal. In this case, the DMAN
appropriately changes the desired state of one or more layers of computer architecture.
Consequently, the Deployment Controller exits the state S5. How the desired state
changes according to an attack is part of a choice that depends on the available
resources, on level of security required, and on time limits in play. For example, the
new desired state could involve creating a new instance of a CA in the same Node.
This process is quick, but it leaves the new instance in the same device, where the
attack occurred. For increased security, a new Node should be created, possibly in a
different Pool of resources, or on a different Microcomputer.

When a CA has to be destroyed, the state migration described in Section 5.2.1
requires that the components of the CA-Heal are opportunely configured to receive
a verified Knowledge. For this purpose, the components of CA-Heal receive an
opportune configuration through the Kubernetes Init Container option, which
realizes the provisioning of a configuration for a container VM.
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Chapter 6

Performances analysis

This Chapter deals with the problem of delay in control systems, and in particular
to the delays introduced by ASiMOV. Any implementation of a Controller makes
the control frequency and the control loop delay not ideal, which may compromise
the performances and stability of a control system. It is appropriate to quantify the
effects of implementing a control scheme using ASiMOV, as opposed to a conventional
monolithic controller. Section 6.1 study trough simulation what are the effects on
the performances of a simple control system when the control loop delay increases.
Section 6.2 provides a model estimating the effects of the adoption of ASiMOV,
i.e., i) the increase in control loop delay, ii) the decrease of the maximum control
frequency, and iii) the detection delay.

Since ASiMOV utilizes a verification process that is asynchronous to the control
loop, a successful attack may leave a physical System under the control of the
attacker for a specific time interval. As introduced in Section 1.2.4, the estimation
of the detection delay enables: i) to determine the possible damage coming from
a successful attack, and ii) the usage of optimization-based techniques aiming in
preventing damage. For these reasons, the model introduced in Section 6.2 estimates
the ASiMOV detection delay as a function of the networking and computation
capabilities of an infrastructure.

6.1 Effects of delay on control systems

In this Section, we assess the impact of a control loop delay T on the performances
of a control system. In particular, it is considered the responsiveness of a control
system, which is the ability of the Controller to promptly bring the state of the
System close enough to the desired state. This Section aims to clarify the effects
of T on a generic control system. The presented results are a contribution to the
understanding of control systems to the readers not familiar with Control Theory.

The presence of a control loop delay may reduce the performances or compromise
the stability of a control system. In some cases, these side effects can be alleviated
by merely tuning the Controller’s parameters to optimal values for the introduced
delay. If this is not enough, it may be necessary to change the adopted control
scheme. There are already many control-theoretical solutions to the problem of a
time-invariant delay T . When the delay is time-varying, the analysis of its effects is
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considerably complicated. From a practical point of view, a time-varying delay can
be made time-invariant through the introduction of a buffering mechanism. However,
in case the delay has high variability, it is not easy to choose an output timing for
the buffer, which guarantees the constant presence of output data.

To measure the responsiveness of a control system, we consider the settling
time, i.e., the time taken for the controller to get within a tolerance ±U of a new
equilibrium value, without subsequently deviating from it by that amount. We
consider the control system introduced in Section 5.3 i.e., a tank of liquid governed
by a Proportional controller. In terms of a dynamic model, such a tank is a first-
order system, having transfer function 1/s in the Laplacian domain. The controller
provides actuation a = K(x̂ − x) where x̂ is the desired state, x the actual state,
and K > 0 the proportional gain (i.e., a parameter for the controller).

The provided simulations are conducted using an ideal mathematical model.
Specifically, we model in Matlab Simulink the transfer function of the closed loop
system:

H(s) = P (s)
1 + P (s)

where
P (s) = K exp(−Ts)1

s

and T > 0 is the value of a constant control loop delay.
The simulations describe the performance of the control system relative to the

transient response to a step input, i.e., we study the settling time when the desired
system state (liquid level) is brought from the value of ŝ = 0 to ŝ = 1. Figure 6.1a
shows in red the step response in absence of delay with K = 6.5. Delay introduces
oscillations in the dynamics of the System. Indeed, there are introduced in the
characteristic equation of the control system an infinity of poles, and stability is
guaranteed if K < K∗ = 2/(πT ) [97] where K∗ takes the name of stability margin.
Among the set of K < K∗, there exist an optimal gain, which minimizes the settling
time for a given tolerance of U .
Figure 6.1a shows the step response with a delay of T = 0.25s and different values
for K, among which K = 2.05 is the optimal for a tolerance of U = 5%. Figure 6.1b
shows the settling time as a function of the gain K for different value of the delay
T and U = 5%, in which the optimal gain is a minimum. Increasing the delay
increases the minimum settling time, which practically means the controller response
is slowed. This phenomenon can be observed in Figures 6.1c and 6.1d. Figure 6.1c
shows in black the optimal gain, and in red the stability margin as functions of the
delay. Figure 6.1d shows the step response using optimal gains for different values
of the delay. Equally spaced delays result in equally spaced settling time. As Figure
6.1e shows, the minimum settling time is linear with the delay and decrease when
the tolerance U increase. As reported by Figure 6.1f, the settling time decrease
exponentially with the increase of tolerance, despite the value of the delay. Indeed
the plot is valid for any value of T . Shortly speaking, given a specific delay, we
can reduce the settling time by increasing tolerance. Hence low precision control
systems can still work when the CA is deployed on a cloud platform. Conversely,
high precision control system requires a controller with smaller delay, e.g., a fog-edge
deployment model.
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Figure 6.1. Settling time as a function of gain K with different values of delay

6.2 Delays introduced by ASiMOV

This Section analyzes the performances of ASiMOV compared to a monolithic
implementation of a controller that does not include any intrusion detection and
response mechanisms. The performance metrics used for assessing the performance
of ASiMOV are:

• the actuation delay TAct, that is the time required for the production of an
actuation payload upon consuming sensing;
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Figure 6.2. Communication occurring between different hosts. Before starting the
production of ai, CA transmits other messages to the IDS. Therefore, the computations
of ai (controller) and av

i (replica) may be concurrent.

• the detection delay ΥDet, also referred as detection latency [101], that is the
amount of time required to detect an attack.

The analysis of the actuation delay allows quantifying how ASiMOV increases
the time required to produce actuation and hence how it decreases the maximum
achievable rate of actuation produced per second (max control frequency). The
cited side effect may lead to a decrease in performance or stability compared to a
monolithic controller.

The analysis of the detection delay is part of the answer to the research question
RQ3 (Section 1.3). The amount of time required to detect a successful attack is
information usable at run-time by optimization-based control techniques to keep an
appropriate distance from damaging states (Section 1.2).

