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ABSTRACT

This dissertation research shows a small unmanned rotorcraft system with onboard pro-

cessing and a vision sensor can produce autonomous, collision-free flight in a restricted

maneuverability environment with no a priori knowledge by using a gap-aiming behavior

inspired by flying animals. Current approaches to autonomous flight with small unmanned

aerial systems (SUAS) concentrate on detecting and explicitly avoiding obstacles. In con-

trast, biology indicates that birds, bats, and insects do the opposite; they react to open

spaces, or gaps in the environment, with a gap_aiming behavior. Using flying animals

as inspiration a behavior-based robotics approach is taken to implement and test their ob-

served gap-aiming behavior in three dimensions. Because biological studies were unclear

whether the flying animals were reacting to the largest gap perceived, the closest gap

perceived, or all of the gaps three approaches for the perceptual schema were explored

in simulation: detect_closest_gap, detect_largest_gap, and detect_all_gaps. The result

of these simulations was used in a proof-of-concept implementation on a 3DRobotics

Solo quadrotor platform in an environment designed to represent the navigational diffi-

culties found inside a restricted maneuverability environment. The motor schema is im-

plemented with an artificial potential field to produce the action of aiming to the center of

the gap. Through two sets of field trials totaling fifteen flights conducted with a small

unmanned quadrotor, the gap-aiming behavior observed in flying animals is shown to

produce repeatable autonomous, collision-free flight in a restricted maneuverability en-

vironment. Additionally, using the distance from the starting location to perceived gaps,

the horizontal and vertical distance traveled, and the distance from the center of the gap
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during traversal the implementation of the gap selection approach performs as intended,

the three-dimensional movement produced by the motor schema and the accuracy of the

motor schema are shown, respectively. This gap-aiming behavior provides the robotics

community with the first known implementation of autonomous, collision-free flight on a

small unmanned quadrotor without explicit obstacle detection and avoidance as seen with

current implementations. Additionally, the testing environment described by quantitative

metrics provides a benchmark for autonomous SUAS flight testing in confined environ-

ments. Finally, the success of the autonomous collision-free flight implementation on a

small unmanned rotorcraft and field tested in a restricted maneuverability environment

could have important societal impact in both the public and private sectors.
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1. INTRODUCTION

This dissertation research implements a gap-aiming behavior for autonomous collision-

free flight inspired by flying animals. In addition, it reports on field tests of the imple-

mentation in an environment simulating both the experimental environments seen in the

ethological literature and the destruction of building interiors following a man-made, or

natural disaster by employing quantitative metrics. The employment of small unmanned

aerial systems (SUAS) to perform work in any of the three Ds [dirty, dangerous, or dull]

[4] translates to reduced personal risk to humans from an unsafe environment, cost sav-

ings through reduced labor, and improvements in technologic support capabilities. The

addition of autonomy to the system provides repeatable performance in the same scenario

and removes the human factor that could lead to mishaps whether during training, or mis-

sion operation [5]. Specifically, a SUAS with the capability to operate autonomously and

collision-free in an environment typical of the interior of an office building after a natural

disaster has the potential to assist first responders and infrastructure engineers by provid-

ing imagery of the status of the interior, locating victims, or traversing areas too confined

for a human.

These goals are met by answering the primary research question discussed in the fol-

lowing section. Section 1.2 provides insight into the need for small unmanned aerial

systems to autonomously avoid collisions, why a review of the ethological literature on

obstacle avoidance in flying animals was conducted, and the rationale behind the decision

to conduct a study in simulation followed by field tests with the gap-aiming behavior im-

plemented on a 3DRobotics Solo quadrotor platform. Section 1.3 defines the contributions

the research provides and finally, Section 1.4 outlines the rest of the dissertation document.
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1.1 Research Question

The primary research question to be addressed through the experimental study and

proof-of-concept implementation conducted during the course of this dissertation research

is:

Using flying-animal behavior as a guide, does a gap-aiming behavior implemented

with an artificial potential field produce autonomous, collision-free flight on a small un-

manned rotorcraft in a restricted maneuverability environment?

Autonomous control of SUAS is a developing area of research in the field of robotics

with collision avoidance maintaining an important role in creating the autonomy. While

systems have been developed and tested to autonomously fly indoors, none have been

shown to match the performance, or emulate the gap-aiming behavior of flying animals

in restricted maneuverability environments. This primary research question will attempt

to determine if the gap-aiming behavior derived from a study of obstacle avoidance in

flying animals can be transferred to provide autonomous collision-free flight of a small

unmanned quadrotor in a restricted maneuverability environment. The gap-aiming behav-

ior was implemented by taking a behavior-based robotics approach and tested through a

study using simulation. The results of the simulation were implemented in a proof-of-

concept on a 3DRobotics Solo quadrotor and tested in field experiments. The simulation

and proof-of-concept hardware implementation are both described in detail in Chapter 6.

The primary research question was developed through observations made in the etho-

logical literature about how flying animals avoid obstacles during flight. Two species of

birds surveyed, the pigeon and starling, showed a preference for maneuvering through the

largest visual gap in the environment when avoiding obstacles. The authors concluded

this choice was made for safety reasons when traveling at higher flight speeds [6, 7]. Lin

also noted that pigeons chose a centered flight path and would return to it after perform-
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ing an avoidance maneuver [6]. In [8], blowflies also showed a preference for creating a

nearly-centered flight path when avoiding obstacles. Because the literature was unclear

whether flying animals were reacting to the closest, largest, or all of the gaps in their field

of view (FOV) a simulation study was conducted and is described in Section 6.1. The sim-

ulation study provided insight into the best perceptual schema approach for a gap-aiming

behavior on a small unmanned quadrotor, showing it is consistent with what was observed

in the experiments performed with the flying animals and through field experiments it is

sufficient to ensure collision-free flight in a restricted-maneuverability environment on a

small unmanned quadrotor. Further details on the observations made from the review of

literature are discussed in Section 4.1.

1.2 Flying Animal Behavior-based Autonomous SUAS

The ability of a SUAS to autonomously fly collision-free in a restricted maneuverabil-

ity environment by implementing a gap-aiming behavior inspired by flying animals has

not previously been investigated. Currently, obstacle avoidance for a teleoperated SUAS

is hindered by the pilot’s proficiency at flying the platform, the length of time before they

become cognitively fatigued, and their capacity to gain and maintain awareness of the op-

erational environment. While considerable research has been conducted on path planning

to facilitate autonomous flight, this technique requires information about the environment

a priori. Additionally, pre-defined paths created during traditional path planning do not

take into account dynamic, or unseen obstacles making reactive control for autonomous

collision-free flight desirable.

Animals conduct obstacle avoidance reactively, and therefore provide an existence

proof for the belief that flight can be conducted collision-free at a high flight speed in

an environment with closely spaced obstacles. Through designed experiments and ob-

servations in their natural habitat, researchers reported on the ability of birds, bats, and
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insects to successfully navigate collision-free through restricted maneuverability environ-

ments. Reports on their capabilities show these flying animals do so with limited com-

putational power and make decisions with incomplete and/or imperfect information about

their environment. Three control rules were derived from the flying animal observations

discussed in the literature review conducted in Chapter 3. These rules are described in

detail in Chapter 4. The gap-aiming behavior designed from them was implemented using

a behavior-based robotics approach to provide autonomous collision-free flight on a small

unmanned quadrotor.

The gap-aiming behavior was implemented and tested in simulation through Study

1 to determine the best perceptual schema approach from three available options: de-

tect_closest_gap, detect_largest_gap, and detect_all_gaps. The details of the simulation

implementation are described in Chapter 5, Study 1 is outlined in Chapter 6, where the

results are also presented. Because the platform may not act as expected, simulation re-

moves the possibilities of damage to the environment, loss of the platform, or injury to

the operator, therefore providing a safe environment for initial testing. Following the re-

sults of Study 1, a proof-of-concept was implemented on a 3DRobotics Solo quadrotor

using the gap-aiming behavior to produce autonomous collision-free flight. Through field

experiments, this proof-of-concept demonstrates the platform can achieve repeatable, au-

tonomous, collision-free flight in an environment comparable to those observed in flying

animal studies. The testing environment for the proof-of-concept was designed to simplify

the perception problem, but still test the autonomous collision-free flight capabilities of the

platform in three-dimensions in a restricted maneuverability environment.

1.3 Contributions of the Research

Answering the primary research question contributes to the fields of Artificial Intelli-

gence, Robotics, and Ethology. Current research for autonomous collision-free flight on
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SUASs is concentrated on the detection and avoidance of obstacles in the environment.

Through a review of the ethological literature, observations were made about how birds,

bats, and insects avoid obstacles in their environment. When compared to the current state

of the art in obstacle avoidance for SUASs, the gap-aiming behavior used by the flying

animals is dissimilar. Flying animals outperform the SUASs with faster flight speeds and

smaller safety margins by using a single sense for perception with no need to maintain an

internal representation of their environment. The research contributes to the field of artifi-

cial intelligence with the implementation of a novel artificial potential field (APF). This is

the only known implementation of autonomous flight with an APF using no repulsive field.

In this way, it extends AI’s APF methodology to SUAS to produce autonomous flight. The

research contributes to the robotics community by extending the corpus of behavior-based

robotics applied to aerial vehicles for autonomous flight.

The experimental environments currently used to test the autonomous flight capabili-

ties of SUASs are simplistic and described through language rather than metrics. This re-

search tests the gap-aiming behavior implementation in an environment quantified by met-

rics from disaster robotics [9]. The field experiments are the first testing of an autonomous

SUAS in an environment quantified with a comprehensive suite of metrics transferred fro

disaster robotics. The implementation of this gap-aiming behavior on a small unmanned

quadrotor may also be of interest to the ethological community. Results and observations

of the completed experiments on this SUAS could lead to new theories of flying animal

behaviors to investigate discussed in Section ??. Additionally, because it was lacking the

ethological literatures, the quantitative metrics used to define the flight environment could

be useful when observing flying animal behavior.

The successful implementation of the gap-aiming behavior to provide autonomous

collision-free flight in a restricted maneuverability environment could also have impor-

tant societal impacts. In terms of public safety, autonomous collision-free flight beyond
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line of sight has the potential to improve the reconnaissance capability for the military, in-

telligence community, and civilian agencies such as Homeland Security, law enforcement,

and FEMA for disaster recovery. It could increase the speed and effectiveness of both the

entry and clearing of buildings and structures, improve the assessment of a hostage situa-

tion, or provide hazardous materials identification without putting human, or animal lives

at risk.

1.4 Organization of the Dissertation

The rest of this document is outlined in the following seven chapters. Chapter 2 dis-

cusses related work on SUASs. Chapter 3 provides a background on the ethological liter-

ature studied to determine how animals produce collision-free flight in their environment.

Chapter 4 discusses the control rules derived from ethology and a behavior-based robotics

approach taken to implement the gap-aiming behavior on a SUAS. The implementation de-

tails are provided in Chapter 5. Chapter 6 describes the simulation experiments, proof-of-

concept implementation designed to answer the research primary question, and the results

of them. Chapter 7 analyzes and discusses the findings of the research. Finally, Chapter 8

summarizes the dissertation research and provides avenues for future work.
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2. RELATED WORK

Ensuring the safety of the platform, environment, and bystanders requires an SUAS

operating in an indoor, highly confined space to autonomously fly collision-free. To put

this work into context, it is important to understand the role reactive control for obstacle

avoidance plays in the autonomous flight of SUASs, what the state of the art is in the field,

what limitations exist in current implementations, and the experimental environment and

metrics used for testing. Because this research took a behavior-based robotics approach

for implementation, the discussion of the literature reviewed follows schema theory as de-

scribed by Arkin [10], and Murphy [1]. Where possible, the primitive behaviors used for

autonomous collision-free flight were identified and decomposed into the sensors, percep-

tual schemas, percepts, and motor schemas employed. These are the building blocks of

primitive behaviors and their relationship to each other is illustrated in Figure 2.1. This

figure shows how a behavior accepts inputs from one or more sensors, processes the sens-

ing data via a perceptual schema to produce a percept, which produces a motor action via

a motor schema.

Figure 2.1: Depiction of behavior decomposition

The review covers eleven papers implementing an obstacle avoidance behavior. Obsta-

cle avoidance implementations that follow the deliberative paradigm meaning, they exhibit
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no reactive control and incorporate path planning and/or map creation to achieve obstacle

avoidance were excluded. Additionally, work covering platforms that were not operated

autonomously was also excluded.

The decomposition of the obstacle avoidance behavior resulted in isolation of two sen-

sor categories utilized for perception, six perceptual schemas, twelve percepts, and eleven

motor schemas. Following the schema theory discussion, the limitations of current imple-

mentations which explicitly detect and avoid obstacles are identified in Section 2.2. These

limitation fall into two categories: operation in only two dimensions, and motor actions

used to avoid obstacles not useful in restricted maneuverability environments. Finally, the

experimental environments and metrics used for testing are discussed in Section 2.4. Con-

clusions about the current state of autonomous collision-free flight research for SUASs are

drawn and areas of interest for this research are highlighted. The chapter concludes with a

brief summary in Section 2.6.

2.1 Reactive Control of Obstacle Avoidance for SUAS

Reactive techniques for autonomous obstacle avoidance with SUASs make use of en-

vironmental percepts to act without requiring a formal representation of the world. The

reactive paradigm has the ability to produce an action without a priori knowledge of the

environment used in a planning step because a percept is immediately acted upon. Addi-

tionally, the existence of dynamic objects, or those initially not perceived, in an environ-

ment mean the world remains inconsistent through time. The need to continually update a

world model, and reconstruct the plan is time-consuming and computationally expensive

for deliberative methods. The remainder of this section is broken down into subsections

corresponding to the building blocks of a primitive behavior used for reactive control and

illustrated in Figure 2.1.
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2.1.1 Sensors

Sensor use for implementing obstacle avoidance behavior in SUASs can be separated

into two categories: passive and active. A sensor is considered passive when it collects data

through energy received, like a camera. An active sensor emits energy and measures its

interaction, like ultrasonic and laser implementations [11]. The categories each encompass

multiple types of sensors chosen due to payload considerations, power availability, or

percepts required for action. Eleven papers were surveyed, where seven employed passive

sensors, and six active sensors. Two papers overlap categories because the authors used

multiple sensors to collect data for obstacle avoidance purposes.

For obstacle avoidance, the most commonly used sensors are passive where 8 of the

eleven papers surveyed used this type of sensor. Table 2.1 shows the papers surveyed

where this category of sensor was employed and is further broken down into four specific

types of sensors used by the authors surveyed. The choice of passive sensors may be due

to their light weight when payload is a concern, low power consumption from their passive

nature, or the specific percept required for the algorithm.

2.1.2 Perceptual Schemas and Percepts

Making use of the sensors described in the previous section, the collected data is for-

warded to perceptual schemas to extract the percepts required by the specific obstacle

avoidance implementation. The most common perceptual schema in ten of eleven papers

surveyed, was detect_obstacle although the percept outputted to provide an appropriate

motor action from the behavior was not always the same. The percepts extracted from

the detect_obstacles perceptual schema were: distance_to_obstacle, obstacle_coordinates,

distance_to_closest_obstacle, and obstacle_at_particular_depth. In [12] the perceptual

schema takes input from eight ultrasonic sensors and a pair of wide-angle stereo cameras.

The data from the cameras is used to determine obstacle coordinates while the perceptual
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Table 2.1: Sensor use in SUASs for obstacle avoidance.
CATEGORY TYPE AUTHOR

Passive

Monocular Camera
Ross, et al., 2013
Bills, Chen, & Saxena, 2011

Stereo Camera

Nieuwenhuisen, Droeschel, Schneider,
Holz, Labe, & Behnke, 2013
Barry & Tedrake, 2015
Hrabar, Sukhatme, Corke, Usher, & Roberts, 2005

1D Camera Zufferey & Floreano, 2006
Directional Distance Yuan, Recktenwald, & Mallot, 2009

Active

Ultrasonic
Gageik, Muller, & Montenegro, 2012
Nieuwenhuisen, Droeschel, Schneider,
Holz, Labe, & Behnke, 2013
Bills, Chen, & Saxena, 2011

Scanning Ladar Scherer, Singh, Chamberlain, & Saripalli, 2007
Laser Scanner Grzonka, Grisetti, & Burgard, 2012
2D Lidar Merz & Kendoul, 2011

schema takes the ultrasonic data and provides the distance_to_the_obstacle. Similarly,

[13] and [14] use directional distance and 2D lidar sensors, respectively, to provide data to

the detect_obstacle perceptual schema. In turn, this perceptual schema calculates the dis-

tance_to_the_obstacle. Another perceptual schema utilized for obstacle avoidance is de-

tect_altitude, where [15] and [13] are interested in perceiving the distance_to_the_ground,

which could be stated as the platform height, in order to avoid collision with an obsta-

cle below them, which could be the ground. The other perceptual schemas shown in

Table 2.2, track_obstacle [12], classify_obstacle [16], classify_environment [17], and de-

tect_wall [17], are one-off schemas used to identify percepts needed for specific obstacle

avoidance implementations.

