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Abstract 

Stored grains are paramount commodities to be preserved and stocked for future supply to the 

market according to the requirement. However, one of the major problems during storage is 

insect pests, of which insects from Trogoderma sp. especially khapra beetle (Trogoderma 

granarium) is considered the world most dangerous stored grain insect pests. Therefore, it has 

been listed as quarantine insect pests in many counties. For timely management of quarantine 

pest, effective and rapid diagnostic methods are required. Until now, diagnostic technology is 

mainly based on morphology of insects which require trained taxonomists. Recently, 

diagnostics based on metabolites and hyperspectral imaging coupled with machine learning is 

gaining importance. However, very little is known about the metabolites in Trogoderma sp. 

and how the host grain, gender, and geographical distribution affect the metabolomic profiling 

in these species is still unknown.  

In this thesis, volatile organic compounds (VOCs) emitted by Trogoderma variabile at different 

life stages were analysed as biomarkers which can help us to understand the biochemistry and 

metabolomic. Some compounds were identified from T. variabile different stages, which could 

be used as diagnostic tool for this insect. Gas chromatography coupled to mass spectrometry 

(GC–MS) was used as a technique to study the metabolite profile of T. variabile in different 

host grains. However, there are several factors that affect the volatile organic compounds 

including extraction time and number of insects. The results indicated that the optimal number 

of insects required for volatile organic compounds (VOC) extraction at each life stage was 25 

and 20 for larvae and adults respectively. Sixteen hours were selected as the optimal extraction 

time for larvae and adults. Some of the VOCs compounds identified from this insect can be 

used as biomarkers such as pentanoic acid; diethoxymethyl acetate; 1-decyne; naphthalene, 2-

methyl-; n-decanoic acid; dodecane, 1-iodo- and m-camphorene from larvae. While butanoic 

acid, 2-methyl-; pentanoic acid; heptane, 1,1'-oxybis- 2(3H)-Furanone, 5-ethyldihydro-; 

pentadecane, 2,6,10-trimethyl-; and 1,14-tetradecanediol VOCs, were found in male, whereas 

pentadecane; nonanic acid; pentadecane, 2,6,10-trimethyl-; undecanal and hexadecanal were 

identified from female.  

Additionaly, direct immersion-solid phase microextraction (DI-SPME) was employed, 

followed by gas chromatography mass spectrometry analysis (GC-MS) for the collection, 
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separation, and identification of the chemical compounds from T. variabile adults fed on four 

different host grains. Results showed that insect host grains have a significant difference on the 

chemical compounds that were identified from female and male. There were 23 compounds 

identified from adults reared on canola and wheat. However, there were 26 and 28 compounds 

detected from adults reared on oats and barley respectively. Results showed that 11-

methylpentacosane; 13-methylheptacosane; heptacosane; docosane, 1-iodo- and nonacosane 

were the most significant compounds that identified form T. variabile male reared on different 

host grains. However, the main compounds identified from female cultured on different host 

grains include docosane, 1-iodo-; 1-butanamine, N-butyl-; oleic acid; heptacosane; 13-

methylheptacosane; hexacosane; nonacosane; 2-methyloctacosane; n-hexadecanoic acid and 

docosane. 

A novel diagnostic tool to identify between T. granarium and T. variabile were developed 

using visible near infrared hyperspectral imaging and deep learning models including 

Convolutional Neural Networks (CNN) and Capsule Network. Ventral orientation showed a 

better accuracy over dorsal orientation of the insects for both larvae and adult stages. This 

technology offers a new approach and possibility of an effective identification of T. granarium 

and T. variabile. from its body fragments and larvae skins. The results showed high accuracy 

to identify between T. granarium and T. variabile. The accuracy was 93.4 and 96.2% for adults 

and larvae respectively, and the accuracies of 91.6, 91.7 and 90.3% were achieved for larvae 

skin, adult fragments, larvae fragment respectively.  
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1.1. General Introduction  

Grains are the most significant source of food energy worldwide. They are an essential source 

for many countries because they are high in various nutrients, such as vitamins, magnesium, 

iron, phosphorus, manganese and selenium. Food grain storage began approximately 4,500 

years ago to maintain a stock of food for humans (Saxena et al., 1988). However, there are 

many problems with the storage process, such as the presence of pests, which is a very critical 

issue for stored products. Pests enter grain storage areas because they provide an ideal 

environment for the development and growth of insects compared to external environments 