6.2.1 Delay model

Let us define:

• the control loop delay T is the time between the production of sensing and the
receipt of a corresponding actuation, as seen by the System in an event-driven
production of actuation;

• the maximum control frequency fM is the number of sensing per second which
can be processed to produce the same number of actuation;

• the intra-host communication delay T ∗CA (T ∗IDS) is the time required for a
message broker to transmit a message between any microservices within the
CA (the IDS);

• the inter-host communication delay T ∗CA-IDS (T ∗CA-SYS) is the time required
to transmit a message between any microservice of the CA host and any
microservice of the IDS host (the System).

As specified in the remaining of this Section, the intra-host and inter-host commu-
nication delays can be considered independent of a specific message type, i.e., the
BusIO class (§5.1.1).
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We denote with mesT send
rec a communication delay, where “send”, “rec” and

“mes”indicate respectively the sender, the recipient and the initial letter of a BusIO
class e.g., PT SW

SYS is the communication delay for the SW to transmit a Payload to
the System. There are introduced the following time instants:

• tS : sensing Pload s initiating the i-th iteration of the Actuate task is received
by SW;

• tC : actuation ai is produced by SW for the System;

• tA = tC + PT SW
SYS: the actuation ai reaches the System;

• tD: assuming ai tampered, the time in which the attack is detected;

where 0 ≤ tS ≤ tC ≤ tA, and tD ≥ 0.

Figure 6.2 shows the defined time instants, intervals, and inter-host exchanges of
messages.

The actuation delay is defined as:

TAct = tC − tS (6.1)

that is the reaction time of a controller i.e., the time required for the production of
an actuation payload upon consuming sensing. TAct contributes to the control loop
delay T .

The additional actuation delay is denoted as T̂Act, that is the increase in TAct

(and therefore in T ) introduced by ASiMOV, compared to a monolithic implementa-
tion.

We denote with symbol “Υ” the difference between two time instants, i.e., possibly
a negative value. The detection delay ΥDet is the time required by ASiMOV to
detect the first tampered actuation received by the System due a cyber-attack, and
is defined as:

ΥDet = tD − tA (6.2)

where tD and tA are relative to a tampered actuation. Considering Figure 5.7, ΥDet

is the time interval starting when the System receives the first malicious actuation
(i.e., payload value −3), ending in tD. A positive ΥDet is the time interval left to the
intruder for controlling the System. Aspects influencing the value of ΥDet are related
to the communication delays between the CA, the System, and IDS. Moreover, the
differences in the computation capabilities of the hosts executing CA and IDS plays
a role in the value of ΥDet, as detailed in Section 6.2.3. For simplicity, we do not
consider the additional time interval required to disconnect the compromised CA
after an Alert is issued.

We distinguish between two kinds of operations carried out during the workflow
of the ASiMOV’s tasks:

• logic operations: all and only the operations performed by microservices during
their microcycle (i.e., function in Listing 5.1);
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• communication operations: all operations outside the microcycle function
i.e., performed by message broker(s) and networking device(s) for transporting
messages between microservices.

The study of T̂Act and ΥDet are based on a model for the choreography realized
by the ASiMOV components. There are introduced the following definitions and
notation.

• Stage: the microcycle of a microservice waits, consumes and produces specific
types of messages during a so-called stage of the choreography of a task. During
a stage, a component may transit between two different component’s phases
(see Section 5.1.2).

• Logic delay: is the time required by a microservice to complete the logic
operations of a stage, i.e., to produce message(s) upon consumption of incoming
message(s) accordingly to the choreography. Assuming the message(s) to be
consumed in a stage are available for a microservice, the logic delay is the
time required to execute all the operations in one or more executions of the
microcyle, which consume (produce) all the inputs (outputs) message(s)
required by the stage.

• Communication delay: is the time required by message broker and network-
ing devices to complete the communication operations transmitting a single
message from microservice “A” to microservice “B”, assuming that “B” is
continuously ready to receive a message.

A communication delay begins when microservice “A” completed the communicate
job of its microcyle, which enters a message in its local array out, and ends when
“B” has completed the communicate job of the microcyle entering the message in
its array of queues inFIFO. When “A” and “B” belongs to two different applications
(e.g., SW of CA, LV of IDS), the communication delay also accounts for the network
delay between the two different application hosts.

Figure 6.3 shows workflow of ASiMOV for the Acquire, Actuate, Store and
Compare tasks. The workflow is composed by logic and communication delays,
which are associated with stages of the considered tasks. In the Figure, we use the
following graphical formalism:

• a microservice in a particular stage is represented as a block with two vertical
lines with consumed (incoming) and produced (outgoing) messages. The time
interval between the two vertical lines is the logic delay associated to the stage.
We denote with T service

stage the duration of a logic delay, where “service” is a
microservice and “stage” is the number of the stage of the microservice in
the workflow e.g., TCK

1 is the time required to CK to serve an unbounded
query, and TCL

2 is the time required by CL to update its Execution State (i.e.,
System’s state estimation and production of an actuation), given that Time
and SetCmsg are available in its inFIFO queues;

• when multiple messages enter a microservice in a stage (i.e., left vertical line),
the correspondent time instant is the time in which the last of the incoming
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Figure 6.3. Representation of the logic delays (rectangles on the time axis) and communi-
cation delays (arrows) introduced by the microservices in the Acquire, Actuate, Store,
and Compare tasks. The negligible logic delay (under approximation AP1) are empty
rectangles. The letter over an arrow is the initial letter of a BusIO object carried by a
message (see Table 5.1 e.g., P is Payload, S is SetCmsg x, T is Time r, or τM

i ). A solid
arrow is an inter-host transmission of a message (e.g., CA to IDS), while a dotted arrow
is an intra-host transmission (e.g., within the CA).

messages is consumed. Similarly, the time instant relative to the right vertical
line is the time in which the last of outgoing messages is produced.

6.2.2 Approximations

In order to evaluate the performances of ASiMOV we introduce the following
approximation in the delay model, that are motivated and discussed in the rest of
this chapter:

ASiMOV introduces a negligible additional amount of logic operations
(i.e., within microcycle function) compared to a monolithic implemen-
tation.

(AP1)

Given a choreographic stage (i.e., a block in Figure 6.3), there is a
maximum of one non-negligible Compute job (i.e., a sub-function of the
microcycle) among those occurring during the stage.

(AP2)

The communication delay between two microservices is constant among
different transmissions.