2.1.3 Motor Schemas

In the eleven papers surveyed, the description of the motor schemas identified to avoid

obstacles are unique in in 7 of the eleven papers surveyed. There were two producing an
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Table 2.2: Perceptual schemas used to extract percepts from sensor data.
PERCEPTUAL

SCHEMA PERCEPT AUTHOR

detect_obstacle

distance_to_obstacle

Nieuwenhuisen, Droeschel,
Schneider, Holz, Labe,
& Behnke, 2013
Grzonka, Grisetti, & Burgard, 2012
Gageik„ Muller, & Montenegro, 2012
Yuan, Recktenwald, & Mallot, 2009
Scherer, Singh, Chamberlain,
& Saripalli, 2007
Bills, Chen, & Saxena, 2011
Hrabar, Sukhatme, Corke, Usher,
& Roberts, 2005

obstacle_coordinates
Nieuwenhuisen, Droeschel,
Schneider, Holz, Labe,
& Behnke, 2013

dist_closest_obstacle Merz & Kendoul, 2011
obstacle_at_set_depth Barry & Tedrake, 2015

optic_flow
Zufferey & Floreano, 2006
Hrabar, Sukhatme, Corke, Usher,
& Roberts, 2005

detect_altitude
distance_to_ground Grzonka, Grisetti, & Burgard, 2012

platform_height Yuan, Recktenwald, & Mallot, 2009

track_obstacle interest_points
Nieuwenhuisen, Droeschel,
Schneider, Holz, Labe,
& Behnke, 2013

classify_obstacle image_features Ross, et al., 2013
classify_environment vanishing_cues Bills, Chen, & Saxena, 2011

detect_wall
open_area

distance_to_wall Bills, Chen, & Saxena, 2011
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optic flow percept for action [18, 19] and two whose action was to move_to_avoidance_waypoint

[12, 14]. In the case of optic flow, the motor schema used was turn_away_from_higher_flow.

For Zufferey [18], this allowed a fixed-wing platform to fly autonomously in circles in an

open arena. The helicopter in [19] was able to remain centered while autonomously nav-

igating an urban canyon. The AR Parrot in [17] navigated empty corridors and stairwells

by using a move_opposite_obstacle motor schema. In [20] they did not explicitly discuss

their motor actions, but viewing the video accompanying their research shows the same

move_opposite_obstacle action used in [17]. Other authors chose to move_most_favorable_direction

[13], adjust_to_learnt_heading [16], control_speed [21], or maintain_set_distance [15].

These motor schemas are all summarized in Table 2.3.

2.2 Limitations of Current Implementations

The limitations of the current reactive control implementations for obstacle avoidance

can be split into two categories: operation in only two dimensions, and motor actions

used to avoid obstacles not useful in restricted maneuverability environments. These two

categories are discussed in the following subsections.

2.2.1 Operation in Two Dimensions

Of the ten current implementations of reactive control for collision-free flight surveyed,

which detect obstacles for relative navigation purposes 6 operate in only two dimensions.

Using LIDAR, Kukreti [22] detects obstacles in the environment computing a score for

the path to each through the use of distance and angle measurements. The highest scoring

movement is chosen and the SUAS is directed in two dimensions without altering the

altitude. The gap-aiming behavior designed and implemented in this work operates in

three dimensions because the ability to adjust altitude is a benefit of operating an aerial

vehicle over a ground vehicle.
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Table 2.3: Motor schemas used to avoid obstacles.
PERCEPTUAL

SCHEMA MOTOR SCHEMA AUTHOR

detect_obstacle

move_to_avoidance_waypoint

Nieuwenhuisen, Droeschel,
Schneider, Holz, Labe,
& Behnke, 2013
Merz & Kendoul, 2011

turn_away_from_higher_flow
Hrabar, Sukhatme, Corke,
Usher, & Roberts, 2005
Zufferey & Floreano, 2006

move_opposite_obstacle
Bills, Chen, & Saxena, 2011
Barry & Tedrake, 2015

move_most_favorable_direction
Yuan, Recktenwald,
& Mallot, 2009

speed_control
Scherer, Singh, Chamberlain,
& Saripalli, 2007

maintain_safe_distance
Gageik„ Muller,
& Montenegro, 2012

classify_obstacle adjust_to_learnt_heading Ross, et al., 2013

detect_altitude
Not defined

Grzonka, Grisetti,
& Burgard, 2012

adjust_altitude
Yuan, Recktenwald,
& Mallot, 2009

track_obstacle Not defined
Nieuwenhuisen, Droeschel,
Schneider, Holz, Labe,
& Behnke, 2013

classify_environment
move_to_vanishing_point

move_up_staircase Bills, Chen, & Saxena, 2011

detect_wall turn_to_most_open Bills, Chen, & Saxena, 2011
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2.2.2 Motor Actions Useless in Restricted Maneuverability Environments

In an indoor disaster environment the open area required for maneuvering, or the

threshold distance from the obstacle required in the following two implementations likely

does not exist. To autonomously navigate indoors, Winkvist used LIDAR to detect ob-

stacles, then performed a banking maneuver to the most open area until the object was

no longer considered a threat [23]. Using sonar, Bills detected an obstacle and moved

the SUAS in the opposite direction until the obstacle is further than a preset threshold.

Neither of these implementations was tested with an environment with closely spaced ob-

stacles representative of the restricted maneuverability they might encounter indoors after

a disaster.

2.3 Reaction: Obstacles versus Gaps

Current approaches to autonomous flight with SUAS concentrate on detecting and ex-

plicitly avoiding obstacles. In contrast, biology indicates that birds, bats, and insects do the

opposite; they react to open spaces, or gaps in the environment. While SUASs have been

developed and tested to autonomously fly indoors [15, 23, 22, 17, 24, 25, 26], none of these

emulate the gap-aiming behavior of flying animals. To produce collision-free autonomous

flight, this work implements a gap_aiming behavior inspired by flying animals to perceive

gaps in the environment and react to them through the use of an artificial potential field,

which produces action in three-dimensions.

2.4 Experimental Environments and Metrics

None of the autonomous obstacle avoidance capabilities were tested in highly confined

experimental environments representative of what might be encountered in the interior of

a building following a natural disaster. Of the eleven papers surveyed, six platforms were

tested outdoors and seven were tested indoors, where two of the platforms overlapped
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Table 2.4: Summary of environments used for testing.
ENVIRO

TYPE OBSTACLES AUTHORS

Indoor

Lab with 1 fixed and 1 movable wall
Gageik„ Muller,
& Montenegro, 2012

Corridor with 1 dynamic obstacle
Grzonka, Grisetti,
& Burgard, 2012

Corridor with a barrel
Lee, Di Cicco, Grisetti,
& Lee, 2016

Simulation of corridor and maze
Hallway with table

Yuan, Recktenwald,
& Mallot, 2009

Corridor with people, or boxes
Alvarez, Paz, Sterm,
& Cremers, 2016

Corridor and staircase Bills, Chen, & Saxena, 2011
Open arena Zufferey & Floreano, 2006

Outdoor

Parking lot with building and
slow moving sheet

Nieuwenhuisen, Droeschel,
Schneider, Holz, Labe,
& Behnke, 2013

Field with tree, or goal post Barry & Tedrake, 2015
Field with trees, bushes, tower, fences,
building, and vehicles Merz & Kendoul, 2011

Forest with 1 tree every 3x3 meters Ross, et al., 2013

Poles, wires, trees, and buildings
Scherer, Singh, Chamberlain,
& Saripalli, 2007

Open field with trees on one side
Tower and carriage form urban canyon

Hrabar, Sukhatme, Corke,
Usher, & Roberts, 2005

categories. Table 2.4 summarizes the testing environment for each implementation. In six

of the seven indoor testing environments beyond the structure of the building there was

either one obstacle [27, 15, 13, 25], or none [17, 18]. The other indoor environment used

two obstacles that were either people, or boxes in a corridor placed side-by-side [26]. For

the outdoor environments, three of the six had one obstacle [12, 20], or two [19]. The

other three contained only trees [16], or a combination of trees, buildings, fences, and

wires [14, 21].

Additionally, there were no consistent metrics used to define the experimental envi-
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ronment, or to assess the success of an obstacle avoidance implementation. For all of the

papers surveyed the environments were described as indoor, or outdoor and, if obstacles

were present they were named. In the case of Yuan [13], the environment was described

in the text as ’maze-like’ and a picture was provided. The outdoor environments in [21],

[12], and [14] identified the obstacles, but did not provide numbers, or spacing. The lack

of description and quantitative metrics to define the environment makes the recreation of

the testing environment impossible and raises questions about how the obstacle avoidance

algorithms would perform in highly confined environments.

2.5 Conclusions

Implementations of autonomous collision-free flight for SUASs make use of a variety

of sensors, which overwhelmingly employ detect_obstacle as the perceptual schema in ten

of eleven cases, and extract the distance_to_obstacle in seven of those ten cases. This data

is summarized in Table 2.2. The implementations diverge in their use of motor schemas

to avoid the detected obstacles. While the two using optic flow as a percept to employ a

turn_away_from_higher_flow motor schema reflect the centering response in honeybees

and blowflies [28, 8] none of the other motor schemas were observed in the ethological

literature.

Current implementations which only operate in two dimensions do not take advan-

tage of the benefit aerial vehicles have over ground vehicles of adjusting their altitude for

collision-free flight. Additionally, implementations which require an open area for avoid-

ance, or a distance threshold to any obstacle are not suitable for restricted maneuverability

environments. Finally, the experimental environments were too simplistic. Besides the

lack of obstacles in the experimental environments, there was no recognized definition of

clutter, or metrics used to quantify it.
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2.6 Summary

In summary, this chapter discussed the importance of the role reactive obstacle avoid-

ance plays in the autonomous collision-free flight of SUASs, described the perceptual

schemas, percepts, and motor schemas used to implement obstacle avoidance on SUAS,

the limitations of the current implementations, and the unquantified environments used

for testing. Overall, the behaviors employed to explicitly detect and avoid obstacles in

the environment do not match what was observed in a review of the ethological litera-

ture discussed in the following chapter. Additionally, the testing environments described

are simplistic, have no consensus on the definition of clutter, do not adequately model

the deconstruction found in an indoor environment following a natural disaster, and lack

quantitative metrics necessary for evaluation and recreation.
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3. BACKGROUND: FLYING ANIMALS

With the knowledge that flying animals outperform existing obstacle avoidance imple-

mentations on SUAS discussed in the previous chapter, flying animals were turned to for

inspiration to answer the question: what are they doing differently? A review of twenty-

three papers in the ethological literature was conducted and framed by schema theory. The

perceptual schema portion of the primitive behaviors identified during the review are be-

yond the scope of this research, but are included in Section 3.3 because they may be of

interest to the reader, or for future work. The fourteen motor schemas identified as part

of the five primitive behaviors are discussed in Section 3.5. Four observations from the

review of literature are introduced in Section 3.6 and the two observations specifically in-

corporated in the design of the gap-aiming behavior used in this research are discussed in

Section 3.7.

3.1 Introduction to Ethological Literature Review

Animals have been used to inspire robotic control, design, and communication. In

[29], the successful control of their legged robot’s locomotion was derived from walking

animals. The design of the robotic fish described in [30] was based on the "swimming

skills and anatomic structure of a fish". To perform intrusion detection in [31], the social

and communication systems of primates were applied to mobile robotic sensors patrolling

large areas.

Because flying animals outperform existing SUAS, using a single sense to fly faster

through clutter, a review of the ethological literature on obstacle avoidance in birds, bats,

and insects was conducted. The intention was to gain an understanding of how flying

animals physically respond to an obstacle to avoid collisions. The fact that flying animals

serve as an existence proof means this knowledge could lead to the creation of biologically-
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inspired behaviors to control a SUAS to improve the speed and accuracy when navigating

in cluttered environments.

During controlled flights, the big brown bat successfully sensed and avoided vertical

wires at speeds averaging up to 5.0 m/s [32]. Pigeons can reach cruising speeds greater

than 10.0 m/s in open spaces and were shown to maintain an average flight speed of 4.38

m/s in a cluttered, indoor corridor used for experimentation [6]. Currently, successful im-

plementations of collision avoidance on autonomous SUAS do not reach the flight speeds

seen in animals, may require multiple modes of sensing to handle changing environments,

or must collect and keep information about the environment to attain collision-free nav-

igation. In Shen [33], a micro aerial vehicle (MAV) achieved autonomous navigation at

an average speed of 1.5 m/s while traversing through building openings to fly both in and

outdoors. This MAV required fusion of an IMU, laser scanner, stereo cameras, pressure

altimeter, magnetometer, and a GPS receiver to ensure an accurate position estimation for

autonomous flight due to the failure of certain sensors in changing lighting conditions.

Additionally, a local map was maintained to ensure the platform did not drift while hov-

ering. Ross, et al. also implemented an autonomous MAV, which successfully navigated

with a single camera, at an average speed of 1.5 m/s, through a forest after conducting

three rounds of imitation learning from an expert pilot [16].

Twenty-three papers from the ethological literature were surveyed in order to gain an

understanding of the behaviors used by bats, birds, and insects. Papers were excluded if

they were outside the ethological literature, the animal did not fly, or if neither a perception

for obstacle detection nor motor action for obstacle avoidance was discussed. This review

will frame the discussion of the literature using behavioral control terminology which

reuses ethological terms [10], [1]. A behavior accepts inputs from one or more sensors,

processes the sensing data via a perceptual schema to produce a percept which produces a

motor action via a motor schema as illustrated in Figure 3.1.
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Figure 3.1: Behavior depicting primitive building blocks

The twenty-three papers were reviewed to extract the primitive behaviors used by fly-

ing animals to accomplish high-level tasks. Where able, these behaviors were decomposed

into the building blocks depicted in Figure 3.1 and described above. Overall, five prim-

itive behaviors were identified: avoid_object, obtain_food, evade_predator, track_mate,

and center_flight. The perceptual schemas defined are divided into two categories: those

to derive information from the environment and the adaptations used to improve the en-

vironmental information retrieved. Environmental sensing through passive means in birds

and insects was discussed in ten of the twenty-three papers, while four papers discussed

its use in bats. Twelve papers explored use of active sensing in birds and bats. Animals

perceive through the use of different perceptual schemas, in this review eight different per-

ceptual schemas were identified and are listed in Table 3.2 with descriptions to follow. In

eight of the papers surveyed, when an object was initially detected, the animal adapted its

normal use of vision, or sonar, to increase or improve its information about the object. Fi-

nally, eighteen papers provided insight into motor schemas used by birds, bats, and insects

to avoid an object, obtain food, evade a predator, track a mate, or center their flight.

The rest of the discussion is organized as follows: Section 3.2 describes the sensors

employed by the flying animals, Section 3.3 describes the perceptual schemas used for

environmental sensing, Section 3.4 describes the ways flying animals adapt their sensing,

Section 3.5 describes the motor schemas used in the five behaviors when they were de-

scribed in the literature, and Section 3.6 defines the observations made about the flying
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animals surveyed and concludes the background discussion.

3.2 Sensors Used for Detection

Due to the dynamic nature of their environment, flying animals need to continually

monitor their surroundings to ensure collision-free navigation and survival, while gather-

ing information to self-orient. This monitoring can be done through the use of one, or

multiple sensors. Birds use vision to passively monitor; however, certain species were

shown to use vocalizations. These vocalizations are a more crude form of the biological

sonar found in bats. This sonar-like active sensing in birds is used when flying in the

darkness encountered in caves where they roost. The species of bats surveyed use sonar to

actively monitor their environment, but two species surveyed make use of vision in lighted

scenarios. Eklof concludes bats sense through vision for three main reasons: to navigate

over long distances because the range of echolocation is short, to distinguish color and

brightness for foraging purposes, and to detect the amount of ambient light in the environ-

ment to either determine the time of day, or the increased danger of predation on moonlit

nights [34]. The four insects surveyed and identified in Table 3.1 rely solely on vision for

sensing [35, 8, 28, 36].

During the review, two types of sensors and three tasks required of the flying animals

were identified. Table 3.1 depicts the two types of sensors surveyed and the flying animals

using them to succeed at one of three tasks. Of the twenty-three papers surveyed, fourteen

papers discussed passive sensing through vision where collision-free navigation was men-

tioned in thirteen, self-orientation in four, and survival in three. Use of sonar for active

sensing was discussed in twelve papers where eleven covered collision-free navigation,

three mentioned survival, and none mentioned self-orientation. The following subsections

will discuss the sensing used for these tasks in more detail.
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Sensor Task Animal

Passive

Collision-free Navigation

Pigeon [6]
Zebra Finch [37]
Starling [7]
Budgerigar [38]
Honeybee [35, 28]
Blowfly [8]
Hoverfly [28]
Locust [36]
Little Brown Bat [39, 40, 41]
Greater Spear-nosed Bat
and Short-tailed Fruit Bat [42]

Self-orientation
Honeybee [35, 43]
Blowfly [8]
Hoverfly [28]

Survival

Pigeon [6]
Honeybee [35]
Greater Spear-nosed Bat
and Short-tailed Fruit Bat [42]

Active
Collision-free Navigation

Big Brown Bat [32, 44, 45]
Little Brown Bat [41]
Greater Spear-nosed Bat
and Short-tailed Fruit Bat [42]

Hipposiderid Bat [46]
Mexican Leaf-nosed Bat [47]
Unnamed Bats [48, 49]
Cave Swiftlet [50]
Oil Bird [51]

Survival Big Brown Bat [44, 45, 52]

Table 3.1: Sensors used to complete different tasks corresponding to a specific flying
animal.
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3.2.1 Passive Sensing Through Vision

Although they may need to perceive different things in their environment, four species

of birds, four species of insects, and three species of bats surveyed all passively sense

through vision. Of the twenty-three papers surveyed the use of vision was discussed in

fourteen. In thirteen of the fourteen papers vision contributed to collision-free navigation,

four papers dealt with self-orientation, and three discussed perception for survival.

Guided by vision, collision-free navigation is extremely important to flying animals

because they have the opportunity to come into contact with man-made structures, other

flying animals, vegetation, or other naturally occurring objects in their environment on a

daily basis. The speed of flight adds to the challenge for birds, insects, and bats to navigate

collision-free. In [53] the authors surveyed articles discussing collisions between birds and

bats, and man-made structures where the outcome was death of the animal either through

the collision itself, or via electrocution when the object was electrified. The penalty for

collision is not always as severe as death; however, when injuries like bone fractures and

internal bleeding are sustained in birds the probability of being captured by a predator

increases [54]. The pigeon [6], zebra finch [37], starling [7], budgerigar [38], honeybee

[35, 28], blowfly [8], hoverfly [28], locust [36], little brown bat [39], [40], [41], and the

greater spear-nosed and short-tailed fruit bats [42] all use vision to complete the task of

collision-free navigation.