(Rees, 2004; Nansen, 2008). One such insect pest is the genus Trogoderma, which contains 

more than 134 species (Háva, 2011). This genus is one of the 100 worst invasive species 

worldwide. Trogoderma spp. is distributed in many countries, including Asia, Africa, North 

and South America, Europe, Australia and New Zealand (Figure 1-1). The warehouse beetle, 

T. variabile Ballion, 1878 (Coleoptera: Dermestidae), is a significant pest of packaged and 

processed stored products. The common name “warehouse beetle” was given to it by Okumura 

(1972), who regarded it as the next most serious dermestid pest after the khapra beetle, T. 

granarium Everts (Cross et al., 1977). Originating in central Asia, this species was first 

described in the United States by Beal in 1954 (Loschiavo, 1960; Partida and Strong, 1975). 

This species was found to be most prominent in Western areas, infesting a wide variety of seeds 

and stored products of both animal and vegetable origin (Vincent and Lindgren, 1975). 

Trogoderma spp. infect a wide range of economically important crops worldwide. According 

to Rees (2004), T. variabile and T. granarium are the most important species causing 

significant damage to grain stores. Australia is free of T. granarium currently; however, the 

closely related species, T. variabile, has successfully invaded and established in this country in 

1977. T. variabile was first discovered in Griffith, Australia, and has since spread throughout 

the remainder of Australia (Hartley and Greening, 1983). T. variabile first appeared in southern 

New South Wales in 1977, spread to Queensland and Victoria in 1981 and was later recorded 

in South Australia in the early 1990s. In 1989, it was recorded in Western Australia. T. variabile 

has become established in Australia despite numerous attempts at eradication (Wright, 1993). 

It is now a frequent pest of storage structures and is becoming a pest of bulk-stored canola in 

Australia. It is now widely distributed from northern New South Wales to South Australia, east 

of Port Augusta, with limited distribution in Queensland and Western Australia (Rees et al., 

2003). T. variabile shows great similarity to other Trogoderma species, especially T. 

granarium that is not currently present in Australia. Many techniques have been developed to 
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identify between species, including detection probes, kernel staining, Berlese funnel method, 

acoustic techniques, X-ray imaging, nuclear magnetic resonance imaging, thermal imaging and 

the solid phase microextraction (SPME) method (Neethirajan et al., 2007). Some of these 

techniques are expensive and time-consuming, have potential health hazard, and are less 

efficient. Manual sampling traps and probes are the most common methods used on farms, 

whereas manual inspection, sieving, and the Berlese funnel method are used in grain storage 

and handling facilities (Neethirajan et al., 2007). Early monitoring and detection of insects in 

stored food grains are required to apply corrective actions. The capability of early detection, 

monitoring, cost, reliability, and labour requirements are the major factors considered when 

selecting the most appropriate method. Detection of hidden infestation is an important concern 

for mitigating losses in bulk storage warehouses, which enables the early fumigation actions 

or disposal of the grain (Banga et al., 2018). 

There are no studies regarding the use of headspace solid phase microextraction (HS-SPME) 

for the diagnosis of T. variabile. The SPME method has been widely used for the analysis of 

volatile compounds and successfully employed to monitor and diagnose grain insect species. 

The HS-SPME technique is a new, simple, fast, highly sensitive and solvent-free sample 

preparation technique for the extraction of volatile compounds (Bicchi et al., 2000; Wardencki 

et al., 2004). The direct immersion solid-phase microextraction (DI-SPME) method coupled 

with gas chromatography-mass spectrometry (GC-MS) has been used to extract and analyse 

fatty acids and hydrocarbons because it is a fast, reliable and affordable technique (Braga et al., 

2013). It can be used as an alternative method when the taxonomical identification of an insect 

is not possible due to its damaged condition or if its DNA is too degraded (Braga et al., 2013). 

Given these drawbacks, an alternative technique is to use a hyperspectral imaging system. 

Hyperspectral images are high-resolution images that are used for geolocation identification, 

plant species identification, and identifying pest damage on plants (Camps-Valls, 2013; Cao et 

al., 2015). Hyperspectral imaging combines the properties of imaging and spectroscopy; 

therefore, it can attain both spatial and spectral information from an object, making this 

technique more sensitive and reliable.  
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Figure 1-1. Map showing the current known world distribution of the khapra beetle 

countrywide. 