(AP3)

The communication delay of microservices within the same application
(i.e., CA and IDS) is independent of the type of message (e.g., Cmsg,
SetCmsg) and the source and destination components (e.g., CK to SW,
or SWv to CLv).

(AP4)
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The logic delay for all microservices is negligible. (AP5)

AP1 is reasonable since ASiMOV maintains the same complexity of monolithic
control logic, and introduces few additional logic operations. As an example, an
additional logic operation consists in comparing the current microservice phase
with a value (e.g., Listing 9.1 of the Annex, line 7), or creating set of messages
SetCmsg (line 12) which in normal operating conditions contains one or a few
elements (e.g., most recent sensing). During an iteration of the Control task there
are approximately 100 additional logic operations. Usually, 1000 actuation per
second is a sufficient control frequency for a System, then ASiMOV introduces
approximately 105 additional logic operations per second, we assume incapable of
saturating the capabilities of a host. We highlight that AP1 implies that the delay
introduced by the Communicate job, that is the time to read from inFIFO and write
to out, is negligible. As a consequence of AP1, any non-negligible logic delay is
determined by the same operations performed by a monolithic implementation, i.e.,
we assume the control logic must necessarily query a database of control events,
update its execution environment (e.g., system’s state estimation), and compute an
actuation.

AP2 holds since we intentionally defined each of the stages such that they contain
only one non-negligible Compute job. In particular, the logic a monolithic controller
is entirely executed in one of the executions of the CK and CL’s microcycle, i.e.,
during TCK

1 (select a subset of control events) and during TCL
2 (state estimation

and computation of actuation). Therefore, using approximations AP1, AP2 the
only non-negligible logic delays are TCK

1 , TCKv

1 , TCL
2 , TCLv

2 , which are represented
as black rectangles in Figure 6.3. Under AP1 and AP2, all the messages to be
consumed (produced) in a choreography’s stage appear in Figure 6.3 to be consumed
(produced) at the same time instant, and the logic delay introduced by a stage is
the time required to complete the non-negligible Compute job of a stage (if any).

AP3 holds assuming a constant computational and networking load. AP4 is
reasonable in case the difference in the size of messages transporting BusIO objects
is negligible compared to the time required to a message broker to provide access
to its message queues. Under AP3 and AP4 it is valid the definition of the intra-
host (inter-host) communication delays T ∗CA, T ∗IDS (T ∗CA-IDS, T ∗CA-SYS). AP5 allows
isolating the effects of the communication delay over the actuation delay T̂Act.

6.2.3 Performances when CA is at rest

The analysis that follows is valid when the following condition holds:

CA and IDS are at rest when sensing events arrives from the System
i.e., the message broker queues, and the inFIFO queues of all the
microservices are empty when sensing arrives.

(C10)

Condition C10 holds when the inter-arrival time of sensing ΓS is constant and:

TAct < ΓS (C11)
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Using approximation AP1, AP2, and assuming that C10 holds, the following
equations describe the values of time instants of Figure 6.3:

tQ = tS + T SW
1 + max

{
(NT SW

CL + TCL
1 + QTCL

CK), CT SW
CK

}
tW = tQ + TCK

1 + TTCK
SW

tL = max
{

(tW + T SW
2 + TT SW

CL ), (tQ + TCK
1 + STCK

CL )
}

tC = tL + TCL
2 + PTCL

SW + T SW
3

tA = tC + PT SW
SYS (6.3)

tvQ = tW + T SW
2 + MT SW

LV + TLV
2 + NTLV

CLv + TCLv

1 + QTCLv

LV

tV = max
{

(tvQ + TLV
3 + MTLV

CKv ), (tS + T SW
1 + TLV

1 + CT SW
LV + CTLV

CKv )
}

tvL = max
{

(tV + TCKv

1 + STCKv

CLv ), (tvQ + TLV
3 + TTLV

CLv )
}

tD = max
{

(tC + CT SW
LV ), (tvL + TCLv

2 + PTCLv

LV )
}

+ TLV
4

Introducing approximations AP3, AP4 and considering, without the loss of generality,
tS = 0, then from Eqs. 6.3 we obtain:

tA = 5 · T ∗CA + TCK
1 + TCL

2 + T ∗CA-SYS (6.4)

tD = 3 · T ∗CA + T ∗CA-IDS + max
{
TBNeck

CA , TBNeck
IDS

}
where:

TBNeck
CA = 2 · T ∗CA + TCK

1 + TCL
2

TBNeck
IDS = 5 · T ∗IDS + TCKv

1 + TCLv

2

From Eq. 6.4 and Eq. 6.1 the actuation delay TAct is:

TAct = 5 · T ∗CA + TCK
1 + TCL

2 (6.5)

Under AP1 and AP2, the logic operations of a monolithic controller coincides with
those occurring during TCK

1 and TCL
2 . Therefore, under AP1-AP4 and C10, the

additional control loop delay is: T̂Act = 5 · T ∗CA. Practically speaking, the increase
of control loop delay T introduced by ASiMOV over a monolithic implementation
has the same order of magnitude of the communication delay of a message broker,
which is typical of few milliseconds.

The time intervals TBNeck
CA and TBNeck

IDS are potential bottlenecks for the completion
of the Verify task, i.e., the greater time interval among the two is the bottleneck
for the comparison of a trusted and non-trusted actuation, which is realized during
TLV

4 . From Eq. 6.2 and Eq. 6.4, the detection delay is:

ΥDet = −TBNeck
CA + max

{
TBNeck

CA , TBNeck
IDS

}
+ T ∗CA-IDS − T ∗CA-SYS

defining:

ΥNetwork = T ∗CA-IDS − T ∗CA-SYS

ΥHosts = TBNeck
IDS − TBNeck

CA (6.6)
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the detection delay is rewritten as:

ΥDet = max
{

0,ΥHosts
}

+ ΥNetwork (6.7)

As already introduced, ASiMOV leaves the System under attack for a duration of
ΥDet, which in the best cases converges to ΥNetwork. The first of the two components
of Eq 6.7 can be rendered 0 by disposing of an opportune computation power on
the IDS side i.e., such that ΥHosts ≤ 0. The component ΥNetwork is the difference of
latency between the hosts of CA – IDS, and the hosts CA – System. As an example,
an industrial network setup having T ∗CA-IDS = 100 ms, T ∗CA-SYS = 10 ms and an
IDS host with sufficient computational power, leaves an attack to the control logic
undetected for ΥDet ≈ 90 ms.

6.2.4 Performances when CA is not at rest

We are particularly interested in the changes in the behavior of CA introduced by a
critical T ∗CA, i.e., when condition C10 does not hold.

