1,446 research outputs found

    SIRENA: A CAD environment for behavioural modelling and simulation of VLSI cellular neural network chips

    Get PDF
    This paper presents SIRENA, a CAD environment for the simulation and modelling of mixed-signal VLSI parallel processing chips based on cellular neural networks. SIRENA includes capabilities for: (a) the description of nominal and non-ideal operation of CNN analogue circuitry at the behavioural level; (b) performing realistic simulations of the transient evolution of physical CNNs including deviations due to second-order effects of the hardware; and, (c) evaluating sensitivity figures, and realize noise and Monte Carlo simulations in the time domain. These capabilities portray SIRENA as better suited for CNN chip development than algorithmic simulation packages (such as OpenSimulator, Sesame) or conventional neural networks simulators (RCS, GENESIS, SFINX), which are not oriented to the evaluation of hardware non-idealities. As compared to conventional electrical simulators (such as HSPICE or ELDO-FAS), SIRENA provides easier modelling of the hardware parasitics, a significant reduction in computation time, and similar accuracy levels. Consequently, iteration during the design procedure becomes possible, supporting decision making regarding design strategies and dimensioning. SIRENA has been developed using object-oriented programming techniques in C, and currently runs under the UNIX operating system and X-Windows framework. It employs a dedicated high-level hardware description language: DECEL, fitted to the description of non-idealities arising in CNN hardware. This language has been developed aiming generality, in the sense of making no restrictions on the network models that can be implemented. SIRENA is highly modular and composed of independent tools. This simplifies future expansions and improvements.Comisión Interministerial de Ciencia y Tecnología TIC96-1392-C02-0

    The Evolution of Reaction-diffusion Controllers for Minimally Cognitive Agents

    Get PDF
    No description supplie

    An Innovative Deep Learning Method to Diagnose Mosquito-Borne Illnesses in Blood Image Analysis

    Get PDF
    Introduction: Malaria, an infectious illness carried by the bite of infected mosquitoes, is a significant public health concern, especially in Africa. The management of mosquito-human contact is crucial to mitigate its transmission. Artificial intelligence, including machine learning and deep learning techniques, is being utilized to enhance the diagnosis and identification of mosquito species. This advancement aims to facilitate the development of more efficient control measures. Aims and Objective: To analyze the efficiency of three deep learning models in identifying blood-borne diseases by evaluating the macro and micro picture of blood samples. Method: In this retrospective investigation, three deep learning algorithms, namely Convolutional Neural Networks (CNN), MobileNetV2, and ResNet50, were used to identify mosquito-borne illnesses, focusing on malaria. The research used a dataset of 120 blood samples gathered over one year from the hospital's pathology department. The CNN model streamlines preprocessing with multilayer perceptrons, simplifying malaria component extraction. MobileNetV2, a lightweight network, outperforms others with fewer parameters. Its compact blocks in Dense-MobileNet models minimize constraints and computation expenses. ResNet50 resolves degradation issues with a residual structure, preventing overfitting as hidden layers increase. Results: The study evaluated three deep learning models (CNN, MobileNetV2, and ResNet50) for medical classification. The study also demonstrated improved True Positive Rates as False Positive Rates increased, indicating better accurate identification while controlling false positives. ResNet50 consistently outperformed the other models, showcasing its superior performance. The study revealed high precision scores for all models, classifying "Uninfected" and "Infected" cases. ResNet50 exhibited slightly higher precision, indicating its precision-based superiority. Overall, all models demonstrated vital accuracy, and ResNet50 showed exceptional performance. The study found that ResNet50 performs better in True Positive and False Positive Rates. Conclusion: The study has concluded that ResNet50 has shown the best performance in detecting blood-borne diseases

    DiversityScanner: Robotic handling of small invertebrates with machine learning methods

    Get PDF
    Invertebrate biodiversity remains poorly understood although it comprises much of the terrestrial animal biomass, most species and supplies many ecosystem services. The main obstacle is specimen-rich samples obtained with quantitative sampling techniques (e.g., Malaise trapping). Traditional sorting requires manual handling, while molecular techniques based on metabarcoding lose the association between individual specimens and sequences and thus struggle with obtaining precise abundance information. Here we present a sorting robot that prepares specimens from bulk samples for barcoding. It detects, images and measures individual specimens from a sample and then moves them into the wells of a 96-well microplate. We show that the images can be used to train convolutional neural networks (CNNs) that are capable of assigning the specimens to 14 insect taxa (usually families) that are particularly common in Malaise trap samples. The average assignment precision for all taxa is 91.4% (75%–100%). This ability of the robot to identify common taxa then allows for taxon-specific subsampling, because the robot can be instructed to only pick a prespecified number of specimens for abundant taxa. To obtain biomass information, the images are also used to measure specimen length and estimate body volume. We outline how the DiversityScanner can be a key component for tackling and monitoring invertebrate diversity by combining molecular and morphological tools: the images generated by the robot become training images for machine learning once they are labelled with taxonomic information from DNA barcodes. We suggest that a combination of automation, machine learning and DNA barcoding has the potential to tackle invertebrate diversity at an unprecedented scale

    Study on comparison of biochemistry between Trogoderma granarium Everts and Trogoderma variabile Ballion