 

1.1.1. Grains 

A grain is a small, hard and dry seed harvested for human or animal consumption (Babcock, 

1976). The two main commercial grain crops are cereals and legumes (pulses). The cereal 

grains include wheat, oats, rice, corn (maize), barley, sorghum and millet. Grains also include 

pseudo cereal (starchy) grains and oil seeds. Cereals constitute the most substantial proportion 

of crop production worldwide, with barley having the fourth highest production of the cereal 

crops (Didon, 2002). The grain industry is a large contributor to the Australian economy, with 

grains, pulses and oilseed production accounting for approximately 25% of Australia’s gross 

value of agricultural production. Exports of summer and winter grain, pulses and oil seed 

represent an annual return of approximately AUD 6 billion and the industry is expected to 

steadily grow at a rate of 1.5% over the coming five years. The economic importance of grains 

and their contribution to the diets of humans and livestock cannot be disputed. Grains, 

especially wheat, is the most important crop worldwide and is considered as a major source of 

energy and starch. Wheat provides substantial amounts of several essential components, such 

as proteins, vitamins, dietary fibre and phytochemicals. The economic importance of wheat 

and its contribution to the diets of humans and livestock is obvious. Agricultural production 

began about 10,000 years ago, whereas food grain storage started approximately 4,500 years 
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ago to maintain food stocks for humans (Saxena et al., 1988). Storage is an important technique 

for maintaining the quantity and quality of commodities. Kiaya (2014) defined storage as the 

way to maintain the quality of agricultural materials and prevent them from deterioration for 

specific periods beyond their normal shelf life. However, insects are critical issues in storage 

products because storage areas provide an ideal environment for the development and growth 

of insects compared to the external environment (Rees, 2004; Nansen, 2008). This is 

particularly the case in warmer climates where the pressure of insects is high (Collins, 2006). 

For total farm production, the production of grains, oilseeds and pulse crops make up 

approximately 29% (AUD 18 billion), and approximately 30% of the total value of farm export 

income in 2016–2017. In a typical year, one-quarter of Australian agricultural businesses 

produce grains, oilseeds or pulses. In Australia, approximately 25 million tonnes of wheat are 

produced every year, accounting for 3%–4% of the world’s wheat production and 10%–15% 

of global wheat exports. In addition, approximately 65%–75% of Australian total wheat 

production is exported each year, with Western Australia being the largest exporting state. 

 

1.1.2. Stored grain insects  

Insects are the largest group of animals. Insects (Class Insecta) are classified into 29 orders, 

including beetles (Coleoptera); flies (Diptera); bees, wasps, and ants (Hymenoptera); and 

moths and butterflies (Lepidoptera). The earliest records of insects associated with stored food 

products are those of a flour beetle which was found in an Egyptian tomb dating back to 2500 

B.C. and of “beetles and weevils” that were found in the tomb of Tutankhamen (1390–1380 

B.C.) (Munro, 1966). There are approximately 950,000 species of insects on Earth, and they 

feed on various items, including seeds, leaves and flowers (Samways, 1994). Of the known 

insect species, there are approximately 100 that are responsible for damage to stored products 

and, of these, about 20 are major pests with a cosmopolitan distribution. Stored product insects 

are infesting pests that are found in stored cereal grains, grain products and grain legumes is 

not a new problem. Stored grain insect pests can cause reductions in grain weight and quality, 

commercial value and seed viability. A major concern to the grain industry in Australia and 

overseas is the management of grain pests (Rees, 2004). The Australian grain industry, 

although well established, is facing new and significant pressures regarding insect management.  

Grain storage provides the ideal environment for insect and mould species to flourish. This is 

related to the structure of the storage units, as a full grain silo or storage unit provides a unique 

habitat that is in many aspects uniform (Nansen et al., 2008). The quality of grain resources 
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and the vast quantities in which they are stored provide an opportunity for several insect species 

to reproduce and reach densities that would not occur in the natural environment (Flinn et al., 

2004; Nansen et al., 2004; Rees, 2004; Nansen et al., 2008). 