Using approximation AP1-AP5, TAct is entirely determined by the communication
delay T ∗CA of the message broker on the CA side. Assuming the communication delay
of a monolithic implementation negligible compared to that of a message broker (i.e.,
the former uses shared memory which is much faster), then the additional actuation
delay T̂Act coincides with TAct. Precisely, the components TCK

1 , TCL
2 of Eq 6.5 are

set to 0 to obtain:

T̂Act = TAct = 5 · T ∗CA (6.8)

The communication delay T ∗CA is said critical with respect to a certain ΓS when C10
does not hold, in which case Eq. 6.3 may lose descriptiveness. From Eq. 6.8 and
assumption C10 we have:

T ∗CA >
1
5ΓS =⇒ T ∗CA is critical (6.9)

6.2.5 Simulation results

In what follows, we present simulation results showing the behavior of CA as a
function of the intra-host communication delay T ∗CA, which is the amount of time
required to deliver a message using a message broker. Typically, such an amount of
time has value in the interval (1, 20) milliseconds [26]. In the simulations we vary
T ∗CA in the interval (0, 20) milliseconds, and we consider three different values for
ΓS i.e., 50, 10 and 5 milliseconds.

We implement an event-driven production of actuation for the CA (i.e., Eq.
4.7 of Sec. 4.3.1), meaning that an actuation is produced as soon as new sensing
arrives. Under these conditions, CA is supposed to realize a constant interdeparture
time of actuation ΓA that is equal to ΓS , i.e., with value respectively 50, 10 and 5
milliseconds (which corresponds respectively to a control frequency of 20, 100 and
200 Hertz). To implement AP1–AP5, we simulate a negligible logic delay i.e., 10−6

seconds for any microcycle execution.



6.2 Delays introduced by ASiMOV 85

2 6 10 14 18

10

30

50

70

90

110

130

150

170

Figure 6.4. Actuation delay TAct as a function of the intra-host communication delay T ∗
CA

when AP5 holds.

Each point of curves in Figures 6.4, 6.5, 6.6, 6.7 is obtained running a simulation
where 1000 sensing messages arrive to the CA. The x axis in the Figures is the
intra-host communication delay T ∗CA. In the simulations, the only non-negligible
delay considered is the intra-host communication delay. When the intra-host com-
munication delay is non-critical, the observed behaviour coincides with the model of
Eq. 6.5. Otherwise, there are possibly undesired behaviours which are detailed by
the Figures.

Figure 6.4 shows actuation delay TAct as a function of T ∗CA. From approximation
AP5 the measured value coincides with the additional actuation delay T̂Act. When
T ∗CA is non-critical (e.g., T ∗CA < 10 ms when ΓS = 50 ms) the measured actuation
delay has value of Eq. 6.8. When T ∗CA becomes critical, there is an increase in TAct,
which grows linearly with T ∗CA.

Figure 6.5 is relative to the number of sensing messages used to produce an
actuation, i.e., size(xA) is the number of sensing messages in set xA obtained by
CL from CK (i.e., an unbounded query from selection criteria of Eq. 4.7). When
T ∗CA is non-critical, CL obtains one sensing message for each of the queries. In this
situation, ASiMOV can behave as a traditional controller producing an actuation
upon receiving sensing. When T ∗CA becomes critical, the average number of messages
used for an actuation increases with a linear fashion, while the maximum number of
sensing ever employed to produce an actuation increases with discontinuities. The
observed behavior is not easily explainable in terms of a model since it depends on
the internal dynamics of the messages accumulating into the message broker queues.

Figure 6.6 is relative to the capability of CA to stay abreast of a particular
frequency of sensing messages. Being ΓA the interdeparture time achieved by the CA,
the Figure shows that when T ∗CA is non-critical, the ratio ΓA/ΓS is 1, i.e., CA can
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Figure 6.5. The maximum and the average number of sensing messages xA used to produce
an actuation.
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Figure 6.6. The capability of CA to produce an actuation for each received sensing message,
in a event-driven communication process.
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Figure 6.7. The average number of bus messages traversing the message broker bus per
second.

produce an actuation for each received sensing. Practically speaking, if T ∗CA < 1
5 ·Γ

S ,
then ΓA = ΓS . Therefore, when T ∗CA is 1− 20 ms, the maximum control frequency
fM that ASiMOV can achieve is 200 − 10 Hertz. When T ∗CA is critical, there are
fewer actuation payloads produced then sensing received. The implications of such
behavior on the performances of a control system depend on different factors (e.g.,
the characteristics of the System under control). An insufficient number of actuation
per second may compromise the performances or even stability of the control system.

Figure 6.7 shows the number of messages traversing the message broker bus
per seconds, i.e., each point in the Figure is the sum of the number of messages
of any kind generated by the arrival of the 1000 sensing messages, divided by the
time in which there is activity on the message broker bus during a simulation. The
cited sum accounts for the actual size of set x used by CL, i.e., a message of class
SetCmsg counts as the number of payloads contained in the set. The observed values
seem compatible with a typical implementation of a message broker. As an example,
RabbitMQ is capable of delivering tens of thousands of messages per second in a
typical server setup[26].
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Chapter 7

Related works

In this thesis, we consider the Industrial Control Systems (ICS) as a reference scenario
to describe state of the art in the protection of a CPS. The most advanced instance
of an ICS is called a smart factory. Among all the real-world applications of a
CPS, the smart factory is one of the scenarios in which the adoption of ASiMOV is
possible with minimal changes. First of all, ICS typically provides for the replication
of control signals at the network level (e.g., TAP devices), as required by ASiMOV.
Moreover, as discussed in more detail in this chapter, the smart factory envisages
the use of virtualization technologies, as required by the ASiMOV’s mitigation and
prevention mechanism.

7.1 A reference ICS scenario: the smart factory

The smart factory is a digitalized, intelligent, sustainable IoT-based manufacturing
system capable of improving industrial production performance and quality [70, 116,
3, 49, 59, 2]. Smart factories are the 4th generation of the industry [116, 60], and have
the following characteristics [114]: the components of the manufacturing system are
networked, and it is possible to collect useful data from them in real-time (included
the component’s state); autonomous and automatic processes can be executed based
on optimized manufacturing plans; advanced manufacturing services can be provided
on the shop floor (cf. Figure 7.1) and to external systems. Those characteristics
are realized by integrating data, artificial intelligence, and distributed computing
technologies with physical components and industrial processes [116, 49, 60].