    Get PDF
    Stored grains are paramount commodities to be preserved and stocked for future supply to the market according to the requirement. However, one of the major problems during storage is insect pests, of which insects from Trogoderma sp. especially khapra beetle (Trogoderma granarium) is considered the world most dangerous stored grain insect pests. Therefore, it has been listed as quarantine insect pests in many counties. For timely management of quarantine pest, effective and rapid diagnostic methods are required. Until now, diagnostic technology is mainly based on morphology of insects which require trained taxonomists. Recently, diagnostics based on metabolites and hyperspectral imaging coupled with machine learning is gaining importance. However, very little is known about the metabolites in Trogoderma sp. and how the host grain, gender, and geographical distribution affect the metabolomic profiling in these species is still unknown. In this thesis, volatile organic compounds (VOCs) emitted by Trogoderma variabile at different life stages were analysed as biomarkers which can help us to understand the biochemistry and metabolomic. Some compounds were identified from T. variabile different stages, which could be used as diagnostic tool for this insect. Gas chromatography coupled to mass spectrometry (GC–MS) was used as a technique to study the metabolite profile of T. variabile in different host grains. However, there are several factors that affect the volatile organic compounds including extraction time and number of insects. The results indicated that the optimal number of insects required for volatile organic compounds (VOC) extraction at each life stage was 25 and 20 for larvae and adults respectively. Sixteen hours were selected as the optimal extraction time for larvae and adults. Some of the VOCs compounds identified from this insect can be used as biomarkers such as pentanoic acid; diethoxymethyl acetate; 1-decyne; naphthalene, 2-methyl-; n-decanoic acid; dodecane, 1-iodo- and m-camphorene from larvae. While butanoic acid, 2-methyl-; pentanoic acid; heptane, 1,1'-oxybis- 2(3H)-Furanone, 5-ethyldihydro-; pentadecane, 2,6,10-trimethyl-; and 1,14-tetradecanediol VOCs, were found in male, whereas pentadecane; nonanic acid; pentadecane, 2,6,10-trimethyl-; undecanal and hexadecanal were identified from female. Additionaly, direct immersion-solid phase microextraction (DI-SPME) was employed, followed by gas chromatography mass spectrometry analysis (GC-MS) for the collection, separation, and identification of the chemical compounds from T. variabile adults fed on four different host grains. Results showed that insect host grains have a significant difference on the chemical compounds that were identified from female and male. There were 23 compounds identified from adults reared on canola and wheat. However, there were 26 and 28 compounds detected from adults reared on oats and barley respectively. Results showed that 11-methylpentacosane; 13-methylheptacosane; heptacosane; docosane, 1-iodo- and nonacosane were the most significant compounds that identified form T. variabile male reared on different host grains. However, the main compounds identified from female cultured on different host grains include docosane, 1-iodo-; 1-butanamine, N-butyl-; oleic acid; heptacosane; 13-methylheptacosane; hexacosane; nonacosane; 2-methyloctacosane; n-hexadecanoic acid and docosane. A novel diagnostic tool to identify between T. granarium and T. variabile were developed using visible near infrared hyperspectral imaging and deep learning models including Convolutional Neural Networks (CNN) and Capsule Network. Ventral orientation showed a better accuracy over dorsal orientation of the insects for both larvae and adult stages. This technology offers a new approach and possibility of an effective identification of T. granarium and T. variabile. from its body fragments and larvae skins. The results showed high accuracy to identify between T. granarium and T. variabile. The accuracy was 93.4 and 96.2% for adults and larvae respectively, and the accuracies of 91.6, 91.7 and 90.3% were achieved for larvae skin, adult fragments, larvae fragment respectively

    Tomato Flower Detection and Three-Dimensional Mapping for Precision Pollination

    Get PDF
    It is estimated that nearly 75% of major crops have some level of reliance on pollination. Humans are reliant on fruit and vegetable crops for many vital nutrients. With the intensification of agricultural production in response to human demand, native pollinator species are not able to provide sufficient pollination services, and managed bee colonies are in decline due to colony collapse disorder, among other issues. Previous work addresses a few of these issues by designing pollination systems for greenhouse operations or other controlled production systems but fails to address the larger need for development in other agricultural settings with less environmental control. In response to this crisis, this research aims to act as a vital first step towards the development of a more robust autonomous pollination system for agricultural crop production. The main objective of this research is to develop a flower detection and mapping system for a field crop setting. This research presents a method to detect and localize tomato flowers within a three-dimensional (3D) region. Tomato plants were grown in a raised-bed garden where images were collected of the overhead view of the plants. Images were then stitched together using a photogrammetry technique, accomplished by the Pix4Dmapper software, to form an orthomosaic and 3D representation of the raised-bed garden from a high spatial resolution aerial view. Various machine learning architectures were trained to detect tomato flowers from overhead images and were then tested on the orthomosaic images produced by the Pix4D software. The coordinates of the detected flowers in the orthomosaic were then compared to the 3D model representation to find approximate 3D coordinates for each of the flowers relative to a predefined origin. This research serves as a first step in autonomous pollination by presenting a way for machine vision and machine learning to be used to identify the presence and location of flowers on tomato crops. Future work will aim to expand flower detection to other crops varieties in varying field conditions

    Geometric deep learning: going beyond Euclidean data

    Get PDF
    Many scientific fields study data with an underlying structure that is a non-Euclidean space. Some examples include social networks in computational social sciences, sensor networks in communications, functional networks in brain imaging, regulatory networks in genetics, and meshed surfaces in computer graphics. In many applications, such geometric data are large and complex (in the case of social networks, on the scale of billions), and are natural targets for machine learning techniques. In particular, we would like to use deep neural networks, which have recently proven to be powerful tools for a broad range of problems from computer vision, natural language processing, and audio analysis. However, these tools have been most successful on data with an underlying Euclidean or grid-like structure, and in cases where the invariances of these structures are built into networks used to model them. Geometric deep learning is an umbrella term for emerging techniques attempting to generalize (structured) deep neural models to non-Euclidean domains such as graphs and manifolds. The purpose of this paper is to overview different examples of geometric deep learning problems and present available solutions, key difficulties, applications, and future research directions in this nascent field
    corecore