497 research outputs found

    A vision system with collision possibility detection of an approaching object

    Get PDF
    九州工業大学博士学位論文 学位記番号:生工博甲第60号 学位授与年月日:平成18年3月23日第1章 序論|第2章 昆虫の視覚系に学び接近物体の衝突危険性を考慮した衝突回避アルゴリズム|第3章 画像特徴を利用したCCDカメラのための接近物体の衝突回避アルゴリズム|第4章 移動ロボットのためのリアルタイムビジョンシステム|第5章 結論九州工業大学平成18年

    Flying Animal Inspired Behavior-Based Gap-Aiming Autonomous Flight with a Small Unmanned Rotorcraft in a Restricted Maneuverability Environment

    Get PDF
    This dissertation research shows a small unmanned rotorcraft system with onboard processing and a vision sensor can produce autonomous, collision-free flight in a restricted maneuverability environment with no a priori knowledge by using a gap-aiming behavior inspired by flying animals. Current approaches to autonomous flight with small unmanned aerial systems (SUAS) concentrate on detecting and explicitly avoiding obstacles. In contrast, biology indicates that birds, bats, and insects do the opposite; they react to open spaces, or gaps in the environment, with a gap_aiming behavior. Using flying animals as inspiration a behavior-based robotics approach is taken to implement and test their observed gap-aiming behavior in three dimensions. Because biological studies were unclear whether the flying animals were reacting to the largest gap perceived, the closest gap perceived, or all of the gaps three approaches for the perceptual schema were explored in simulation: detect_closest_gap, detect_largest_gap, and detect_all_gaps. The result of these simulations was used in a proof-of-concept implementation on a 3DRobotics Solo quadrotor platform in an environment designed to represent the navigational diffi- culties found inside a restricted maneuverability environment. The motor schema is implemented with an artificial potential field to produce the action of aiming to the center of the gap. Through two sets of field trials totaling fifteen flights conducted with a small unmanned quadrotor, the gap-aiming behavior observed in flying animals is shown to produce repeatable autonomous, collision-free flight in a restricted maneuverability environment. Additionally, using the distance from the starting location to perceived gaps, the horizontal and vertical distance traveled, and the distance from the center of the gap during traversal the implementation of the gap selection approach performs as intended, the three-dimensional movement produced by the motor schema and the accuracy of the motor schema are shown, respectively. This gap-aiming behavior provides the robotics community with the first known implementation of autonomous, collision-free flight on a small unmanned quadrotor without explicit obstacle detection and avoidance as seen with current implementations. Additionally, the testing environment described by quantitative metrics provides a benchmark for autonomous SUAS flight testing in confined environments. Finally, the success of the autonomous collision-free flight implementation on a small unmanned rotorcraft and field tested in a restricted maneuverability environment could have important societal impact in both the public and private sectors

    Coping With Multiple Visual Motion Cues Under Extremely Constrained Computation Power of Micro Autonomous Robots

    Get PDF
    The perception of different visual motion cues is crucial for autonomous mobile robots to react to or interact with the dynamic visual world. It is still a great challenge for a micro mobile robot to cope with dynamic environments due to the restricted computational resources and the limited functionalities of its visual systems. In this study, we propose a compound visual neural system to automatically extract and fuse different visual motion cues in real-time using the extremely constrained computation power of micro mobile robots. The proposed visual system contains multiple bio-inspired visual motion perceptive neurons each with a unique role, for example to extract collision visual cues, darker collision cue and directional motion cues. In the embedded system, these multiple visual neurons share a similar presynaptic network to minimise the consumption of computation resources. In the postsynaptic part of the system, visual cues pass results to corresponding action neurons using lateral inhibition mechanism. The translational motion cues, which are identified by comparing pairs of directional cues, are given the highest priority, followed by the darker colliding cues and approaching cues. Systematic experiments with both virtual visual stimuli and real-world scenarios have been carried out to validate the system's functionality and reliability. The proposed methods have demonstrated that (1) with extremely limited computation power, it is still possible for a micro mobile robot to extract multiple visual motion cues robustly in a complex dynamic environment; (2) the cues extracted can be fused with a lateral inhibited postsynaptic network, thus enabling the micro robots to respond effectively with different actions, accordingly to different states, in real-time. The proposed embedded visual system has been modularised and can be easily implemented in other autonomous mobile platforms for real-time applications. The system could also be used by neurophysiologists to test new hypotheses pertaining to biological visual neural systems