The operations of a smart factory rely on a complex control plane consisting
of a set of interconnected control layers (cf. Figure 7.1) that range from the direct
control of physical Systems (level 1) to the production scheduling (level 4). The
control scheme is distributed and hierarchical by definition: each layer controls the
lower one, and each layer could contain a hierarchy of controllers.

The adoption of virtualization technologies is pervasive where there is a need for
large computational capacities and an automated deployment of applications. The
smart factory transformation is one of the examples of CPS in which virtualization
technologies have become a requirement [34, 66, 52, 89]. Virtualization technologies
enable the mitigation and prevention mechanisms of ASiMOV.

Making a factory smart brings many benefits [116, 60, 112] but also increase
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Figure 7.1. The Smart Factory: actors, control levels and cyber risks

cyber risks [108, 93], e.g., financial loss due to production downtime, impairment of
products’ quality, damage to the reputation, harm to humans, and physical/environ-
mental damage. Because of the interconnection of heterogeneous control systems,
from production planning and scheduling to shop floor control, the smart factory
attack surface is wider than in the 3rd generation industry [93]. Malwares like Mirai,
Stuxnet, Triton, Dugu, Havex/Dragonfly could be used take over the control of
industrial IoT devices and control systems [108].

Although there are many research results aiming to improve the security of CPS
(e.g. [115, 95, 24, 17, 77, 89, 11, 21, 77, 98]), none of them propose solutions that goes
beyond the traditional cyber-security approach, i.e., semi-automatic human-assisted
detection and response [41], based on complex security policies. The traditional
approach is impractical in smart factories because: an attack can target thousand
of controllers; the human in the loop can compromise the high availability require-
ments (i.e., unforeseen disruption of production services); IoT devices used in the
control process have limited resource capability and cannot run complex security
mechanisms, like traditional Intrusion Detection Systems (IDS). Therefore, it is
crucial to investigate innovative self-protection mechanisms to increase resiliency
to cyber-attacks targeting the control logic of industrial Control Applications (i.e.,
the software implementation of an industrial controller) running on resource-limited
devices [90].

7.2 Enabling technologies and security of the smart fac-
tory

In this Section, we analyze the literature of two research areas related to ASiMOV.
The first is enabling technologies for the smart factory, that includes research work
addressing the challenge of moving the control plane of a factory from dedicated and
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on-premise systems into cloud computing or edge computing platforms. The second
domain of investigation is intrusion detection and prevention of cyber-risks that
includes research works presenting new techniques for the detection of cyber-attack
and the prevention or mitigation of such attacks.

7.2.1 Enabling technologies for the smart factory

In [110] the authors propose a framework that incorporates industrial wireless
networks, cloud, and fixed or mobile terminals with smart artifacts. The role of the
cloud layer is to process and analyze the massive amount of information generated
from sensors to support system management and optimization, including supervision
and control.

In [96] the authors introduce the concept of Cloud-integrated Cyber-Physical
Systems and propose an architecture aiming at solving challenges like virtual resource
management, the scheduling of cloud resources, and life cycle management in the
context of Digital Factory.

Work [67] proposes a prototype Cloud Manufacturing, where physical systems
are connected to the cloud and controlled using Raspberry Pi devices. Evolution of
Cloud Manufacturing is the Software-defined Cloud Manufacturing proposed in [104].
In that work, the authors propose to use the software-defined systems approach to
solve the complexity issue and the reconfigurability issues in cloud manufacturing.

Research works that investigate how to migrate the direct control level into
the cloud are [32, 34, 56, 69, 106]. None of those work concretely address the
cyber-security issues.

The concept of PLC as a service implemented within a cloud-based infrastructure
is proposed in [32]. The performances of the cloud-based PLC and a legacy PLC are
compared, showing that latency is an issue that needs to be fixed to adopt cloud-based
PLC in hard real-time scenarios. In [34] the authors address the question of how
a Soft-PLC (PLC realized as software components) can be augmented with cloud-
required aspects such as elastic scalability and multi-tenancy. The authors present
an architecture that realizes these properties and allows for the implementation
of a multi-tenant, horizontally scalable Soft-PLC. As in [32] the authors conclude
that the cloud-based solution can be applied only to soft real-time control scenarios.
For the above reasons, we propose a solution aiming at reducing the latency in the
control loop, and then to make possible the use of cloud-based PLC also in hard
real-time contexts.

The concept and implementation for Cloud-based Industrial Control Services
(CICS) as a next-generation PLC is presented in [56]. The proposed solution aims
to replace the traditional PLC for applications with uncritical timing in a Smart
Factory context. The authors investigate possible deployment in the cloud of a PLC
compliant with the IEC 61131-3 standard.

In [69] the authors propose a modeling framework for describing, developing,
and composing cyber-physical manufacturing services (CPMS) for service-oriented
smart manufacturing systems [102]. Such kind of framework could be the core for
the design and implementation of fog computing-based industrial control systems.

In [106] the authors propose to use microservices to encapsulate: sensors, actua-
tors, and the low-level coordination logic required to offer more advanced functionality
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compared to the one offered by the mechanical unit. Microservices are deployed
on an edge/fog computing platform that provides computational services to the
different layers of a smart factory.

ASiMOV is designed considering that it is possible to virtualize the direct
control layer of a smart factory and that the Control Applications could run on
general-purpose edge devices or cloud platforms.

7.2.2 Intrusion detection, prevention and mitigation

In the last decade, many efforts have been devoted to study the problem of intrusion
detection in cyber-physical systems and industrial control systems (ICS) [41, 77].

As proposed in [41], IDS for ICS can be classified as: protocol analysis-based,
traffic mining-based, and control process analysis-based. Protocol analysis–based
IDS (e.g. [61, 80, 115]) detect malicious attacks by checking whether the transmission
packets in an industrial control network violate the industrial protocol specifications,
e.g., Modbus, Modbus/TCP, ICCP/TASE.2, DNP3. Protocol analysis–based IDSs
have two limitations: the detection accuracy is influenced by the protocol model
and the defined rules. A discrepancy with a real physical system can introduce a
high false-positive rate. Moreover, the detection ability against unknown attacks
is poor, and the time to parse data packets is long. Traffic mining-based IDS
(e.g. [109, 64, 63, 95]) try to solve the inefficiency of the above technique by
building nonlinear and complex relationships between the network traffics and the
normal/abnormal system behaviors. Traffic mining-based IDS use machine learning
and artificial intelligence techniques (e.g., PCA, fuzzy logic, deep learning) to identify
anomalous behaviors in industrial networks. Such an IDS technique could leverage
the static and well-known network topology of ICS and the stability of the network
traffic. Control process analysis-based IDS make full use of the semantic information
and peculiarity of ICS to detect intrusions and include techniques like process data
analysis, control command analysis, and ICS physical model analysis. Process data
analysis-based IDS (e.g. [37, 19, 24]) analyze the value of physical variables (like
pressure and temperature) to understand if the security status of the physical process
is violated. Control command analysis-based IDS (e.g., [20, 62, 17]) detect attacks
by analyzing the sequence of control commands sent to the ICS to find to predict
misbehavior. ICS physical model analysis-based IDS (e.g. [21, 1]) are based on an
accurate model of the ICS and predict attacks comparing the output of the real
system with the output predicted by the model.

