
SIRENA: A CAD Environment for Behavioral Modeling and Simulation of VLSI Cellular Neural Network Chips

1

SIRENA: A CAD Environment for Behavioral Modeling
and Simulation of VLSI Cellular Neural Network Chips

R. Carmona, I. García-Vargas, G. Liñán, R. Domínguez-Castro, S. Espejo and A. Rodríguez-

Vázquez

Instituto de Microelectrónica de Sevilla-CNM-CSIC / Universidad de Sevilla
Edificio CICA, C/Tarfia sn, 41012-Sevilla, SPAIN

Phone #34 5 4239923, FAX #34 5 4231832

Abstract

This paper presents SIRENA, a CAD environment for the simulation and modeling of

mixed-signal VLSI parallel processing chips based on Cellular Neural Networks. SIRENA

includes capabilities for: a) the description of nominal and non-ideal operation of CNN analog

circuitry at the behavioral level; b) performing realistic simulations of the transient evolution of

physical CNNs including deviations due to second-order effects of the hardware; and, c) evalu-

ating sensitivity figures, and realize noise and Montecarlo simulations in the time domain.

These capabilities portray SIRENA as better suited for CNN chip development than algorithmic

simulation packages (such as OpenSimulator, Sesame) or conventional Neural Networks simu-

lators (RCS, GENESIS, SFINX), which are not oriented to the evaluation of hardware non-ide-

alities. As compared to conventional electrical simulators (such as HSPICE or ELDO-FAS),

SIRENA provides easier modeling of the hardware parasitics, a significant reduction in compu-

tation time, and similar accuracy levels. Consequently, iteration during the design procedure

becomes possible, supporting decision making regarding design strategies and dimensioning.

SIRENA has been developed using object-oriented programming techniques in C, and currently

runs under the UNIX operating system and X-Windows framework. It employs a dedicated

high-level hardware description language: DECEL, fitted to the description of non-idealities

arising in CNN hardware. This language has been developed aiming generality, in the sense of

making no restrictions on the network models that can be implemented. SIRENA is highlymod-

ular andcomposed of independent tools. This simplifies future expansions and improvements.

Front-page Footnotes:
1

2

1. This work has been partially funded by spanish CICYT under contract TIC96-1392-C02-02 (SIVA).
2. Research of Ricardo Carmona has been partially supported by IBERDROLA, S. A. under contract
INDES-94/377

CORE Metadata, citation and similar papers at core.ac.uk

Provided by idUS. Depósito de Investigación Universidad de Sevilla

https://core.ac.uk/display/161254531?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


SIRENA: A CAD Environment for Behavioral Modeling and Simulation of VLSI Cellular Neural Network Chips

2

SIRENA: A CAD Environment for Behavioral Modeling
and Simulation of VLSI Cellular Neural Network Chips

R. Carmona, I. García-Vargas, G. Liñán, R. Domínguez-Castro, S. Espejo and A. Rodríguez-

Vázquez

 I. INTRODUCTION

Cellular NeuralNetworks (CNNs) are arrays of identicalnonlinear dynamic processing

units (cells), arranged on a regular grid wheredirect interactions among cells are limited to a

finite local neighborhood. CNNs were first proposed by L.O. Chua and L. Yang in 1988 [1] and

have an architecture similar to cellular automata, although differ in that interactions among cells

areanalog, and in the dynamic nature of the processing performed by the cells. A primary rea-

son for the interest of CNNs is the existence of many computational and signal processing prob-

lems that can be formulated as well-defined tasks on signal values placed on regular 2-D and 3-

D grids, and also with direct interactions among signals limited to local receptive fields --

directly mappable onto CNNs for their solution. Another reason is their local connection fea-

ture, which reports advantages for IC implementation as compared to fully interconnected neu-

ral network models. For instance the silicon area occupied by the processing units in Hopfield

[2] network increases in proportion toN, the neuron count, while the area needed to interconnect

the neurons, the routing area, increases toN3. On the contrary, the routing area of CNN chips is

commonly a negligible fraction of the neuron area and thus, enables much larger density of pro-

cessing cells than featured by fully interconnected models. The implementation advantage is

especially pertinent for the important class oftranslation-invariant CNNs, where all inner cells

are identical, layout is very regular, and, since all cells have identical interaction weights,pro-

grammability issues can be incorporated without significant extra routing cost, by adding one

control line per weight [3].

 Although CNNs are specially well suited for high speed image processing tasks, their
reported applications cover a much wider range of activities, such as motion detection, classifi-
cation and recognition of objects, associative memory, optimization, solution of partial differ-
ential equations, statistical and nonlinear filtering, etc. [4]. Also, the recent extension towards
the definition of aprogrammable analogic array computer, the CNN Universal Machine, has
opened many new application fields which can be handled through spatial and temporal task
sequencing controlled by a stored program [5]. A key feature of CNNs is their potential for high
operation speed in the processing of array signals. However, this does not make manifest if
CNNs are realized in the form of software on conventional computers, but only if they are real-
ized asVLSI chips. Typical CNN chips may contain up to about 200 transistors per pixel (includ-
ing sensory and processing devices) [6] [7]. On the other hand, practical applications require
large enough grid sizes; around 100× 100. Thus, CNN designers must confront complexity lev-
els larger than 106 transistors; most of them operating in analog mode.



SIRENA: A CAD Environment for Behavioral Modeling and Simulation of VLSI Cellular Neural Network Chips

3

The simulation of CNN chips, and in general of analog parallel processing chips, is a

major obstacle for their design. Simulations are needed to assess the influence of many hardware

non-idealities for which analytical descriptions are intractable. In addition, simulation provides

the most reliable way to assess manufacturability previous to tape submission. Unfortunately,

current algorithmic simulation packages [8] and neural networks simulators [9] are unable to

consider the non-ideal effects of real electronic circuits. SPICE-type electrical simulators are

barely capable to handle more than about 105 transistors and may take several days CPU time

on Sparc-10 workstations for circuits of about 104 transistors [10]. One approach to solve these

problems, and hence to allow the incorporation of simulation into the design cycle of CNN

chips, is to usemacromodels for the SPICE-type electrical simulators. However, mapping the

hardware non-idealities into circuit descriptions is not simple, and the simulator must still han-

dle the whole network interconnection topology -- not very efficient. The approach adopted in

SIRENA [11] overcomes these limitations by focusing on the simulation of the circuit behavior,

instead of the circuit topology. SIRENA allows the definition and simulation of large neural net-

works with different levels of description. It operates onto a user-defined CNN model which can

enclose either the pure algorithm description or a detailed characterization of the anomalies

resulting from the integrated circuit implementation. In addition to a high simulation efficiency,

SIRENA is equipped with a powerful and friendly graphical interface under the X-windows

framework.

This paper reports a progressive insight of this environment, beginning with a review of

the system structure, in which different parts of SIRENA are presented. Afterwards, Sect. III

analyzes the modelling capabilities of the environment and illustrates the inclusion of non-ideal

effects in the network model as a refinement of an algorithmic description and a crude first level

transistor model towards a more detailed picture of the final microelectronic circuit. Several

models based on different implementations of the CNN paradigm are developed and simulated.

A comparison between SIRENA and HSPICE involving CPU time consumption and accuracy

is presented. Sect. IV describes advanced features of SIRENA’s simulator core: sensitivity and

Montecarlo analysis; and sketches the application of these capabilities to the design process of

VLSI CNN chips. Finally, brief conclusions are given.



SIRENA: A CAD Environment for Behavioral Modeling and Simulation of VLSI Cellular Neural Network Chips

4

 II. ARCHITECTURE AND OPERATION OF SIRENA

 a) Description of the Basic CNN Behavior

According to [4] CNNs are:
• multidimensional arrays defined on agrid and composed of,
• mainly identicalnonlinear, dynamical processing units (cells), one per grid vertex,

which satisfy two properties:
• all significant variables are continuous-valued, and,
• physical interconnections among cells are mostly local, i.e. most cells are physically

connected only to other located within finite radii of the grid.
The set of all the cells in the network define thegrid domain GD. The interconnection

region for the genericc-th cell constitutes itsneighborhood Nr(c), which includes the center cell

itself. We userc (neighborhood radius) for the radius of this interconnection region. Although

the more general model contemplates a spatial variation of the radius, here we will assume with-

out loss of generality that it is constant, so that 3. This means that the

topology of CNNs becomes univocally defined by thegrid shape (rectangular, hexagonal, pen-

tagonal, etc.), the value ofr, and the spatial boundary conditions. These latter affect to a set of

border cells which define thegrid surrounding, GS.

Let us now focus on the operation of CNNs. It is described by using three variables per cell:
• Cell state: xc, which conveys cell energy information as a function of time4.
• Cell output: yc(t), obtained from the cell state through a nonlinear transformation,

(1)

• Cell input: uc, representing external excitations.
CNNs are multidimensional signal processing devices whose inputs are the input vector

 and the vector of initial states , and whose
outcome is represented by the vector of output variables . For given input
and topology, the processing performed by CNNs is determined by the following:

• An evolution law,described by ordinary differential equations (ODEs), finite-differ-
ence equations (FDEs), or a mixture of both. For instance, in a case where ODEs are
involved,

(2)

• The states,xs, and inputs,us, of the cells in the grid surrounding.
Some significant design parameters which control the operation performed by CNNs are

the shapes of dissipative and output functions (i.e.f(.) and g(.)), theoffset values dc, and the

3. r can be set to the value of the largest neighborhood, and, then, smallest neighborhoods handled by as-
suming zero-valued contributions of the outer cells.
4. The time variable may either be continuous, represented byt, or discrete, represented byn. Signals in
this latter case are valid only at discrete time instances,t = nT, where n = 0, 1, 2, 3,...

r c r= c∀ GD∈

y f xc( )=

u uc c∀ GD∈{ , }= x 0( ) xc 0( ) c∀ GD∈{ , }=
y yc c∀ GD∈{ , }=

τc
dx

c

dt
-------- g x

c
t( )[ ] dc acd yd t,( ) bcd ud t,( )+{ }

d Nr c( )∈
∑+ += c∀ GD∈



SIRENA: A CAD Environment for Behavioral Modeling and Simulation of VLSI Cellular Neural Network Chips

5

nature and values of the interactions within each cell neighborhood, which are represented
through thefeedback (acd(.)) andcontrol (bcd(.)) contributions.