Self-orientation, or knowing your own position in the world, is accomplished through

vision in the honeybee [35, 43], blowfly [8], and hoverfly [28]. This capability is important

to blowflies for determining their flight velocity [8], honeybees to center their flight path

[35, 43], and hoverflies for mating purposes [28].

To survive, a flying animal must both feed and avoid becoming food for a predator. The

pigeon [6], honeybee [35], and the greater spear-nosed and short-tailed fruit bats [42] all
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use vision for the task of survival. Being at risk from other aerial predators means pigeons

vision must detect these predators in the environment [6]. To ensure survival of themselves

and their hive-mates, the honeybee must know and be able to return to the location of a

food source [35]. Much like pigeons, the greater spear-nosed and short-tailed fruit bats

must be able to detect predators when resting during the daylight hours for survival [42].

3.2.2 Active Sensing Through Sonar

The use of sonar for perception is typically attributed to bats; however, two species of

birds surveyed also use a more crude version of sonar calls for echolocation [51], [50].

Of the twenty-three papers surveyed, twelve papers discussed sonar use with ten concen-

trating on different species of bats and two on birds. The use of sonar for collision-free

navigation was discussed in eleven and survival in three, with no paper describing the use

of sonar for self-orientation.

Bats, and species of birds which actively sense through sonar must navigate collision-

free. As discussed in Subsection 3.2.1, collisions between bats and man-made structures

like wind turbines, communication towers, windows, and power lines resulting in the death

of the animal [53], [55]. The big brown bat, little brown bat, greater spear-nosed and

short-tailed fruit bats, hipposiderid bat, Mexican leaf-nosed bat, other unnamed bats, cave

swiftlet, and oil bird all use sonar to produce collision-free navigation.

Bats must ingest around 110 percent of their body weight in food each day and, due

to the energy consumption of flight, likely would not survive more than twenty-four hours

without any food. To ensure its survival, the big brown bat uses sonar to detect prey while

foraging [44, 45].

3.3 Perceptual Schemas: Environment

Table 3.2 summarizes the perceptual schemas observed and discussed in the etholog-

ical literature. The specific percepts produced by the perceptual schemas and used by
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the flying animals are shown in the table. These perceptual schemas would be imple-

mented as the computational processes operating on the sensor output for a SUAS. In turn,

they would produce a percept for action. The papers suggest eight perceptual schemas:

detect_object, detect_altitude, distance_flown, detect_predator, detect_prey, detect_mate,

detect_walls, and adapt_sensing. All of these perceptual schemas will be discussed in the

subsections below.

3.3.1 Perceptual Schema: detect_object

Detecting objects was described in nineteen of the twenty-three papers covering five

birds, four insects, six named bats, and seventeen unnamed bats. A perceptual schema

produces percepts, which are not the same for every animal. These percepts are fed into a

motor schema, sometimes from multiple perceptual schemas, to create a behavior. For the

detect_object perceptual schema there were five percepts identified as information required

by these animals to produce the desired motor action to avoid an obstacle.

3.3.1.1 Detecting Moving and Stationary Objects

Through flicker-fusion, at frequencies from 116 to 146 Hz, pigeons are able to perceive

rapid motion in flight and therefore distinguish an object in motion from stationary ones.

This rate of flicker-fusion, higher than the human average of 60Hz, allows pigeons to

view smooth movement of objects instead of these objects appearing to move in a jerking

manner [6]. Like pigeons, hoverflies also use optic flow to detect moving obstacles while

they are in motion by recognizing the inconsistent flow produced by a moving object

compared to a stationary one in the scene [28]. Optic flow is described as the change of

structured light in the image on the retina due to a relative motion between the eyeball

and the scene [56]. In [42], Chase suggests certain species of bat may first use vision as a

passive sensor to detect silent, but moving obstacles before utilizing echolocation to derive

the information they need to respond appropriately. Nocturnal birds, like the oil bird, make
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Perceptual Schema Percept Animal

detect_object

moving_object

Pigeon [6]
Hoverfly [28]
Greater Spear-nosed Bat
and Short-tailed Fruit Bat

[42]

Oil Bird [51]

stationary_object

Cave Swiftlet [50]
Blowfly [8]
Little Brown Bat [39, 41]
Greater Spear-nosed Bat
and Short-tailed Fruit Bat

[42]

Mexican Leaf-nosed Bat [47]
Unnamed Bat(s) [49]

distance_to_object

Pigeon [6]
Zebra Finch [37]
Honeybee [35, 28]
Blowfly [8]

gap_size

Pigeon [6]
Zebra Finch [37]
Starling [7]
Big Brown Bat [32, 45]

object_size Unnamed Bat(s) [48, 49]
view_subtended Locust [36]

detect_altitude angular_velocity
Honeybee [28]
Blowfly [8]

distance_flown image_motion Honeybee [35]

detect_predator predator_present
Pigeon [6]
Greater Spear-nosed Bat
and Short-tailed Fruit Bat

[42]

detect_prey prey_present Big Brown Bat [44, 45, 52]
detect_mate mate_present Hoverfly [28]

detect_walls lateral_image_motion
Budgerigar [38]
Honeybee [43]
Blowfly [8]

adapt_sensing

distance_to_object
Zebra Finch [37]
Hipposiderid Bat [46]
Big Brown Bat [44, 32]

stationary_object
distance_to_object

Blowfly [8]

moving_object
Greater Spear-nosed Bat
and Short-tailed Fruit Bat

[42]

gap_size Big Brown Bat [45]
altitude Little Brown Bat [41]

Table 3.2: Perceptual schemas used by specific flying animals to perceive information
about the environment.
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use of verbalizations to fly in near-darkness. They emit sharp clicks in short bursts while

flying in a dark cave allowing them to avoid both the walls and other animals in moving

flight [51].

The cave swiftlet uses brief clicks, audible to humans, to echolocate in darkness al-

lowing them to avoid stationary objects in the caves where they roost [50]. Blowflies tend

to prefer flight in the center of a tunnel, but initiate turns in a narrow s-shaped pattern to

avoid stationary obstacles in their flight path. They detect these stationary objects through

saccadic turns to intentionally produce changes in the optic flow [8]. When visual cues

are available, the little brown bat uses vision to navigate and avoid obstacles; however,

the visibility of the obstacles and the light intensity greatly affect the bats’ ability to avoid

collisions [39]. Additionally, the little brown bat uses sonar on the approach and naviga-

tion through a man-made barrier during experimentation in [41] showcasing their ability to

detect and avoid stationary objects through echolocation. During high-illumination levels,

the number of collisions with stationary obstacles increases, but at low-illumination when

the scene is highly contrasted the little brown bat is able to use patterned visual cues to

detect these stationary objects and avoid collisions [41]. Much like the little brown bat’s

use of vision, this same phenomenon was shown in [42] where the greater spear-nosed

and the short-tailed fruit bats used vision to detect and avoid non-luminous objects in their

environment. Experimental trials of the Mexican leaf-nosed bat with and without the use

of vision showed no significant difference in their ability to detect stationary objects [47].

The thirteen unnamed species of bats in [49] detected and avoided a small stationary object

when exiting their caves. The authors were using this experimental setup to show the bats

still relied on echolocation in familiar situations rather than spatial memory as researchers

previously thought.
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3.3.1.2 Distance to an Object

During experimentation, the zebra finch flew at speeds up to 3.5 m/s requiring a fast

method of perceiving information from the environment. Zebra finches use optic flow

to detect the distance from themselves to an object, then use this information to execute

collision avoidance turns [37]. Bees also measure the distance from themselves to the

object by using optic flow, which provides them information about the speed of the image

with respect to their position and movement in the environment [43], [28]. [36] describes

how locusts measure both the speed of an object and the time to collision to judge the

distance between themselves and an object. This helps them decide whether they will

perform a turn, land, or simply glide.

3.3.1.3 Determining Gap Size

Pigeons, zebra finches, and starlings use optic flow to determine the size of the gap

between objects [6], [37], [7]. Because pigeons cruise at speeds greater than 10 m/s, lack

depth perception due to a narrow binocular field of view (FOV), and their visual acuity

is poor they aim for the largest gap between objects by using optic flow to determine the

gap size [6]. In [7] starlings were shown to prefer the larger visual gaps when their hunger

was at a lower level, but would traverse a narrow gap when obtaining food became more

important. Zebra finches make decisions about deviating from their planned path when

presented with the possibility of collision from information they perceive through optic

flow [37]. In [45], the big brown bat shifts the aim of its sonar from one side of a net

opening to the other, collecting echoes, to determine the size of the gap and its traversabil-

ity. [32] also discussed gap size determination through echolocation in big brown bats

noting the smaller gap sizes required more accurate knowledge of the object positions to

successfully avoid collisions.
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3.3.1.4 Determining Object Size

[49] observed a mix of thirteen species of bats using the echo-amplitude and sonar

aperture of their acoustic echoes to perceive the size of an object.

3.3.1.5 Determining Percent of View Subtended

Through experiments intended to determine the timing of obstacle avoidance in lo-

custs, the authors of [36] concluded that maneuvers were initiated when at least 10 degrees

of the locusts field of view was subtended by an obstacle. The size of the obstacle had no

effect on the response; however, the speed of the obstacle did correlate to the magnitude

of the response.

3.3.2 Perceptual Schema: Others

Besides the detect_object perceptual schema previously discussed there are six others

described in the following subsections.

3.3.2.1 Detecting Altitude

Using the angular velocity measurement from optic flow both honeybees and blowflies

are aware of their altitude. Honeybees use this information to hold the value constant

as they decrease altitude for landing [28]. Blowflies use the information to maintain a

constant altitude when flying in both open and cluttered spaces [8]

3.3.2.2 Determining Distance Flown

Through the use of optic flow, honeybees determine the distance flown to arrive at

a food source once it has returned to the hive. The bee then relays this distance to its

hivemates through dance, so they may also locate the food source [35].

29



3.3.2.3 Detecting Predators

Using information perceived through vision, pigeons, greater spear-nosed bats, and

short-tailed fruit bats are able to detect predators in their environment [6], [42]. Pigeons

have a 300 degree panoramic field of view (FOV) adapted for predator detection [6]. [42]

suggested the greater spear-nosed and short-tailed fruit bat both use vision as a passive-

surveillance system for detecting predators while at rest. This use of a passive surveillance

system allows themt o conserve energy, therefore reducing their foraging requirement.

3.3.2.4 Detecting Prey

To ensure its survival, the big brown bat uses sonar to detect prey while foraging. This

active sensing allows the bats to pursue and eventually intercept the prey [44]. The broad

beam of their sonar would allow the big brown bat to gather information about all of the

objects in the scene simultaneously, but instead they separate the tasks of obstacle avoid-

ance from prey detection by directional aiming to sequentially scan the environment [45].

The specimens tested in [52] were recorded capturing free-flying insects in an attempt to

determine the pursuit strategies employed by the big brown bat.

3.3.2.5 Detecting a Mate

In hoverflies, optical flow is used to provide them the ability to track an object in their

surroundings. By tracking their mate the male hoverfly is able to produce a flight path

which makes it appear he is not moving. This allows him the element of surprise during

mating [28].

3.3.2.6 Detecting Walls

When flying through narrow passages the budgerigar uses optic flow information to

detect the edges of its flight environment. Additionally, it is suspected the birds may

also use geometric cues from the shape of the environment to navigate when optic flow
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information is unavailable [38]. Both honeybees and blowflies attempt to maintain a flight

path centered in a tunnel by ensuring the walls of the tunnel remain equidistant from them

[28, 8].

3.4 Perceptual Schemas: Adaptive Sensing

The previous section described perceptual schemas for environmental sensing. The

following subsections will cover adaptations birds, bats, and insects make to their sens-

ing frequency and coverage in order to increase and/or improve their knowledge of the

environment.

3.4.1 Distance to an Object

The zebra finch uses optic flow information to perceive information about its environ-

ment; however, in order for the information to be useful the optic flow perceived during

rotational flight must be separated from the optic flow obtained during translational flight.

To separate the two types of optic flow, the zebra finch uses a strategy to stabilize its gaze

during flight. This stabilization allows it to extract the rotational optic flow using only the

translational information to estimate distance [37].

The hipposiderid bat increases the number of calls and decreases the duration of each

call emitted when flying in a cluttered environment to reduce the overlap of echoes. Addi-

tionally, Gustafson [46] showed these bats compensate for the Doppler shifts caused due

to their flight by lowering the emission frequency of their calls. Sandig [32] found when

the big brown bat was flying through a more cluttered environment, specifically where the

obstacles were close together, their echolocation behavior changed. As the difficulty of

navigation increased, so did the number of groups of calls and the number of calls within

each group. In addition, as the distance between a bat and an object decreased the number

of calls per group increased. The increase in pulses emitted improved the target localiza-

tion accuracy. While observed flying in the forest in [44], the big brown bat emitted more
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calls that were more closely space in time. This call pattern provides more echoes, which

helps the bat perceive further information from the environment.

3.4.2 Detecting Moving and Stationary Objects

In the case of blowflies, they adapt their visual sensing during flight by incorporating

saccadic head and body turns to derive more information about the environment. This is

especially noticeable due to the increased frequency and amplitude of the saccades when

the insect is close to an object. The sideways motion experienced after a saccade leads

to extraction of depth information. Additionally, these movements are of the greatest

need when the insect encounters a static object and needs to artificially create flow to

drive the necessary percepts [8]. The greater spear-nosed bat and short-tailed fruit bat

use vision for detecting predators while at rest. If a predator is detected moving in the

environment through vision, then the bat will begin actively monitoring through the use

sonar to accurately locate the intruder [42].

3.4.3 Determining Gap Size and Altitude

When confronted with a cluttered environment in [45], the big brown bat shifted its

gaze to sequentially inspect objects that were within close proximity of each other. This

technique is similar to the saccades described in insects and birds above. When attempting

to land, the little brown bat will increase its pulse emission rate at a consistent distance

from the surface which it determines through the received echoes. This increase in emis-

sion helps the bat more accurately target the landing zone [41].

3.5 Motor Schemas

Section 3.3 and Section 3.4 discussed the perceptual schemas flying animals use and

the percepts produced. These percepts are then fed into motor schemas to create the desired

action of the behavior. In the twenty-three papers reviewed five behaviors emerged with
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fourteen motor schemas. The details of these behaviors and motor schemas are described

in the following subsections and illustrated in Table 3.3.

3.5.1 Avoid Objects

Avoiding objects perceived in the environment requires a change to an animals’ current

flight trajectory with an adjustment in their direction, speed, or altitude. Understanding

when and how these adjustments are made is required to effectively transfer the strategies

flying animals use to accomplish high-level tasks to a SUAS for the same purpose.

3.5.1.1 Motor Schema: aim_gap_center

When pigeons detect an object, or multiple objects in their path they begin to adjust

their flight path approximately 1.5 meters before they reach the object. They reduce their

average flight speed to perform avoidance maneuvers when they are flying in a cluttered

environment. The slower speed of their flight forces them to increase the frequency of

their wing beats as compensation to stay airborne. While they choose the largest visual

gap when in fast flight, instead of the closest, they also show preference for reducing the

steering required to keep their path close to a straight-line [6]. Starlings also tended to

choose flight through the largest visual gap when adjustments are required in their flight

path due to objects; however, when they are hungrier they choose to accept the risk of

flying through a smaller gap to obtain food [7]. When confronted with a cluttered envi-

ronment, like a forest, the big brown bat reduces its speed to provide more time to col-

lect additional information and adjust its flight path to avoid an object [44]. The need to

more accurately sense the environment arises because the clutter causes a reduction in gap

size. Regardless of the gap size or the speed they are traveling, the big brown bat begins

avoidance maneuvers 1.5 to 1.0 meters from a detected object. As the gap sizes between

stretched wires decreased during experimentation in [32], the big brown bat adjusted its

flight path by increasing altitude, which also reduced speed. The smaller gaps require bet-
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Behavior
Perceptual

Schema
Percept Motor Schema

Animal

avoid_
object

detect_object

object_size Not Defined Unnamed Bats [49]

gap_size
aim_gap_center

Pigeon [6]
Starling [7]
Big Brown Bat[44, 32]

distance_to_object
Pigeon[6]
Honeybee[43]

view_subtended
turn_brake or

turn_speed
Locust [36]

detect_altitude angular_velocity
maintain_angular
_velocity

Honeybee [28]

adapt_sensing

distance_to_object
stabilize_gaze Zebra Finch [37]

adjust_pulse
Hipposiderid Bat [46]
Big Brown Bat [44, 32]

altitude adjust_pulse Little Brown Bat [41]
gap_size adjust_beam_aim Big Brown Bat [44, 45]

stationary_object
distance_to_object

modify_saccades Blowfly [8]

moving_object change_sensor
Greater spear-nosed
Short-tailed fruit Bat

[42]

obtain_food
distance_flown image_motion return_to_food Honeybee [35]

detect_prey prey_present maintain_CATD Big Brown Bat [52]
evade_
predator

detect_predator predator_present Not Defined
Greater spear-nosed
Short-tailed fruit Bat

[42]

track_mate detect_mate mate_present appear_stationary Hoverfly [28]

center_flight detect_walls lateral_image_motion
balance_lateral
_motion

Budgerigar[38]
Honeybee[43]
Blowfly [8]

Table 3.3: Motor schemas utilized to perform a specific behavior with the corresponding
percepts.
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ter localization and these two adjustments provided time to collect information about the

objects to facilitate avoidance.

