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Resumo 

Trioza erytreae (Del Guercio) é vetor da doença huanglongbing, ou 

enverdecimento dos citrinos, e Scaphoideus Titanus Ball é vetor da doença da vinha 

conhecida como flavescência dourada. Ambas as formas adultas destes insetos são 

atraídas pela cor amarela, portanto, armadilhas cromotrópicas, também conhecidas 

como placas amarelas ou placas anti pragas, são utilizadas para detetar a presença 

destas pestes, que deve ser confirmada por um entomologista. Seguindo os recentes 

avanços em visão computacional e deep learning, este trabalho combina técnicas de 

processamento de imagem e dois detetores de objetos populares – Faster R-CNN e 

YOLOv4 – para deteção de ambos os insectos em imagens de armadilhas 

cromotrópicas antes e depois de serem processadas. Ambos os modelos tiveram um 

baixo desempenho, particularmente o Faster R-CNN, e modelos treinados com as 

imagens processadas obtiveram scores ainda mais baixos, realçando a necessidade de 

rever o método de processamento utilizado. 

 

Abstract 

Trioza erytreae (Del Guercio) is vector of the huanglongbing or citrus greening 

disease, and Scaphoideus Titanus Ball, is vector of a vineyard disease known as 

flavescence dorée. Both adult forms of these insects are attracted to the yellow color, 

therefore, chromotropic traps, commonly known as yellow sticky traps, have been widely 

used to detect the presence of these pests, which should be confirmed by an 

entomologist. Following the recent advancements in computer vision and deep learning, 

this work combines image processing techniques and two popular object detectors – 

Faster R-CNN and YOLOv4 – for detection of both insects in images of chromotropic 

traps before and after they were processed. Both models underperformed, particularly 

the Faster R-CNN, and models trained with processed data obtained even lower scores, 

emphasizing the need for revising the processing method used. 

 

 

Keywords: Trioza erytreae, Scaphoideus Titanus, Image processing, Computer vision, 

Choromotropic traps, Neural networks, Deep learning, Entomology, Object detection, 

YOLOv4, Faster R-CNN.  
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ANN Artificial Neural Networks 
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1. Introduction 

Trioza erytreae Del Guercio (TE), or African citrus psyllid, and Scaphoideus 

Titanus Ball (ST), or American grapevine leafhopper, are vectors of some of the most 

devastating citrus and vineyard diseases, respectively. Although both insects are not 

originally from Europe, ST was first reported in France in 1958 due to the import of 

American rootstocks, and TE in Madeira in 1994 and consequently in continental 

Portugal and Spain in 2014 (DRAPCentro, 2017; EPPO Global Database, 1995; Pérez-

Otero et al., 2015). Since ST has been spreading since the 50’s Flavescence dorée (FV), 

caused by phytoplasmas, has been disseminated across Europe, while Huanglongbing 

disease (HLB), vectored by TE and caused by Candidatus Liberibacter spp., has not 

been reported in Europe so far. However, due to the disruptive nature of this disease, 

avoiding its spreading once it is identified, is of extreme importance. Both pathogens 

belong to the Candidatus phyla, a taxonomic status for prokaryotic cells that are 

characterized but uncultured, which may difficult their study and understanding (Murray 

and Stackebrandt, 1995; Stackebrandt et al., 2002). 

Chromotropic traps, also known as yellow sticky traps, are commonly used to 

capture insects on the field. Studies have reported that both TE and ST are attracted to 

the yellow color and, therefore, these traps prove to be an effective way to assess their 

presence on the area (Mazzoni et al., 2011; Samways, 1987). However, there have been 

reports suggesting that male ST were more attracted to red traps (Lessio and Alma, 

2004). The phototaxic preference of male ST should be better comprehended since 

Fig. 1 - Example of chromotropic trap in a 

grapevine in Lamego. 
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some studies suggest that males have higher interplant movement due to the constant 

movement to find mates, and therefore are responsible for a higher infection rate (Lessio 

and Alma, 2004). Regardless, yellow traps were retrieved from different regions to 

identify TE and ST. 

Parallelly to technological developments, computer vision (CV) has been 

replacing manual labor and inspection in agriculture. There have been several studies 

that use vision systems in precision farming (Hemming and Rath, 2001; Patrício and 

Rieder, 2018), fruits and vegetables quality evaluation (Bhargava and Bansal, 2021), 

crop health (Chouhan et al., 2020) and many more. With the recent advances in CV, 

sensors and cameras, it is also becoming increasingly efficient to monitor insect 

populations in a less-invasive and more cost-effective way (Høye et al., 2021). There 

have been several studies that use CV approaches to try to solve entomological 

problems. Ding and Taylor (2016) used a sliding window detection pipeline with a 

convolutional neural network (CNN) to detect codling moths achieving a precision-rate 

of 93.1%; Hong et al. (2020) compared seven object detectors for moth detection; Kim 

et al. (2019) used a fully convolutional network to detect mosquitos and obtained an 

accuracy of 84%; Thenmozhi and Reddy (2019) proposed a CNN model and compared 

it to other pre-trained DL architectures such as AlexNet, ResNet, GoogLeNet and 

VGGNet for insect classification on 3 different datasets. The highest accuracy reported 

was of 96.75% for the NBAIR insect dataset, which has 40 classes.  

Although often confused with image classification, object detection can identify 

different objects and their location (Lamba 2019). Object detection complexity increases 

when the problem concerns several objects with different sizes – since the variability in 

the output of network is not constant, the problem cannot be solved by a typical fully 

connected network. Moreover, simply cropping out different regions of an image and 

classify them using a CNN, is not efficient – it would require cropping out sub-images 

with many different sizes and aspect ratios, becoming computationally expensive. 

Hence, the creation of object detectors (Gandhi, 2018). Two-stage detectors, such as 

the R-CNN family (Girshick et al. 2014), generate regions of interest and pass them on 

to a network for object classification and bounding-box regression. One-stage detector, 

such as YOLO (Redmon et al. 2016), divide the image into different cells, draw a class 

probability map from them and, simultaneous, extract bounding-boxes for that cell. One-

stage-detector usually have lower accuracy than two-stage detectors, but are faster, so 

are usually implemented in real-time object detection (Soviany and Ionescu 2018).  



 
FCUP 

Automatic processing of images of chromotropic traps for identification and 
quantification of Trioza erytreae and Scaphoideus Titanus 

11 

 
 

The presented work focused on the identification of TE and ST in images of 

chromotropic traps. The images were segmented to obtain the entire trap, and then an 

algorithm for the correction of distortions was implemented. The influence of 

characteristics such as lighting and distortions of the trap in this process was also 

examined. Afterwards, the images were fed to a Faster R-CNN and a YOLOv4 model. 

To grasp the influence of segmentation and geometric transformation procedures, these 

models were also trained on the original images.  

 

2. Literature Review 

2.1. Insect vectors 

2.1.1. Trioza Erytreae 

HLB is caused by the gram-negative (bacteria with a cell wall) Candidatus 

Liberibacter species - Candidatus Liberibacter asiaticus, Candidatus Liberibacter 

americanos, which are vectored by the Asian Citrus Psyllid, Diaphorina citri, and 

Candidatus Liberibacter africanus, vectored by the African Citrus Psyllid, TE. (Bové, 

2006; Wang, 2019). Based purely on symptoms produced, the disease caused by the 

three agents is indistinguishable from each other (Aglave, 2019). Since these agents 

belong to the Candidatus phyla, a taxonomic status for prokaryotic cells that are yet to 

be cultured in vitro, the pathogenesis of HLB is challenging to understand (Murray and 

Stackebrandt, 1995; Stackebrandt et al., 2002; Wang, 2019). Although this disease is 

not completely understood, studies have shown that infected trees have partial or total 

phloem collapse (Folimonova and Achor, 2010).  

Fig. 2 - Trioza erytreae on a chromotropic trap. 
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Symptoms are variable and can be numerous. Also, the timeframe from infection 

to the manifestation of symptoms ranges from months to years depending on the cultivar, 

tree age and health, environmental conditions and time of the year (Aglave, 2019). 