One possible way to detect the compromise of a device in a CPS is to employ
remote attestation [99], in which a verifier entity submit challenges to a device. The
device can solve a challenge only if its state is not compromised. The challenges
submitted to a device can be onerous, for example, to hash a portion of the RAM,
which is a problem for real-time control. Remote attestation methods assume that
the verifier entity knows the internal state of the device to be verified. Therefore,
attestation is highly effective in case the state of a device does not need to have
substantial changes. Conversely, if the state of the device is subjected to changes
(e.g., due input values), the verifier must be informed. Work [31] proposes to combine
a physics-based statistical method with remote attestation, in order to abstract
from the possible changes in the state of a controller for a physical system. The
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method is based on a learning phase utilizing the inputs of the controller (i.e., sensor
readings) and is, therefore, is suitable for controllers that perform cyclic tasks, e.g.,
tasks occurring at the leaves of a hierarchical tree of a smart factory. Vice versa, the
method proposed in this thesis is Behavior-Specification-Based, i.e., does not require
a training phase, and therefore it is adapt complex hierarchical control schemes,
such Smart Factory, where the applicability of methods using training is difficulty
estimable.

ASiMOV is inspired by the control process analysis-based detection technique,
but there are two main differences: for each controller of the ICS, there is an IDS,
and instead of using a model of the control system, it uses a replica of the controller
to detect misbehavior dues to cyber-attacks.

An approach similar to ASiMOV is Cymbiote [90]. Cymbiote is a device de-
signed to be connected to a controller to monitor different sensing, actuation, and
communication with other controllers, and with the sensors/actuators, environmen-
tal parameters. Cymbiote processes all this information to detect cyber-attacks
or failures. Cymbiote integrates IDS techniques belonging to the three categories
mentioned above and is capable of detecting attacks to the control logic, control
messages, and sensors/actuators. ASiMOV and Cymbiote are based on the same
idea to connect an IDS to each controller on the shop floor, however, there are two
main differences. Firstly, Cymbiote requires a specific configuration for each family
of a control device and a training phase on historical data, while ASiMOV does not.
Secondly, Cymbiote is not capable to automatically recover from attacks, except in
case of hardware or software failure, when the software configuration or the hardware
is reset.

Concerning the prevention of cyber-attacks, a variety of security architectures
have been proposed: software-based isolation and virtualization [73]; Trusted Com-
puting based on secure hardware (e.g., Trusted Platform Module); and processor
architectures providing secure execution (e.g., ARM TrustZone [111], AEGIS [100],
OASIS [83], and Intel Software Guard Extensions [74]). ASiMOV on one side is
proposed as an alternative to those approaches because they are too complex for
low-end embedded systems, which are typically designed for specific tasks and opti-
mized for low power consumption and minimal costs. On the other hand, ASiMOV
assumes that the IDS component runs on a trusted/isolated platform that could be
realized utilizing a secure execution environment, like vTPM [14] or SGX enclaves [8].
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Chapter 8

Conclusions and future works

This thesis proposes ASiMOV, an innovative approach to realizing self-protecting con-
trol applications that are resilient to cyber-attacks targeting their logic. Specifically,
we propose a model and the architecture for a self-protecting Control Application
(CA) and the related cyber-attack detection and mitigation mechanisms. The funda-
mental characteristic of ASiMOV, compared to existing solutions, is that the output
of the control logic is verifiable without any training phase, i.e., ASiMOV contains
a Behavior-Specification-Based Intrusion Detection System, having ideal accuracy
performances (no false positive/negative). Detection is based on redundancy without
voting, i.e., a replica is assumed safe from cyber-attacks and is the reference for the
correct control logic. Mitigation and prevention is based on the orchestration of a
microservice-based architecture with an immutable deployment. By adopting an
event-sourcing pattern, the state of a CA can be migrated between different hosts at
run-time.

ASiMOV is a novel architecture for a CA to be employed in the automatic
control of physical systems. Therefore, this thesis provides a model and experimental
results that allow establishing whether the delay introduced by this architecture can
be adequate for the control of a specific System (in normal conditions and under
cyber-attacks). The results are summarized as follows.

The delay analysis shows that ASiMOV introduces a control loop delay overhead
of the same order of magnitude of the time T ∗CA required by a message broker to
deliver a message within the microservices of the CA, i.e., milliseconds or tens of
milliseconds. Consequently, the class of existing control systems compatible with
the same control loop delay could adopt ASiMOV without any change or just with
a re-tuning of parameters to compensate for the additional delay. However, the
previous statement holds as long as T ∗CA does not exceed a certain threshold, which
depends on the interarrival time of received sensing. With a T ∗CA of 1 − 20 ms
ASiMOV is capable of sustaining a sensing interarrival time higher than 5 − 100
ms, corresponding to a maximum sampling rate of 200 − 10 Hz. If T ∗CA exceeds
the just mentioned threshold, ASiMOV delivers a reduced number of actuation per
second, which could be a problem for hard real-time control. The detection delay
ΥDet is the time an intruder can control a System without being detected. Assuming
that the IDS’s host has sufficient computational capacity (i.e., the IDS is not a
computational bottleneck), ΥDet is the difference of the delay between CA–IDS hosts
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and the delay between CA–System hosts. Being able to estimate the detection delay
of IDS for Cyber-Physical-Systems accurately is a crucial feature, since it can be
used by optimization-based control logic to mitigate or prevent damage through
control action.