In [43] the experimentation wasn’t intended to showcase the avoidance ability of the

honeybees, but rather their ability to choose a flower by determining its distance from their

location. Just by the nature of the experimental setup, the honeybees were required to alter

their flight paths to avoid the other flowers and arrive at the correct flower with the food

reward.

3.5.1.2 Motor Schema: turn_brake or turn_speed

Through flight experiments with the locust, Robertson determined there was always a

yaw torque reaction to an obstacle with the addition of either an increase, or decrease in

speed. Interestingly, the direction of the turn was not dependent on the side of the animal

the obstacle approached. The turn combined with a decrease in speed was seen in response

to objects detected late. When objects were detected early the insect increased its speed to

power through the avoidance maneuver and maintain its altitude [36].

3.5.1.3 Motor Schema: maintain_angular_velocity

Honeybees reduce their speed when coming in for a landing not by measuring their

actual velocity, but by maintaining the velocity of the image of their landing zone as the

distance to it decreases. In this way, they ensure their true flight velocity is nearly zero

when they land [28].

3.5.1.4 Motor Schema: stabilize_gaze

As described previously, to separate two types of optic flow the zebra finch uses a

strategy to stabilize its gaze during flight. This stabilization allows it to extract the ro-

tational optic flow and use only the translational information to estimate distance. The

finch achieves the stabilization by alternating fast shifts of its gaze through rotational head
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movements with periods of minimal head movement [37].

3.5.1.5 Motor Schema: adjust_pulse

When detecting objects in the flight path the hipposiderid bat will increase the number

of pulses it emits in a group by decreasing the duration of the pulse and the interval.

The larger the size of the obstacles the sooner the bat will make these adaptations to its

detection [46]. To avoid an overlap between the pulses sent and the echoes received the big

brown bat emits a shorter sound with a greater rate of repetitions. A decrease in their flight

speed also increases the number of pulses they could emit over meters traveled to improve

the detection of objects in a cluttered environment [44]. As the big brown bat approached

a gap between obstacles in experiments done by Sandig it increased the number of pulses

emitted in a group. As the gap size decreased, so did the duration of the pulse while the

pulses per group increased. The authors in [32] believe this increase in frequency and

decrease in duration improved the accuracy of the target localization for the big brown

bat [32]. The little brown bat adjusts its pulse by increasing the number it emits to better

localize the landing zone when attempting to land [41].

3.5.1.6 Motor Schema: adjust_beam_aim

When confronted with a cluttered environment the big brown bat sequentially scans

by adjusting its gaze to change the direction and distance of the beam of its sonar. In the

experiments conducted by [45] the big brown bats adjusted their beam aim between the

sides of the gap in the netting eventually concentrating on the prey beyond the netting once

they were within a short distance from traversing the gap. This technique improved the

target localization and selection for both the gap and the prey. Additionally, Falk noted

that when the big brown bat enters the final state of its pursuit of prey it begins to make

shallower turns, which also causes an adjustment to the aim of the sonar beam [44].

36



3.5.1.7 Motor Schema: modify_saccades

The number, direction, and size of saccades a blowfly performs is dependent on the

amount of clutter in the environment. The actual movement resembles the banking seen by

an airplane when making a turning maneuver where the blowfly is actively controlling the

drift to extract distance information. This turn produces movement in three dimensions:

yaw, pitch, and roll. Clutter in the environment also prompts a decrease in translational

velocity. Interestingly, the decrease does not happen before the blowfly turns, but rather

during and after navigation of the turn [8].

3.5.1.8 Motor Schema: change_sensor

The greater spear-nosed bat and short-tailed fruit bat use vision to passively detect

predators during rest. Use of vision allows them to conserve their energy and begin to

use their active sonar only once a moving predator has been detected in their environment.

With the use of their sonar, they are able to accurately locate the prey in order to evade

[42].

3.5.1.9 Motor Schema: return_to_food

The honeybee understands and translates the distance it travels to a food source lin-

early. Researchers believe this makes the encoding to pass along the information to its

hivemates in the form of a waggle dance simpler. Using information derived from optic

flow the honeybees will fly the distance communicated by their hivemate to reach the food

source [35].

3.5.1.10 Motor Schema: maintain_CATD

In order to capture prey that is attempting to evade its predator by making unpredictable

movements the big brown bat uses a constant absolute target direction (CATD) strategy to

maintain a pursuit trajectory. This approach is ideal because it minimizes the time it takes
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the big brown bat to intercept its prey. It accomplishes this by keeping its head locked onto

its target once it is in pursuit of the prey even though the direction of flight may change

[52].

3.5.1.11 Motor Schema: appear_stationary

Because hoverflies use optic flow to perceive information from the environment, the

male hoverfly is able to use this to his advantage when tracking a female for mating pur-

poses. To stay undetected, the male shadows the female. His movements make him appear

as a stationary object in the female’s environment while she is in motion. Once the female

lands, the male flies quickly to her for mating [28].

3.5.1.12 Motor Schema: balance_lateral_motion

Budgerigars prefer centered flight and make use of the lateral portion of optic flow

information by keeping the image motion balanced. When the flow becomes unbalanced

they veer away from the higher flow with the intent of becoming centered again [38]. Ad-

ditionally, honeybees prefer to fly in the center of their environment and make adjustments

through the optic flow information they receive to keep themselves centered [28]. This

same phenomenon is seen in the blowfly where they also prefer to fly in the center of their

environment. When obstacles are present, the blowfly maintains a fairly narrow S-shaped

flight path as close to the center as it is able [8].

3.6 Observations

During the review of the twenty-three papers in the ethological literature the following

four observations emerged: perception through vision is relied on when enough light is

present while sonar information is used in darkness, information from one sensor is dom-

inant, adaptive sensing is a valuable strategy, and reduction in speed is a consistent part of

the motor response to obstacles in the flight trajectory.
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Information perceived from vision sensors is relied upon in lighted scenarios while

sonar is dominant for perception in darkness. For all the species surveyed, regardless of

whether it was a bird, insect, or bat, the flying animal used information sensed through

vision when enough light was available. Conversely, when the articles discussed flight in

darkness, the species of birds and bats reviewed relied on the information collected through

the use of sonar during flight. Through obstacle avoidance experiments conducted with

the greater spear-nosed and short-tailed fruit bats Chase showed their reliance on vision

during daylight. Additionally, she hypothesized the importance of vision in recognizing

landmarks when navigating to feeding sites due to the distance limitations of sonar [42].

Both the cave swiftlet and oil bird roost in caves where no light penetrates. Because they

cannot utilize their vision to sense the cave walls, the ceiling, or other flying animals in the

vicinity their use of sonar-like calls is necessary for collision-free flight to and from their

nests [51], [50].

Even when multiple sensors are available, the information from on sensor is dominant.

Of the twenty-three papers surveyed six discussed the use of both passive and active sens-

ing. In all cases, only information from one sensor was used to make collision-avoidance

decisions while the information from the other sensor was discounted. For example, [39]

discussed the little brown bat using vision during lighted experiments. Sonar calls were

still noted and would have provided information about stationary objects in the bats’ flight

path; however, the bats still collided with the object. The researchers concluded the bats

chose to ignore the contradictory information provided from their sonar and rely solely on

their vision for perception. McGuire noted the little brown bat adjusted its acoustic call

structure when light was present concluding the animal chose to rely on its vision in a

lighted scenario even though it had the option to use sonar to gain more information about

the environment [40].

Adaptive sensing is a valuable strategy in flying animals to improve, or increase, the
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information they can perceive. The zebra finch stabilizes its gaze to separate rotational

from translational optic flow [37]. Increasing the optic flow information perceived by

adjusting the number of saccades made in a cluttered environment helps the blowfly gather

information about an object it is approaching [8]. Additionally, five of the six named

bat species made changes to their sonar call structure when objects were present in their

environment [32, 41, 42, 44, 45, 46]. Without these adaptations it is possible these flying

animals would not have the information they needed to avoid collisions.

Changing speed was consistently seen in response to objects in the flight path. There

were fifteen species named in the papers surveyed, and five of the animals reduced their

flight speed when the environment became cluttered: pigeon, zebra finch, honeybee, blowfly,

and big brown bat. More specifically, during experiments with the big brown bat Falk

noted a reduction in speed from 3.01 m/s to 2.49 m/s when flying in a simulated forest

versus an open room [44]. This same species was studied in [32] where approximately

a 1 m/s reduction in speed was recorded when the size of the space between obstacles in

the environment was 40 to 50 cm. As the gap size was reduced at and below the average

wingspan of 30 cm a "more prominent" reduction in flight speed occurred. In the case of

the pigeon, the average flight speed of trials without obstacles was 6.95 +/- 0.64 m/s and

reduced to 3.86 +/- 0.52 m/s when obstacles were introduced [6]. For the other species, a

reduction in speed was mentioned, but no concrete measurements were provided. Ten of

the experiments were conducted in simulated environments with the exception of the cave

swiftlet [50], oil bird [51], and little brown bat [39, 40, 41], which were all observed in

their natural habitats. The other animals were all flight tested in empty rooms where their

recorded flight speeds were slower than typical speeds seen in the wild.
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3.7 Summary

Through a review of the twenty-three papers from the ethological literature on obstacle

avoidance in flying animals five primitive behaviors were identified to provide collision-

free flight in unknown and restricted maneuverability environments. Schema theory was

used to frame the discussion and decompose the primitive behaviors into the building

blocks shown in Figure ??. Four observations on obstacle avoidance in flying animals

were discovered: sensing done by vision in lighted scenarios and sonar in darkness, one

sensor always being dominant, adaptive sensing playing a critical role, and reducing speed

being a consistent response to objects in the flight path. These four observations were

supported by work currently being done in robotics. The work discussed in this disser-

tation implements a behavior inspired by these insights for autonomous, reactive control

of a SUAS in a restricted maneuverability environment. Following the second insight, the

perceptual schema relies on input from a vision sensor. The novel APF design was in-

formed by the motor schemas identified and discussed in the ethological literature review.

The output vector of the APF provides magnitude and direction. The magnitude profile

of the attractive field increases as the platform comes into alignment with the gap, which

correlates to the last insight. Details of control rules derived from this review also used in

the design of the gap-aiming behavior are discussed in the next chapter.
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4. APPROACH

The gap-aiming behavior inspired by flying animals and implemented on a small un-

manned quadrotor in this work was designed from three control rules observed in the

ethological literature. To determine the current state of the research on reactive control

for obstacle avoidance with unmanned aerial systems, a review of the literature was con-

ducted and findings discussed in Chapter 2. Additionally, a review of the ethological

literature was conducted to study obstacle avoidance in flying animals for application to

SUAS and the details of this review were discussed in Chapter 3. The gap-aiming behavior

derived from the study provided a basis for the primary research question posed in Chapter

1. The three control rules used to design the gap-aiming behavior are discussed in detail

in Section 4.1 below. The behavior was implemented following a behavior-based robotics

approach detailed in Section 4.2. The gap-aiming behavior implementation was tested

through simulation to determine the best perceptual schema approach from three possible

options: detect_closest_gap, detect_largest_gap, and detect_all_gaps. Following the suc-

cessful simulation, a proof-of-concept was implemented and tested on a 3D Robotics Solo

quadrotor in a restricted maneuverability scenario. The environment and the metrics used

to create it are described in detail in Section 6.3.1.

4.1 Control Rules for SUAS Derived from Flying Animals

Concentrating on the avoid_object behavior, the motor schemas discussed in Section

3.5 were aim_gap_center, turn_brake or turn_speed, maintain_angular_velocity, stabi-

lize_gaze, adjust_pulse, adjust_beam_aim, modify_saccades, change_sensor, return_to_food,

maintain_CATD, appear_stationary, and balance_lateral_motion. The first two of these

motor schemas were the output action of the detect_object perceptual schema. While the

actual physical movement is of interest, it is also important to understand when and how
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the flying animals choose to perform the movement in order to translate the animal be-

havior to control of a SUAS. From the ethological literature review provided in Chapter 3,

three rules for control of a SUAS are suggested.

First, an appropriate distance to begin maneuvering around an object in the flight path

appears to be approximately 1.5 meters. In the literature, the pigeon adjusts its flight path

approximately 1.5 meters before colliding with an object [6] and nearly the same is seen

with the big brown bat [32]. The bat begins effecting an avoidance maneuver 2.0 to 1.5

meters before it would collide with the object. The distance when the pigeon and big

brown bat begin maneuvering is not influenced by the size and number of obstacles in the

environment, which is defined as the severity of obstacles in [9]. Additionally, this distance

does not rely on the size of the gap between obstacles. What is similar between the two

species is the scale of the region where they are able to navigate, which is defined in [9]

as the relationship between the size of the agent and the environment. Specifically, these

two species can navigate in a restricted maneuverability region where the environment is

less than two times the size of the agent and the buffer distance required. Additionally, the

environment is larger than the size of the agent plus the buffer. Together, the agent size

and the buffer are referred to as the effective agent size. This is described as:

2 ∗ (effective agent size) > environment > effective agent size (4.1)

The pigeons never flew closer than 4.3cm to any obstacle and, since they navigate

through 30cm-wide gaps with their wings tucked, the animal measurement is their 10cm

torso. Using Equation 4.1, the scale of the region is calculated for these pigeons during

this experiment as: 2*(10cm + 4.3cm + 4.3cm) >30cm <(10cm + 4.3cm + 4.3cm).

For the big brown bat, the 100% collision-free flights were performed when the gap

size between obstacles was 40cm. This animal has a wingspan of 30cm and is not de-
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scribed as requiring any buffer distance. The scale of the region computes as: 2*30cm

>40cm <30cm.

Second, maneuvering through the largest gap between objects is preferred. Both pi-

geons and starlings favor the largest visual gap during flight [6], [7]. Through flight exper-

iments with pigeons, [6] determined the birds preferred to maneuver through the largest

gap versus the closest when at higher flight speeds. Starlings also aim adjustments in

their flight path to the largest gap to avoid the risk of a collision and therefore potential

injury [7]. These birds make this tradeoff for the largest gap at the expense of maintain-

ing a nearly straight flight path. This allows them to maintain higher flight speeds while

still navigating collision-free. This strategy was employed in simulation and physical ex-

periments on a ground vehicle with successful collision-free results in a simplified test

scenario with seven static obstacles and a goal in front of the vehicle. They followed this

with an experiment using four dynamic obstacles the vehicle successfully passed over 60

meters [57].

Third, remaining centered in a flight corridor and when traversing between obstacles is

preferable. Pigeons, honeybees, and blowflies all showed a preference for centering their

flight path. In initial testing, [6] showed the pigeon flew in the center of an unobstructed

corridor. When objects were introduced, the pigeons deviated from their flight path to

avoid the object, but returned to the center of the corridor when able. The flight path

with obstacles present was measured to be only 8% longer than a straight path through the

unobstructed corridor. In [35], Srinivasan noted the honeybee flies through the center of

an open window, and in the middle of a tunnel during experiments. The blowfly chose a

flight path in the center of experimental tunnels. When objects were present, the blowfly

performed avoidance maneuvers to create a narrow S-shaped flight path as close to the

center as possible while remaining collision-free [8].
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4.2 Behavior-Based Robotics

To realize the gap-aiming behavior derived from the observed control rules discussed

in Section 4.1, a behavior-based approach to robotics is used. In behavior-based robotics,

behaviors are the basic building blocks which make up an intelligent agent and all action in

a reactive paradigm is done through these behaviors. Because the reactive paradigm does

not have a planning component, a task is accomplished by the sense and act primitives,

which make up a behavior [1]. A behavior accepts inputs from one or more sensors,

processes the sensing data via a perceptual schema to produce a percept which produces

a motor action via a motor schema. Schema theory was previously discussed in Chapter

2 to frame the literature review of reactive control for obstacle avoidance in SUAS and

in Chapter 3 for the ethological literature review with an illustration in Figure ??. The

following subsections briefly describe the perceptual schema and motor schema building

blocks to be used in designing the gap-aiming behavior. An in-depth explanation of the

implementation details is provided in Chapter 5.

The advantage of using this behavior-based robotics approach is threefold. First, the

primitive building blocks of a behavior are exchangeable because they are independent of

each other. In this way, the motor schema is not reliant on the specific perceptual schema

implemented in this work. A more sophisticated perceptual schema could be introduced in

the future, which provides this motor schema implementation with the required percepts.

Second, the APF implementation of the motor schema could be tuned with knowledge

of the dynamics of the SUAS. Finally, additional behaviors can be added to the system.

Because more than one of these behaviors may be active simultaneously a procedure for

determining the ultimate motor action must be implemented whether it is the output of a

single behavior, or combination of behaviors. Additionally, it is important to note that an

obstacle avoidance behavior would not be necessary in addition to the gap-aiming behavior
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designed in this work because if no gaps exist in the environment, then the APF would

produce no motor actions. In other words, with only the gap-aiming behavior implemented

the lack of a gap in the FOV for the quadrotor used in the proof-of-concept demonstration

would cause the platform to hover.

4.2.1 Perceptual Schema

A perceptual schema is responsible for creating the necessary information from the

sensor input required by the motor schema to produce the desired action. From a visually

collected image, the gap-aiming behavior relies on the perceptual schema to detect one, or

more unobstructed areas available in the FOV for SUAS flight. Because multiple gaps may

exist within the image and the ethological literature was unclear whether flying animals

were reacting to the closest, largest, or all the gaps in the FOV, there are three approaches

available for creating the perceptual schema in the gap-aiming behavior. The first two

approaches follow a winner-take-all strategy where the perceptual schema identifies either

the closest, or the largest gap in the FOV. In the third approach, the perceptual schema

detects all of the gaps in the FOV. Following Arkin’s method for robot navigation [10],

the percepts are used by the motor schema to produce velocity and steering commands to

move the SUAS.