Before any of the foliar symptoms caused by phloem plugging, these trees present root 

infection, suggesting replication at the roots prior to spreading to rest of the canopy 

(Johnson et al., 2014). Infected trees can present blotchy or completely yellow leaves 

(Fig. 3a), similar do zinc deficiencies, enlarged veins, and produce small, asymmetrical, 

bitter fruits with mottled yellow/green coloration and dark aborted seeds, as presented in  

Fig. 3b (Aglave, 2019; Halbert and Manjunath, 2004). Due to the disruptive nature of this 

disease and no effective way to combat it so far, it greatly impacts citrus production. In 

the United States, from 2007-2008 to 2017-2018, HLB was responsible for a decrease 

in orange production for processing of 72.2%, and a decrease in production for fresh fruit 

market of 20.5%. Since its detection in the US, the price of a box of oranges increase 

3.2 times (Dala-Paula et al., 2019) . 

HLB has been reported in China in 1919, in 1937 in South Africa and in the 

Philippines in the 1960’s. Since then, it has been reported in 50 countries (Dala-Paula et 

al., 2019). In Europe, HLB is yet to be reported but its vector, TE, was firstly reported in 

Madeira in 1994 (EPPO Global Database, 1995) and in the Canary Islands in 2002 

b) 

 a) 

Fig. 3 - Symptoms of HLB. a) Leaves from an infected plant 
[Source: Sprague, 2019.] b) Fruits from an infected tree on 

the center, compared to healthy ones [Source: Bové, 2006]. 
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(Hernández, 2003). However, the first appearance in a European continental area was 

in 2014 in the northern-west part of the Iberic Peninsula (DRAPCentro, 2017).  

Although HLB is extremely destructive to citrus, the very presence of TE can 

disrupt the growth of the plant. TE is closely associated with plants of the Rutaceae family 

(Cocuzza et al., 2017). Its nymphs settle and feed on the underside of tender leaves, 

causing them to become chlorotic and slightly curled, as seen in Fig. 4, which can 

eventually cause more than 90% of young plants to die if insecticide is not used (Cocuzza 

et al., 2017; Tamesse and Messi, 2002). Additionally, severe infestation causes an 

abundance of honeydew excreted by nymphs, facilitating the development of fungi and 

can attract ants (van den Berg et al., 1991).  

TE is easily identified by its forewing. It is 2.79–3.09 times longer than wide, with 

elongate oval and narrowing to a rounded rectangular apex. This specie is very small 

even when compared to other insects, with female body length usually around 2.2 mm 

and males around 1.8 mm (Fig. 2 and Fig. 5) (Aidoo et al., 2019). 

Currently, Portugal’s plant protection measures include the establishment of a 

delimiter zone. In case of official confirmation of the presence of TE, either by 

morphological identification or by molecular analysis of insects captured in chromotropic 

traps or in plant material, this area is immediately defined, formed by the parish where 

the insects were detected, considered an infested area, and by a surrounding buffer zone 

of 3 km radius, established from the limits of infested regions. Any owner or any 

professional operator who produces or sells host plant material and who is aware or 

Fig. 4 – Leaves deformed by Trioza erytreae [Courtesy of Carlos Alberto Coutinho Conceição.] 
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suspects the presence of TE, must immediately inform the phytosanitary inspection 

services of the respective DRAP (Direção Regional de Agricultura e Pescas) or DGAV 

(Direção-Geral de Alimentação e Veterinária). 

Producers and suppliers of citrus, whose place of activity is covered by the 

defined demarcated zone may only sell or distribute citrus if certain following conditions 

are met, such as:  

• Production or maintenance of vegetables, for at least one year, in insect-proof 

locations that prevent the introduction of TE, previously approved and registered, 

verified by DRAP, and subject to at least two official inspections annually during 

the production cycle.  

• The transport of plants within the delimited area, can only be from places that 

meet the characteristics referred above and should be fully wrapped in plastic 

film or other material that prevents direct contact with the. 

• Transport, reception and shipment of vegetables in closed containers or 

packages; 

Additionally, non-professionals that have host plants also have measures to comply with, 

such as carry out phytosanitary treatments to these vegetables with authorized plant 

protection products 1.  

 

 

 

 

 

 

 
1 Portaria nº 142/2020 de 17 de Junho. Diário da República nº 116/2020 – I Série. Ministério da Agricultura. Lisboa. 

Fig. 5 -a) Trioza erytreae [Source: CBG Photography Group, 2016]. b) Scaphoideus titanus [Source: CNC/BIO 
Photography Group, 2012]. 

a)      b) 
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2.1.2. Scaphoideus Titanus 

FD is one of several grapevine yellows diseases caused by phytoplasmas, cell-

wall lacking bacteria that inhabit sieve elements and are vectored by insects that feed on 

the plants phloem (Dermastia et al., 2017). FD is associated with phytoplasmas part of 

the 16Sr-V group, specifically with 16SrV-C and 16SrV-D phytoplasmas, which are 

notably smaller than other bacterial plant pathogens, making them hard do visualize 

under a light microscope, and are yet to be cultivated outside their hosts (Chen et al., 

2012; Hogenhout, 2009; Martini et al., 1999).  

In Portugal, ST was detected in 2000 but it was only in 2007 that the first case of 

FD was reported on the country (Aguin‐Pombo et al., 2020; Quartau et al., 2001). 

However, in other European countries the first reports of this disease go further back. 

For example, the first epidemy of FD in France was in the 1950’s (Caudwell, 1990). 

Currently, FD is present in 16 European countries, making the research on this disease 

in Europe, when compared to HLB, vaster (EPPO Global Database, 2021).   

Vineyards can differ in their susceptibility to FD, but it is often epidemic, as the 

proportion of affected grapevines within a vineyard can reach 95% (Dermastia et al., 

2017).  Although the mechanisms through which phytoplasmas affect plant development 

are unclear, it is believed that these parasites can produce effectors that regulate 

characteristic targets in their hosts (Chen et al., 2012; Sugio et al., 2011). Yellowing of 

leaves on white cultivars, reddening on red cultivars, with downward curling, drooped 

canes due to the lack of lignification in the new shoots, and death of inflorescences and 

berries, are some of the symptoms of this disease (Fig. 6) (Chuche and Thiéry, 2014). 

This disease greatly affects production levels. In a study made from 1999 to 2003 to 

evaluate the productivity of FD infected vineyards in Italy, symptomatic vines always 

showed lower yields, followed by recovered plants. In this study, recovered plants always 

Fig. 6 – a) Example of FD in a white grapevine. b) Example of FD in a red grapevine [Source: Del Serrone, 2007] 

a)      b) 
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showed approximately 80% more yield than plants with FD, but never as much as healthy 

ones (Morone et al., 2007).  

Contrarily to TE and citrus, ST itself does not present a threat to grapevines, the 

main concern regards the dissemination of phytoplasmas, particularly adult specimens 

since nymphs usually stay on the plant where they hatch (Maixner, 1993). Some studies 

even suggest that males tend to disperse more than females, possibly to find mates, 

hence, may infect more plants (Lessio and Alma, 2004).  

Morphologically, ST is easier to identify by the naked eye, comparatively to TE, 

mainly due to difference in size. A study in Portugal in 2001 showed that male length 

was from 4.49-5.02 mm, and female 5.15-5.48 mm (Quartau et al., 2001). Fig. 5 displays 

a side-to-side comparison of both species. ST also has very distinct bands, females have 

three brown transverse bands at the vertex level while males only have one (Tramontini 

et al., 2020). 

The current strategies to combat it include delimiting ZIP areas (Zonas de 

Intervenção Prioritárias), territory from localities where strains contaminated with FD are 

detected, and by the respective neighboring and non-border localities that are covered 

by the perimeter to be defined in the information obtained through the Vine and Wine 

Information System. The updated list of ZIP areas is published every year in the DGAV 

website. The owners, of Vitis spp. located in the parishes where the ST is present, must 

annually carry out insecticide treatments, with plant protection products authorized by 

the DGAV, in appropriate timing, and the number of treatments can range from one to 

three. If FD is confirmed, the destruction by fire of all contaminated strains located within 

a 1000 m perimeter is mandatory for that year and following years. If the number of 

contaminated strains in a parcel is greater than 20% of the total number of strains in that 

parcel, the destruction of the entire vine parcel is mandatory. Regarding nurseries, their 

Fig. 7 - Scaphoideus Titanus in a chromotropic trap. 
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planting without physical protection against ST is prohibited, at less than 300 m from a 

contaminated parcel. From 300m to 1000m, or if there is any risk of contamination, the 

material retrieved from the nursery, must undergo hot water treatment 2.  