It is not this paper´s purpose to discuss in detail the signal processing capabilities of

CNNs, neither to provide coverage of the mathematical implications (stability, convergence,

etc.) of their nonlinear dynamics. Broader views can be encountered in [4] and the many refer-

ences quoted there.

 b) SIRENA Environment Architecture

SIRENA is a simulation environment for Cellular Neural Networks oriented towards

VLSI implementation. It has been developed using C language and object-oriented program-

ming techniques and currently runs under the UNIX operating system and the X-Windows

framework. The main objective in the development of this simulation package has been to

achieve a significant degree of generality, efficiency and modularity, in an attempt to overcome

the limitations in the field of CNN design of currently available non-specific CAD tools.

Generality means, for a specific tool like this, to avoid any restriction on the model of the

basic processing unit of the network that can be implemented for simulation. Any network based

on a cellular structure in which interconnection between the basic cells is, somehow, restricted

to a specific neighborhood (which could be as large as the network itself), and whose operation

relays on some nonlinear dynamics taking place within the individual processors of the array,

can be described and simulated by SIRENA. An specially developed high-level language

(DECEL) has been developed to accomplish this. A careful object-oriented programming of the

environment allows feasible operation with widely different CNN models without further mod-

ification or recompilation of the main tools source code. Diverse models for the connectivity

operators (see eq. (2)) can be defined. The extent and shape of the neighborhood, the strength

of the contributions, and the nature of the functions that perform the connection, can all be arbi-

trarily set by appropriate DECEL descriptions. Within the cell core, different nonlinear opera-

tors responsible for the output generation, and subsequently determining the network dynamics

due to the feedback performed by the cells output (see eq. (1)), can be defined. Higher order

dynamics are also achievable, since an indefinite set of state variables and differential (or finite-

differences) equations can be implemented and simulated. These low restrictions on the model

definition makes SIRENA an important development tool for cellular and nonlinear dynamics

research. Besides, the readiness for progressive model refinement converts this environment in

a useful tool for CNN-based IC design and VLSI CNN-based circuits simulation.

Efficiency of SIRENA is related to the form in which network models are described, com-

piled and linked to other components of the system. Because it is a specific software package,

committed to the simulation of cellular networks governed by local interactions and nonlinear

dynamics, the network description comprises the local features of the basic processing unit

while the global architecture and topology is embedded within the simulator core. Regularity



SIRENA: A CAD Environment for Behavioral Modeling and Simulation of VLSI Cellular Neural Network Chips

6

and uniformity of CNNs emphasizes the operation in the local range --the large scale perfor-

mance emerges from the cooperative behavior of the individual processors. A hierarchical

description of the network can be done, leading to smaller models and, consequently, requiring

less resources and simulation time. Another key for efficiency, also available in SPICE-like sim-

ulators, is the arbitrary complexity of the model. From a pure algorithmic and theoretical sketch

of the circuit to a highly detailed description, with a deep analysis of parasitics and higher order

dynamics, DECEL offers the same simple and systematic approach that allows progressive

insight on the network behavior based upon model refinement. For a particular study, some phe-

nomena can be intentionally highlighted while some neglected.

Besides,modularity of the system resides on the independence of its principal compo-

nents. Each of the three main tools (Fig. 1), namely: the Model Generator (GMS), the Simulator

Core (NSS) and the Graphical User Interface (GUI), has been developed independently within

the production of the whole project. Communication between them is performed with the help

of an especially developed library of functions which establishes the necessary links and coor-

dinates data interchange. These characteristics confer SIRENA workable expansion and

improvement based upon this primal version of the system executable code. In other words,

future versions or improved capabilities of any of the components can be realized and imple-

mented without rethinking, reorganizing and recompiling the rest of the system. Integration of

this environment within a higher structure, a comprehensive design framework, can be achieved

without major difficulties. Finally, it will be an interesting study to address interaction between

SIRENA and different simulation tools, concerning model and data exchange and compatibility.

Therefore, SIRENA makes use of a user-defined network description that is properly han-

dled and compiled into a usable format by the model generation program, GMS. A network

description file, written in DECEL, is fed into GMS and the proper linkage to the NSS is per-

formed (Fig. 1). Specific auxiliary files describing network components and behavior, to be used

during simulation processes, are generated. On the other hand, data files, written by the user as

well, contain the information concerning the particular characteristics of the experiment,i. e.

size of the network, input data, parameter values, etc. These files together are employed by the

NSS to perform the simulation. The simulation process is initialized and configured from the

GUI, via one of its tools (XINSS), or with the help of a simulation script in which integration

method, convergence criterion, type and timing of the analysis are set by commands understand-

able by the Simulator Core. This command-like input to the NSS allows control of a simulation

or a set of simulations by user-defined scripts. Outputs are appended to an output file that can

be simultaneously parsed by the GUI (XEVMS) to visualize the evolution of the network sim-

ulation. The format of the output can be set in the simulation script before the execution time or

modified after the simulation by any of the graphic format translation tools.



SIRENA: A CAD Environment for Behavioral Modeling and Simulation of VLSI Cellular Neural Network Chips

7

 c) SIRENA Model Generator (GMS)

The first step involved in the simulation of a CNN in SIRENA is the definition and creation

of the network model. A high-level programming language, called DECEL, has been developed

to realize this job. Let us use the example in Fig. 2 to illustrate the procedure for defining and

compiling a CNN model to be handled by SIRENA tools. Any DECEL description file (chua.cs

in the example) is composed of three parts: variables declaration, evolution section and network

definition. In the first part every magnitude implicated in the CNN behavior is itemized indicat-

ing a type from a pre-defined set, namely:matrix , template , bound , scalar . This is nec-

essary for an appropriate memory space management. After that, theevolution  section

states the relations between the declared variables. Equations stating these relations make use

of the extensive C-language mathematical libraries. Besides, special operators have been con-

ceived for nonlinearities implementation, for instance, some logical operators allow the intro-

duction of piece-wise defined functions. Also connectivity and dynamic coupling with the

neighborhood can be expressed in terms of DECEL statements. That includes formal clauses

expressing connection operators, template elements, boundary conditions, etc. In this stage, dif-

ferent phenomena derived from a specific implementation of the algorithm can be addressed and

included in the network model. Once the static part of the evolution section is fulfilled, listing

explicit expressions for different variables as a function of some others, the dynamics must be

detailed. Hence, the CNN model is defined as a system of first order differential equations (or

finite differences equations, in the case of discrete-time networks). Higher order dynamics can

be defined by a recursive method of sustitution. Therefore this 2nd-order differential equation:

Simulation
Control

Compo-
nents

GMS

C Compiler

CMS

Visualization and
edition of images

Network
Model

(DECEL)

Data file

GRAPHICAL
INTERFACE (GUI)

(XINSS &
XEVMS)

NSS

Interpreter
Synchronism IESS

USER

Fig.1: Conceptual block diagram of SIRENA.

Behavior



SIRENA: A CAD Environment for Behavioral Modeling and Simulation of VLSI Cellular Neural Network Chips

8

(3)
ought to be written as:

(4)

and this same fashion applies for a higher order differential equation, supporting the simulation

of nth-order dynamics. As depicted in the example (Fig. 2), several DECEL operators have been

used to complete the network evolution section. Although some are self-explanatory, like

derivative operator, some other may need further illustration. In the first place, connection

evaluator (><) is found. This operator relates a template-type variable with a matrix-type one

and performs multiplication of each template element with the neighborhood of each of the ele-

ments of the matrix. The boundary conditions evaluator (#) helps evaluating the connection of

elements in the border of the matrix. Conditional operator (: ) is employed in piece-wise defined

functions, like the piece-wise linear function generating the cell output in the example. Finally,

a one-layer network is defined in thenet  section. This section will resemble the same format

in most of the cases, when working with single-layer CNNs. It will be more complex when con-

cerning multilayered architectures. More details about the syntax of DECEL will be given in

Sect. III, while exhibiting modeling capabilities of the environment.