4.2.2 Motor Schema

Frequently implemented forms of behavior-based reactive control are subsumption,

and artificial potential fields (APF) [1]. The latter is a widely used method to control

robot behavior and is the method employed in this work. The artificial potential fields

methodology was originally developed and applied to manipulators and mobile robots by

Oussama Khatib [58] in 1985. The implementation made use of an attractive potential

field for the goal(s) and a repulsive potential field for the obstacle(s). A vector is used

to define both the direction and magnitude of the force exerted on the robot at any one
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point in the field. When multiple instantiations of the motor schema are exerting a force

in the same location, then vector summation is used to create one resultant vector. In

addition to the attractive and repulsive fields used in [58] there are three other primitive

fields: uniform, perpendicular, and tangential. These five primitive fields are illustrated in

Figure 4.1, which is taken from [1] where a detailed description of each of the fields can be

found. The collection of arrows denotes the region in space where the potential field would

exert a force on the robot. Individually, the orientation of the arrow shows the direction

of the force and the length of the vector defines the magnitude. The magnitude can be

just a constant value, or the profile could have a linear, or exponential drop off. However,

any magnitude profile could be tuned to create the desired results from the behavior. For

example, Connolly made use of harmonic functions to create the artificial potential field

used in their application [59] while Vadakkepat developed a genetic algorithm to adjust

the constant value used to compute the force [60].

Figure 4.1: Illustration of five primitive potential fields. Reprinted from [1].
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A potential field is defined as the scalar U, which is the combination of all fields in

the environment. In the case that both a repulsive and an attractive field are present, then

Equation 4.2 defines the scalar potential field where Urep is the repulsive field and Uatt is

the attractive field.

(U) = Urep + Uatt (4.2)

In the case of reactive control, the force exerted on the robot is only calculated at it’s

current position in the potential field. For visualization purposes we can compute all of

the vectors in the force field as the negative gradients of their respective potential field, as

illustrated in Equation 4.3.

(F) = −∇Urep +−∇Uatt (4.3)

As an example, if the force vectors of a repulsive field with a linear dropoff magnitude

profile and two attractive fields with a conical and a quadratic magnitude profile were

combined they would resemble Figure 4.2. This illustration was taken from [2] and is

a three dimensional representation of the overall potential when combining these three

fields.

4.3 Bio-inspired APF Implementation

With inspiration from flying animals, this work implements a gap-aiming behavior to

implicitly avoid obstacles by using a motor schema implemented with an APF to create

the actions required to aim to the center of the gap. This novel bio-inspired APF im-

plementation makes use of both a selective attractive and tangential field. The selective

attractive field is used to attract the SUAS to the gap and the addition of the tangential field

aligns the SUAS for flight straight through the gap. Because the behavior is not explicitly
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Figure 4.2: 3D illustration of the overall field used in [2]. Reprinted from [2]

avoiding obstacles like the typical APF implementation no repulsive field is used in the

implementation.

4.4 Metrics to Quantify the Flight Environment

The approach to evaluate the gap-aiming behavior uses a subset of metrics taken from

disaster robotics [9] to quantify the experimental flight environment. The subset of metrics

was selected to reflect both the interior of a building damaged by a disaster and the exper-

imental environments where flying animals were observed in the review of the ethological

literature from Chapter 3. As discussed in Section 2.4, current implementations were not

tested in highly confined experimental environments representative of what might be en-

countered in the interior of a building following a natural disaster. Additionally, there were

no consistent metrics used to define the experimental environment, or to assess the success

of an obstacle avoidance implementation.

The subset of metrics used comes from a comprehensive suite of metrics provided in
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Table 4.1: Three attributes used to describe a region of the operational environment and
their categories.

ATTRIBUTES
Non-navigational

Constraints
Scale of

the Region
Traversability of

the Region

C
A
T
E
G
O
R
I
E
S

Meeting
Survivability Granular Tortuosity

Sensing
Restricted

Maneuverability Verticality

Maintainability
Requirements Habitable

Surface
Properties

Managing Unintended
Consequences Exterior

Severity of
Obstacles

Accessibility
Elements

[9]. The comprehensive suite of metrics consists of three attributes to describe a region

of the operational environment: non-navigational constraints, scale of the region, and the

traversability of the region. The attributes all contain multiple categories and are shown

in Table 4.1. The details of the categories contained in the comprehensive suite of metrics

can be found in [9].

This work uses a subset of these metrics to define the experimental environment de-

scribed in detail in Section 6.3.1. The scale of the region attribute and the tortuosity

category of the traversability attribute are used. The scale of the region is used to de-

fine the relationship between the size of the environment and the SUAS used for the field

experiments. The scale of the region for the field tests was designed to be restricted maneu-

verability to demonstrate the gap-aiming behavior can produce autonomous, collision-free

flight in an environment comparable to that used in flying animal observations. Addition-

ally, the ability to move through the environment is the traversability of the region. The

tortuosity category of this attribute is a measure of the number of turns the SUAS is re-
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quired to make over the distance travelled. Because the motivation for this research is an

indoor disaster environment, a measurement of 0.6 for the tortuosity taken from Michael’s

work surveying the interior of a building at Tohoku University damaged after the 2011

earthquake in Japan is used [61]. This subset of quantitative metrics are described in detail

for the proof-of-concept environment designed for the field experiments in Section 6.3.1.

4.5 Visual Servoing

A behavior-based robotics approach was taken in this work to implement a gap-aiming

behavior inspired by flying-animals, which is related to image-based visual servo control

(IBVS), a type of visual servoing. The gap-aiming behavior uses input from a visual sen-

sor and produces motor actions through an APF to aim a small unmanned quadrotor to

the center of a gap in the environment. As defined in the Springer Handbook of Robotics,

visual servoing “uses computer vision data in the servo loop to control the motion of a

robot” [62]. Visual servoing requires tracking of two dimensional features or three dimen-

sional models, or relies on motion analysis in an image sequence [63]. Implementations of

this visual servoing technique can be categorized as IBVS, pose-based visual servo control

(PBVS), or an advanced approach.

At least three different implementations of image-based visual servo control exist on

SUAS and are discussed below. In [64] a non-linear controller with an integral backstep-

ping approach for a Pelican quadrotor was designed, which took translational velocity

input using four visual features to track a target. To grasp an object with a robotic arm

mounted on a multirotor, Kim uses image moments as input to a passivity-based adaptive

controller [65]. Lee used the IBVS control by applying a nonlinear model predictive con-

troller that combined the dynamics of a fixed-wing platform and camera geometry [66].

There are both similarities and differences between the previously discussed approaches

to autonomous collision-free flight on a SUAS and the one taken in this work. A behavior-
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based robotics approach used in this work is related to IBVS control because the percep-

tual schema makes use of image moments, namely the centroid of a blob. Additionally,

the novel APF implemented in this work produces the vector to adjust the flight path of the

SUAS towards this centroid providing high-level velocity control. This high-level control

differs from the low-level control provided by the previously discussed implementations.

Those controllers provided low-level attitude control and were tuned to the specific vehi-

cles used for experimentation. In contrast, the gap-aiming behavior implemented in this

work does not rely on the dynamics of the vehicle and so it is extensible to other rotorcraft.

4.6 Summary

Because animals successfully fly collision-free in environments with closely spaced

obstacles, a review of the ethological literature was performed to determine the motor

schemas they use to avoid obstacles. During the review, three rules were identified: the

appropriate distance to begin maneuvers, the direction to adjust the flight path, and the role

of centered flight. The combination of these control rules to create autonomous collision-

free flight on a SUAS resulted in the design of a gap-aiming behavior. This behavior

was implemented using a behavior-based robotics approach. The perceptual schemas and

motor schema used are described in detail in the following chapter. Simulations were com-

pleted to determine the best perceptual schema approach to use for the proof-of-concept

implementation and testing on a 3DRobotics Solo quadrotor in a restricted maneuverabil-

ity environment. The method, metrics, and experimental environment used are described

in detail in Chapter 6.
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5. IMPLEMENTATION1

This chapter describes the implementation of the Matlab R©simulation for Study 1 and

the proof-of-concept demonstration. It details the hardware and software used to create

the simulation for Study 1, as well as the quadrotor platform and visual sensor used for

the proof-of-concept demonstration. Additionally, the implementation of the perceptual

schemas tested in Study 1, and motor schema for the gap-aiming behavior are discussed

in detail in this chapter.

5.1 Software and Hardware Description

Described in detail in the following chapter, Study 1 was designed and conducted via

simulation to test two hypotheses about the primary research question [67]. The soft-

ware used to implement the motor schema via an APF and the three perceptual schema

approaches in simulation was Matlab 9.0 Release R2016a. The simulation was run on a

MacBook Pro using OS X El Capitan version 10.11.6. The laptop contains a 2.9 GHz Intel

Core i7 processor, 8 GB of 1600 MHz DDR3 RAM, and an Intel HD Graphics 4000 card.

The proof-of-concept was implemented on a 3DRobotics Solo quadrotor platform.

This quadrotor is 46 cm from motor to motor and 56 cm in width with blades attached,

weighs 1.5 kg carrying no payload, has a payload capacity of 800 g, and a reported max-

imum speed of 89 km/hr [68]. It runs the APM autopilot software on a Pixhawk 2 [69],

contains an iMX6 companion computer with Yocto Linux, and carried a GoPro Hero4 Sil-

ver on a gimbal during proof-of-concept testing. The GoPro weighs 84 g and measures

41 mm high by 59 mm wide by 29.6 mm deep. The settings for the camera are shown in

Table 5.1.
1 c©2016 IEEE. Portions of this chapter reprinted with permission from Sarmiento and Murphy, “Artificial

potential field implementation of flying animal gap-aiming behavior in 3d, IEEE International Symposium
on Safety, Security, and Rescue Robotics (SSRR), 2016
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Table 5.1: GoPro Hero4 Silver camera settings for proof-of-concept testing
Resolution 1080p
Field of View Medium
Low Light Off
White Balance Auto
ISO 400
Protune On

5.2 Gap-Aiming Behavior

A primitive gap-aiming behavior used to produce collision-free flight was extracted

from a review of the ethological literature. To implement this gap-aiming behavior seen

in flying animals for a SUAS a behavior-based robotics approach based on Arkin’s work

[10] was taken. The primitive gap-aiming behavior shown in Figure 5.1 feeds a visually-

collected image into the detect_gap perceptual schema, which provides percepts to the

aim_gap_center motor schema. This motor schema is implemented through the use of an

artificial potential field and is described in detail in Subsection 5.2.2.

Because the ethological literature was unclear whether flying animals were reacting to

the closest, largest, or all of the gaps in the FOV, three perceptual schema approaches were

investigated in simulation: detect_closest_gap, detect_largest_gap, and detect_all_gaps.

The first two illustrated in Figure 5.1a are winner-take-all approaches, where the percep-

tual schema selects one gap and provides the corresponding percepts to the motor schema.

The third approach shown in Figure 5.1b uses summation to combine the vectors resulting

from the multiple instantiations of the motor schema. The perceptual schema approach de-

termined to be the best through evaluation of two hypotheses using two metrics in Study

1 was implemented for the proof-of-concept demonstration.
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Figure 5.1: (a) Flying animal inspired gap-aiming behavior with Winner-take-all percep-
tual schema approaches: detect_closest_gap and detect_largest_gap (b) with summation
perceptual schema approach: detect_all_gaps

5.2.1 Perceptual Schema Approaches

A perceptual schema is a building block of a primitive behavior, which takes input

from one, or more sensors and provides the appropriate percepts to the motor schema.

The aim_gap_center motor schema expects the perceptual schema to provide information

about the unobstructed portions of the flight environment. The two winner-take-all per-

ceptual schema approaches detect_closest and detect_largest produce two percepts from

a single selected gap. In simulation, the two percepts are the angles θ and φ calculated in

reference to a three-dimensional robot-centric spherical coordinate system because depth

was available. This is illustrated in Figure 5.2.

As shown in Figure 5.2, the z-axis is vertical, the x-axis moves left to right, and the
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y-axis extends into the environment. The orientation of the x-y-z axes correspond to the

default viewpoint in Matlab R©. The angle, θ, is a measure of the angle between the center

of the gap and the SUAS location in the x-y plane. The angle, φ, is a measure of the

angle between the center of the gap and the SUAS location in the y-z plane. Traditionally,

θ has values from 0◦ to 360◦and φ from 0◦ to 180◦. To compute the magnitude for the

APF, the values are adjusted to range from -180◦ to 180◦and -90◦ to 90◦, respectively.

Any gap not perceivable because it is outside the FOV of the visual sensor results in a

magnitude calculation of zero. In the proof-of-concept implementation on the 3DRobotics

Solo quadrotor where depth is not available, the percept angles are azimuth and elevation

computed from image coordinates in a frame taken from the live video feed of the GoPro

Hero4 Silver. This is described in further detail in Section 5.3.

Figure 5.2: Angles θ and φ measured by all three perceptual schema approaches

The steps taken by the detect_closest_gap perceptual schema used in the Study 1 sim-

ulation are outlined in Algorithm 1. From a visually collected image, all of the gaps in
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the FOV are identified. For each gap, the θ and φ angles are calculated and combined.

The combined value is stored and eventually compared against all of the other gap-angle

values to select the gap closest to the SUAS. The θ and φ percepts are then set to the values

pertaining to the selected gap. Following Arkin’s method for robot navigation [10], these

two percepts are used by the motor schema to calculate velocity and steering commands

to produce the desired action of the SUAS.

Algorithm 1 Perceptual Schema: detect_closest_gap
Input: Visually collected image
Output: θ and φ of closest gap

1: detect all gaps
2: for each gap do
3: compute θ to gap center
4: compute φ to gap center
5: add θ and φ
6: store combined angle value
7: end for
8: select smallest combined angle
9: set θ and φ to values of selected gap

Algorithm 2 outlines the steps taken by the detect_largest_gap perceptual schema.

From a visually collected image, all of the gaps in the FOV are identified. For each gap,

the width and height in image pixels is determined. Using these values the area of the gap

is computed and stored. All of the gap area measurements are compared and the largest

gap is selected. The θ and φ angles for the selected gap are calculated and forwarded as

percepts to the aim_gap_center motor schema.

Algorithm 3 outlines the steps taken by the detect_all_gaps perceptual schema. From

a visually collected image, all of the gaps in the FOV are identified. For each gap, the θ

and φ angles, and the width and height measurements in image pixels are determined. The
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Algorithm 2 Perceptual Schema: detect_largest_gap
Input: Visually collected image
Output: θ and φ of largest gap

1: detect all gaps
2: for each gap do
3: calculate width in pixels from image
4: calculate height in pixels from image
5: compute area from width and height
6: store area value
7: end for
8: select largest area
9: set θ and φ to values of selected gap

width and height measurements are used to compute the area of the gap, Areagap. An array

of θ, φ, and Areagap for all of the gaps is created. A motor schema is instantiated for each

gap and its corresponding percepts. Details of the summation of multiple instantiations

of the aim_gap_center motor schema used to produce the appropriate motor actions is

discussed in the following subsection.

Algorithm 3 Perceptual Schema: detect_all_gaps
Input: Visually collected image
Output: θ, φ, and area of all gaps

1: detect all gaps
2: for each gap do
3: compute θ to gap center
4: compute φ to gap center
5: store θ and φ values
6: calculate width in pixels from image
7: calculate height in pixels from image
8: compute area from width and height
9: store area value

10: end for
11: output array of θ, φ, and area values of all gaps
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The gaps detected are considered navigable regions of the environment for the SUAS.

This means an assumption is made that there exists a space equal to, or larger than the

size of the SUAS with no obstructions in the environment. Additionally, because no depth

information is collected the gaps all appear to be the same distance from the SUAS.

5.2.2 Motor Schema: Artificial Potential Fields

Motor schemas take percepts as input and produce an output vector for action through

the implementation of an APF. The force exerted on the SUAS at its current position in an

APF is a vector with both a magnitude and direction component. The magnitude profile

describes how the magnitude value of the vectors change in the APF. This profile could be

constant, linear, exponential, or a custom creation.

With inspiration from flying animals, this work implements a gap-aiming behavior to

implicitly avoid obstacles by using a motor schema to create the actions required to aim to

the center of the gap through the use of APFs. A selective attractive field is used to attract

the SUAS to the gap with the addition of a tangential APF to align the SUAS for flight

straight through the gap. Because the behavior is not explicitly avoiding obstacles like the

typical APF implementation no repulsive field is used.

For the first two approaches where the perceptual schema identifies one gap there is

one instantiation of the aim_gap_center motor schema with one output vector. For the

third approach where multiple gaps are identified the motor schema is instantiated for

each gap with its corresponding percepts shown in Figure 5.1b. Because there are multiple

instantiations of the motor schema and therefore, multiple output vectors a gain vector is

computed to prioritize a gap over others. Equation 5.1 defines the calculation of the gain

value for each perceived gap.

Gain = Areagap/AreaImage + (1− (θ+φ)/90) (5.1)
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The gain is computed by combining a value for the size of the gap with a value for the

closeness. The portion of the gain pertaining to the size is calculated by dividing the area

of the gap, Areagap, by the area of the overall image in pixels, AreaImage. The portion of

the gain pertaining to the closeness is calculated by adding the θ and φ angles previously

described, and dividing them by 90. This value is then subtracted from 1. This is the

equation of a line with x-intercept of 90 and slope of -1/90.

These two values are combined to calculate the gain for the specified gap. This gain

is multiplied by the output vector of the motor schema pertaining to the same gap. This

computation is done for each motor schema instantiation at the current SUAS location

and the updated output vectors are summed into a resultant vector for action. Figure 5.1b

shows the three motor schema instantiations, their vector outputs multiplied by the gain,

then fed into the summation with a resultant velocity and steering direction output.