 

2.2. Deep Learning 

Deep learning (DL) is a subset of machine learning that is becoming increasingly 

more relevant in modern problems. An overview of several definitions in order to reach 

a unified description of the term has been attempted by Zhang et al. (2018), who finally 

described it as “ a process not only to learn the relation among two or more variables but 

also the knowledge that governs the relation as well as the knowledge that makes sense 

of the relation”.  

In 1943 McCulloch and Pitts proposed the MCP model, a highly simplified 

computational model that mimicked the brains neuron, which would make an important 

contribution to the current Artificial Neural Networks (ANN) (Mcculloch and Pitts, 1943). 

Several breakthroughs have been made following the MCP, like the perceptron by 

Rosenblatt in 1958 and the neocognitron by Fukushima in 1980, which was capable of 

pattern recognition and introduced for the first time convolutional and downsampling 

layers (Fukushima, 1980; Rosenblatt, 1958). However, due to the limited computational 

power for training, DL was not widely used.  It was only decades later that some of the 

significant achievements were met in CV. Following several past accomplishments, 

AlexNet, a CNN designed by Krizhevsky et al. (2012), won ImageNet Large Scale Visual 

Recognition Challenge, achieving an unprecedented reduction in the error rate of 18% 

and it has been recognized ever since as one of the main breakthroughs in CV history.  

The advances in the last decade that boosted DL can be mainly attributed to the 

appearance of publicly available, high-quality, large, labelled datasets, as well as the 

enabling of GPU-based training, which significantly reduced training speed (Voulodimos 

et al., 2018).  Given the necessary power, DL is more efficient than machine learning, 

since it does not require to manually perform feature extraction and engineering, which 

is done while training. However, it requires a larger amount of data (Kim, 2017). In recent 

years, DL has been applied to a variety of research fields. In CV, DL has made an 

enormous contribution to problems such as medical imaging (Ker et al., 2018; Litjens et 

al., 2017), autonomous vehicle control (Kuutti et al., 2021), face recognition (Masi et al., 

2018), and many more (Sejnowski, 2018). 

 
2 Portaria n.º 165/2013 de 26 de Abril. Diário da república nº 81/2013 – I Série. Ministério da Agricultura, do Mar, do 
Ambiente e do Ordenamento do Território. Lisboa. 
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2.2.1. Convolutional Neural Networks 

In 1962 David Hubel and Torsten Wiesel described the concept of “simple” and 

“complex” cells, after studying how cat’s visual cortex responded to stimulus. Both types 

responded to oriented slits of light, but simple fields have distinct excitatory and inhibitory 

divisions, whereas complex cells did not have a clear difference between these regions 

but encompassed a wider area within a specific orientation. They argued that the 

properties of complex cells could result from combining input from similarly oriented 

simple cells (Hubel and Wiesel, 1962, 1959). The idea of simple and complex cells would 

later inspire Dr. Kunihiko Fukushima to create the neocognitron – a network that would 

mimic this system and would be composed of S-cells and C-cells. Like Hubel and 

Wiesel’s cells, the higher the complexity, higher the tendency to respond selectively to 

more complicated features of the stimulus pattern, and, simultaneously, show less 

sensitivity to shifts in the position of the pattern and have a larger receptive field. Hence, 

the total number of cells per layer decreases with the depth in the network. In the last 

layer, the receptive field of each C-cell becomes large enough to cover the whole area 

of input layer. Following the neocognitron there were several achievements from CNNs 

throughout the years, including the previously mentioned AlexNet.  

CNNs are now widely used in CV. The distinctive trait CNNs are, as the name 

implies, the convolutions, which can be seen as sliding windows passing over the image, 

creating layers of features (Sejnowski, 2018). Specifically, these filters (convolutional 

filters or kernels) are two-dimensional matrices and, depending on what filters are, 

extract different features from the original image, creating feature maps. As mentioned, 

the work of Hubel and Wiesel suggested that the brain does not interpret an image 

directly, there seems to be a sequential process and starts by detecting low-level 

elements such as lines. The filters in the first layer are analogous to what they called 

“simple cells” in the primary visual cortex (Hubel and Wiesel, 1962; Sejnowski, 2018). As 

the depth in the network increases, so does the complexity of the features extracted from 

each convolution (Albawi et al., 2017; Kim, 2017).  
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2.2.2. R-CNN, Fast R-CNN and Faster R-CNN 

In 2014, Ross Girshick, Jeff Donahue, Trevor Darrell and Jitendra Malik released 

the R-CNN: Region proposal with CNN features (Girshick et al., 2014). This model used 

an algorithm known as Selective Search (SS), which combines exhaustive search and 

segmentation based on pixel similarity, to propose regions of interest (Kar, 2020; Uijlings 

et al., 2013). From an image, 2000 candidate region proposals were fit into a square and 

processed through a CNN that would act as a feature extractor, and the obtained 

features were fed into a Support vector machine to classify the presence of the object 

within the region. This new CNN defeated the previous best result on PASCAL VOC 

2012 by an improvement of 30% (Girshick et al., 2014). However, this method was very 

slow, it took a long time to process training imagens and around 49 seconds for each 

test image, if included the regional proposal methods. Additionally, SS is a fixed 

algorithm, it cannot learn.  Ross Girshick improved his own work and released Fast R-

CNN in 2015 (Girshick, 2015). Instead of cropping out and simply feeding 2000 region 

proposals to the CNN, the input image would be directly fed to the CNN to generate a 

convolutional feature map corresponding to the whole image. Afterwards, using a 

proposal method such as SS on the original image, the regions proposed would be 

projected onto the previously created feature map, generating regions of interest (RoI) 

of the feature map, and not the image. Fully connected layers (FCLs) downstream 

impose a fixed aspect ratio, so these RoI were processed through a pooling layer. Finally, 

the FCLs would predict a classification score and return the bounding boxes with offsets. 

The ability to reuse the feature map of the whole image instead of processing 2000 

different images through the network drastically improved speed. Training time in R-CNN 

improved from 84 hours to 8.75 hours in Fast R-CNN, and test time from 49 seconds to 

2.3 seconds, including region proposal. However, these 2.3 had potential to be improved, 

Fig. 8 – Region proposal network [Source: Ren et al., 2016]. 
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given that if the regional proposal methods were not included, the network would take 

0.32 to provide classification and bounding boxes (Girshick, 2015; Li et al., 2017). This 

obstacle would later be overcome by the Faster R-CNN (FRCNN). This network would 

completely eliminate the need for methods as SS. Instead, FRCNN has two modules. It 

firstly trains a CNN to generate region proposals known as the region proposal network 

(RPN), and then uses the detector with the proposed regions. The implementation of 

RPN would bring down the computational time from 2s to 10ms per image. (Ren et al., 

2016; Shilpa Ananth, 2019).  

RPN is a fully convolutional network designed to propose regions within a diverse 

range of scales and aspect ratios, as opposed to previous methods. This is achieved by 

a pyramid of anchors, which is more cost-efficient than using pyramids of images or 

pyramids of filters (images or filters at different scales). An anchor is the center point of 

a sliding window and is associated with different scales and aspect ratios. RPN takes as 

input an n × n spatial window of the input convolutional feature map (Fig. 8).  Each of 

these sliding windows is mapped to a lower-dimensional feature which is then fed into 

two FCLs—a regression layer and a classification layer. At each sliding window location, 

k region proposals are predicted. The regression layer outputs 4k coordinates of k boxes, 

the classification layer outputs 2k scores that estimate the probability of each proposal 

have an object, or not.  Contrarily to SS, the RPN can be trained. However, since the 

RPN and the Fast R-CNN are unified into one, they cannot be trained as individual 

models (Ren et al., 2016). 