Once the DECEL description of the network has been made, it is compiled and linked to

ẏ̇ aẏ by cx d+ + +=

ż az by cx d+ + +=

ẏ z= 



Fig.2: DECEL network description file sample.

net

sublayer layer_chua net_chua; //Unique layer of the network

end

evolution

derivative(x) = (-x + a><y#bound_y + b><u#bound_u + d)/tau;

y = [ x<=-1 : -1 | x>=1 : 1 | x ];

layer layer_chua

matrix u, x, y; //Input, state and output variables

template a, b; //Feedback and control templates

bound bound_u, bound_y; //Boundary conditions

scalar d; //Offset term

scalar tau; //Time constant

layer
components
declaration

layer
equations

network
definition

chua.cs



SIRENA: A CAD Environment for Behavioral Modeling and Simulation of VLSI Cellular Neural Network Chips

9

the simulator core for further operation. Two files are generated,chua.des andchua.mro in the

example, which contain network components and behavior, respectively. It is important to men-

tion that no specific values for the network variables are included in the model definition and

compilation stages. Separation between functional description of the model and instance-values

assignments permits the development of more general CNN models and the construction of a

model library that can be extensively utilized by non-experienced in DECEL users. On the other

hand, skilled user may program the CNN model directly in C language, avoiding any kind of

limitations imposed by DECEL syntax.

 d) The Simulator Core (NSS)

This tool is responsible for the numerical integration of the system of nonlinear differen-

tial equations describing the CNN behavior (eq. (2)). Before running the simulation process,

SIRENA’s simulator core (NSS) must be properly set up. It can be done interactively via the

graphical user interface (GUI) or using a script file. Let us analyze the format of this file and the

commands involved in the simulation environment initialization (Fig. 3). The same steps ought

to be followed when using the GUI. First of all, the network model is specified loading the cor-

responding model description file, described in the previous section. After that, a few com-

mands select the integration method, and give values to its associated parameters. A couple of

integration algorithms are actually programmed, namely fourth-order Runge-Kutta with fixed

time-step, and with an automatic time-step control. Other integration algorithms as Forward-

Euler, Backward-Euler, Trapezoidal and Gear methods can be easily incorporated and included

in future versions of SIRENA. The choice of Fourth-order Runge-Kutta (eq. (5) and (6) below),

as the first integration method implemented in this tool, is motivated by the proven efficiency of

this algorithm in the integration of this kind of systems of differential equations. A comparison

between this method and Explicit Euler and Predictor-Corrector algorithms is made in [12].

(5)

(6)

The next step is the selection of the absolute or relative criterion for the convergence of

f c x t( )( ) τ xcd
td

--------= xc tn 1+( ) xc tn( ) f c x t( )( ) td

tn

tn 1+

∫+=

f c x t( )( ) td

tn

tn 1+

∫
k1

c

6
-----

k2
c

3
-----

k3
c

3
-----

k4
c

6
-----+ + +=

k1
c

t∆ f c x tn( )( )⋅=

k2
c

t∆ f c x tn( ) 1
2
---k1+ 

 ⋅=

k3
c

t∆ f c x tn( ) 1
2
---k2+ 

 ⋅=

k4
c

t∆ f c x tn( ) 1
2
---k3+ 

 ⋅=



SIRENA: A CAD Environment for Behavioral Modeling and Simulation of VLSI Cellular Neural Network Chips

10

the CNN simulation. After the selection, parameter values are assigned and particularized for

the simulation. In these conditions, a network has converged to a final state if the relative incre-

ment for each time-unit of its variables between two consecutive iterations is less than a certain

predetermined valueεk (7). This causes the simulation to stop and the final results are available.

(7)

The rest of the script file is committed to the initialization of the network model variables.

Each of the components of the CNN model is loaded from a specified file, in which values are

given to the previously declared variables (Fig. 4). Therefore, a specific experiment, with spe-

cific network size and parameter values, is defined.

The output files and format of these data are selected next and, finally, the simulation is

xk∆
max xk min x( ),( ) t∆⋅
---------------------------------------------------- εk< t∆ incrtmin≥

loadnet chua.des

sel conv hf conv_rel

coef eps=0.001 min=1e+6 incrtmin=1e-6

sel integ hf rkcp

coef pmax=1e-5 errmin=1e-3 pini=1e-6 eps=0.001

input hf.a<chua.a hf.in

input hf.b<chua.b hf.in

input hf.d<chua.d hf.in

input hf.u<chua.u hf.in

input hf.x<chua.x hf.in

input hf.boundy<chua.boundy hf.in

input hf.boundu<chua.boundu hf.in

input hf.tau<chua.tau hf.in

defoutput hf  out_hf std

output out_hf hf.y

result hf out_hf

chua.com

load network
model

select
convergence
criterion

I/O files and
format

select
integration
method

simulate hf tmax 5e-5 Simulation
command

Fig.3: NSS script file example



SIRENA: A CAD Environment for Behavioral Modeling and Simulation of VLSI Cellular Neural Network Chips

11

launched by thesimulate  command. In some special cases (those considering interaction

between different networks) a special “synchronization” code must be specified. NSS can be run

either in the foreground with an interactive command shell, in background from the UNIX shell,

or activated from the X-Windows graphical user interface.

EST chua.u "Input Matrix"

MAT DIM 1 8 8

VAL -1 -1 -1 -1 -1 -1 -1 -1

1 -1 1 1 1 1 1 -1

-1 1 1 -1 -1 -1 1 -1

1 -1 1 1 1 1 1 -1

-1 1 1 -1 -1 -1 1 -1

1 -1 1 -1 -1 1 1 -1

-1 1 1  1  1 -1 -1 -1

-1 -1 -1 -1 -1 -1 -1 -1

hf.in

Fig.4: NSS input data file example

EST chua.boundy "Y Boundary"

CON DIM VEC

VAL -1.0

EST chua.d "Offset term"

MAT DIM 8 8

VAL [* *] -1

EST chua.tau "Time constant" VAL 1.0e-6

EST chua.a "Feedback template"

CEL VEC CUA 1

VAL 0.00 1.00 0.00

1.00 2.00 1.00

0.00 1.00 0.00

EST chua.b "Control template"

CEL VEC CUA 1

VAL 0.00 0.00 0.00

0.00 4.00 0.00

0.00 0.00 0.00

template
elements

offset term
and
time constant

boundary
conditions

input
matrix



SIRENA: A CAD Environment for Behavioral Modeling and Simulation of VLSI Cellular Neural Network Chips

12

 e) The Graphical User Interface

Communication between the user and SIRENA’s simulator core can be realized in three

different modes. Running in the foreground, using an interactive command shell for simulation

configuration and control, or in background with the help of a script file. In either case, output

visualization and input edition are restricted to the manipulation capabilities of other tools

within the mainframe. In order to improve user interaction with the simulation control, inputs

and outputs, a Graphical User Interface (GUI) for SIRENA was developed, in parallel to the

NSS, under the X-Windows framework. The GUI is a collection of graphical tools and libraries

which provides user-friendly communication with the simulator core. It allows the control and

supervision of the NSS performance, facilitates input and output visualization and edition, and

permits data exchange with other widespread graphical tools running under UNIX operating

system. Fig. 5 gives a conceptual view of the GUI and its components interactions.

These tools can be classified into three groups: communication tools, data translators and

the properly called GUI. In the first class:

• IESS: an I/O functions library that manages data flow and exchange between the rest of

the tools constituting the whole SIRENA package. Actually it is not accessed by a com-

mon user but it becomes a necessary reference for environment developers.

• AFDS: data files parser, prints error messages if syntax errors are found inside input data

files avoiding NSS and visualization tools faults derived from mistaken input processing.

Fig.5: Conceptual block diagram of the Graphical User Interface.

NSS

AFDS

TFSGSI

TFSXG

XVMS

XEVMS

XINSS

Data
files

IESS

IESS

IESS

IESS

IESS

IESS

IESS

IESS

Data translators

Graphical User
Interface

Communication tools



SIRENA: A CAD Environment for Behavioral Modeling and Simulation of VLSI Cellular Neural Network Chips

13

Data translators allow data formatting to make use of different graphic tools (Fig. 6). As

SIRENA’s output viewer is intended to visualize matrices in a color or gray scale, these routines

make possible the representation of waveforms of any of the network variables.

• TFSXG: converts SIRENA output files, that can be ASCII or binary coded, toxgraph

(xvgr compatible, used in Fig. 6.a) manageable files.

• TFSGSI: converts SIRENA output files togsi [10] (hsplot compatible, Fig. 6. b) compat-

ible format.

Finally, the X-Windows based tools conform the graphic front end from which the user

can control interactively the whole simulation process:

• XINSS: graphical interface with the simulator core of SIRENA under the X-Windows

system. Provides interactive access to the simulation control and output, allowing visual-

ization of results during the simulation and configuration-parameters edition.

Fig.6: Waveform of network outputs visualization with a)xgraph and b)gsi.

b)a)

Fig.7: XINSS: graphical user interface with NSS

simulation log info

output file info

parameters setup

viewer info

input file info

setup commands



SIRENA: A CAD Environment for Behavioral Modeling and Simulation of VLSI Cellular Neural Network Chips

14

• XVMS: matrix viewer, allows image visualization and image-sequences animation. With

the help of a command file (ASCII text format), XINSS starts the simulation (Fig. 7), and

permits output monitoring using XVMS while it is running, as well as on-line simulation

parameters modification. Fig. 8 shows the transient analysis of a 8× 8 cells network for

connected components detection as seen with XVMS.

• XEVMS: matrix editor, enhanced version of the visualizer with capabilities for the cre-

ation and modification of images, as well as import/export features (Fig. 9).