The actions of the motor schema, which aims to the gap center are created through

the summation of the force vectors computed at the current SUAS location. Much like

the docking motor schema in [70], there are multiple fields exerting a force on the SUAS

at a single location. The combination of a selective attractive potential field shown in

Figure 5.3a and a tangential potential field shown in Figure 5.3b provide the velocity and

steering commands of the motor schema aiming to the gap center. Although the actual

flight path of the SUAS would be created by summing the vectors at a single location the

entire potential field is shown. Figure 5.3a and b shows the two fields separately with a

view of the two-dimensional x-y plane. Additionally, Figure 5.3c shows a side view of the

combined fields in three dimensions with one gap present in the environment. The final

portion of Figure 5.3d is a three dimensional view image as the SUAS would view the

gap when its flight path is aligned with the y-axis. The calculation of the magnitude and

direction of the vectors creating the individual potential fields are described in more detail

in the following subsections. Again, because the motor schema is aiming to the gap center
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to autonomously fly collision-free and not explicitly avoiding obstacles no repulsive field

is used in this implementation.

Figure 5.3: (a) Two-dimensional view of the selective attractive field in the x-y plane (b)
Two-dimensional view of the tangential field in the x-y plane (c)Three-dimensional side-
view showing the combined selective attractive and tangential fields for one perceived
gap (d) Three-dimensionsal forward view showing the combined selective attractive and
tangential fields for one perceived gap

5.2.3 Selective Attractive Potential Field

The selective attractive potential field is used to attract the SUAS to the center of the

gap. The range of the effect of the selective attractive potential field is not a distance

value typically seen with the use of APFs. Rather, it is exerting a force on the SUAS

whenever the gap is perceivable. The width and height of the perceivable area is deter-
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mined by the FOV of the vision sensor used to capture images of the environment. For

the Matlab R©simulation, 90◦ is selected as a conservative estimate of this FOV value. This

effectively creates an APF in the shape of a right circular cone. It has its vertex at the gap

center with its axis parallel to the y-axis and a semi-vertical angle of 45◦. For the proof-

of-concept demonstration, the true FOV of the vision sensor carried onboard is used.

The magnitude of this field increases linearly as the SUAS approaches the line running

parallel to the y-axis that bisects the gap shown in Figure 5.3a. The length of the arrow

denotes the magnitude of the vector, which increases as the SUAS approaches the bisecting

line. This linear increase is defined in Equation 5.2 where MaxAngle is a measure of the

addition of the maximum distance in degrees the two angles, θ and φ, could be from the

bisecting line and still be affected by the field. Figure 5.3a is a view of the x-y plane and

shows the maximum measurement of θMax is equal to 45◦for the simulation. The angle

φ is measured in the y-z plane. The normalized value described previously and shown in

Figure 5.2 is used. The addition of θMax and φMax is MaxAngle = 90◦ in the simulation.

When the SUAS falls outside of the influence of the selective attractive field the magnitude

of the vector is zero. The vector is directed towards the center of the gap, which is shown

in Equation 5.3.

~vmag =

{
(MaxAngle - |θ| + |φ|))/MaxAngle for |θ| or |φ| ≤ 45◦

0 for |θ| or |φ| > 45◦
(5.2)

~vdir = direction of gap (5.3)

5.2.4 Tangential Potential Field

The selective tangential field is used to align the SUAS for straight flight through the

selected gap. This field affects the SUAS when the gap is perceived by the vision sensor
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with the same measurements previously described. The tangential field has a decreasing

linear magnitude profile and is shown in Equation 5.4. The vector is rotated 90◦ towards

the line that runs parallel to the y-axis and bisects the gap. The direction of these tangential

vectors is denoted in Equation 5.5. The tangential APF for one perceivable gap is shown

in Figure 5.3b.

~vmag =

{
(|θ| + |φ|)/90 for |θ| and |φ| ≤ 45◦

0 for |θ| and |φ| > 45◦
(5.4)

~vdir = ±90◦ toward the bisecting line (5.5)

5.3 Perceptual Schema for Proof-of-Concept Demonstration

A GoPro Hero4 Silver is used as the visual sensor to provide an image to the perceptual

schema for processing. A frame is pulled in real-time from the live video feed of the GoPro

and sent to the perceptual schema to detect the closest gap in the image. The perceptual

schema is responsible for detecting the closest gap in the image provided as input from

the visual sensor. It is done through blob detection using OpenCV running onboard the

SUAS. Gaps detected are considered navigable regions of the environment for the SUAS.

This means an assumption is made that there exists a space equal to, or larger than the

size of the SUAS with no obstructions in the environment. Figure 5.4a is a frame pulled

from the live video feed of the onboard visual sensor. This frame is turned into a grayscale

image as shown in Figure 5.4b, then the panel is separated from the surrounding area and

thresholded to create the binary image shown in Figure 5.4c. From this binary image the

blobs (gaps) are detected and the closest gap is found.

Closeness is determined by the difference in image coordinates between the center of

the image and the center of the gap. The latter is equal to the centroid of the blob. Using
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Figure 5.4: (a) Original image taken from live video stream of onboard visual sensor (b)
First processing step turns original image to grayscale (c) Thresholding used to separate
the panel from the perceived gaps (d) Computation to determine the closed gap for traver-
sal using image coordinates

the Pythagorean Theorem, the shortest hypotenuse is determined to be the closest gap.

This computation is shown in Figure 5.4d. From this closest gap, the perceptual schema

provides the angle percepts the aim_gap_center motor schema expects. As discussed pre-

viously, the θ and φ angles must be approximated because the images are processed in two

dimensions.

With knowledge of the center of closest gap, the center of the image, and information

about the field of view of the visual sensor, θ, is calculated as the angle between the center

of the image and the center of the gap in the x-direction. It is a measure of how far to

the left, or right of the center of the image the gap resides. The angle φ, is calculated as
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the angle between the center of the image and the center of the gap in the y-direction. It

is a measure of how far above, or below the center of the image the gap resides. Given

the measurements in Figure 5.5 angle θ is approximated as -22.7◦ using Equation 5.6 and

angle φ is approximated as 5.0◦ using Equation 5.7.

Figure 5.5: Angles θ and φ measured by the perceptual schema

θ = (HorizontalFOV/ImageWidth) ∗∆x (5.6)

φ = (V erticalFOV/ImageHeight) ∗∆y (5.7)

5.4 Summary

The implementation details of the gap-aiming behavior in simulation and for the proof-

of-concept demonstration were described in this chapter. The three perceptual schema

approaches tested via simulation, the one utilized in the proof-of-concept demonstration,

65



and the motor schema implemented with an artificial potential field were described. Also,

the hardware and software used for the simulation, and the quadrotor platform and visual

sensor used for the proof-of-concept demonstration were identified.
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6. EXPERIMENTAL METHODS, DESIGN, AND RESULTS1

To answer the primary research question introduced in Section 1.1, which is derived

from observations of flying animals discussed in Section 4.1, one study was designed

to test two hypotheses in simulation. The study and hypotheses tested are described in

Section 6.1. Additionally, the gap-aiming behavior was implemented on a 3DRobotics

Solo quadrotor and tested in two sets of field experiments. The purpose of this proof-of-

concept demonstration and the metrics used to analyze the flights are outlined in Section

6.3 of this chapter.

6.1 Study 1: Perceptual Schema Approach

Because biological studies are unclear whether flying animals react to the closest gap,

largest gap, or all of the gaps in their environment this study was designed to determine

the best perceptual schema approach to use with a gap-aiming behavior. This study tests

two hypotheses detailed below and the results are presented in Section 6.2.

Hypothesis 1: Using a winner-take-all approach to perceive a gap in the environment

for action will result in a smoother path.

A simulation was designed in Matlab R© to determine the correct perceptual schema ap-

proach to use to elicit the best performance from the gap-aiming behavior. The aim_gap_center

motor schema was implemented through the use of an APF described in detail in Chapter

5. The three perceptual schema approaches also described in Chapter 5 were tested over

one hundred and twenty simulation runs and compared quantitatively through the use of

the smoothness metric to test Hypothesis 1. These three perceptual schema approaches

are: detect_closest_gap, detect_largest_gap, and detect_all_gaps.
1 c©2016 IEEE. Portions of this chapter reprinted with permission from Sarmiento and Murphy, “Artificial

potential field implementation of flying animal gap-aiming behavior in 3d,? IEEE International Symposium
on Safety, Security, and Rescue Robotics (SSRR), 2016
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Table 6.1: Description of variables to be varied and measured in Study 1 to test Hypothesis
1 and Hypothesis 2

TYPE OF VARIABLE VARIABLE VALUE

Independent
Perceptual Schema Closest, Largest, or All Gaps

Gaps
Beginning with 1 in Environment 1 and
increasing to 10 in Environment 10

Starting Location
Random location in each of the 4
quadrants for 10 environments

Dependent
Smoothness

Square of the change in path
curvature with respect to time

Path Length
Difference in length straight
path vs. actual path (%)

For each of the three perceptual schema approaches forty simulations are run in Matlab R©

for a total of one hundred and twenty runs. Each of the three sets of forty simulations are

comprised of ten environments with the number of gaps ranging from one to ten. The first

environment has one gap, the second has two, and the pattern continues up to ten gaps in

the tenth environment. In each of these ten environments there are four starting locations

with one corresponding to each quadrant found in a rectangular coordinate system. Those

quadrants are in the x-z plane shown in Figure 5.2. The location and size of the gap(s),

and the starting locations of the SUAS are randomly selected with the use of the rand()

function in Matlab R© for uniformly distributed random numbers. The smoothness metric,

detailed below, is collected and used to compare the simulation runs. Table 6.1 identifies

the independent and dependent variables described and used to test Hypothesis 1.

6.1.1 Smoothness

A smooth path is important for SUAS operation to potentially reduce energy expendi-

ture and produce time savings. The smoothness of a trajectory was defined by Rosenblatt

[71] as the square of the change in a vehicle path’s curvature, κ, with respect to time, then

integrated along the entire path and finally normalized by the time. This is shown in Equa-
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tion 6.1, where l is the length of the path and s is the arc length. Arc length is a measure

of the length of the 3-dimensional path and is computed as the summation of the length of

the line segments of the total path. This is shown in Equation 6.2, where n is the number

of segments the path was broken into for the calculation. In this case, it is equal to the

number of simulation time steps.

Smoothness =

∫ l
0
(dκ

dt )2ds
t

(6.1)

s =
n∑
i=0

√
(∆xi)2) + (∆yi)2 + (∆zi)2 (6.2)

The curvature, κ, of a 3-dimensional point on a curve described by Cartesian coordi-

nates is defined by Equation 6.3.

κ =

√
(z′′y′ − y′′z′)2 + (x′′z′ − z′′x′)2 + (y′′x′ − x′′y′)2

(x′2 + y′2 + z′2)
3
2

(6.3)

Hypothesis 2: Perceiving the closest gap in the environment for action will result in a

shorter flight path.

The simulations described to test Hypothesis 1 are the same one hundred and twenty

simulations used to test Hypothesis 2. During the 120 runs, an additional dependent vari-

able of path length was also collected and analyzed. This metric is described in the sub-

section below.

6.1.2 Path Length

For mobile robot navigation, a trajectory is considered optimal when it is a straight

line from the starting location to the goal location [72]. The path length utility metric

described by Nowak [73] is used in the ethological literature [6] and in robotics literature

[73], and [74] to compare the length of the flight path taken by the SUAS to the length
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of a straight line from the starting location to the center of the gap traversed. This metric

is calculated by taking the ratio of the distance traveled compared with the straight-line

distance from the SUAS start location to the gap-center. This is the dependent variable,

shown in Table 6.1, captured during the one hundred and twenty simulation runs and is

reported as a percent difference of the average of the runs for each perceptual schema

approach.

6.2 Results from Study 1

To test Hypothesis 1 the results of the three perceptual schema approaches are com-

pared in terms of smoothness in Table 6.2. As introduced in Chapter 6, Hypothesis 1 is

written below.

Hypothesis 1: Using a winner-take-all approach to perceive a gap in the environment

for action will result in a smoother path.

Table 6.2: Results of the smoothness metric for three perceptual schema approaches over
forty simulations to test Hypothesis 1

Perceptual
Schema Approach Smoothness

Winner-take-all: Closest 0.85
Winner-take-all: Largest 2.31
Summation: All 18.86

The table shows that the detect_closest_gap perceptual schema approach appears to

be superior to the two others according to the smoothness metric. The detect_closest_gap

perceptual schema approach completed forty simulation runs with the lowest average for

the smoothness metric. The smoothness metric for the detect_closest_gap approach is

the lowest at 0.85 with the detect_largest_gap measured at 2.31 and the detect_all_gaps
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measured at 18.86. As seen in Table 6.3, both of the winner-take-all approaches are sta-

tistically better than the detect_all_gaps summation approach. The detect_closest_gap

and detect_all_gaps t-test resulted in a value of 0.001 and the detect_largest_gap and

detect_all_gaps t-test resulted in a value of 0.02. Between the two winner-take-all ap-

proaches the detect_closest_gap produces a statistically smoother path than the detect_largest_gap

approach shown by the p-value of 0.008. These p-values prove the former perceptual

schema approach is the best choice according to the smoothness metric.

Table 6.3: P-values computed from one-tailed two-sample t-tests for each combination of
perceptual schema approaches

Perceptual Schema
Approaches Compared

Smoothness
p-values

Closest vs. Largest 0.008
Closest vs. All 0.001
Largest vs. All 0.02

The high value of the smoothness metric for the detect_all_gaps approach is likely

due to having multiple instantiations of the aim_gap_center motor schema. The SUAS

suffers oscillations in its flight path as one gap is not immediately preferred over all of

the others. There is a potential the path could be smoothed by adjusting the gain used in

the summation of the motor schema instantiations, but that was beyond the scope of these

experiments.

Overall, the proof of statistical significance of the smoothness metric for the detect_closest_gap

and detect_largest_gap winner-take-all approaches show we can accept Hypothesis 1.

Meaning, the hypothesis is conclusive and using a winner-take-all approach to perceive

a gap in the environment for action will result in a smoother path. The results obtained

in simulation mirror the behavior seen in flying animals where a single gap is chosen
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like the winner-take-all perceptual schema approaches implemented in this work. Ad-

ditionally, these animals prefer to maintain a smooth and centered flight path providing

further support to select one of the winner-take-all approaches of detect_closest_gap,

or detect_largest_gap as the perceptual schema approach for implementation with the

gap_aiming behavior as a proof-of-concept.

To test Hypothesis 2 the results of the three perceptual schema approaches are com-

pared in terms of path length in Table 6.4. As introduced in Chapter 6, Hypothesis 2 is

written below.

Hypothesis 2: Perceiving the closest gap in the environment for action will result in a

shorter flight path.

The table shows that the detect_closest_gap perceptual schema approach appears to be

superior to the two others. The detect_closest_gap perceptual schema approach completed

forty simulation runs with the lowest average for the path length metric. The % difference

between a straight line from the starting location of the gap center was only 9.18% greater

compared with 12.68% for the detect_largest_gap and 13.73% for the detect_all_gaps

perceptual schema approaches.

Table 6.4: Results of the two metrics for three perceptual schema approaches over forty
simulations

Perceptual
Schema Approach Path Length

Winner-take-all: Closest 9.18%
Winner-take-all: Largest 12.68%
Summation: All 13.73%

Running a one-tailed, two-sample t-test for each combination of path length values

with an α of .05 provides the p-values shown in Table 6.5. Because the path length metric
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p-values for the t-tests completed between the detect_closest_gap and detect_largest_gap,

and the detect_closest_gap and detect_all_gaps perceptual schema approaches are .01

with 99% confidence there is statistical significance between the measurements. The de-

tect_closest_gap is the best approach according to path length. Intuitively, this makes

sense where choosing the closest gap would lead to the shortest path. There is no statisti-

cal significance between the detect_largest_gap and detect_all_gaps approaches as shown

by a p-value of 0.33 in Table 6.5.

Table 6.5: P-values computed from one-tailed two-sample t-tests for each combination of
perceptual schema approaches

Perceptual Schema
Approaches Compared

Path Length
p-values

Closest vs. Largest 0.01
Closest vs. All 0.01
Largest vs. All 0.33

6.3 Proof-of-Concept: Hardware Implementation

The proof of concept implements the gap-aiming behavior described in Chapter 5 on a

3DRobotics Solo quadrotor, shown in Figure 6.1. This implementation uses the best per-

ceptual schema approach determined through simulation in Study 1, detect_closest_gap.

This hardware implementation demonstrates repeatable, autonomous, collision-free flight

on the 3DRobotics Solo quadrotor in a restricted maneuverability environment using a

visual sensor with no a priori knowledge, and completing all processing on-board. The

purpose of this demonstration is stated formally, below.

Demonstration: Demonstrate the gap-aiming behavior produces repeatable autonomous

flight on a small unmanned rotorcraft using on-board processing in an environment com-

parable to flying animal experiments and representative of an indoor disaster scenario.
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Figure 6.1: Depiction of the 3DRobotics Solo quadrotor with GoPro Hero4 payload

The gap-aiming behavior designed from observations of flying animals and tested

in simulation through Study 1 was used in this proof-of-concept implementation. The

3DRobotics Solo quadrotor platform and GoPro Hero4 Silver visual sensor payload were

used. The field experiments were split into two sets. The first set consisted of ten runs with

the same starting location to show repeatability and test the perceptual schema approach.

The second set of field experiments consisted of five runs with an expanded experimen-

tal environment and varying starting location to show the motor schema produces three

dimensional movement and determine the accuracy of the APF.