 

 

Fig. 9 - Faster R-CNN [Source: Ren et al., 2016]. 
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2.2.2.1. Backbone 

 Originally, the FRCNN was implemented with a VGG-16 backbone, or feature 

extractor. At the time VGG-16 was certainly a major improvement from the previous 

methods, however, there are currently better options to choose from. During this work, 

the network used as backbone for the FRCNN was a ResNet, which has better 

performance, is faster, and has less parameters which means that is requires less 

memory than VGG, and was actually created by three of the four authors that developed 

the FRCNN (He et al., 2016).   

After AlexNet, research was still very much focused on creating deeper and 

deeper networks. However, as He et al. (2016) noted, this does not always result in better 

performance, in some cases these larger networks would underperform comparatively 

to their shallower counterparts. The authors suggested that a deeper network should at 

least perform as well, they should not have a higher training error, since the deeper 

network could learn like the shallower one in the first layers, and simply apply identity 

functions for the rest of the layers, but these identity functions seemed hard for the 

Fig. 10 – ResNet-50. [Based on: He et al., 2016; Karim, 2019] 
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network to learn. The name ResNet originates from the technique design to combat this 

problem - “residual learning”. The idea behind this are shortcut connections, add the 

output of a layer, to a layer ahead, skipping over others. This identity mapping does not 

have any parameters, its only purpose is to add this output x, which does not always 

have the same dimensions as F(x), due to convolutions and pooling in the layers 

between. The solution to this is linear projection: either perform padding with zeros, or 

match the dimensions with 1x1 convolutions  (He et al., 2016; Oommen, 2020).  

 The specific model for the present work is ResNet50-FPN (Fig. 10), since it has 

good trade-off between accuracy, training time and memory when compared to other 

backbones supplied by Pytorch (Paszke et al., 2019). The number 50 refers to the 

number of layers in the network – During the authors research several Resnet 

architectures in which models with fewer layers were less accurate, and deeper models  

(He et al., 2016).  

To avoid imbalanced weights – with extremely high or low values – which can 

influence the training process, a normalization method is frequently implemented in 

ANNs. Instead of normalizing the input of the network, batch normalization can be 

applied to a layer, in which the output from activation functions is normalized. This 

method has the advantage of also implementing variables that are “learnable” and 

updated per training batch. Additionally, this technique increases training speed (Ioffe 

and Szegedy, 2015).  

 

2.2.2.2. Neck 

Object detection for different size objects can be challenging. Object detectors like 

the FRCNN used multiple anchor boxes on a feature map to detect them which is faster, 

but less accurate, than other alternatives used at a time - A pyramid of features would 

be more accurate than this process, but featurizing each level of an image would 

Fig. 11 – FPN with lateral connection. [Source: Bochkovskiy et al., 

2020] 



 
FCUP 

Automatic processing of images of chromotropic traps for identification and 
quantification of Trioza erytreae and Scaphoideus Titanus 

23 

 
 
increase inference time considerably. Feature pyramid networks (FPNs) were proposed 

by Lin et al. (2017). FPN is composed of a bottom-up pathway, a top-down pathway and 

lateral connections, which allow the combination of semantically strong, low-resolution 

feature, with semantically weak, high-resolution features. The bottom-up pathway is 

simply a feature extractor, like the ResNet50. Fig. 11 displays the FPN and the lateral 

connection. As portrayed, the top-down pathway upsamples the spatial resolution by a 

factor of 2, and merges it with the corresponding bottom-up map – after a 1×1 

convolutional layer to reduce channel dimensions – by element-wise addition (Lin et al., 

2017).  

 

2.2.2.3. Head 

The detector of Faster R-CNN is the Fast R-CNN, which includes an FCL. Since 

these types of layers only take fixed inputs, proposed regions should be transformed to 

match it. RoI pooling takes de proposed regions from the RPN and takes portions of the 

feature map from the neck corresponding to each region and converts that section into 

the fixed dimension. 

The softmax function is commonly used in ANN, since it allows to compute each 

class probability from a vector of numbers (Raschka and Mirjalili, 2019). In Faster R-

CNN softmax is used both for the RPN and the detector (Fig. 10 and Fig. 12) (Ren et al., 

2016). Another function found in almost any CNN is the Rectified Linear Unit activation 

function, ReLu for short, which tries to solve the vanishing gradient problem by 

considering 0 any input equal or lower to 0 but keeping its value if its greater than that 

(Raschka and Mirjalili, 2019).  

 

 

Fig. 12 – Original Faster R-CNN architecture [Source: Khazri, 2019]. 
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2.2.3. YOLO 

The previous algorithms discussed were two-stage detectors, since they first 

extracted regions to locate the objects, instead of using the complete image. You Only 

Look Once (YOLO) is an object detection algorithm which the first version was released 

in 2016 by Joseph Redmon, also known as pjreddie, Santosh Divvala, Ali Farhadi and, 

once again, Ross Girshick. It was the first of its kind, a single neural network that 

predicted bounding boxes and class probabilities directly from full images in one 

evaluation, a one-stage detector. In summary, an input image would be divided into an 

SxS grid and for each grid cell, B bounding boxes are predicted as well as a confidence 

score for each one (Fig. 13). These scores reflect the confidence of the model that this 

bounding box contains the object. Additionally, for each cell, the network would predict 

the class of the object. At the time, YOLO was extremely fast, it could process streaming 

video in real-time and, compared to Fast R-CNN, it would wrongly classify the 

background as an object only half of the times. However, although it would quickly 

identify objects, it would struggle with accuracy, particularly in small objects (Redmon et 

al., 2016).  

Redmon would later work alongside Farhadi to improve this network and release 

YOLOv2, or YOLO9000, in 2016 and YOLOv3 in 2018 (Redmon and Farhadi, 2018, 

2016). In February 2020, Redmon announced in his personal twitter account that he 

would abandon CV research due to concerns regarding the usage of his work for military 

applications and privacy violation (Joseph Redmon, 2020). However, his work would be 

picked up by Bochkovskiy et al. (2020) and in April 2020, YOLOv4 would be released. 

Only a few months later, in June 2020, Ultralytics released a new version of YOLO, which 

they designated as YOLOv5 (Jocher et al., 2021). However, this announcement has 

caused immense controversy in the machine learning community platforms particularly 

because the official YOLOv5 paper is yet to be released as of September 2021, resulting 

in reservations regarding the naming of the model, since the apparent main differences 

from YOLOv4 are its implementation in PyTorch and data augmentation techniques, and 

regarding the legitimacy of accuracy and reproducibility of the announced results (Nelson 

et al., 2020; Supeshala, 2020). However, multiple studies have been made using this 

network – Detecting apples in orchards (Kuznetsova et al., 2020), mask wearing 

recognition (Liu, 2020), detecting heavy goods vehicles (Kasper-Eulaers et al., 2021), 

and more. Due to the lack of consensus regarding this legitimacy of this version of YOLO, 

YOLOv4 was implemented during this work.  
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YOLOv4 brings the concepts of Bag of Freebies (BoF) and Bag of Specials (BoS). 

In the BoF are methods that improve the model’s performance, without introducing extra 

computational cost during inference (Zhang et al., 2019). Modules and methods that can 

improve accuracy but slightly increase inference cost are included in the BoS 

(Bochkovskiy et al., 2020).  

 

2.2.3.1. Backbone 

The backbone, or feature extractor, of YOLOv4 is composed of the 

CSPDarknet53, and includes a BoF and BoS. 

In YOLOv4 the BoF consists of CutMix and Mosaic data augmentation, 

DropBlock regularization and Class label smoothing (Bochkovskiy et al., 2020). Data 

augmentation was developed to reduce overfitting, through several transformations it 

produces new data from the original training data (Shorten and Khoshgoftaar, 2019). In 

CutMix, patches from different training images are cut and pasted, where the ground 

truth labels are also mixed proportionally to the area of the patches (Yun et al., 2019). 

Mosaic simply puts together 4 different images into a synthetic new one (Hao and Zhili, 

2020). Another way to reduce overfitting, would be to produce images which have some 

parts missing. This is known as dropout. Instead of dropping out features randomly, since 

in images features are correlated spatially, DropBlock drops features in adjacent regions 

of a feature map. As it discards features in a correlated area, the networks must consider 

the available parts for evidence to fit the data (Ghiasi et al., 2018).  