Fig.8: XVMS: Network input image (a) and output pattern (b) with a set
of intermediate states in the simulation sequence.

b)a) file and setup info

image sequence browser

Fig.9: Input edition with the extended matrix viewer (XEVMS).

sequence browser

file info

image window

edition menus



SIRENA: A CAD Environment for Behavioral Modeling and Simulation of VLSI Cellular Neural Network Chips

15

 III. CNN MODELLING WITH SIRENA

Development of the CNN paradigm (2) concerning aspects of the electronic implementa-

tion requires efficient CAD tools based on arbitrarily detailed descriptions of the network. Basic

algorithms and also low level physical effects must be representable. SIRENA makes use of an

especially developed high-level programming language DECEL. It is used to specify the com-

ponents --network constants and variables, and behavior of the cells --time evolution and com-

ponents bindings. This results in a model that can range from the pure algorithmic level to a

highly detailed description, with a vast number of non ideal characteristics accounting for pre-

dictable effects in electronic implementations (impedance coupling amongst input and output

nodes of the cells, undesired nonlinearities, parasitic elements effects, non-uniformity caused

by devices mismatch, etc.). SIRENA considers a CNN as a set of layers which evolve in an inde-

pendent but coordinated manner and interact in determined time instants by transferring some

variables value. Layer equations and variables are extracted from the DECEL description of the

CNN model. The whole network definition is stated by the declaration of all the layers consti-

tuting the complete CNN and a synchronization code. This outlines simulation timing schedule

and data interchange between layers in multi-layered networks and multi-network systems sim-

ulation. In other words, DECEL network definition begins at the bottom part of the hierarchy,

stating components and behavior of each elementary processor. Then, layer variables and equa-

tions come out from the collection of the components and behavior of each individual cell, and

finally, an assembly of synchronized (if required) layers conforms the top level --network defi-

nition. Let us describe some examples with different CNN implementations to illustrate the

modeling capabilities of SIRENA.

 a) Chua and Yang original CNN model

The original model proposed by Chua and Yang [1] describes time evolution and neigh-

borhood coupling of each individual cell (c) within the grid domain (GD) in terms of a network

time-constant (τ), a radius of vicinity (r), feedback and control templates (ac
d  andbc

d ) that

weight the influence of the neighbors’ input and output variables (ud andyd respectively) and an

offset term (dc) (Fig. 10). Cell state is the integral of a sum of weighted contributions from the

coupled neighboring processors, an offset term and a losses term, and cell output is a sigmoidal

non-linear function of the state, as expressed by the following equations:

(8)

(9)

τ xcd
td

-------- x– c ad
cyd bd

cud+{ }
d Nr c( )∈

∑ dc+ += c∀ GD∈

y
c

f xc( )
1– if xc 1–<

xc if xc 1≤
1 if xc 1>






= =



SIRENA: A CAD Environment for Behavioral Modeling and Simulation of VLSI Cellular Neural Network Chips

16

Some modified versions of this initial model introduce new features and algorithm extension,

like nonlinear or delay-type templates [13], or discrete-time emulations [14]. Other works report

a model oriented towards VLSI implementation [15].

DECEL definition of this ideal model (Fig. 11) begins with variable declaration. After

that, layer equations must be specified. This section is just a translation of the mathematical

statements (8) and (9) into DECEL syntax. Finally a network with one layer is declared:

f(xc)(ac
c/R)yc(ac

d/R)yd

+

−
xc

+

−
uc

+

−
yc

R C dc/R f(xc)

xc

1

1

-1

-1

Fig.10: CNN model originally proposed by Chua and Yang.

(bc
d/R)ud(bc

c/R)uc

net

sublayer chua chua1; //Unique layer of the network

end

evolution

derivative(x) = (-x + a><y#bound_y + b><u#bound_u + d)/tau;

y = [ x<=-1 : -1 | x>=1 : 1 | x ];

layer chua

matrix u, x, y; //Input, state and output variables

template a, b; //Feedback and control templates

bound bound_u, bound_y; //Boundary conditions

scalar d; //Offset term

scalar tau; //Time constant

Fig.11: DECEL description of the Chua-Yang CNN model.

layer
components
declaration

layer
equations

network
definition

chua.cs



SIRENA: A CAD Environment for Behavioral Modeling and Simulation of VLSI Cellular Neural Network Chips

17

This DECEL description of the CNN model is now compiled and the components and

behavior files are linked to the NSS for further utilization. As referred before, no information

about parameters value, nor even about network dimensions is contained inside the model

description. Instance values assignments, as well as network sizing, is done in different input

file, giving the model a large degree of generality. Any network of any size using any set of tem-

plates [16] for this CNN model can be simulated with this DECEL description, without recom-

piling the sources.

This ideal CNN model has been implemented in HSPICE (v. 95.1) using ideal elements

and piece-wise-linear voltage-controlled current sources, and also in SIRENA. Several simula-

tions have been run for different network sizes, ranging from 4 (arranged in a 2× 2 matrix) to

1024 cells (32× 32 matrix), in a Sun Microsystems SPARC Server 1000E with 4 CPUs and 512

Mb RAM. The employed templates performed Connected Component Detection of binary input

patterns [17]. The information generated by the system when running these simulation pro-

cesses under UNIX reports a certain advantage for SIRENA concerning the use of the system

resources. The following graph (Fig. 12) illustrates CPU time consumptions by SIRENA and

HSPICE. Fig. 13 shows the waveform plots of the cell state variable (xc) and the cell output vari-

able (yc) generated by HSPICE and SIRENA for the simulation of a 4× 4 CNN based on Chua-

Yang model.R andC have been chosen to have a time constant of 1µs.

Fig.12: Log-log graphs of the CPU time consumed by HSPICE (95.1) and SIRENA
simulations vs. the number of cells in the network.

SIRENA

HSPICE

10 100 1000
number of cells (n)

0

1

10

100

C
P

U
 ti

m
e 

(s
ec

on
ds

)



SIRENA: A CAD Environment for Behavioral Modeling and Simulation of VLSI Cellular Neural Network Chips

18

Fig.13: Simulation waveforms of a 4× 4 cells CNN for Connected Component Detection
using Chua-Yang original CNN model given by HSPICE (v.95.1) and SIRENA.

Input image Output pattern

C
el

l S
ta

te
 V

ar
ia

bl
e:

 X
 (

vo
lts

)
C

el
l O

ut
pu

t V
ar

ia
bl

e:
 Y

 (
vo

lts
)

HSPICE
SIRENA

HSPICE
SIRENA



SIRENA: A CAD Environment for Behavioral Modeling and Simulation of VLSI Cellular Neural Network Chips

19

 b) OTA-based CNN implementation

In this section, a straight forward realization of a programmable CNN is going to be mod-

eled. This OTA based CNN [18] represents a direct mapping of the coupled differential equa-

tions defining the CNN dynamics onto some standard CMOS circuit primitives. In this

approach, an OTA block performs the nonlinear operation on the state variable (GmA in Fig. 14).

Multiplication of the input and output variables and the template elements is performed over the

output current of the OTA. This current has been replicated a number of times to implement the

whole set of template elements, a total of eighteen multipliers. As in [15], multiplication occurs

inside each cell and the properly weighted contribution is passed to the neighborhood. Because

of this, template elements should be reorganized to achieve the task for which they were

designed [3]. Currents, representing these neighbor contributions and the self-feedback compo-

nents, are added by wiring them together at the input node of each cell. Dynamic evolution of

every cell within the grid domain (GD) is described by:

(10)

whereGmA includes nonlinear operation and multiplication. To understand the way in which

this is accomplished let us have a look at the OTA-multiplier block implementation (Fig. 15).

To compute the currents through transistors Mn1 and Mn2, which operate as an input differential

pair, we have:

and (11)

from where it can be derived

(12)

and:

(13)

Cxij

Vxij
d

td
-----------

Vxij

Rxij

--------– GmAkl
Vakl

Vxkl
,( ) GmBkl

Vbkl
Vukl

,( )+{ }
k l, N∈
∑ I bias+ +=

I B I Mn1
I Mn2

+= βnVin I Mn1
I Mn2

–=

I Mn1

I B if Vin

I B

βn
----->

I B

2
----- βnVin

2I B

βn
-------- Vin

2
–+ if Vin

I B

βn
-----≤

0 if Vin

I B

βn
-----–<













=

I Mn2

0 if Vin

I B

βn
----->

I B

2
----- βnVin

2I B

βn
-------- Vin

2
–– if Vin

I B

βn
-----≤

I B if Vin

I B

βn
-----–<













=



SIRENA: A CAD Environment for Behavioral Modeling and Simulation of VLSI Cellular Neural Network Chips

20

For the p-channel differential pairs we have, approximating by the first order term of a Taylor

ib22

ib00

ia22

Fig.14: OTA-based CNN implementation conceptual schematics.

GmA

Vx
f+(Vx)

f-(Vx)

Va11 Va22

Va00

GmB
Vu

f+(Vu)

f-(Vu)

Vb11 Vb22

Vb00

Ibias Cx Rx

from the neighbors
ia00

to the neighbors

+

−
Vin

IB
io

Fig.15: CMOS realization of the OTA-multiplier block.

VSS

VDD

Mn1 Mn2

Mpm4

Mpm3

Mpm2

Mpm1

Mnm2Mnm1

Mp3 Mp4 Mp5 Mp6

Vaij



SIRENA: A CAD Environment for Behavioral Modeling and Simulation of VLSI Cellular Neural Network Chips

21

expansion, and within the linear range of operation :

 and (14)

and therefore, the output current is given by:

(15)

Finally, using (11), (12) and (13), the output current of one of the multipliers can be

approximated as a piece-wise-linear function of the state variable:

(16)

where the saturation limits are set to a value that becomes the normalizing factor for equation

(10) in order to represent the evolution of a CNN. Template elements have to be redesigned

because of this equation scaling [19]. Modelling of this specific implementation of a CNN

within SIRENA environment (Fig. 16 shows fileota.cs) includes the formal declaration of the

variables and CMOS parameters, relations between these variables, and the evolution section

with the differential equation.The model description ends with the network definition.

A comparison between HSPICE (v. 96) output and SIRENA results can be made in order

to validate this software implementation of the circuit. As before, templates for connected com-

ponent detection are employed. Table 1 shows the values assigned to each variable and param-

eter, extracted from HSPICE models of the CMOS devices and the analysis of the circuits

implementing the algorithm.

Level 3 models for the MOS devices have been used for HSPICE simulation. Using the

graphical user interface [20] the waveforms of the state variables of the CNN array can be gen-

erated and observed. Also, with the help of one of its format conversion tools, a plot of the out-

put of both simulators can be displayed with HSPICE graphic interface (GSI) for a comparison

(Fig. 15). Once again, reliability of this tool is stated by the similarity of the results obtained by

the two different simulators. CPU time and memory consumption figures give some advantage

to SIRENA when compared with HSPICE. In this case, for a 4× 4 cells CNN simulation in a

SPARC Station 10/51 with 32 MB RAM, SIRENA needs 924kB RAM and 61.5 CPU seconds

compared to the 7452kB and 279.8 CPU seconds required by HSPICE.