The proposed solution has value under the assumption that it is possible to pro-
tect a centralized subset of computational resources. This work does not investigate
in detail how this condition can be achieved. The proposed architecture decouples
the verification process from direct control, i.e., the two activities are asynchronous.
This enables to investigate to use multiple replicas, instead of a single, trusted replica,
as proposed in this thesis. Possibly, the replicas could employ software diversification
or consensus algorithms, which become feasible given the immense computing power
of cloud platforms and the fact that the verification is asynchronous to the control
loop. We considered unnecessary the use of a framework for the formal verification
of the absence of bugs in the provided implementation of ASiMOV. This choice
comes from the fact that the interaction between microservices consists of a relatively
simple choreography. In particular, there is a single datastore microservice, and
we do not employ distributed transactions. Our confidence in the absence of bugs
in the proposed implementation is based on an extensive series of simulations of a
prototype implementation, where we introduced a randomly variable communication
delay between microservices without obtaining deadlock or race problems. However,
we have not considered the case of faults e.g., the loss of a message. In this sense,
the proposed architecture is not still ready for production. This thesis proposes
a model for estimating the detection delay against attacks of control logic. The
estimate concerns a single component of a distributed architecture, but in future
works could be extended to any topology of interconnected controllers. The usage of
diversification could be considered at the level of cloud platforms, to protect against
attacks on the deeper layers of computer architecture.

Currently, ASiMOV suffers from the following minor limitations not yet resolved:

• The Knowledge in CK and CKv (i.e., control events) grows indefinitely, so: i)
data store CK may run out of space; ii) the time required for the controller
state migration process may be impractical. The solution we are investigating
envisages: i) on the CA side older control events are eliminated; ii) on the IDS
side, the CLv periodically serializes its Execution State into a single parameter
control message, to be used as a checkpoint by CLh (healed CA) during the
state migration process.

• Sensing or parameter Pload arriving at the network switch during a state
migration process can accumulate for a while before receiving a timestamp.
Depending on the case, this could lead to degradation of the performances of the
control logic (e.g., state estimation process). The solution we are investigating
envisages to use a temporary Pload cache on the IDS side, and letting SWh

(healed CA) assign timestamps at a later time. However, the provision of
deferred Pload may lead to timestamp values which are very different from
the real ones. Therefore, the state estimation performed by CLh may degrade.
A more refined solution is to use the same timestamp values assigned by SWw
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(IDS side). However, this solution raises the problem of synchronizing the
system clock of the hosts running SWw and SWh.

• A problem mentioned in this thesis is that different computer architectures
working with a representation of real numbers could give different results for
the same operation. This problem should be thoroughly investigated for a
real-world implementation of ASiMOV. Slightly different values in the state of
an application may lead to divergence with the state of a replica. In this sense,
it is necessary to investigate appropriate methods that guarantees divergence
of state, e.g., by truncation of numbers.
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Chapter 9

Annex: Pseudo-code

SW

IN

1 Time
Most recent timestamp τM

i of the query relative
to the production of the i-th actuation

2 Pload Actuation payload as produced by CL

3 Pload Sensor payload as reiceved from System

4 Pload
Parameter payload as reiceved by an external entity
e.g., father CA

OUT

1 Notif Notifies CL that it is time to produce an actuation

2 Time Provides to CL the notion of current time ri

3 Meta [τM
i ,ri] forwarded to IDS

4 Cmsg
Timestamped control message for IDS. It is a copy
of OUT 6

5 Pload
Forwarded actuation payload as received from IN
2 to the System

6 Cmsg
Timestamped control message for CK. It is a copy
of OUT 4

Table 9.1. Ports definition and description for the SW component.
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CL

IN

1 Notif
Triggers the production of an actuation. See OUT
1

2 Time
Notion of current time to be used for the production
of an actuation

3 SetCmsg
Subset xi of the knowledge for the production of
the current actuation. See OUT 2

OUT
1 Pload Payload of the current actuation

2 Query
Query to obtain subset xi of the knowledge. See
IN 3

Table 9.2. Ports definition and description for the CL component.

LV

IN

1 Pload
Payload of an actuation produced by local CL, to
be verified (in IDS) or ignored (in CA-Heal)

2 Query
Query as produced by CL, to be modified accord-
ingly to previously reiceved Meta

3 Meta
In IDS: reiceved by CA and used for the verification.
In CA-Heal: used for state migration

4 Cmsg
Similar to IN 3 , but contains a timestamped mes-
sage

5 SetCmsg
Set of messages utilized only for the match task to
protect against Unrestricted attack

OUT

1 Notif Same functionality of SW, OUT1

2 Time Same functionality of SW, OUT2

3 Alert
Triggers the mitigation (or prevention) mechanism,
which initiates a state migration

4 Meta Same functionality of SW, OUT3

5 Cmsg Same functionality of SW, OUT6

6 Query Query modified from what received from IN 2

7 Query Query utilized to obtain set of messages at IN 5

Table 9.3. Ports definition and description for the LV component.
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CK

IN

1 Alert
Initiate the procedure for state migration. See OUT
2 and 3

2 Meta
Store the Meta for later use, i.e., for when state
migration is required

3 Cmsg Store the Cmsg in the knowledge

4 Query Reiceve a query. See OUT 4

OUT

1 Time
Provide the maximum timestamp of the result of
a query τM

i

2 Meta
Used only for state migration. Transfers all the
stored Meta

3 Cmsg
Used only for state migration. Transfers all the
stored Cmsg

4 SetCmsg
Serves a query for the i-th actuation by providing
a subset of the knowledge xi

Table 9.4. Ports definition and description for the CK component.
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Int chooseIn(Pload[] arrPload,Int[] inI)
Used by SW during the Acquire task to choose a single input port
when multiple types of payload are available. This avoids the
monopolization of SW by a certain type of control signal (e.g., sensing).
arrPload are three Pload objects (possibly Null), inI are the three
correspondent input indexes. chooseIn returns an input index
(e.g., randomly, round robin) among those having its correspondent
arrPload not null, or returns Null when all arrPload are Null
SetCmsg select(SetCmsg k, Query i)
Returns a selection of Cmsg from Knowledge k based on their
timestamp. ∀m in output:
(m.tstamp > i.start)AND(m.tstamp <= i.end)
Bool contains(SetCmsg k, Time t)
Returns True if there is a message m in k : m.tstamp == t
Time maxTimeStamp(SetCmsg s)
Returns the maximum timestamp among elements in the set s
updParams(params, SetCmsg x, Time t)
updates the Execution State of CL (i.e., state var this.params of CL)
Pload calcAct(params, Time t)
computes an actuation given the Execution State and current time
Bool compare(Pload a1, Pload a2)
returns True if the two actuation payloads a1,a2 are
identical, or similar enough to not raise the detection of an attack
Bool notNull(Object obj)
returns True only if obj (e.g, a BusIO) is not Null.
In case obj is a List or a Set, returns True only if obj is empty
Int countType(SetCmsg x, String type)
counts the number of Cmsg of a certain type (e.g., ’sen’) in set x
Time systemTime()
returns the system time as seen by the execution environment
add/read/rem(List/SetCmsg s, BusIO element)
Respectively add, read and remove element from List or Set s.
In case s is a List the functions implement a FIFO operation, i.e., add
appends to the tail, read and remove operates on the head.