Often detection networks use a probability distribution over the classes using the 

softmax function, for each object. During training, this value is compared to the ground-

Fig. 13 - YOLO detection [Source: Redmon et al., 2016] 
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truth, which is usually one-hot encoded – the true class has a probability of 1 and the 

other have 0. This can cause the model to be overconfident (Zhang et al., 2019). 

Szegedy et al. (2015) proposed class label smoothing to avoid this problem.  

As for the BoS in the backbone, the methods are Mish activation, Cross-stage partial 

connections (CSP), and Multi-input weighted residual connections (MiWRC) 

(Bochkovskiy et al., 2020).   

CSPDarknet53, the backbone of YOLOv4, is a CNN that uses DarkNet-53 and 

employs a CSP strategy to partition the feature map (Wang et al., 2019) Darknet was 

part of YOLOv3 and its name derives from the 53 convolutional layers (Redmon and 

Farhadi, 2018). Its architecture is presented in Fig. 14. CSPDarknet53 is based on 

DenseNet, developed by Facebook AI Research, and characterized by its dense layers 

that reuse features by concatenating the output of a layer with is convolution (Fig. 15a). 

The motivation to use these layers is to avoid the vanishing gradient by reducing the 

number of network parameters, which increases along with the depth of the network 

(Huang et al., 2018; Jacob Solawetz, 2020). CSP is a follow-up to this concept. Instead 

of using the full output of a layer and pass it on to the next one, the output of a layer will 

be copied and divided into two parts: one will pass through a dense layer, and the other 

will go to a partial transitional layer and be concatenated with the output of a dense block. 

In a dense layer, the input is a concatenation of the part of the output of the previous 

Fig. 14 - Darknet-53 architecture [Source: Redmon and 
Farhadi, 2018]. 
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layer, as mentioned, and the result of a convolutional. Fig. 15b showcases this method 

employed to a DenseNet (Wang et al., 2019).  

The concept of multi-input weighted residual connections (MiWRC) was introduced 

with EfficientDet, a CNN developed by a Google research team. The main goal is to fuse 

features with different resolutions. However, the authors noted that, since different input 

features are at different resolutions, they usually contribute to the output feature 

unequally. Hence, they proposed assigning them weights, which can be trained and, 

consequently, optimized by the network  (Tan et al., 2020). 

 

2.2.3.2. Neck 

The neck are layers between the backbone and the head that collect feature maps 

from the backbone at different levels. In YOLOv4, after the backbone is added a Spatial 

Pyramid Pooling (SPP) module, and Path Aggregation Network (PAN) as a method of 

parameter aggregation between the backbone and the head (Bochkovskiy et al., 2020).  

Early on, most CNNs required a fixed input image size and, when the input does not 

meet this ratio, it can be cropped or warped. However, this might result in the loss of part 

of the objects or severe distortions, compromising accuracy. The reason why CNNs 

require a fixed input is not due to the first part of network, the convolution layers, but 

rather the FCLs that follow them. A SPP module are layers added after the last 

convolutional layer, in which the feature maps are spatially divided into bins. Then a 

Fig. 15 – DensetNet and CSPDenseNet architectures [Source: Huang and Wang, 2019]. 
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maximum pool is applied to each bin for each channel, originating a 1-D vector. (He et 

al., 2014). In YOLO, however, the SPP is modified to firstly apply max-pooling of varying 

kernels, instead of creating bins, and afterwards concatenate these feature maps (Huang 

and Wang, 2019).  

PAN is an evolution of the FPN used in FRCNN, which suggests a bottom-up 

path in addition to the top down path used in FPN and tries to propagate low level 

information to the top by also creating skip connections between low level feature maps 

and top ones (Liu et al., 2018). Instead of the original method which adds these layers, 

in YOLOv4 they are concatenated (Bochkovskiy et al., 2020).  

 

2.2.3.3. Head 

The head, also known as the detector, makes a final prediction – a vector with 

the coordinates of the predicted bounding box, the confidence score of the prediction 

and the label. YOLO applies the head network to each anchor box. In YOLOv4, the head 

is its predecessor YOLOv3, which implements the method summarized previously of 

dividing the input in a grid. Here, the BoF is made of CIoU-loss, Cross mini–Batch 

Normalization (CmBN), DropBlock regularization, mosaic data augmentation, Self-

Adversarial Training (SAT), elimination of grid sensitivity, multiple anchors for a single 

ground truth, cosine annealing scheduler, genetic algorithms for selection of optimal 

hyperparameters and random training shapes (Bochkovskiy et al., 2020). 

From the features map created by the convolution layers, several anchor boxes 

of different ratios are created to represent of objects of varying sizes. The IoU-loss 

(Intersection over Union), is the formula for the difference between the predicted and the 

real bounding box (Fig. 16) (Bochkovskiy et al., 2020). The Complete IoU (CIoU), 

besides the overlapping area, also considers the central point distance and the aspect 

ratio (Zheng et al., 2019).  

Since batch normalization does not perform well when the batch size is small, 

because it does not reflect the similar statistics of the full training set, cross iteration 

batch normalization was developed, which considers k −1 most recent iterations (Yao et 

al., 2020). CmBN is a modified version of this method that considers statistics between 

mini-batches (Bochkovskiy et al., 2020). 

  SAT is a data augmentation technique that operates in 2 forward-backward 

stages. On the first pass through the network, instead of altering its weights, the network 

alters the original image by adding noise to it, which is described as an adversarial attack 

of the network on itself. Afterwards, the network is trained to detect an object on this 
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modified image as it normally would, with the original label. This can make the model 

more robust to noise (Bochkovskiy et al., 2020).  

 Grid sensitivity is a problem introduced in previous versions of YOLO but solved 

in YOLOv4 where the model struggled to predict bounding box centers that are in a grid 

boundary. This was solved by adjusting the formula to calculate them (Bochkovskiy et 

al., 2020; Long et al., 2020).  

 In DL the learning rate is a hyperparameter that determines how much the 

weights are adjusted in response to the estimated error each time they are updated – If 

it is too low, the training process can become too long, on the other hand, if this value is 

too high, it might converge to a sub-optimal set of weights (Kim, 2017). Instead of 

constantly reducing the learning rate by a specific rate like the FRCNN, the authors of 

YOLOv4 used a cosine function. It starts by reducing the rate slowly, then very quickly, 

and finally ends up with tiny slope, reducing small learning rate until it reaches 0 

(Loshchilov and Hutter, 2017; Zhang et al., 2019). For other hyperparameters, to try to 

find their optimal value, genetic algorithms are used. Genetic algorithms belong to the 

family of evolutionary algorithms, which are algorithms inspired by biological evolution 

and can be applied to a variety of challenges. Genetic algorithms, however, are often 

used as optimizers. They select the best models based on the “survival of the fittest” – 

each phenotype (model) has a set of chromosomes (parameters). In each generation 

(iteration), the quality of each individual is evaluated, and better phenotypes (models) 

form a new generation, in each they recombine their genetic information and pass it to 

their descendants (Whitley, 1994).   

Object detectors are frequently trained with a fixed input image shape. To 

improve generalization, since YOLOv2 multi-scale training has been implemented. 

Instead of adjusting the images to fit a resolution, every N mini-batches, the network 

Fig. 16 – Depiction of IoU calculation [Source: Rosebrock, 
2016]. 
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randomly chooses a new image dimension size. This makes it more versatile and robust, 

forcing the network to predict across a multitude of input dimensions (Redmon and 

Farhadi, 2016). 

For the detector, several BoS techniques applied have been utilized in previously 

such as the mish activation, SPP and PAN blocks. However, the head also implements 

Spatial Attention Module (SAM) block and DIoU-NMS.  

An attention module is, as the name implies, a mechanism parallel to the human 

concept of attention - focus on important features and suppress the rest. Given a feature 

map, SAM performs max-pooling and average pooling. Afterwards convolutes these 

outputs and passes the result trough a sigmoid function that normalizes these values 

(Woo et al., 2018). Bochkovskiy et al. (2020), however, modified SAM to be point-wise, 

instead of spatial-wise, by convoluting the feature map, instead of pooling (Fig. 17). 

DIoU is an improvement from IoU that also considers the distance between the 

center points of the bounding boxes. NMS stands for non-maximum suppression and it 

is used to filter redundant bounding boxes for the same object (Bochkovskiy et al., 2020). 