Vaij I Mn1 2,
βp⁄≤

I Mp3

I Mn2

2
---------- 2βpI Mn2

Vaij+=

I Mp4

I Mn2

2
---------- 2βpI Mn2

Vaij–=

I Mp5

I Mn1

2
---------- 2βpI Mn1

Vaij–=

I Mp6

I Mn1

2
---------- 2βpI Mn1

Vaij+=

I outij
I Mp6

I Mp5
–( ) I Mp3

I Mp4
–( )–= 2βpVaij I Mn1

I Mn2
–( )=

I outij

2βpI BVaij if Vin

I B

βn
----->

2βpβnVaij Vin if Vin

I B

βn
-----≤

2βpI B– Vaij if Vin

I B

βn
-----–<













≅



SIRENA: A CAD Environment for Behavioral Modeling and Simulation of VLSI Cellular Neural Network Chips

22

evolution
//Input Diff pair currents
i1x = [ vx >= sqrt(ibx/b1x) : ibx |vx <= -sqrt(ibx/b1x) : 0 |

ibx/2 + (1/2)*b1x*vx*sqrt(2*ibx/b1x-vx*vx)];

i2u = [ vu >= sqrt(ibu/b1u) : 0 |vu <= -sqrt(ibu/b1u) : ibu |
ibu/2 - (1/2)*b1u*vu*sqrt(2*ibu/b1u-vu*vu)];

// Multiplier a00
i3a00 = [ va00 >= sqrt(i2x/b3a00) : i2x |va00 <= -sqrt(i2x/b3a00) : 0 |

i2x/2 + (1/2)*b3a00*va00*sqrt(2*i2x/b3a00-va00*va00)];

// Multiplier b22
i3b22 = [ vb22 >= sqrt(i2u/b3b22) : i2u |vb22 <= -sqrt(i2u/b3b22) : 0 |

i2u/2 + (1/2)*b3b22*vb22*sqrt(2*i2u/b3b22-vb22*vb22)];
i5b22 = [ vb22 >= sqrt(i2u/b3b22) : 0 |vb22 <= -sqrt(i2u/b3b22) : i2u |

i2u/2 - (1/2)*b3b22*vb22*sqrt(2*i2u/b3b22-vb22*vb22)];
i6b22 = [ vb22 >= sqrt(i1u/b4b22) : i1u |vb22 <= -sqrt(i1u/b4b22) : 0 |

i1u/2 + (1/2)*b4b22*vb22*sqrt(2*i1u/b4b22-vb22*vb22)];
i4b22 = [ vb22 >= sqrt(i1u/b4b22) : 0 |vb22 <= -sqrt(i1u/b4b22) : i1u |

i1u/2 - (1/2)*b4b22*vb22*sqrt(2*i1u/b4b22-vb22*vb22)];

// Output currents
iout=i1x-i2x;
io00x=i6a00+i5a00-i3a00-i4a00;

io22u=i6b22+i5b22-i3b22-i4b22;
ibias=ibi1-ibi2;

// State variables time-evolution

  iin = p00><io00x#ic00x + p00><io00u#ic00u +

 p22><io22x#ic22x + p22><io22u#ic22u +
 ibias;

 derivative(vx) =(iin -vx/rx)/cx;

network
sublayer layer_otasc otasc;

end

Fig.16:  DECEL description of the OTA-based CNN model.

layer
equations

network
definition

layer layer_otasc
matrix vx; //State variable (voltage)
matrix vu; // Input variable (voltage)
matrix i1x,i2x; //Differential pair currents
matrix i1u,i2u; //Differential pair currents
matrix i3a00,i4a00,i5a00,i6a00; //Multipliers currents

matrix i3b22,i4b22,i5b22,i6b22; //Multipliers currents
matrix iin; // Cell input node current
matrix io00x,io01x,io02x; //Output currents

matrix io20u,io21u,io22u; //Output currents
matrix ibias; // Bias term current
matrix iout; //Output current
matrix b3a00,b4a00; //Multipliers parameters

matrix b3b22,b4b22; //Multipliers parameters
matrix ibi1,ibi2; // Bias term currents
template p00,p01,p02; //Evaluation of the neighborhood
template p10,p11,p12; //Evaluation of the neighborhood
template p20,p21,p22; //Evaluation of the neighborhood
boundary ic00x,ic01x,ic02x; //Boundary cells current

boundary ic20u,ic21u,ic22u; //Boundary cells current
scalar va00,va01,va02; // template voltages

scalar vb20,vb21,vb22; // template voltages
scalar vbias; // Bias term voltage
scalar cx,rx; // State capacitor & Loss Resistor

layer
components
declaration

ota.cs



SIRENA: A CAD Environment for Behavioral Modeling and Simulation of VLSI Cellular Neural Network Chips

23

An extended version of this model could be employed for Montecarlo analysis of the cir-

Fig.17: Waveforms of state variables of an OTA-based 4× 4 CNN performing Connected
Component Detection, simulated by HSPICE and SIRENA.

Input Output

HSPICE

SIRENA

C
el

l S
ta

te
 V

ar
ia

bl
e:

 V
x 

(v
ol

ts
)



SIRENA: A CAD Environment for Behavioral Modeling and Simulation of VLSI Cellular Neural Network Chips

24

cuit. This will be very useful to evaluate the implementation possibilities for a particular pro-

cess. Actual tolerance and parameter deviation can be specified and their influence studied with

the help of the statistical analysis capabilities of the environment.To take into account device

mismatches, some extra variables must be included in the OTA-based model. In addition, the

simplifications made to derive differential-pair currents (based on matched transistors) can not

be assumed. As a consequence, the description of a simple differential pair becomes more com-

plicated. As a starting point, let us consider that there are slight differences between electrical

parameters (transconductance and threshold voltage) of the two ideally matched transistors of a

differential pair:

 and (17)

The currents flowing through each of the two devices, given before by (12) and (13), are now

expressed by:

Variable, Parameter Name Value Units

Input and initial state (max) vx, vu 0.50 volts

Input and initial state (min) vx, vu -0.50 volts

Diff. pairs bias currents ibx, ibu 5.0× 10-6 amps

NMOS transconductance b1x,...,b2u 240× 10-6 A/V2

PMOS transconductance b3a00,...,b6b22 60× 10-6 A/V2

Template elements (unity) va00,...,vb22 0.3 volts

Bias term voltage(unity) vbias 0.3 volts

Boundary currents (unity) ic00x,...,ic22u 3.0× 10-6 amps

State variable capacitor cx 5.0× 10-12 farads

Losses resistor rx 5.0× 104 ohms

Table 1: OTA-based CNN model parameters.

βn1
βn

∆βn

2
---------+=

βn2
βn

∆βn

2
---------–=

VTn1
VTn

∆VTn

2
-------------+=

VTn2
VTn

∆VTn

2
-------------–=



SIRENA: A CAD Environment for Behavioral Modeling and Simulation of VLSI Cellular Neural Network Chips

25

 c) A current-mode CNN model based on a hardware realization

In order to deepen inside SIRENA macromodeling capabilities, let us consider now the

current mode implementation [15] of a CNN based on the exhaustive use of current mirrors, and

designed to perform Connected Component Detection [17] of binary input patterns. Templates

for this operation have the following values:

(20)

This specific-application CNN is rather simple, having null control template and offset term,

and only two neighbors connected. Still, it will be useful to illustrate the capabilities of

SIRENA. Besides, this circuit has been successfully designed, integrated, proven and reported

[21].

Let us consider the schematic of the basic processor depicted in Fig. 18. First, state vari-

ables of basic cells must be appointed, and their evolution laws must be established. We have

chosen the voltages across capacitorsCx, Cyp andCyn to be our state variables, namely:x, yp and

yn. These two latter are the output variables of the cell, limited versions of the cell statex, each

with different sign. In these conditions, time evolution of the three state variables is described

(with the help of some auxiliary currents that will be defined later) by the following set of equa-

tions:

IMn1 = ((2βn + ∆βn)(-2βn∆βn∆VTn
2 + ∆βn

2∆VTn
2 + 4βnIB + 4βn∆βn∆VTnVin−

2∆βn
2∆VTnVin - 2βn∆βnVin

2 + ∆βn
2Vin

2 + (2βn − ∆βn )(Vin− ∆VTn)

sqrt(- 4βn
2∆VTn

2 + ∆βn
2∆VTn

2 +8βnIB+ 8βn
2∆VTnVin− 2∆βn

2∆VTnVin

- 4βn
2Vin

2 + ∆βn
2Vin

2)))/16βn
2

IMn2 = ((2βn - ∆βn)(2βn∆βn∆VTn
2 + ∆βn

2∆VTn
2 + 4βnIB + 4βn∆βn∆VTnVin−

2∆βn
2∆VTnVin - 2βn∆βnVin

2 + ∆βn
2Vin

2 + (2βn + ∆βn )(Vin− ∆VTn)

sqrt(- 4βn
2∆VTn

2 + ∆βn
2∆VTn

2 +8βnIB+ 8βn
2∆VTnVin− 2∆βn

2∆VTnVin

- 4βn
2Vin

2 + ∆βn
2Vin

2)))/16βn
2

(18)

(19)

A
0 0 0

1 2 1–

0 0 0

= B
0 0 0

0 0 0

0 0 0

= d 0=



SIRENA: A CAD Environment for Behavioral Modeling and Simulation of VLSI Cellular Neural Network Chips

26

(21)

Now, currenticx is the sum of a feedback term, double of the current generated by cell state vari-

able, and the neighbors contribution with the sign commanded by the feedback template, apart

from the current injected by the current mirror supporting the state capacitor. Each current con-

tribution towards this node has a positive component, due to the current sources implemented

with PMOS transistors, and a negative term dragged by the n-channel devices,

(22)

Currents flowing towards the other two state capacitors are computed in a similar manner:

(23)

Fig.18: Schematic diagram of a current-mode CNN cell for Connected Component
Detection based on bias-shifted current mirrors.