To provide the analysis three dependent variables were collected. These are the dis-

tance to the gaps for selection, the horizontal and vertical distance travelled, and the dis-

tance from the center of the gap during traversal. The distance to the gaps metric is mea-

sured using image coordinates on a frame taken from the live video feed of the GoPro. The

change in x and y from the center of the image, which is the Solo’s eye-view, and the cen-

ter of the gap is used in the Pythagorean theorem to calculate the hypotenuse as shown in

Figure 6.2 All of these hypotenuse calculations are compared and the smallest is selected

as the closest gap.To facilitate understanding and comparison, the image coordinates are
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translated and reported in centimeters.

Figure 6.2: (a) Original image from the on-board GoPro video (b) Calculation of distance
to each gap perceived in the FOV

The horizontal and vertical distance travelled is also calculated on a frame pulled from

the video and calculated in image coordinates. The horizontal distance is equal to the

change in x and the vertical distance is equal to the change in y shown in Figure 6.2. Again,

this is translated and reported in centimeters to facilitate understanding and comparison.

The distance from the gap center is also measured in image coordinates using third-person

camera views of the flight. The location of the 3DRobotics Solo quadrotor in the image

and the location of the gap center is identified and the difference is calculated. An example

of the calculation of this metric for one of the field trials is shown in Figure 6.3. This metric

is also translated into centimeters.

This proof-of-concept will maintain the constant value of five controlled variables:

platform, visual sensor, the layout of the environment with respect to the scale, tortuosity,

and the location f the gaps. These dependent and controlled variables are also summarized

in Table 6.6.
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Figure 6.3: (a) Image from third-person camera view of 3DRobotics Solo traversing the
first panel (b) Image from third-person camera view of 3DRobotics Solo traversing the
second panel

6.3.1 Proof-of-Concept Experimental Environment

While the gap_aiming behavior was designed from three suggestions for control of a

SUAS recognized during the review of the ethological literature there was a major ques-

tion left unanswered about the experimental environment. How are the environment and

obstacles contained in the environment quantitatively defined?

Each of the fourteen articles discussing avoidance in the ethological literature made

reference to clutter, but none defined what they considered a cluttered versus an uncluttered

environment. The experimental environment navigated by the pigeons in [6] was called

cluttered because it contained fifteen poles of 3.81 centimeter diameter in a 3 by 3 meter

flight arena. While the papers reviewed on locusts and honeybees mentioned clutter, it

was not described in specific terms, like the pigeon experiments. Robertson [36] likened

a locust swarm to a complex environment requiring “effective and speedy motor control".

The navigating abilities of the honeybee were tested in “an environment cluttered with

obstacles” where the clutter is described as “an artificial meadow" [43].

As discussed in Section 2.4 during the review of the literature on reactive control for
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Table 6.6: Description of variables to be varied, measured, and controlled in the proof-of-
concept implementation

TYPE OF
VARIABLE VARIABLE VALUE

Independent
Panels One or Two

Starting Location
Each of 4 quadrants
Nominal flying zone: 1.17m

Dependent
Distance to Gaps Reported in cm
Horizontal Distance Travelled Reported in cm
Vertical Distance Travelled Reported in cm
Distance from Gap Center Reported in cm

Controlled

Platform 3DRobotics Solo
Sensor GoPro Hero4 Silver
Scale of Region Restricted maneuverability
Tortuosity Actual Disaster Environment: 0.6

Location of Gaps
Two gaps on each cloth wall sized for
restricted maneuverability scale

obstacle avoidance in UAS none of the techniques were tested in indoor environments con-

taining more than two obstacles, which were placed side-by-side. Additionally, no consis-

tent metrics were used to define the experimental environments. The lack of description

and non-existent quantitative metrics makes both the recreation of the testing scenarios

and the direct comparison of the performance of the autonomous flight impossible.

To quantitatively define the environment, the design of the proof-of-concept environ-

ment will take into account the scale of the region and the traversability attribute of tortu-

osity to define the operational area available to the SUAS as described in [1]. The scale

of the region is defined as the relationship between the size of the SUAS and the environ-

ment. The traversability of the region is not concerned with whether, or not, the SUAS is

able to fit between obstacles, but if it can move through the environment. One measure

of traversability will be used to design the environment: tortuosity. The tortuosity of the

environment is a measure of the number of turns the SUAS is required to make over the
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entire distance travelled.

6.3.2 Scale of a Region

In the ethological literature reviewed, pigeons and big brown bats were able to navigate

collision-free in a region measured as restricted maneuverability. This was described in

detail in Section 4.1 and is computed by Equation 6.4. The proof-of-concept environment

is designed to create a restricted maneuverability scenario for a 3DRobotics Solo quadrotor

and discussed in detail in Section 6.3.

2 ∗ (effective agent size) > environment > effective agent size (6.4)

6.3.3 Tortuosity of Environment

A greater tortuosity value means a greater number of turns are required over the dis-

tance travelled. To demonstrate the autonomous collision-free flight produced by the gap-

aiming behavior would compare to flying animal experiments and be useful indoors in a

disaster scenario a tortuosity representative of a disaster environment was used. This is

described in detail in Section 6.3.

6.3.4 Quantitatively Defined Proof-of-Concept Environment

To demonstrate autonomous collision-free flight an environment quantified by the scale

of region and tortuosity metrics was used in field tests with the 3DRobotics Solo. The first

set of field experiments used one cloth panel. This environment contains two portions

removed to simulate gaps and another solid panel as a backdrop to simplify the perception

problem. This setup with the shape, location, and size of the gaps portrayed in Figure 6.4.

The second set of field tests used two cloth panels with shape, location, and size of

the gaps and an additional solid panel as a backdrop to simplify the perception problem

portrayed in Figure 6.5. The location of the gaps and varied starting locations produced
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Figure 6.4: (a) Fabric panel with two gaps measured to create restricted maneuverability
environment (b) Image of 3DRobotics Solo quadrotor traversing a gap during the first set
of field trials

horizontal and vertical movement during flight tests. Cloth was chosen with the intent of

reducing the possibility of causing damage to the hardware platform if a collision occurred.

Figure 6.5: (a) First fabric panel with two gaps measured to create a restricted maneuver-
ability environment (b) Second fabric panel with two gaps measured to create a restricted
maneuverability environment (c) Overview image of flight environment for second set of
field tests

To create the tortuosity of the environment during the field tests the panels were spaced

1.65 meters apart. This created the tortuosity measured from a review of literature con-
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ducted on indoor disaster environments [3]. In Michael’s work from the University of

Pennsylvania, a ground robot and UAS robot team were used to survey a portion of the

interior of a building at Tohoku University damaged after the 2011 earthquake in Japan

[61]. Agarwal measured the tortuosity of this structure as 0.6.

As a reminder, the testing environments of current implementations had an average

length of four meters when obstacles were present. While this experimental environment

appears slightly shorter, it should be noted that in the related work there was only one,

or two obstacles placed side-by-side. This created a tortuosity of 0.3 in the greatest case.

The configuration of the obstacle(s) would be akin to having one panel with a gap like

the first set of field tests. The amount of unoccupied space in the related works would

be considered a habitable region where an SUAS could move freely, or was unknown.

These two sets of field tests have a greater tortuosity within a restricted maneuverability

environment.

6.4 Results of First Set of Field Tests

The field experiments are conducted using a 3DRobotics Solo quadrotor hardware plat-

form shown in Figure 6.6a. This quadrotor is 56 cm from blade tip to blade tip, weighs

1.5 kg without a payload, has a payload capacity of 800 g, and a reported maximum speed

of 89 km/hr [75]. It runs the APM autopilot software on a Pixhawk 2, carries a GoPro

Hero4 Silver on a gimbal as the vision sensor, and runs an iMX6 companion computer

with a Yocto Linux operating system. The GoPro weighs 84 g and measures 41 mm high

by 59mm wide by 29.6 mm deep. The settings used for the GoPro are shown in Table 6.7.

The flight environment design is manufactured to simplify the perception problem, but

uses the scale of the region attribute from disaster robotics [9] to quantify the operational

area. Scale of the region describes the relationship between the effective size of the agent

and the environment. The scale of the region where pigeons and big brown bats flew
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Figure 6.6: (a) 3DRobotics Solo quadrotor platform used for flight experiments (b) Illus-
tration of fabric panel with openings cut for gaps

Table 6.7: GoPro Hero4 Silver camera settings for proof-of-concept testing
Resolution 720p
Field of View Narrow
Low Light Off
White Balance Auto
ISO 400
Protune On

during experiments was measured as restricted maneuverability. This means the flight

environment is greater than the size of the agent, but less than two times its size: effective

agent size < Environment < 2 * effective agent size. Because this work was inspired by

flying animals, the scale of the region for the experimental environment was chosen to

match that used in the flying animal experiments to demonstrate the gap-aiming behavior

can produce autonomous, collision-free flight in a comparable environment. In terms of

the 3DRobotics Solo quadrotor used for the demonstration, this equates to the smallest

area in the flight environment being between 56 and 112 cm in width.

To create this flight environment, a black fabric panel 2.64 meters wide and 2.1 meters

tall was used. Fabric was chosen to avoid damage to the platform if a collision should
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occur. Openings were cut in the panel to create a restricted maneuverability environment

where one opening is 70 cm wide and one is 100 cm wide. This is shown in Figure 6.6b

These openings are the gaps perceived through blob detection using OpenCV onboard the

3DRobotics Solo.

The experimental flight begins with an autonomous takeoff 1.65 meters in front of the

first panel containing the gaps. It autonomously takes off in the center of the panel to

a height of 1.17 meters, which is the starting location for these 10 flights. This is the

nominal flying height in an indoor office setting as measured by Agarwal [3]. An image

of the starting location is shown in Figure 6.7a. From this location the the gap-aiming

behavior outlined in Figure 6.8 is invoked to locate and traverse the gap. Figure 6.7b

shows the 3DRobotics Solo quadrotor traversing the gap during a field trial. Once the

platform has visually cleared the gap it is manually landed between the two panels.

Figure 6.7: (a) 3DRobotics Solo pictured at the starting location (b) 3DRobotics Solo
shown traversing the gap

Using the gap-aiming behavior inspired by flying animals and described in this paper,

the 3DRobotics Solo quadrotor successfully completed 10 autonomous flights in the ex-
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Figure 6.8: Flying animal inspired gap-aiming behavior with winner-take-all perceptual
schema approach: detect_closest_gap

perimental environment. The intention of these experimental runs was to verify the coded

implementation of the perceptual schema approach correctly selected the closest gap when

the gap-aiming behavior was initially invoked. Additionally, these ten field experiments

were used to show the performance of the gap-aiming behavior was repeatable. To show

these, the experimental runs all began at the same starting location, which was centered

width-wise on the panel at a distance of 1.65 meters from the panel, and an altitude of 1.17

meters. To be considered a successful flight, the platform must takeoff and traverse the gap

with no human intervention and no collisions with the fabric panel. Due to autonomous

takeoffs, there was variation in the starting location and the platform was not at the ex-

act specified starting location each time. This is evidenced by the distance measurements

shown in Table 6.8 when the perceptual schema initially selects the closest gap.

The values in Table 6.8 were plotted and are shown in Figure 7.1. Here, the triangle

shaped points denote the left gap correctly selected initially as the closest perceived by

the platform and the diamond-shaped point denotes the right gap was selected. From the

robot’s eye-view, the closest gap was initially selected for these ten flights showing the

perceptual schema is performing as the implementation was intended.
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Table 6.8: Results of the gap selection for the first set of field experiment flights.

FLIGHT
DISTANCE TO

LEFT GAP
DISTANCE TO

RIGHT GAP
1 60.53 cm 56.23 cm
2 45.15 cm 64.13 cm
3 36.21cm 61.94 cm
4 49.77 cm 61.61 cm
5 39.74 cm 75.07 cm
6 49.03 cm 59.67 cm
7 48.05 cm 64.93 cm
8 55.18 cm 65.70 cm
9 43.11 cm 67.54 cm
10 47.57 cm 61.83 cm

6.5 Results of Second Set of Field Tests

The second set of field tests were conducted with the same platform and sensor setup

discussed in Section 6.4. This set consisted of five flights in a restricted-maneuverability

environment containing two fabric panels with gaps. These gaps create a restricted ma-

neuverability environment where the largest gap is 100 cm x 100 cm. The width of the

Solo from blade to blade is 56 cm, which computes to a characteristic dimension of 1.79.

Simply stated, the gap is 1.79 times larger than the platform. The 90 cm gap has a char-

acteristic dimension of 1.61. It is described in detail in Section 6.3.4. This set of field

tests utilized five different starting locations as shown in Figure 6.9. The purpose of the

differing starting locations was to show the three dimensional movement produced by the

motor schema.

6.5.1 Motor Schema Evaluation

The horizontal and vertical distance travelled during a flight were calculated to demon-

strate the three dimensional movement of the motor schema, implemented with an APF

described in Section 5.2.2. The total distance travelled is an approximation of the distance
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Figure 6.9: Starting locations for the second set of field tests. The center represents the
nominal height of 1.17 meters measured by [3] in an indoor office scenario.

Table 6.9: Distance travelled horizontally and vertically during a flight through both panels
in the second set of field trials.

STARTING
QUADRANT

PANEL 1
DIST TRAVELLED

HORZ / VERT

PANEL 2
DIST TRAVELLED

HORZ / VERT

TOTAL TRAVELLED
HORZ / VERT

Center 42.69 cm / 8.54 cm 57.98 cm / 6.44 cm 100.67 cm / 14.98 cm
I 29.8 cm / 29.73 cm 62.96 cm / 26.97 cm 92.76 cm / 56.7 cm
II 13.27 cm / 55.86 cm 60.89 cm / 17.64 cm 74.16 cm / 73.5 cm
III 19.33 cm / 40.35 cm 54.75 cm / 8.02 cm 74.08 cm / 48.37 cm
IV 28.21 cm / 31.21 cm 53,57 cm / 28.42 cm 81.78 cm / 59.63 cm

AVERAGE: 84.69 cm / 50.64 cm

from the starting location to the point where the platform traverses the gap in the second

panel. It is calculated from images taken from the on-board video. The values for hori-

zontal and vertical movement to the traversal point in each panel are shown in Table 6.9.

Additionally, the total distance and averages are also reported.

Overall, the panels are 264 cm wide by 210 cm tall and the largest average distance

travelled during this set of field trials was 100.67 cm horizontally from a center starting
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Figure 6.10: Time-lapse image created from overview video taken during a flight starting
in quadrant IV.

location and 73.5 cm vertically from a starting location in Quadrant III. This three di-

mensional movement is shown in Figure 6.10, which provides a view of the 3DRobotics

Solo quadrotor in a still image at different points during a flight. This image was created

from an overview video taken during the flight starting in quadrant IV. The total horizontal

movement during this flight was 81.78 cm and the total vertical movement was 59.63 cm as

reported in Table 6.9. The calculation of the horizontal and vertical distance travelled for

each of the five flights with different starting locations confirms the gap-aiming behavior

produces movement in three dimensions.

The intention of the novel APF implementation is to provide a smooth trajectory and

the largest safety margin available for clearance by traversing at the center of the gap. To

show the APF is both performing as expected by centering the platform for gap traversal

and is a useful implementation of the gap-aiming seen in flying animals, the accuracy of the

alignment with the center of the gap through actions produced by the APF is determined.
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Table 6.10: Distance from the center of the gap both horizontally and vertically for each
panel over five flights.

STARTING
QUADRANT

PANEL 1
DISTANCE FROM GAP CENTER

HORIZONTAL / VERTICAL

PANEL 2
DISTANCE FROM GAP CENTER

HORIZONTAL / VERTICAL
Center 8.91 cm / -14.95 cm -13.31 cm / 22.64 cm

I 13.46 cm / 7.12 cm 11.79 cm / -6.19 cm
II -16.81 cm / 1.2 cm -0.89 cm / 12.65 cm
III 2.43 cm / -6.72 cm 9.15 cm / -14.62 cm
IV 9.61 cm / 4.05 cm 16.45 cm / -4.94 cm

MEAN ERROR: 3.52 cm / -1.86 cm 4.64 cm / 1.91 cm

This is done by calculating the distance from the center of the selected gap was calculated

in images taken from third-person camera views as the platform traversed the gap in each

panel. To determine when the platform was traversing the gap, the on-board video and

third-person camera view were aligned. When the platform no longer had the panel in view

from the on-board video a frame was taken from the third-person view video to calculate

the distance from the center of the gap. At this point in the flight, because the panel

is no longer in view, the motor schema would not command any horizontal, or vertical

movements to continue aligning the platform. These calculations for the second set of

field tests are reported in Table 6.10.

6.6 Summary

This chapter discussed the Study 1 completed via simulation to determine the best per-

ceptual schema approach to use for the proof-of-concept demonstration. Two hypotheses

were tested and evaluated using the smoothness and path length metrics to statistically

show the best approach for use in the demonstration is detect_closest_gap. This was fol-

lowed with a discussion of the variables for the proof-of-concept demonstration, with three

calculated metrics used to evaluate the field experiments. The experimental environment
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was described in Section 6.3.1 and the results presented in Section 6.5. The next chapter

provides a discussion and analysis of those results.
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7. DISCUSSION

This chapter discusses and interprets the results of the field experiments evaluated

through the use of three calculated metrics previously presented in Chapter 6. The results

of the field experiments showed the gap-aiming behavior successfully produced repeat-

able, autonomous flight on small unmanned quadrotor in a restricted maneuverability en-

vironment using a novel artificial potential field. The next section discusses the robustness

of the reactive behavior through gap selection with insights for ethology following in Sec-

tion 7.1.1. Section 7.2 analyzes the measurements calculated for the gap traversal. Section

7.3 compares the field experiment results with the simulation completed in Study 1. The

impact of modifying the implementation of the gap-aiming behavior is discussed in Sec-

tion 7.4 and the novelty of the APF implemented in this work is discussed in Section 7.5.