 

 

 

 

 

 

 

Fig. 17 – a) Original SAM. b) Modified SAM in YOLOv4 [Source: Bochkovskiy et al. (2020)]. 
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2.2.4. Transfer Learning and fine-tuning 

So far, several parameters and techniques were presented as well as the 

hardships when trying to optimize a model. Since training a DL model demands an 

enormous amount of data, publicly available, high-quality, labeled datasets with images 

are critical for adapting DL to entomological problems. There have been initiatives like 

the IP102 (Wu et al. 2019), the IPM image project (Center for Invasive Species and 

Ecosystem Health, 2018) and the iNaturalist (Van Horn et al. 2018) datasets that have 

contributed to solving this problem, with the latter not being exclusively for insects. 

However, some are not easily available and might not have the amount of data 

necessary. Additionally, none of these are exclusively of sticky traps. 

It is reasonable to assume that a network trained with a large dataset, could 

possibly be applied to other tasks.  This concept is termed transfer learning, an incredibly 

valuable technique, being described by some author as the next driver of machine 

learning commercial success (Andrew Ng, 2016; Kim, 2017; Ribani and Marengoni, 

2019; Shin et al., 2016). In fact, CNN such as Faster R-CNN and YOLOv4 provide 

already pre-trained versions of the models in different datasets (Bochkovskiy et al., 2020; 

Paszke et al., 2019). Just in entomology, several studies have tested this approach - 

Nieuwenhuizen et al. (2018) used a Faster R-CNN pre-trained with MS-COCO dataset 

to identify tomato pests, also in yellow sticky traps. Zhong et al. (2018) used a pre-trained 

YOLO in Imagenet Dataset to detect flying insects in yellow sticky traps.  

 

 

 

Fig. 18 - Diagram of proposed work. 
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3. Methodology 

3.1. Data acquisition 

The data available consists of 313 images from 58 different chromotropic traps, 

kindly supplied by DRAPN (Direção Regional de Agricultura e Pescas do Norte). The 

traps originated from different areas across the north of Portugal, particularly from Entre-

Douro e Minho and Trás-os-Montes e Alto Douro provinces. Some were collected in 

person directly from the field, while others were collected from DRAPN facilities.  

When the presence of any of the target insects was verified, its location was 

delimited in different ways: surrounding the object with a marker (Fig. 19a), or drawing a 

symbol next to it (Fig. 19b), or, to avoid signaling the targets, a photograph of the trap 

was taken before and after the demarcation. In this case, the marked version was kept 

separately and used for reference only when annotating bounding boxes (Fig. 19d and 

Fig. 19e). Occasionally, TE was the only insect present in a trap, as demonstrated in Fig. 

20. Here, due to the high frequency of insects on a single trap, with areas where multiple 

insects where overlapping, or with body parts missing, the registered count was 100, for 

simplification. Table 1 presents the number of TE and ST found, and number of images 

containing each one. 

The images were obtained using a smartphone with a 12-megapixel camera, and 

in different lighting, backgrounds and sometimes distorted. To assess how some 

properties of an image could impact different stages of the process, the trap’s real 

dimensions were recorded and there was binary classification for the presence of certain 

characteristics (Fig. 21). Each image was also classified as good, reasonable, or bad 

quality, according to their number and severity (Fig. 22). Table 2 describes the total 

number of images per characteristic and per quality class. This data was annotated in a 

.xlsx file with following structure: 

• Image number – For example: in IMG_1771.jpg, the number is 1771. 

• Width – Real width of the trap, in cm. 

• Height – Real Height of the trap, in cm. 

• Count – Number of target insects in the image (0 if none). In cases like 

Fig. 20, the total count of target insects was simply marked as 100. 

• Label – Label of the insects counted in the previous variable (TE or ST). 

Since the traps never had both, this is not an issue.   

• Quality – Overall quality of the image (Good, reasonable, or bad). 

• Reflections – Presence of specular reflection (1 - true, 0 - false). 
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• Shadows – Presence of any shadow (1/0). 

• Cut_margins – If the image does not contain the full trap, but rather cuts 

off some of the margins or corners (1/0). 

• Distortions – Presence of perspective or other distortions (1/0). 

• Poor_lighting – If the overall quality of the lighting in the image is not good 

(1/0). 

• Blured_noise – Presence of noise or if the image is blurred (1/0). 

• Yellow_toned_background – If the background behind trap is yellow-

toned or if there are any yellow objects (1/0). 

• Transparency – If the trap itself is somewhat transparent (1/0). 

• Plastic – If the trap is enveloped in plastic (1/0).  

• Segmentation – If the segmented process was successful (1/0). 

• Correction – If the correction of distortions was successful (1/0). 

 

 

 

Table 1 - Number of images and number of insects per species. 

 Number of images Total count of insects 

Trioza erytreae 55 1661 

Scaphoideus titanus 29 173 
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a) b) 

c) 

Fig. 19 - Various forms of annotation. a) ST circled with a red marker. b) TE marked with red dots next to it. c) trap 
with ST but not marked. d) Annotated version of e), kept in a folder and used as reference for bounding boxes.  

d) 
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Fig. 20 - Chromotropic trap with high numbers of TE.  
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a) b) c) d) e) 

Fig. 21 – Examples of different images properties. Image a) has cut margins and transparency, b) has shadows, specular reflections, overall poor lighting and is distorted. Images c) and d) are only positive for plastic 
and yellow-toned background, respectively. Image e) is distorted and has specular reflection..   

Fig. 22 - Images classified has good (left), reasonable (center) and bad (right). 
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3.2. Segmentation 

Segmentation is the process of partitioning an image into regions, i.e. sets of pixels, 

that share similar characteristics such as color, texture and intensity (Gonzalez and 

Woods, 2008). It is considered one of the most crucial steps in image processing since 

failed segmentation almost always implies a failure in the further steps of the process. In 

this project, the segmentation goal is to obtain the mask of the full yellow trap, removing 

all the background. Segmentation was employed using MATLAB (version R2020b) 

(MATLAB, 2020). 

Since the traps have a very strong yellow color, a color-based segmentation was 

implemented. Some techniques to pre-process the image to enhance and adjust the 

color and lighting were tested. However, since they did not achieve good results, these 

were discarded. 

MATLAB’s Color Thresholder was used since it allows testing of several 

thresholds for different color spaces (Fig. 24). The developed function segmentation.m 

takes as input the original image, and paths to save its mask and the corresponding 

binary image. The full segmentation process is visually described in  Fig. 25. 

The segmentation process consisted of converting each image to two different 

color spaces: HSV and YCbCr. HSV correspond to Hue, Saturation and Value. Hue 

describes a color in a 360º spectrum, saturation is intensity from grayscale and value 

corresponds to brightness. YCbCr color space can separate luminance, which is light 

intensity, from chrominance, a light wave with color Cyan Red and Cyan Blue, effectively 

(Zaidi et al., 2015).  

The HSV image was segmented by thresholding the Hue channel, considering 

pixels between 0.110 to 0.230, which correspond to the yellow hue. The YCbCr 

segmentation was implemented by thresholding the second channel, with a minimum 

Fig. 23 - Convexhull (left) compared to boundary method (right). 
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threshold equal to mean value of the pixels on this channel. A binary image resulting of 

the intersection between the HSV and YCbCr segmentations, was then obtained. 

Afterwards, a morphological closing is applied, so that other objects are separated and 

to reduce some noise. Since, ideally, smaller objects are now disconnected from the 

main one – the trap- all the objects are removed, except from the largest one.  

To retrieve not only the yellow region but the full trap and content, the object 

boundaries are traced, and everything inside is considered true. Contrarily to the convex 

hull, this method does not trace exclusively straight lines and, therefore, does not include 

unnecessary background pixels that can negatively impact point detection and 

consequently, geometric transformations. However, it can sometimes exclude parts of 

the image that were not well segmented. Finally, the mask is obtained from the binary 

image. 