+

−
x

+

−
yp

+

−
ynCx Cyp Cyn

VG

VG

x

x2

x2
yp

l yn
r

icpl

icnr

icpr

icnl

2icpc

2icnc

icpx

icnx

icx icyp
icyn

icpyp icpyp icpyn icpyn

icn1yp

icn2yp

icn1yn

icn2yn

xd
td

-----
i cx

Cx
------=

ypd

td
--------

i cyp

Cyp
--------=

ynd

td
--------

i cyn

Cyn
--------=

i cx 2 i cpc icnc–( ) i cpl i cnl–( ) i cpr icnr–( ) i cpx icnx–( )+ + +=

i cyp 2i cpyp icn1yp icn2yp––=



SIRENA: A CAD Environment for Behavioral Modeling and Simulation of VLSI Cellular Neural Network Chips

27

(24)

Finally, each term in (22), (23) and (24) is obtained from level-one Schichman-Hodges MOS

transistor equations for the drain-to-source current, detailed here for a clearer exposition of the

DECEL description of this current-mode CNN model. For NMOS transistors:

(25)

while for PMOS devices:

(26)

Once the state variables and equations are stated, a DECEL description of the model can

be made (Fig. 19). Let us go throughcm.es file. Within layer components declaration, state vari-

ables are defined as matrices. Neighbors’ output matrices are defined also for convenience.

After that, auxiliary currents used to evaluate the contributions to the time derivatives (21) of

the state variables are stated. It is necessary to have the information about neighbors output vari-

able within each cell to compute the contributionsicpl, icpr, icnl andicnr to the current flowing

through nodex. Two templates are declared for this purpose (weights of the connections can be

included here or left to further description within layer equations statement). Finally, boundary

conditions and several design and technological parameters are declared, namely the power sup-

ply and bias voltages, transistor aspect ratios, transconductance parameters and threshold volt-

ages, and state capacitors.

Layer equations are depicted next. At the beginning of this section, output variables of the

neighbors are assigned to cell variablesyl andyr. After that, auxiliary currents are calculated

based on the transistor model described by (25) and (26), concluding with DECEL statements

equivalent to equations (22), (23) and (24). Thisevolution section ends with the time evolution

laws of the state variables (21). The last part of the model description is the network definition,

and once again this is a one-layer CNN.

Table 2 shows the values assigned to each variable and parameter, extracted from HSPICE

models of the CMOS devices and circuit analysis.

i cyp 2i cpyp icn1yp icn2yp––=

I ds

0 if Vgs VTn<

knsn Vgs VTn–( )Vds

Vds
2

2
--------– if Vds Vgs VTn–≤

kn

2
-----sn Vgs VTn–( )2 if Vds Vgs VTn–>











=

I sd

0 if Vsg VDD VTp–>

kpsp Vsg VTp–( )Vsd

Vsd
2

2
---------– if Vsd Vsg VTp–≤

kp

2
-----sp Vsg VTp–( )2 if Vsd Vsg VTp–>











=



SIRENA: A CAD Environment for Behavioral Modeling and Simulation of VLSI Cellular Neural Network Chips

28

evolution

yl= ayl><yp#bound_yp;

yr= ayr><yn#bound_yn;

icpl= [ x < vg+vtp : (kp*sp/2)*(vdd-vg-vtp)*(vdd-vg-vtp) |

kp*sp*((vdd-vg-vtp)*(vdd-x)-(vdd-x)*(vdd-x)/2) ];

icnl2= [ x > (yl-vtn) : (kn/2)*sn*(yl-vtn)*(yl-vtn) |

kn*sn*((yl-vtn)*x -x*x/2) ];

icnl= [ yl > vtn : icnl2 | 0 ];

icpr=icpl ;

icnr2= [ x > (yr-vtn) : (kn/2)*sn*(yr-vtn)*(yr-vtn) |

kn*sn*((yr-vtn)*x -x*x/2) ];

icnr= [ yr > vtn : icnr2 | 0 ];

icpc=2*icpl ;

icnc2= [ x > (yp-vtn) : kn*sn*(yp-vtn)*(yp-vtn) |

2*kn*sn*((yp-vtn)*x -x*x/2) ];

icnc= [ yp > vtn : icnc2 | 0 ];

icpx= icpl;

icnx= [ x < vtn : 0 | (kn/2)*sn*(x-vtn)*(x-vtn) ];

icpyp= [ yp < vg+vtp : (kp*sp/2)*(vdd-vg-vtp)*(vdd-vg-vtp) |

kp*sp*((vdd-vg-vtp)*(vdd-yp)-(vdd-yp)*(vdd-yp)/2) ];

icn1yp2= [ yp > (x-vtn) : (kn/2)*sn*(x-vtn)*(x-vtn) |

kn*sn*((x-vtn)*yp -yp*yp/2) ];

icn1yp= [ x > vtn : icn1yp2 | 0 ];

icn2yp= [ yp < vtn : 0 | (kn/2)*sn*(yp-vtn)*(yp-vtn) ];

icyp= 2*icpyp-icn1yp-icn2yp;

icpyn= [ yn < vg+vtp : (kp*sp/2)*(vdd-vg-vtp)*(vdd-vg-vtp) |

kp*sp*((vdd-vg-vtp)*(vdd-yn)-(vdd-yn)*(vdd-yn)/2) ];

icn1yn2= [ yn > (yp-vtn) : (kn/2)*sn*(yp-vtn)*(yp-vtn) |

kn*sn*((yp-vtn)*yn -yn*yn/2) ];

icn1yn= [ yp > vtn : icn1yn2 | 0 ];

icn2yn= [ yn < vtn : 0 | (kn/2)*sn*(yn-vtn)*(yn-vtn) ];

icyn= 2*icpyn-icn1yn-icn2yn;

derivative(x)= icx/cx;

derivative(yp)= icyp/cyp;

derivative(yn)= icyn/cyn;

layer layer_cm

matrix x, yp, yn ; //State Variables

matrix yl, yr; //Neighborhood State Variables

matrix icx, icyp, icyn; //Auxiliary currents

matrix icn1yn,icn2yn,icn1yp2, icn1yn2;

template ayl,ayr; //Template for neighbor state evaluation

boundary bound_yp,bound_yn; //Boundary conditions (yp, yn)

scalar vdd, vg; //Power Supply and Bias Voltage

scalar sn,sp; //MOS Trans. Geometric aspect ratio

scalar kp,kn,vtp,vtn; //Techn. Parameters

scalar cx, cyp, cyn; //State Capacitors

network

sublayer layer_cm cm;

end

layer
components
declaration

layer
equations

network
definition

Fig.19: DECEL description of the current-mode CNN model

cm.cs



SIRENA: A CAD Environment for Behavioral Modeling and Simulation of VLSI Cellular Neural Network Chips

29

Fig. 20 shows the waveform plots of the state variablex and the output variableyp of every

cell in a 4× 4 current-mode CNN obtained from HSPICE (using level-two models for MOS)

and from SIRENA using the macromodel described above. Notice that sign ofyp is reversed

from that of the state variable due to the current inversion imposed by mirroring. Time scale of

these graphs, in the range of tenths of microseconds, begin at 100ns because of network initial-

ization. Similarity between each of the sixteen pairs of curves gives an idea of the accuracy of

the macromodel employed in SIRENA. A higher degree of precision could be reached with the

inclusion of second order effects like mobility degradation, non-linear gate capacitance, chan-

nel-length modulation, etc.

As with previous examples, several HSPICE and SIRENA simulations of different-size

networks have been realized with the same machine (SPARC Server 1000E). CPU time plots

versus network size (Fig. 21) shows a considerable advantage for SIRENA, reaching two orders

of magnitude for large networks. The larger efficiency of this environment, within the scope for

which it was developed, is therefore clear.

 d) A Discrete-Time Hard-nonlinearity non-linear CNN model

Finally, in order to illustrate the broad variety of network types that can be described in

Variable, Parameter Name Value Units

Initial state (max.) x, yp, yn 0.98 volts

Initial state (min.) x, yp, yn 0.70 volts

Power Supply voltage vdd 5.0 volts

Bias voltage vg 3.6 volts

NMOS transconductance kn 45× 10-6 A/V2

PMOS transconductance kp 15.4× 10-6 A/V2

NMOS threshold voltage vtn 0.60 volts

PMOS threshold voltage vtp 0.98 volts

State capacitor (I) cx 0.450× 10-12 farads

State capacitor (II) cyp 0.112× 10-12 farads

State capacitor (III) cyn 0.042× 10-12 farads

Positive boundary condition bound_yp 0.98 volts

Positive boundary condition bound_yn 0.70 volts

Losses resistor rx 5.0× 104 ohms

Table 2: Current-mode CNN model parameters.



SIRENA: A CAD Environment for Behavioral Modeling and Simulation of VLSI Cellular Neural Network Chips

30

Fig.20: Simulation waveforms of a 4× 4 cells Current-Mode CNN for Con-
nected Component Detection obtained from HSPICE and SIRENA.