    Mobile robot vavigation using a vision based approach

    Get PDF
    PhD ThesisThis study addresses the issue of vision based mobile robot navigation in a partially cluttered indoor environment using a mapless navigation strategy. The work focuses on two key problems, namely vision based obstacle avoidance and vision based reactive navigation strategy. The estimation of optical flow plays a key role in vision based obstacle avoidance problems, however the current view is that this technique is too sensitive to noise and distortion under real conditions. Accordingly, practical applications in real time robotics remain scarce. This dissertation presents a novel methodology for vision based obstacle avoidance, using a hybrid architecture. This integrates an appearance-based obstacle detection method into an optical flow architecture based upon a behavioural control strategy that includes a new arbitration module. This enhances the overall performance of conventional optical flow based navigation systems, enabling a robot to successfully move around without experiencing collisions. Behaviour based approaches have become the dominant methodologies for designing control strategies for robot navigation. Two different behaviour based navigation architectures have been proposed for the second problem, using monocular vision as the primary sensor and equipped with a 2-D range finder. Both utilize an accelerated version of the Scale Invariant Feature Transform (SIFT) algorithm. The first architecture employs a qualitative-based control algorithm to steer the robot towards a goal whilst avoiding obstacles, whereas the second employs an intelligent control framework. This allows the components of soft computing to be integrated into the proposed SIFT-based navigation architecture, conserving the same set of behaviours and system structure of the previously defined architecture. The intelligent framework incorporates a novel distance estimation technique using the scale parameters obtained from the SIFT algorithm. The technique employs scale parameters and a corresponding zooming factor as inputs to train a neural network which results in the determination of physical distance. Furthermore a fuzzy controller is designed and integrated into this framework so as to estimate linear velocity, and a neural network based solution is adopted to estimate the steering direction of the robot. As a result, this intelligent iv approach allows the robot to successfully complete its task in a smooth and robust manner without experiencing collision. MS Robotics Studio software was used to simulate the systems, and a modified Pioneer 3-DX mobile robot was used for real-time implementation. Several realistic scenarios were developed and comprehensive experiments conducted to evaluate the performance of the proposed navigation systems. KEY WORDS: Mobile robot navigation using vision, Mapless navigation, Mobile robot architecture, Distance estimation, Vision for obstacle avoidance, Scale Invariant Feature Transforms, Intelligent framework

    Vision-Based navigation system for unmanned aerial vehicles

    Get PDF
    Mención Internacional en el título de doctorThe main objective of this dissertation is to provide Unmanned Aerial Vehicles (UAVs) with a robust navigation system; in order to allow the UAVs to perform complex tasks autonomously and in real-time. The proposed algorithms deal with solving the navigation problem for outdoor as well as indoor environments, mainly based on visual information that is captured by monocular cameras. In addition, this dissertation presents the advantages of using the visual sensors as the main source of data, or complementing other sensors in providing useful information; in order to improve the accuracy and the robustness of the sensing purposes. The dissertation mainly covers several research topics based on computer vision techniques: (I) Pose Estimation, to provide a solution for estimating the 6D pose of the UAV. This algorithm is based on the combination of SIFT detector and FREAK descriptor; which maintains the performance of the feature points matching and decreases the computational time. Thereafter, the pose estimation problem is solved based on the decomposition of the world-to-frame and frame-to-frame homographies. (II) Obstacle Detection and Collision Avoidance, in which, the UAV is able to sense and detect the frontal obstacles that are situated in its path. The detection algorithm mimics the human behaviors for detecting the approaching obstacles; by analyzing the size changes of the detected feature points, combined with the expansion ratios of the convex hull constructed around the detected feature points from consecutive frames. Then, by comparing the area ratio of the obstacle and the position of the UAV, the method decides if the detected obstacle may cause a collision. Finally, the algorithm extracts the collision-free zones around the obstacle, and combining with the tracked waypoints, the UAV performs the avoidance maneuver. (III) Navigation Guidance, which generates the waypoints to determine the flight path based on environment and the situated obstacles. Then provide a strategy to follow the path segments and in an efficient way and perform the flight maneuver smoothly. (IV) Visual Servoing, to offer different control solutions (Fuzzy Logic Control (FLC) and PID), based on the obtained visual information; in order to achieve the flight stability as well as to perform the correct maneuver; to avoid the possible collisions and track the waypoints. All the proposed algorithms have been verified with real flights in both indoor and outdoor environments, taking into consideration the visual conditions; such as illumination and textures. The obtained results have been validated against other systems; such as VICON motion capture system, DGPS in the case of pose estimate algorithm. In addition, the proposed algorithms have been compared with several previous works in the state of the art, and are results proves the improvement in the accuracy and the robustness of the proposed algorithms. Finally, this dissertation concludes that the visual sensors have the advantages of lightweight and low consumption and provide reliable information, which is considered as a powerful tool in the navigation systems to increase the autonomy of the UAVs for real-world applications.El objetivo principal de esta tesis es proporcionar Vehiculos Aereos no Tripulados (UAVs) con un sistema de navegacion robusto, para permitir a los UAVs realizar tareas complejas de forma autonoma y en tiempo real. Los algoritmos propuestos tratan de resolver problemas de la navegacion tanto en ambientes interiores como al aire libre basandose principalmente en la informacion visual captada por las camaras monoculares. Ademas, esta tesis doctoral presenta la ventaja de usar sensores visuales bien como fuente principal de datos o complementando a otros sensores en el suministro de informacion util, con el fin de mejorar la precision y la robustez de los procesos de deteccion. La tesis cubre, principalmente, varios temas de investigacion basados en tecnicas de vision por computador: (I) Estimacion de la Posicion y la Orientacion (Pose), para proporcionar una solucion a la estimacion de la posicion y orientacion en 6D del UAV. Este algoritmo se basa en la combinacion del detector SIFT y el descriptor FREAK, que mantiene el desempeno del a funcion de puntos de coincidencia y disminuye el tiempo computacional. De esta manera, se soluciona el problema de la estimacion de la posicion basandose en la descomposicion de las homografias mundo a imagen e imagen a imagen. (II) Deteccion obstaculos y elusion colisiones, donde el UAV es capaz de percibir y detectar los obstaculos frontales que se encuentran en su camino. El algoritmo de deteccion imita comportamientos humanos para detectar los obstaculos que se acercan, mediante el analisis de la magnitud del cambio de los puntos caracteristicos detectados de referencia, combinado con los ratios de expansion de los contornos convexos construidos alrededor de los puntos caracteristicos detectados en frames consecutivos. A continuacion, comparando la proporcion del area del obstaculo y la posicion del UAV, el metodo decide si el obstaculo detectado puede provocar una colision. Por ultimo, el algoritmo extrae las zonas libres de colision alrededor del obstaculo y combinandolo con los puntos de referencia, elUAV realiza la maniobra de evasion. (III) Guiado de navegacion, que genera los puntos de referencia para determinar la trayectoria de vuelo basada en el entorno y en los obstaculos detectados que encuentra. Proporciona una estrategia para seguir los segmentos del trazado de una manera eficiente y realizar la maniobra de vuelo con suavidad. (IV) Guiado por Vision, para ofrecer soluciones de control diferentes (Control de Logica Fuzzy (FLC) y PID), basados en la informacion visual obtenida con el fin de lograr la estabilidad de vuelo, asi como realizar la maniobra correcta para evitar posibles colisiones y seguir los puntos de referencia. Todos los algoritmos propuestos han sido verificados con vuelos reales en ambientes exteriores e interiores, tomando en consideracion condiciones visuales como la iluminacion y las texturas. Los resultados obtenidos han sido validados con otros sistemas: como el sistema de captura de movimiento VICON y DGPS en el caso del algoritmo de estimacion de la posicion y orientacion. Ademas, los algoritmos propuestos han sido comparados con trabajos anteriores recogidos en el estado del arte con resultados que demuestran una mejora de la precision y la robustez de los algoritmos propuestos. Esta tesis doctoral concluye que los sensores visuales tienen las ventajes de tener un peso ligero y un bajo consumo y, proporcionar informacion fiable, lo cual lo hace una poderosa herramienta en los sistemas de navegacion para aumentar la autonomia de los UAVs en aplicaciones del mundo real.Programa Oficial de Doctorado en Ingeniería Eléctrica, Electrónica y AutomáticaPresidente: Carlo Regazzoni.- Secretario: Fernando García Fernández.- Vocal: Pascual Campoy Cerver