  

 

 

 

 

  

Fig. 24 - Example using MATLAB’s Color Thresholder for the HSV color space. 
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Fig. 25 - Diagram of segmentation process. 
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3.3.  Geometric transformations 

Ideally, the traps should be presented in an image as a rectangle, with little to no 

distortions. However, this is usually not the case. These traps are often distorted from 

being strongly tied to branches or other surfaces, or simply by the pressure applied while 

holding them for the camera. Additionally, images are often not taken with the trap 

perfectly centered and parallel to the camera. These distortions that might compromise 

the size and ratio of objects, which in consequence could impact detection. Therefore, 

an algorithm was developed to overcome this (Fig. 27). 

After the segmentation, ideally, there should only be one main object in the 

image, the full trap. Therefore, the following approach does not take into consideration 

the presence of any other objects. 

Firstly, using regionprops, a MATLAB function thar returns different properties of 

image regions, the orientation, major axis length and minor axis length are obtained. The 

minor and major axis lengths correspond to the length (in pixels) of the minor and major 

axis of the ellipse that comprises the object. The orientation of the object is the angle 

between the x-axis and major axis of that same ellipse. This value can range from -90 

degrees to 90 degrees. Hence, the angle for which the image should be rotated so that 

the major axis is perpendicular to the x-axis is simply given by equation (1). 

 

𝑎𝑛𝑔𝑙𝑒 = 90 − 𝑜𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 (1) 

 

The newly obtained angle is then used to rotate the image, using MATLAB’s 

function imrotate with default parameters. When rotated by an angle θ, each point (x1,y1) 

will become (x2,y2) by following the equation (2) (Gaster, 2013). 

 

𝑥₂ = cos(𝜃) ∗ (𝑥₁ − 𝑥₀) + sin(𝜃) ∗ (𝑦₁ − 𝑦₀) 

𝑦₂ =  − sin(𝜃) ∗ (𝑥₁ − 𝑥₀) + cos(𝜃) ∗ (𝑦₁ − 𝑦₀) 
(2) 

 

To perform any geometric transformation, two types of points should be provided: 

moving points and fixed points. Fixed points are the target coordinates for which the 

corresponding moving points should be transformed to. The total number of fixed and 

moving points is 8- 4 corners and 4 mid points between each pair of corners.  

Ta ing in consideration the trap’s real width and height, taken during the data 

acquisition stage, the values for fixed points are obtained using the previously obtained 

minor axis length as reference. This will also reduce the image size and, but for the 
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purpose of this work it is not an issue since both networks take as input 416x416 images. 

As for the moving points, the four corners are retrieved by firstly using the function 

bwboundaries, which will trace region boundaries in the image. These pixel coordinates 

will be converted into polar coordinates, in which each point is determined by the 

distance from the centroid (center of the object) and an angle. Since the major axis is 

now perpendicular to the x axis, it is assumed that each of the four corners is one 

quadrant. Hence, each point corresponding to a corner is obtained by obtaining the 

coordinates of the furthest point from the centroid for each quadrant (0-90º, 90º-180º, 

180º-270º and 270º-360º). The mid points between corners are then localized by tracing 

a straight line between each pair of corners. However, since the object may present 

some distortion, this does not always represent the true mid-point, as illustrated in the 

example in Fig. 26. Therefore, if this is the middle point in a vertical line traced between 

two corners, the true middle point is found by finding the first and last white pixel in the 

same line. Subsequently, the middle points between corners that form a horizontal line 

are found by retrieving the first and last white pixel in the respective column.  

Afterwards, a second order polynomial transformation is applied to the image.  

The full process is portrayed in Fig. 27. 

  

Fig. 26 - Plotted object corners in yellow, the initial estimates for the in cyan blue, and in red are the true mid points. 
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Fig. 27 - Diagram of geometric transformation process. 
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3.4. Object detection 

Both object detection algorithms require different types of annotations, so the 

software LabelImg (Tzutalin, 2015) was used as an annotation tool, since it allows to 

save them in different formats (Fig. 28).  In images similar to Fig. 20, where there was a 

large number of TE, only full-bodied and intact insects were considered. Parts of insects 

or crowded areas were not annotated since whole insects was not perceptible. 

 For object detection only images of traps with TE or ST were considered. The 

training set corresponded to 38 images of the data and was the same for both models, 

and the validation set was of 9 images.  

The models were evaluated considering the mean average precision (mAP) on a 

test set (equal for both models), which is a robust metric for evaluating object detectors 

that considers precision, recall and IoU.  

For a regular classification task, models are usually evaluated considering their 

precision and recall, which are described below in equation (3) and (4). 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
 

(3) 

 

 

Precision will provide information over the ratio of predicted true positives and the total 

number of predicted positives, and the recall metric is the ration between true positives 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
 

(4) 

 

Fig. 28 – LabelImg window.The green points are the corners of the bounding boxes for the objects already labeled. 
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and ground truth positives (Tan, 2019).  In information retrieval, these metrics are 

respectively described as the fraction of retrieved documents that are relevant to the 

query, and the fraction of relevant documents that are successful retrieved (Zhang and 

Zhang, 2009a, 2009b). Precision and recall in document retrieval are described in 

equation (5) and (6). 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
|{𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠} ∩ {𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠}|

|{𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠}|
 

(5) 

 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
|{𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠}  ∩ {𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠}|

|{𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠}|
 

(6) 

 

In equation (7) the average precision combines recall and precision for ranked retrieval 

results, for a certain query, the average precision the mean of the predictions scores 

after each relevant document is retrieved. 

 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
∑ 𝑃@𝑟𝑟

𝑅
 

(7) 

 

 

Where r is the rank of each relevant document, R is total number of relevant documents 

and P@R is the precision at the top-r retrieved documents (Zhang and Zhang, 2009c). 

The task of object detection is parallel to information retrieval. The IoU, as mentioned 

in the section regarding YOLOv4’s BoF, is the overlap between predicted bounding-

boxes and the ground truths. A IoU threshold will define what is considered a TP and a 

FP.  This average precision is then calculated for each class, and the mean of those 

values corresponds to mAP.  

 

3.4.1. Faster R-CNN 

The model was implemented using Pytorch, pre-trained trained on ImageNet.  

Due to computational limitations, batch size was set to 1. With a batch size of 1, the 

gradient is estimated for each image- known as stochastic gradient descent (SGD) - 

meaning that although it requires a significantly smaller memory footprint, it is slower and 

noisier – as it is updated for every instance SGD will keep overshooting, complicating 

the convergence to the exact minimum (Kim, 2017). However SGD can escape shallow 

local minima (Buduma and Locascio, 2017; Raschka and Mirjalili, 2019). Additionally, 

the number of epochs for the model was of 400. 
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3.4.2. YOLOv4 

In YOLOv4 each image should have corresponding text file with the same name that 

contains for each object the bounding box coordinates and label.  

The network installation process was followed according to the instructions available 

on Alexey Bochkovskiy’s github repository (Bochkovskiy, 2020). Contrarily to the 

previous model, the author advised the number of epochs to be 2000 * number of 

classes, which in this case corresponds to 4000 epochs.  This model was pre-trained on 

the MS COCO dataset. 

 

4. Results 

Fig. 29a displays the total number of images per quality. The percentage of 

successful segmentations per image quality was assessed and is presented in Fig. 29b, 

with 80% of images classified as “ ood” resulting in a successful segmentation, while 

the other two classes are barely over half. The properties that contributed the most to 

segmentation failure are presented in  Fig. 30. The percentage of corrected images per 

segmentation outcome is displayed in Fig. 29c. Here, a successful segmentation results 

in a correctly transformed image 68% of the times, while a poor segmentation is more 

likely to result in a bad correction. The great majority of images classified as good, results 

in a properly transformed image (Fig. 29d). Examples of images, their obtained mask 

and corrected output, are shown in Fig. 31. 

Regarding the detection models, YOLOv4’s loss curve of the models trained 

before and after segmentation and correction, is presented in Fig. 32, while the mean 

average precision (mAP) for both models is plotted in Table 3. For the YOLOv4 models, 

the average precision (AP) of both classes is also evaluated.  
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a)              b) 

Fig. 29 – a) Number of images per quality class. b) Ratio of successful segmentations per image quality class. c) Percentage 

of successful geometric corrections by segmentation result. d) Successful geometric corrections per image quality. 

c)               d) 
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Table 2 - Total number of images with each feature and quality. 