Input image Output pattern

C
el

l S
ta

te
 V

ar
ia

bl
e:

 X
 (

vo
lts

)
C

el
l O

ut
pu

t V
ar

ia
bl

e:
 Y

p 
(v

ol
ts

)

HSPICE
SIRENA

HSPICE
SIRENA



SIRENA: A CAD Environment for Behavioral Modeling and Simulation of VLSI Cellular Neural Network Chips

31

DECEL language, let us consider the case of a discrete-time CNN chip to perform the Radon

Transform operation [22]. Some peculiar properties of this algorithm include the hard-limitation

of the cell output variable and the use of non-linear template elements (which depend of the cell

state). The operation consists on computing the integral of intensity values along each row of

the network. For binary images, this results in a histogram of the input pattern. The discrete-

time evolution of the network is now described by a system of finite-differences equations,

(27)

where the non-linear feedback template is described by

(28)

and where the output variable is obtained through a hard-limiting non-linear function:

(29)

Several differences can be observed between this network-model and those reported

before. First of all, this is a discrete-time CNN. This forces the definition of a set of variables

Fig.21: Log-log graphs of CPU times consumed by HSPICE (95.1) and SIRENA vs. number of cells in the
network.

SIRENA
HSPICE

10 100 1000
number of cells (n)

1

10

100

1000

10000

C
P

U
 ti

m
e 

(s
ec

on
ds

)

x
c

n 1+( ) ad
c

y
c

n( )[ ]y
d

n( )
d Nr c( )∈

∑= c∀ GD∈

A yc( )

0 0 0

1 yc–
2

-------------- 0
1 yc+

2
--------------

0 0 0

= c∀ GD∈

y
c

n( ) f x
c

n( )[ ]
1 if x

c
0>

1– if x
c

0≤



= = c GD∈∀



SIRENA: A CAD Environment for Behavioral Modeling and Simulation of VLSI Cellular Neural Network Chips

32

within the DECEL description of the model (filedt.cs in Fig. 22) for evaluate convergence eval-

uation during the simulation process. Feedback-template dependence on the cell output must be

included in the evolution law of the model, and therefore the connection operator must store

neighbors output variables into separate matrices. The last part of the model description is the

network definition.

Input and output patterns of SIRENA simulation are shown in Fig. 9 as depicted by the

Graphical User Interface.

 IV. OTHER SIMULATION CAPABILITIES

The basic capability of the simulator core (NSS) is the time-domain analysis of the net-

work evolution. In addition, some multi-analysis features have been included, following the

VLSI-orientation of this tool. Some of them emulate physical phenomena and situations present

in real microelectronic circuits, like network-parameters deviations from their nominal values,

signals noise, etc. Besides, multi-layer and multi-network analysis are included, broadening the

class of algorithms which can be simulated in SIRENA.

network

sublayer layer_rt rth;

end

evolution

y1= a1><y#bound_y;

y2= a2><y#bound_y;

x = (1/2)*(1-y)*y1 + (1/2)*(1+y)*y2; //Finite-diff. eq.

y =  [ x<0 : -1 | 1 ]; //Hard limitation

layer layer_rt

matrix x,y; //Input and output variables

matrix y1,y2; //Neighbours output variables

template a1,a2; //Neighbours evaluation templates

boundary  bound_y; //Boundary conditions

sets

(states x,y); //Evaluation of convergence

end

layer
components
declaration

layer
equations

network
definition

Fig.22: DECEL description of a DT-CNN model

dt.cs



SIRENA: A CAD Environment for Behavioral Modeling and Simulation of VLSI Cellular Neural Network Chips

33

 a) Sensitivity and Montecarlo Analysis

These functionalities consist in the automatic realization of multiple transient analysis. In

sensitivity analysis, the value of a single parameter or variable is swept with a specified incre-

ment and range, while in Montecarlo analysis, one or more parameters or variables are ran-

domly modified with specified probability distributions (Fig. 24) to obtain a number of modified

networks.

Real random deviations are multifarious. Those affecting the whole silicon die, like pro-

cess parameter deviation from run to run, act similarly over each cell of a cellular neural network

(global deviations). On the other hand, spatial process-parameter variations within the die result

in different parameter values for each cell in the network (local deviations). Local deviations

can in turn be separated into a spatial-gradient component, and a random component (long- and

short-distance mismatches, respectively). In general, gradient orientation and magnitude of the

long distance variations are unpredictable as well, and therefore, of random nature from a design

point of view.

The evaluation of these inaccuracies is a prerequisite for the fabrication of high-complex-

ity analog VLSI circuits employing small devices. It is however extremely expensive in terms

of CPU time, and hence, its analysis with traditional SPICE-like electrical simulators is, some-

times, virtually impossible. SIRENA models can include the three types of deviations.

Montecarlo and sensibility capabilities of SIRENA allow the evaluation of parameter

deviation effects and the obtention of tolerance margins, something crucial for the characteriza-

tion of CNN algorithms and specific hardware implementations. This permits the optimization

Fig.23: Input and output patterns of the Radon Transform CNN simulation
as depicted by the Graphical User Interface.



SIRENA: A CAD Environment for Behavioral Modeling and Simulation of VLSI Cellular Neural Network Chips

34

of the robustness5 of the algorithm (or electronic implementation) against the expected anoma-

lies, systematic or random (this is, design centering).

In order to illustrate the multianalysis capabilities of SIRENA, let us consider a template-

set employed for edge-extraction of binary images [16]. Nominal values of the template ele-

ments are:

(30)

Montecarlo analysis of specific CNN implementations, based either on Chua’s or Full-

Signal-Range model [23], for this application, showed an unexpected, extremely low rate of net-

works with correct functionality. In particular, it was observed that either global or local devia-

5. A specific algorithm (or system) is said to be robust if, for each influent parameter, there is a wide
enough interval around its aimed value within which the parameter can deviate without causing misbe-
havior.

Fig.24: Error probability functions available in SIRENA for emulation of parameters deviation from
their nominal values.

ε r– r( , )∈

p ε( ) 1
2r
-----=

ε n σ×– n σ×( , )∈

p ε( ) 1

2πσ
--------------e

ε2

2σ2
---------–

=

p(ε)

ε

1/2r

-r r0

p(ε)
(2πσ)-1/2

n × σ-n × σ 0

Uniform error probability distribution:

Zero-mean gaussian distribution:

P Pnom ∆P+ Pnom 1 ∆P
Pnom
------------+ 

 = = where ∆P εabs Pnom εrel⋅= =

ε

A
0 0 0

0 2 0

0 0 0

= B
0.25– 0.25– 0.25–

0.25– 2 0.25–

0.25– 0.25– 0.25–

= d 1.5–=



SIRENA: A CAD Environment for Behavioral Modeling and Simulation of VLSI Cellular Neural Network Chips

35

tions of the offset term (d) had drastic yield effects, suggesting a low tolerance around the

nominal offset term value. Repeated sensibility analysis of networks ranging from 8× 8 to

32× 32 cells, sweeping the offset term with 50 equidistant values around the nominal value, and

with the help of a simple post-processor for output comparison against the expected output pat-

tern, showed a tolerance margin below 0.01%. This results confirmed that the nominal value laid

on the verge of the tolerance margin. The determination of this tolerance margin allowed the

selection of a new nominal value of -1.195, for which subsequent sensitivity analysis showed a

tolerance of 12%.

Fig. 25 shows interpolated yield curves obtained from Montecarlo analysis of the network

with different mean values for the offset-term. The plots represent probability of correct opera-

tion of the network versus the standard deviation of the gaussian probability-density distribution

assumed for the offset term. It is shown that the computed value (d = -1.195) displays a much

more robust behavior compared to the initial value (-1.50).

 b) Noise Analysis

This feature is intended for the evaluation of noise influence on the evolution of a given

network. Because CNNs are strongly nonlinear systems, the conventional approach of tradi-

tional electrical simulators, in which noise analysis is associated to small signal equivalents, can

not be applied. In our case, the simulator injects a discrete-time noise component on user-spec-

ified signals, with a user-specified discrete-time frequency. Noise probability distribution and

spectral density can also be arbitrarily shaped.

Fig.25: Yield optimization tuning the offset term for the Edge Detector set of templates.

offset term standard deviation (σd) offset term standard deviation (σd)

yi
el

d 
(P

C
N

N
)

yi
el

d 
(P

C
N

N
)

d = -1.500

d = -1.438

d = -1.195

d = -1.000

d = -1.074

d = -1.195



SIRENA: A CAD Environment for Behavioral Modeling and Simulation of VLSI Cellular Neural Network Chips

36

A combined noise and sensitivity analysis allows the evaluation of the noise threshold that

can be tolerated by the network. Next figures show time-evolutions of the state-signal of three

cells from a 16× 16 cells FSR CNN for edge detection, for three different levels of signal-to-

noise ratio (SNR). Noise-free evolutions for the same cells and network are superimposed.

 c) Multi-layer and Multi-network Analysis

These extended capabilities are directly related with the modelling versatility of the GMS

tool. Multi-layered networks are described using several state-variables and interconnections

among them. This capability has been tested with several examples, including the implementa-

tion of a continuous-time, two-layers CNN for Radon Transform operation based on Connected

Component Detector templates [24]. Finally, NSS allows the simulation of complex systems

composed of several CNNs interchanging information at specified time instants or following a

prescribed protocol. This functionality is controlled by an additional “synchronization file” in

which activation of different networks and data interchange among them is detailed. The syntax

of this task-scheduler permits the evaluation of sequential and multipath algorithms, or in gen-

eral, an arbitrary control-flow with conditional, jump and algebraic operators. In order to illus-

trate this capability, an object counting application [25] based on several CNNs will be

described. This application requires the realization of several simple CNN tasks (Fig. 27). First,

the binary input image must be hole-filled. Two copies of the resulting image are then processed

in separate paths. In one of them, active pixels whose position is at the bottom of some object

are marked. On the other, pixels being at the bottom of an objectand belonging to a concave

neighborhood are selected. Templates for these operations are reported in [16]. Afterwards, con-

nected component detection is performed on the two resulting images. Finally, the last part of

the algorithm (not accomplished by CNNs) counts the number of black pixels in both output

patterns and obtains the total number of objects in the initial image from the difference of the

two quantities.