Table 9.5. Functions used by microservices.
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Listing 9.1. Pseudo-code of the compFunct CL
1 \\ Actuate task
2 IF this.phase == 0 AND notNull (in[1 ]): \\ Notif in
3 \\ Produces query for CK
4 consumed [1 ] = true
5 out[2 ] = new Query(mRecC , Double . Infinity )
6 this.phase = 1
7 ELSEIF (this.phase == 1):
8 IF notNull (in[2 ]) AND notNull (in[3 ]):
9 consumed [2 ] = True
10 consumed [3 ] = True
11 Time r = in[2 ]
12 SetCmsg x = in[3 ]
13 updParams (this.params , x, r) \\ update the Execution State
14 out[1 ] = calcAct (this.params , r) \\ produces a
15 this.mRecP = maxTimeStamp (x) \\ used for successive query
16 this.phase = 0

Listing 9.2. Pseudo-code of the compFunct SW
1 Time r = systemTime ()
2
3 \\ Acquire task
4 Cmsg [] arrPload = [in[2 ],in[3 ],in[4 ]] \\ possibly Null
5 Int sIn = chooseIn (arrPload ,[2 ,3 ,4 ]) \\ choose one input port
6 IF notNull (sIn ):
7 consumed [sIn] = True
8 String type = ’’
9 IF sIn == 2 : \\ Reiceved actuation
10 type = ’act ’
11 IF this.phase == 2 \\ Iteration ends
12 this.phase = 0
13 out[5 ] = new Pload(in[sIn ]. pload) \\to System
14 IF sIn == 3 : \\ Reiceved sensing
15 type = ’sen ’
16 IF sIn == 4 : \\ Reiceved parameter
17 type = ’par ’
18 Cmsg newMes = new Cmsg(in[sIn ]. pload , r, type)
19 out[4 ] = newMes \\ to LV
20 out[6 ] = newMes \\ to CK
21 if type == "sen" OR type == "par ":
22 this.mRecP = r
23
24 \\ Actuate task
25 IF this.phase == 0:
26 IF this.mRecC < this.mRecP
27 out[1 ] = new Notif ()
28 this.phase = 1
29 ELSEIF (this.phase == 1) AND notNull (in [1]):
30 consumed [1] = True
31 out[2 ] = r \\ current Time to CL
32 Time tauM = in [1]. value \\ max timestamp in set ’x’
33 out[3 ] = new Meta(r,tauM) \\ [r, tauM] to LV of IDS
34 IF tauM > this.mRecC: \\ update tauM if needed
35 this.mRecC = tauM
36 this.phase = 2
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Listing 9.3. Pseudo-code of the compFunct CK
1 \\ Acquire task
2 IF notNull (in[3 ]):\\ Reiceved Cmsg
3 consume [3 ] = True
4 add(this.k,in[3 ]) \\ Store in the knowledge
5
6 \\ Used only by IDS to store metadata for state migration
7 IF notNull (in[2 ]): \\ Reiceved Meta
8 consume [2 ] = True
9 add(this.km ,in[2 ]) \\ Store in the knowledge

10
11 \\ Used only in IDS
12 IF notNull (in[1 ]):\\ Reiceved Alert
13 \\ Begins state migration to mitigate an attack
14 \\ using out 2 , 3
15 \\ ...
16
17 \\ Actuate task
18 SetMes x = Null
19 IF this.phase == 0: \\ no pending queries
20 IF notNull (4 ): \\ reiceved query
21 consumed [4 ] = True
22 this.pendQ = new Query(in[4 ])
23 IF this.pendQ == Double . Infinite : \\ unbounded query (CL)
24 this.phase == 2
25 ELSE: \\ bounded query (LV)
26 this.phase = 1
27 IF this.phase == 1: \\ waiting for most recent Cmsg ( bounded )
28 IF contains (x,this.pendQ.end) == True:
29 x = select (this.k,this.pendQ)
30
31 \\ An unbounded query must deliver at least one ’sen ’ or ’par ’
32 ELSEIF this.phase == 2: \\ attempting to serve an unbounded query
33 x = select (pendQ)
34 Int ns = countType (x,’sen ’)
35 Int np = countType (x,’par ’)
36 if (ns+np) <= 0:\\x is empty , or with ’act ’ only
37 x = Null \\ will retry the query later
38
39 IF this.phase == 1 OR this.phase == 2:
40 IF notNull (x): \\ Query can be served
41 out[1 ] = maxTimeStamp (x) \\ send max timestamp to SW
42 out[4 ] = x \\ send query result to CL
43 this.phase = 0
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Listing 9.4. Pseudo-code of the compFunct LV
1 \\ Store Task
2 IF notNull (in[3 ]): \\ meta in
3 consumed [3 ] = True
4 add(this.metas , new Meta(in[3 ]))
5 IF notNull (in[4 ]): \\ cmsg in
6 consumed [4 ] = True
7 out[5 ] = new Cmsg(4 ) \\ to CK of IDS
8 IF in[4 ]. pload == ’act ’: \\ Store act
9 add(this.acts , new Cmsg(in[4 ]))
10 IF this.phase == 0: \\ LV is not currently verifying
11 IF notNull (this.metas ):
12 IF notNull (this.acts ):
13 \\ There is a meta -cmsg couple in internal FIFOs
14 \\ Therefore , verification of an actuation can begin
15 out[1 ] = new Notif ()
16 this.phase = 1
17
18 \\ Verify Task
19 IF this.phase == 1 AND notNull (in[2 ]) \\ unbounded query in
20 \\ Modifies query interval to produce bounded query
21 consumed [2 ] == True
22 Time ts = in[2 ]. start
23 Time te = (get(this.metas )). tauM \\ get max timestamp
24 out[6 ] = new Query(ts , te)
25 this.phase = 2
26 IF this.phase == 2 AND notNull ([1 ])
27 \\ a trusted actuation was reiceved
28 if notNull (this.acts)
29 \\ compares untrusted (from CA) and trusted actuations
30 Pload trusted = in[1 ]
31 consumed [1 ] = True
32 Pload untrusted = (get(this.acts )). pload
33 Bool valid = compare (trusted , untrusted )
34 if NOT valid: \\ Alert to DMAN
35 out[3 ] = new Alert ()
36 \\ Begin state mitigation operations
37 \\ ...
38 else: \\ no attack was detected
39 rem(this.metas) \\ remove last
40 rem(this.acts) \\ remove last
41 this.phase == 0
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