    Advances in Robot Navigation

    Get PDF
    Robot navigation includes different interrelated activities such as perception - obtaining and interpreting sensory information; exploration - the strategy that guides the robot to select the next direction to go; mapping - the construction of a spatial representation by using the sensory information perceived; localization - the strategy to estimate the robot position within the spatial map; path planning - the strategy to find a path towards a goal location being optimal or not; and path execution, where motor actions are determined and adapted to environmental changes. This book integrates results from the research work of authors all over the world, addressing the abovementioned activities and analyzing the critical implications of dealing with dynamic environments. Different solutions providing adaptive navigation are taken from nature inspiration, and diverse applications are described in the context of an important field of study: social robotics

    Learning body models: from humans to humanoids

    Full text link
    Humans and animals excel in combining information from multiple sensory modalities, controlling their complex bodies, adapting to growth, failures, or using tools. These capabilities are also highly desirable in robots. They are displayed by machines to some extent. Yet, the artificial creatures are lagging behind. The key foundation is an internal representation of the body that the agent - human, animal, or robot - has developed. The mechanisms of operation of body models in the brain are largely unknown and even less is known about how they are constructed from experience after birth. In collaboration with developmental psychologists, we conducted targeted experiments to understand how infants acquire first "sensorimotor body knowledge". These experiments inform our work in which we construct embodied computational models on humanoid robots that address the mechanisms behind learning, adaptation, and operation of multimodal body representations. At the same time, we assess which of the features of the "body in the brain" should be transferred to robots to give rise to more adaptive and resilient, self-calibrating machines. We extend traditional robot kinematic calibration focusing on self-contained approaches where no external metrology is needed: self-contact and self-observation. Problem formulation allowing to combine several ways of closing the kinematic chain simultaneously is presented, along with a calibration toolbox and experimental validation on several robot platforms. Finally, next to models of the body itself, we study peripersonal space - the space immediately surrounding the body. Again, embodied computational models are developed and subsequently, the possibility of turning these biologically inspired representations into safe human-robot collaboration is studied.Comment: 34 pages, 5 figures. Habilitation thesis, Faculty of Electrical Engineering, Czech Technical University in Prague (2021
    corecore