Fig. 28 shows the synchronization file corresponding to the object counting example

Fig.26: Waveform plots of three noisy cell-state variables given by SIRENA.

C
el

l s
ta

te
: X

 (
vo

lts
)

C
el

l s
ta

te
: X

 (
vo

lts
)

C
el

l s
ta

te
: X

 (
vo

lts
)

SNR|dB = 1.6 SNR|dB = 1.3 SNR|dB = 1.0



SIRENA: A CAD Environment for Behavioral Modeling and Simulation of VLSI Cellular Neural Network Chips

37

(multin.sync). A prescribed order is established in which different networks are enabled

(active  command) following a specific sequence. Their outputs are defined as inputs to some

other networks. Finally aloadsync  statement (similar toloadnet  command) in the simu-

lation script (or in the command shell) is enough to set up the simulator core (NSS) for multi-

network algorithm simulation.

 V. CONCLUSIONS

This paper has presented SIRENA: a simulation environment for Cellular Neural Net-

works with emphasis towards VLSI-implementation needs. It has been developed to overcome

the limitations of algorithmic simulators regarding non-ideal effects derived from physical

implementations of microelectronic circuits, and those of SPICE-type electrical simulators

which require excessively high CPU times. In SIRENA, CNN models are described with the

help of a high-level programming language especially developed for this task: DECEL. Model-

ing guidelines have been sketched using several examples corresponding to specific algorithms

and electronic-implementation alternatives. SIRENA modeling and simulation capabilities have

been shown to be broad, including hardware-evaluation capabilities like sensitivity, Montecarlo

and noise analysis. A graphical interface has been developed, with several user-friendly tools

for simulation control and input/output images edition and visualization.

Efficiency comparisons between this dedicated environment and general electrical simu-

Fig.27: Flow diagram of the object counting application with CNNs [25].

OUTPUT:
Object Count =10

LOCAL SOUTHERN
POINTS DETECTOR

LOCAL SOUTHERN
CONCAVE POINTS DETECTOR

INPUT:
Black and

white image
HOLE FILLER

CCD CCD

ACTIVE PIXELS
COUNT = 11

ACTIVE PIXELS
COUNT = 1

SUBSTRACTION



SIRENA: A CAD Environment for Behavioral Modeling and Simulation of VLSI Cellular Neural Network Chips

38

lators show promising figures in terms of CPU-time consumption. It has been shown that

SIRENA makes an efficient use of computing resources within the field for which it has been

developed: CNN VLSI implementations. Its modularity allows feasible expansion and improve-

ment, which combined with its present generality results in an adequate, model-independent

CNN research tool.

REFERENCES
[1] L.O. Chua and L. Yang: “Cellular Neural Networks: Theory and Applications”.IEEE Trans. Circuits and

Systems, Vol. 35, pp 1257-1290, October 1988.
[2] Haykin, Simon S.,“Neural networks: a comprehensive foundation”. New York, Macmillan Press 1994.
[3] S. Espejo, “Cellular Neural Networks: VLSI Design and Modelling”, Ph. D. Thesis, Universidad de Sevilla,

February 1994.
[4] L.O. Chua and T. Roska, “The CNN Paradigm”.IEEE Trans. Circuits and Systems I: Fundamental Theory

and Applications, vol. 40, pp. 147-156, March 1993.

[5] T. Roska, L.O. Chua: “The CNN Universal Machine: An Analogic Array Computer”.IEEE Trans. Circuits
and Systems-II Analog and Digital Signal Processing, Vol. 40, No. 3, pp 169-173, March 1993.

[6] S. Espejo, R. Carmona, R. Domínguez-Castro and A. Rodríguez-Vázquez, “A CNN Universal Chip in
CMOS Technology”.International Journal of Circuit Theory and Applications.Vol 24, No. 1, pp 93-110, Jan-
uary-February 1996.

[7] Kinget, P.; Steyaert, M. “An analog parallel array processor for real-time sensor signal processing”.
Proc.IEEE International Solid-State Circuits Conference. pp. 92-93. San Francisco, CA, USA, Feb. 1996

[8] M. Marinaro, and P. G. Morasso: “Modular Object-Oriented Neural Network Simulators and Topology Gen-
eralizations”. Proc. of the Int. Conf. on Artificial Neural Networks, pp 747-750, Springer-Verlag, May 1994.

[9] M. Plonski and C. Joyce: “RCS, GENESIS and SFINX: Three Public-Domain Simulators for Neural Net-
works”. Neural Networks Review 4, 1990.

[10] “HSPICE User Manual” Meta Software Inc. 1988.
[11] I.García-Vargas:“SIRENA: Un Entorno para la Simulación de Redes Neuronales Artificiales. Generación de

Modelos y Simulación”. Proyecto Fin de Carrera, Facultad de Informática y Estadística. Universidad de
Sevilla, 1994.

Fig.28: Synchronization file for a multi-network simulation.

active hole_filler; // enable hole filler network

active loc_southern // enable bottom pixels detector

ls.u=hf.y // use hf output as ls input

ls.x=hf.y; // use hf output as ls initial state

active loc_so_concave //enable bottom concave pixels detector

lc.u=hf.y // use hole filler output as lc input

lc.x=hf.y; // use hf output as lc initial state

active ccd1 //enable first ccd

ccd1.u=ls.y // use ls output as ccd1 input

ccd1.x=ls.y; // use ls output as ccd1 inital state

active ccd2 // enable second ccd

ccd2.u=lc.y // use lc output as ccd2 input

ccd2.x=ls.y; // use lc output as ccd2 initial state

multin.sync



SIRENA: A CAD Environment for Behavioral Modeling and Simulation of VLSI Cellular Neural Network Chips

39

[12] H. Harrer: “Comparison of Different Numerical Integration Methods for Simulating Cellular Neural Net-
works”. Institute for Network Theory and Circuit Design, Technical University of Munich. Report TUM-
LNS-TR-90-9, September 1994.

[13] T. Roska, L. O. Chua: “Cellular Neural Networks with nonlinear and delay-type elements”. Proc. of the First
IEEE Int. Workshop on Cellular Neural Networks and Their Applications, pp 12-25, Budapest 1990.

[14] H. Harrer, J. A. Nossek and R. Steltz: “An Analog Implementation of Discrete-Time Cellular Neural Net-
works”. IEEE Trans. Neural Networks, Vol. 3, pp. 466-476, May 1992.

[15] A. Rodríguez-Vázquez, S. Espejo, R. Domínguez-Castro, J.L. Huertas and E. Sánchez-Sinencio: “Current-
Mode Techniques for the Implementation of Continuous-Time and Discrete-Time Cellular Neural Net-
works”, IEEE Trans. Circuits and Systems II: Analog and Digital Signal Processing, Vol. 40, pp. 132-146,
March 1993.

[16] T. Roska and L. Kek, Eds.: “Analogic CNN program library”. Analogical and Neural Computing Laboratory,
Computer and Automation Institute of the Hungarian Academy of Sciences, Budapest. Report DNS-5-1994,
June 1994.

[17] T. Matsumoto, L.O. Chua and H. Suzuki: “CNN Cloning Template: Connected Component Detector”.IEEE
Trans. Circuits and Systems, Vol. 37, pp 633-635, May 1990.

[18] J. M. Cruz and L.O. Chua: “Design of high-speed, high-density CNNS in CMOS technology”.International
Journal of Circuit Theory and Applications, vol.20, no.5, pp.555-572, Sept.-Oct. 1992

[19] P. Földesy, P. Szolgay and A. Zarándy: “Functional testing of the cP 300 14 x 14 CNN UNIVERSAL CHIP”.
Analogical and Neural Computing Laboratory, Computer and Automation Institute of the Hungarian Acad-
emy of Sciences, Budapest. Budapest, 1996.

[20] J. F. Ramos:“SIRENA: Un Entorno para la Simulación de Redes Neuronales Artificiales. Interfase con el
Usuario”. Proyecto Fin de Carrera, Facultad de Informática y Estadística. Universidad de Sevilla, 1994.

[21] S. Espejo, A. Rodríguez-Vázquez, R. Domínguez-Castro, J.L. Huertas and E. Sánchez-Sinencio: “An Analog
Design Technique for Smart-Pixel CMOS Chips”. Proc. of the 1993 European Solid-State Circuits Confer-
ence, Sevilla, September 1993.

[22] S. Espejo, R. Carmona, R. Domínguez-Castro and A. Rodríguez-Vázquez. “Design of Sensory Processing
CNN Chips”.Proc. of the International Symposium on Non-Linear Theory and its Applications, NOLTA’93.
Vol. 1, pp 5-10, Hawaii, December 1993.

[23] S. Espejo, A. Rodríguez-Vázquez, R. Domínguez-Castro and R. Carmona: “Convergence and Stability of the
FSR CNN Model”.Proceedings of the 3rd International Workshop on Cellular Neural Networks and their
Applications, CNNA’94, pp 411-417, Rome, December 1994.

[24] Chai Wah Wu, L. O. Chua, T. Roska: “A Two-Layer Radon Transform Cellular Neural Network”. IEEE
Trans. Circuits and Systems, Vol. 39, pp 488-489, July 1992.

[25] L.O. Chua, T. Roska, P.L. Venetianer and A. Zarándy: “Some Novel Capabilities of CNN: Game of Life and
Examples of Multipath Algorithms”.Proc. Second IEEE Int. Workshop on Cellular Neural Networks and
their Applications, pp 276-281, Munich, October 1992.