Section 7.6 provides ideas for the low-level control of a platform for future work. Finally,

the chapter concludes with a summary in Section 7.8.

7.1 Gap Selection

Because the starting location of the ten flights conducted in the first set of experiments

was inexact, the entirety of both gaps was not in the robot’s eye view. Therefore, what the

platform perceived as the center of the gap was not the true center of the gap. Table 7.1

shows the true distance of the gaps from the platform during this initial calculation. The

points are again plotted on a graph shown in Figure 7.2. In the case of these ten flights, the

ground truth closest gap still matches with what was perceived as the closest gap by the

platform during the experimental flight.

When the initial calculation was made to determine the closest gap in the field of view,

one outlier is shown on both graphs in Figures 7.1 and 7.2. This is the first flight where

the right gap is initially selected. Because it was an outlier, this particular flight was
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Figure 7.1: This graph shows the distance from the platform to the perceivable gaps when
the gap-aiming behavior is initially invoked.

Figure 7.2: This graph shows the true distance from the platform to the perceivable gaps
when the gap-aiming behavior is initially invoked.

further investigated. After reviewing the video and the weather notes taken for that day, it

became apparent that immediately following this right gap selection a gust of wind pushed
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Table 7.1: Results of the first set field experimental flights.

FLIGHT
TRUE DISTANCE

TO LEFT GAP
TRUE DISTANCE
TO RIGHT GAP

1 74.11 cm 56.99 cm
2 56.07 cm 77.87 cm
3 48.75cm 84.38 cm
4 60.70 cm 69.77 cm
5 40.96 cm 95.45 cm
6 63.71 cm 68.91 cm
7 56.26 cm 75.73 cm
8 63.22 cm 67.28 cm
9 50.39 cm 83.71 cm

10 59.57 cm 73.33 cm

the platform to the left. The wind was a constant 10 mph out of the SSE with 24 mph

gusts. As the gap-aiming behavior continually re-evaluated the flight environment the left

gap became the closest and the motor schema commanded the platform towards this gap

center. This flight ended in the left gap being traversed and it is a good representation of

the robustness of the reactive behavior.

7.1.1 Insights for Ethology

The wind experienced during the field trials, which caused the swap in the gap selected

for traversal during the flight discussed above, is one possible explanation for the lack of

clarity on a perceptual schema approach in the ethological literature. In the observations

of flying animals it may not have been possible to determine when the animal was re-

acting to a particular gap due to its size, closeness, or other reason and when the wether

was the deciding factor. It could be concluded that the detect_all_gaps approach may be

the best approach with the gains tuned to direct a winner-take-all outcome like the other

approaches.
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Figure 7.3: The graphs plots the location where the platform traversed the second panel
by showing distance from the center of the gap.

7.2 Gap Traversal

The metric computed to determine the distance from the center of the gap during traver-

sal and reported in Table 6.10 resulted in mean error values close to, but not at zero in all

cases. To help visualize whether there was any bias in the alignment produced by the

artificial potential field two graphs are provided in Figures 7.3 and 7.4. The first reports

measurements for the first panel and the second reports the measurements for the second

panel. They use the same scale, where the center of the gap is at the origin and the axes

extend 25 cm in each direction. The five flights are plotted at the location where their gap

traversal was measured.

While the sample size is really too small to statistically claim there is no bias, this data

leads us in that direction because if bias existed you would expect to see the flights clus-

tered in the same location on the graph, which is not the case. However, further investigat-

ing was conducted to determine if there was a reason to attribute to the slightly uncentered
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Figure 7.4: The graphs plots the location where the platform traversed the second panel
by showing distance from the center of the gap.

traversals. Because the calculations presented initially suggest the APF was not accurately

aligning the platform for flight through the gap, the on-board video was used to recreate

the APF output during the flight and compared with a review of the matching overview

video to determine the underlying cause. Figure 7.5a shows the perceptual schema iden-

tifying the closest gap and the resultant vector output from the APF, which commands

the platform to move left, right, and forward. Figure 7.5b is the next frame pulled from

the video where the platform was pushed by a gust of wind. As shown, the platform was

pushed in a direction conflicting with what the gap-aiming behavior commanded. The day

the flight shown in Figure 7.5 was conducted the wind maintained a constant 1.2 mph out

of the south with 6.2 mph gusts, also out of the south. Because these field trials were con-

ducted outside the wind gusts had an affect on the movement of the platform, which leads

to a reasonable assumption about wind causing non-centered gap traversals as shown in

Table 6.10.
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Figure 7.5: (a) Overview video shown side-by-side with onboard video. Perceptual
schema identified the closest gap and the resultant vector from the APF is shown on the
left. (b) Overview video and side-by-side on-board video showing the wind affected the
movement of the platform in a direction different from the APF command.

94



This work assumed that all gaps in the 3DRobotics Solo quadrotor FOV were large

enough for the platform to traverse. In the future, an accurate measurement of the distance

a platform is uncentered during traversal, potentially measured with a motion-capture sys-

tem, could be used to inform a buffer distance required when selecting which gaps are large

enough for the platform to traverse. Additionally, this ground-truth information could be

used to tune the magnitude profiles of the artificial potential field to prefer alignment with

the gap center over attraction to it.

7.3 Simulation vs. Field Experiments

In hindsight, the results of the simulation used to determine the best perceptual schema

approach to implement with a gap-aiming behavior for the proof-of-concept demonstra-

tion might not be directly applicable to the field experiments because no environmental

factors were simulated. During the field experiments, the wind was shown to be a factor

affecting the gap selection and centering for gap traversal. However, if we consider the

possibility the wind consistently affected the platform across all flights, then the analysis

of the simulation flights resulting in detecting the closest gap producing the statistically

shortest and smoothest path would hold. To create a simulation to test the effects of the

wind on the perceptual schema approaches the platform and its dynamics would need to

be correctly modeled as well as the wind. Overall, the complication of ensuring and prov-

ing the environmental factors and platform were correct in the simulation would be less

beneficial than testing other perceptual schema approaches directly on the platform. This

leads to the conclusion that investigating ways to improve the field experiments would be

a better use of time and resources.

The smoothness and path length metrics were selected to evaluate the Matlab R©simulation

because of the interest in the SUAS community to reduce energy expenditure and produce

time savings with both a smooth and a short flight path. Using the same metrics would
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have informed the field experiments, but no motion capture system was available to pro-

vide ground truth for their calculation. This is discussed in Section 8.1 and left for future

work. What could improve the simulation is if speed was considered a factor for gap se-

lection. The perceptual schema approach shown to be superior when speed was factored

in would provide a useful counterpart to the field experiments.

7.4 Impact of Gap-Aiming Behavior Modifications

This section speculates on the impacts of implementing a different perceptual schema,

or maintaining local map of the environment. First, a more sophisticated perceptual

schema is required to test the gap-aiming behavior in another flight environment not de-

signed with perceptual simplicity in mind for the field experiments conducted in this work.

It is reasonable to assume a more computationally efficient algorithm, or more processing

power on the platform would enable operation at greater frames per second and there-

fore, produce higher platform speeds safely. A local map of the world, which could keep

a predetermined number of seconds of sensor readings could potentially allow the plat-

form to recover from a local minima. This may be possible by introducing a behavior for

backtracking when no gaps are perceivable.

7.5 Novel Artificial Potential Field Implementation

Compared with other APF implementations on SUAS for autonomous collision-free

flight, this research implements a novel artificial potential field to produce movement in

three dimensions with no buffer distance required in a restricted maneuverability environ-

ment. It uses both a selective attractive and tangential field to aim the SUAS to the center

of a gap in the FOV of the visual sensor used. In this way, the APF implicitly avoids

obstacles in the environment without the use of a repulsive field common to all other im-

plementations. This gap-aiming behavior is inspired by the same behavior observed in

flying animals and reported in the ethological literature.
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In contrast to the novel APF implementation in this research, current implementations

of artificial potential fields for autonomous flight on SUAS operate in only two dimen-

sions, require a buffer distance incompatible with a restricted maneuverability environ-

ment, or use the traditional APF with a repulsive field for obstacles. Additionally, none

of the current implementations make use of a tangential field, or are tested in a restricted-

maneuverability environment. For example, Woods implemented a controller he termed

an extended potential field, which tracks a target while avoiding obstacles in the flight

path [76]. Avoidance maneuvers are conducted in only two dimensions and a 0.5 meter

buffer distance is maintained between the platform and the obstacle. Using a fixed-wing,

Ruiter avoided obstacles by bounding them with enlarged rectangles and either selecting

a path to fly over or around them, but never making a three dimensional maneuver [77].

Additionally, while the platform could increase its altitude to fly over an obstacle, it would

never decrease altitude to fly under because the rectangles bounding the obstacles were

always enlarged all the way to the ground. A traditional APF using an attractive field for

the goal and repulsive field for obstacles was implemented by Nieuwenhuisen [12]. There

was no direct discussion of three dimensional versus two dimensional movement; how-

ever, the obstacle avoidance experiment used to demonstrate the APF implementation was

a platform hovering and not colliding with a yellow sheet moved towards it. This leads to

the impression the platform was experiencing a repulsive force from the sheet and moving

opposite until reaching an unreported buffer distance. Another traditional APF was also

implemented by Grzonka [15]. A safety margin is mentioned in the report, but not enumer-

ated. Additionally, when an avoidance maneuver is shown in images the movement of the

platform is around the object with the flight path being adjusted in only two dimensions.

While the implementation in this research is simpler with no repulsive field, and shown

to produce movement in three dimensions while operating in a restricted maneuverability

environment suggesting it is superior to current implementations the performance com-
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parison between implementations using quantitative metrics was outside the scope of this

research. In the future, with the use of a motion capture system the flight trajectory could

be accurately tracked to compute path length, smoothness, gap (obstacle) clearance, and

flight time. These measurements could be used to compare the performance with other

implementations although ensuring a fair comparison may mean recreating the other im-

plementations on the same platform and testing them in the same environment to reduce

the number of variables affecting the performance.

7.6 Control Aspects

The benefit of a smooth flight path created through the use of an APF for a quadro-

tor platform with the ability to stop and change directions may seem unnecessary, but

smoothness is still a consideration because it could result in both reduced energy expen-

diture and time savings. The motor schema of the gap-aiming behavior described in this

work is implemented with an artificial potential field, but it is not specifically evaluated for

smoothness because ground-truth measurements were not available. However, the novel

APF implementation used in this work lacks a repulsive field employed for obstacles in the

environment like standard implementations, which could remove the significant problem

of “oscillations in the presence of obstacles” observed by Koren and Borenstein [78].

While low-level control of the quadrotor was beyond the scope of this research, the

APF implementation does provide high-level velocity control. Calculated on the onboard

iMX6 companion computer, the output of the APF is a vector with magnitude and direction

for control of the 3DRobotics Solo quadrotor in the field experiments. The low-level

attitude control providing commands to the ESCs to produce pitch, roll, and yaw is handled

by the ArduCopter flight stack, which uses a PID controller running on a PixHawk and is

tuned for the 3DRobotics Solo.

With knowledge of the dynamics of the platform, the magnitude profiles that used
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angle measurements corresponding to the FOV of the onboard visual sensor could be fine-

tuned to ensure no magnitude would be commanded that could destabilize the platform, or

attempt to produce a trajectory outside of the ability of the platform. Additionally, taking

into account the dynamics of the platform, a gain could be developed for the attractive and

tangential field with the ability for each field to affect the gain of the other, or maintain a

ratio between the two, when the computed vector commands an unobtainable trajectory.

The implementation of this gap-aiming behavior was not specifically tuned for the plat-

form used in the field experiments. Because of this, it is extensible to any platform, but

will a require a more sophisticated perceptual schema to produce the same autonomous

flight in a less perceptually simplistic testing environment.

7.7 Improvements to Field Experiments

Fifteen flights were successfully completed in two sets of field experiments; how-

ever, making minor changes to the environment could have reduced the unintended envi-

ronmental variables, and improved the collection of metrics. First, conducting the field

experiments indoors would remove the wind effects and allow for analysis of the APF im-

plementation without this variable. Enlarging the panels both horizontally and vertically

would provide room for more gaps in each panel and potentially greater three dimensional

movement of the platform. Additionally, the use of a motion capture system during the ex-

periments would inform the calculation of quantitative metrics to analyze the performance

of this gap-aiming behavior implementation.

7.8 Summary

The results of the 120 simulation runs conducted during Study 1 and the fifteen experi-

mental flights of the gap-aiming behavior implementation on a 3DRobotics Solo quadrotor

tested in a restricted maneuverability environment in the field were analyzed and discussed

in this chapter. The statistical analysis of the simulation runs with two metrics showed the
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detect_closest_gap was the best perceptual schema approach. This perceptual schema ap-

proach was implemented for the gap-aiming behavior on the 3DRobotics Solo. The first

set of field experiments with the 3DRobotics Solo was ten flights through one panel with

gaps creating a restricted maneuverability environment. These ten flights showed both re-

peatability and the robustness of the reactive behavior through gap selection. The second

set of field experiments was five flights through two panels with gaps creating a restricted

maneuverability environment. The ability of the novel APF to center the platform for gap

traversal during these flights was analyzed. Taking into account the small sample size

the data suggest the APF is unbiased and the environmental wind factor provides an ex-

planation for the platform not being directly centered. Additional discussion is provided

on insights for ethology, comparison of field experiment results with the simulation com-

pleted in Study 1, the impact of modifying the implementation of the gap-aiming behavior,

the novelty of the APF implemented in this work, control aspects, and improvements that

could be made to the field test environment.
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8. SUMMARY AND FUTURE WORK

Collision-free autonomous flight is essential for the operation of a small unmanned

aerial system in an indoor environment with restricted maneuverability typical of the inte-

rior of an office building after a natural, or man-made disaster. The addition of autonomy

to the system enables flight beyond the line of sight of an operator, provides repeatable

performance, and removes the human factor that could lead to mishaps whether during

training, or mission operation [5].

Through designed experiments and observations in their natural habitat, biologists

and ethologists reported on the ability of birds, bats, and insects to successfully navi-

gate collision-free through environments with closely space obstacles [6, 7, 32, 44, 43].

Unlike current implementations on SUAS, flying animals produce reactive, collision-free

flight by aiming towards open spaces, or gaps in their environment. This provides an ex-

istence proof that autonomous flight can be done collision-free at high speeds in restricted

maneuverability environments.

This work described the implementation and testing of a gap_aiming behavior in sim-

ulation, concentrating on determining which of three possible perceptual schemas are best

suited for controllable, efficient flight by testing Hypothesis 1 and 2 of the primary research

question. One hundred and twenty simulation runs were completed with smoothness and

path length metrics captured to compare the three perceptual schema approaches. The

results are shown and discussed in Chapter 7. Overall, the detect_closest_gap and de-

tect_largest_gap winner-take-all approaches produced statistical smoother paths than de-

tecting all of the gaps in the FOV. The t-tests conducted with the values computed through

the path length metric show the detect_closest_gap was statistically the best perceptual

schema approach. This perceptual schema approach was chosen for the gap-aiming be-

101



havior implementation with an APF. Autonomous, collision-free flight was demonstrated

in two sets of field tests in a restricted maneuverability environment.

These fifteen flights were evaluated with three calculated metrics: distance to the per-

ceived gaps, horizontal and vertical movement, and distance from the center of the gap

during traversal. Analysis of this data showed the perceptual schema correctly selected the

closest gap 100% of the time, the motor schema produced three dimensional movement,

and while the measurement form the center of the gap suggested the APF was inaccurate,

an explanation with supporting data was provided.

Overall, the successful implementation and field testing of the gap_aiming behavior

for reactive control of autonomous collision-free flight on a small unmanned quadrotor in

restricted maneuverability environments contributes to the fields of artificial intelligence,

robotics, and ethology as described in the introductory chapter. The description of the

experimental testing environment quantified with metrics from disaster robotics, which re-

flects both the expected condition of the interior of a structure after a disaster and the flight

environment of animals provides a benchmark for testing autonomous flight of SUASs.

8.1 Future Work

To further test and potentially improve the perceptual schema portion of the gap-aiming

behavior there are four avenues to explore. First, if the goal location is known it could be

taken into consideration when determining the gap for traversal. For instance, the closest

gap could be considered the gap bringing the platform in line with the goal location rather

than the gap closest to the current flight path. Second, gaps requiring a horizontal move-

ment rather than vertical (or vice versa) could be preferred over the other. Third, speed

could be taken into account during gap selection. When flying at higher speeds a larger

gap might be preferred to ensure the safety of the platform. Finally, the perceptual schema

could take into account hierarchical conditions when two, or more, gaps are determined to
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be equally close to the platform. Regardless of whether any of these avenues are explored,

a more sophisticated perceptual schema than the blob detection used in the field experi-

ments should be implemented to allow the novel artificial potential field implementation

to be tested in an environment not designed for perceptual simplicity.

To improve the performance of the artificial potential field two avenues could be ex-

plored in future work. First, in the current implementation the attractive and tangential

fields are evenly applied. In the future, alignment with the center of the gap could be

preferred over the attraction with the tangential field by introducing a gain applied to the

magnitude calculation. Second, the magnitude profiles for both the selective attractive and

tangential fields could be tuned either with knowledge of the dynamics of the platform, or

empirically during field experiments.

In terms of platform improvement, a smaller and more agile quadrotor could be tested

with the current implementation to see if it provided similar performance. To successfully

compare the performance of the two (or more) platforms a motion capture system, or other

means of providing ground truth, could be used. This would allow calculation of metrics

like cross track error to determine how accurately the platform followed the expected path

from a starting location to gap center.
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