 Reflections Shadows Cut Margins Distortions Bad lighting Blur Transparency Yellow 

background 

Plastic Total 

Bad 29 17 24 53 34 4 72 6 5 244 

Reasonable 27 7 18 22 6 3 51 17 3 154 

Good 10 2 3 6 1 3 36 1 0 62 

Total 66 26 45 81 41 10 159 24 8 460 

Fig. 30 – a) Ratio of segmentation results per image feature. b) Ratio of geometric correction results per image feature. 

a)              b) 
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Fig. 31 - Example of original images (left), their mask (center) and after geometric correction (right). a) Image with good results both 
in segmentation and geometric correction. b) Outputs of a trap involuted in plastic. c) Image of trap with a paper tag that does not 

touch the trap’s margins. d) Trap with intense specular reflection. e) Trap with paper tag that passes its margins. f) Damaged trap.  

a) 

b) 

c) 

e) 

d) 

f) 
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Fig. 33 - Training loss for Faster R-CNN model trained with unprocessed data. 

Fig. 32 - Loss curves of YOLOv4 trained in the original images (top) and trained on the processed images (bottom). 
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Fig. 34 - Chromotropic traps tied with different colored straps. a) Yellow strap. b) White strap. c) Black strap. d) Green strap 

a) b) c) d) 

Fig. 35 – a) Original image with poor lighting, severe specular reflection, and shadows. b) Segmentation output. c)  Geometric correction output. 

a) b) c) 
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Table 3 - Results of object detection models. 

Model Metric 
Unprocessed 

images 

Processed 

images 

YOLOv4 

AP (TE) 24,79% 25.51% 

AP (ST) 16.65% 4.29% 

mAP@0.5 20.72% 14.90% 

Faster R-CNN mAP@0.5 1,27% 1,46% 

 

 

5. Discussion 

Most of the images collected seem to fall under the “good” or “reasonable” label 

(Fig. 29a). Not surprisingly, bad quality images seem to have significantly higher number 

of features compared to them, as shown in Table 2.  Higher quality images result more 

often in successful segmentations (Fig. 29b) and corrections (Fig. 29d). Also, a 

successful segmentation is more likely to result in a successful geometric correction, as 

indicated in Fig. 29c.  

Certain image properties seem to impact segmentation differently. Fig. 30a 

displays the ratio of segmentation outcome per feature, and it is observable that lower 

segmentation success rates belong to the features plastic, shadows, bad lighting, and 

yellow toned background. By cross-referencing this data with Table 2, it is noted that all 

the 8 images that were wrapped in plastic, were not well segmented, as shown in Fig. 

31b. However, this is a very low number of occurrences, so the segmentation could 

possibly be effective under this condition in some instances. The presence of shadows 

also appears to heavily influence the segmentation outcome, since 79% of images with 

this issue, failed to be segmented properly. A yellow-toned background and bad lighting 

can also be detrimental to this process, since only around 50% of images in these 

categories had positive outcomes. As described previously, the feature yellow-toned 

background also includes yellow-toned objects like the straps used to tie the trap to 

branches and other surfaces. The data available included traps with yellow, white, black, 

and green colored straps (Fig. 34). The observed results show that the segmentation 

fails to properly separate only the yellow strap, which is understandable since the 

segmentation process is color-based.   

The data provided suggests that the segmentation outcome can greatly impact 

the correction of this distortions, which can be explained by wrongly detecting corners in 
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poorly segmented images, resulting in images with severe distortions, as displayed in 

Fig. 31e. The trap in this image had a paper tag on one corner, similarly to several others. 

Although the boundary selection during the segmentation stage is implemented to try to 

include regions on the trap that become background because they do not fall between 

the thresholds, if the object is near a corner, it will not be covered by the boundary, so it 

will be excluded anyway and jeopardize corner detection.  Using the convex hull could 

overcome this, but it will make the correction of distortions obsolete, as it will not trace 

curves between points, which will not correctly depict the trap’s shape and include 

background that was previously segmented, as shown in  Fig. 23. This is also applicable 

to insects or points of specular reflection that pass beyond or are very close to traps 

margins (Fig. 31d). If the problem region is further located from the margins, however, 

this method is successful (Fig. 31c). Using traps with damaged corners and margins, or 

images under severe lighting conditions, may also lead to distorted images. Although the 

output of the image in Fig. 31f is not severely degraded, using damaged traps can be 

unpredictable since it also compromises corner detection. Fig. 35 displays an image with 

overall poor lighting, severe presence of shadows and specular reflection, in which the 

poorly segmented outcome resulted in a strongly distorted image.   

Both models had a low mAP, but the FRCNN models were particularly low, 

achieving a score below 2% on the test sets. When comparing the loss charts, the Faster 

R-CNN achieves lower training loss than YOLOv4 (Fig. 32 and Fig. 33). This data 

suggest overfitting, possibly due do the small training data size. Although still low, 

YOLOv4 had a significant higher mAP, which can be explained by all the BoF and BoS 

that this network implements, such data augmentation methods. For both YOLOv4 

models, the AP for ST was lower than TE, despite the difference in size, which can be 

attributed to the lower number ST across all images. AP for ST also decreased 

substantially after processing the images, possibly due to distortions caused by the 

polynomial transformation – which are more prevalent as the object size increases. The 

8 points provided for this transformation are possibly not enough to avoid disturbing 

straight lines. However, in Fig. 33 it is shown that the model trained with processed data 

achieves lower training loss, specifically around the 3600 th epoch.  
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a) b) 

Fig. 36 - Detection of TE of models trained with unprocessed data. a) Ground-truth labeled images. The green dots represent the bounding boxes’ corners b) YOLOv4’s predictions with confidence scores. c) 
FRCNN’s predictions with confidence scores. The magenta color displays predictions of TE and green of ST. 

c) 
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b) 

Fig. 37 - Predictions for a processed image. Magenta represents TE and green ST. a) YOLOv4 ’s predictions with confidence scores. b) FRCNN’s predictions with confidence scores. The magenta 
color displays predictions of TE and green of ST. 

a) 
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a) 

Fig. 38 - Detection of ST of models trained with unprocessed images. a) Ground-truth labeled image. The green dots represent the bounding boxes’ corners. b) YOLOv4’s prediction with confidence 
scores. c) FRCNN’s predictions with confidence scores. The magenta color displays predictions of TE and green of ST.  

 

b) c) 
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b) 

Fig. 39 - Detection of Scaphoideus titanus of models trained with processed images. a) YOLOv4’s prediction with confidence scores. b) FRCNN’s predictions with confidence scores. The 
magenta color displays predictions of TE and green of ST. 

a) 
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6. Conclusion 

HLB and FD cause significant losses to agriculture. The early identification of 

their vectors is crucial to avoid dissemination, particularly of TE, since HLB has not been 

reported in Europe. Portugal and Spain, who have disclosed the presence this pest on 

their territories, can become gateways to a wave of production loss in the European citrus 

industry. The current entomological identification process for both insects is time-

consuming and inefficient and would greatly benefit from an automatic and user-friendly 

method that would also be accurate. 

To develop a functional automatic process for identification of TE and ST, it is 

crucial that a larger amount of data is collected. Also, if the method developed during 

this work would to be deployed, certain trap conditions should be prioritized – avoid using 

plastic around the trap and yellow objects, like straps, avoid causing pressure that would 

distort the trap’s shape, avoid angles that might cast a shadow or cause heavy specular 

reflection, try to maintain the trap parallel to the camera, and if there is a need to annotate 

the trap, it is preferable to either write directly on it with a marker, or use a paper tag but 

avoid sticking it close to corners or margins.  

The segmentation process is very sensitive to the issues mentioned. 

Implementing a more robust method – such as Mask R-CNN or U-Net – or improve the 

one employed can better corner detection and, consequently, geometric transformations. 

To enhance the latter, the number of control and moving points should be increased, or, 

instead of second-degree polynomial transformation, an affine transformation should be 

tested.  

The object detection models did not achieve results to replace the current 

identification process. However, the pre-trained YOLOv4 models have demonstrated 

potential if given enough data. Since the models trained with processed images 

underperformed, the processing methods, as mentioned previously, should be improved. 
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