Some insects associate with stored grains; however, they do not depend entirely on the grains 

themselves, rather feeding on other pests within the grain storages. Fungal feeders such as 

beetles in the family Latridiidae feed on moulds and cannot survive in clean grain, whereas 

predators, parasitoids and scavengers prey on other insect species and decaying organic 

material (Rees, 2004). There are approximately 300 species that infect stored products; 

however, only 18 are of primary economic importance. Such insects have adapted to infecting 

raw stored grain and grain products and pose continual threats to storage units worldwide 

(Boyer et al., 2012). Generally, beetles (Coleoptera) and moths (Lepidoptera) are the major 

insect pests that cause damage to stored products. Beetles are the most versatile and cause more 

significant losses to grains than moths. Both the larvae and adults of beetles attack stored food, 

whereas only the larvae of moths are harmful (Upadhyay and Ahmad, 2011). The most 

important species of insects that cause significant damage to stored products are T. granarium, 

T. variabile, Rhyzopertha dominica (F.), Sitophilus granarius (L.), S. zeamais (M.), Tribolium 

castaneum (H.), T. confusum (D.), Callosobruchus chinensis (L.), C. maculatus (F.), 

Oryzaephilus surinamensis (L.), Prostephanus truncatus (H.), Acanthoscelides obtectus (S.), 

Lasioderma serricorne (F.), and Ephestia elutella (H.) (Talukder and Howse, 1994; 1995; 

Benhalima et al., 2004). There are some insect pests such as cockroaches, silverfish, ants and 

termites that are spread in grain stores; however, they not cause damage directly, rather they 

cause food contamination and a bad smell, especially in wet areas (Upadhyay and Ahmad, 

2011). 

 

1.1.3. Management control of stored grain insects 

The effective prevention and control of insect pests in stored commodities is the main goal of 

entomologists worldwide (Talukder, 1995). Many control methods exist; however, researchers 

are trying to develop safer and more economical techniques, and recently gases, radiation, 

pathogens, growth regulators and pheromones have been used to control storage product pests 

(Talukder, 2009). 
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1.1.3.1. Chemical control 

In the past, different methods have been used to control stored product insect pests. The most 

frequent control measure of stored product insects has been the use of synthetic chemical 

insecticides and fumigations (Tebbets et al., 1986; Yokoyama et al., 1987; Banks, 1994; Zettler 

and Arthur, 2000). However, these have caused problems such as insecticide resistance 

(Beeman and Wright, 1990), chemical residues in foods and environmental pollution (Morallo- 

Rejesus, 1987). Insecticidal treatments such as malathion (Arthur and Zettler, 1992), 

deltamethrin (Arthur, 1997), cyfluthrin (Arthur, 1994, 1998), bioresmethrin (Ardley, 1976) and 

chlorpyrifos-methyl (LaHue, 1977) are also used to control stored product insect pests. 

However, problems associated with using these chemicals include resistance chemicals and 

negative effects on the environment and human health (Zettler and Haliday, 1989; Zettler and 

Cuperus, 1990; Arthur and Zettler, 1992). Fumigation is one method used to control grain 

insects. Trogoderma spp. are more resistant to fumigants than most stored product pests; 

however, using fumigations to control these species can produce high results. High 

concentrations of fumigants must be maintained over the fumigation period to allow 

penetration into all cracks and crevices. During an eradication program, fumigants and surface 

sprays are used in combination with preventive measures, such as good sanitation practices and 

exclusion (Harris, 2006). Currently, many countries are using fumigation as a chemical control 

of grain pests because it has shown promising results worldwide. Fumigation is a method of 

controlling pest insects by exposing them to gas or mixture of gases. Phosphine (PH3) and 

methyl bromide (CH3Br) are the most popular fumigants used (Quinlan and Mc Gaughey, 

1983).  

 

1.1.3.2. Biological control 

To date, conventional pesticides have been used as the major tools for stored grain and food 

protection. However, there are many problems associated with conventional pesticides 

including toxic residues in the treated products, pesticide resistance, health hazards to 

operatives and pest resurgence, and handling hazards. Among these, resistance to conventional 

pesticides is a growing issue in stored product protection. Due to the problems associated with 

pesticides, there is interest in the development of alternative biorational strategies such as 

biological control agents, natural enemies, plant-derived materials and insect growth regulators 

(Talukder, 2009). The use of living organisms to manipulate the population of insect pests is 
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called biological control. Biological control agents use natural enemies (predators and 

parasitoids), nematodes, fungi and bacteria to control stored product insects. Biological control 

has increased in recent decades for the following reasons: reduced chemical pesticides, a large 

number of pests have developed resistance against pesticide action and the sensitivity of 

consumers towards pesticide residues (Frank, 2010). Biological control agents are being 

considered as supplements or alternatives to synthetic chemical insecticides, which are known 

to have toxic effects on non-target organisms, including animals and humans. Biocontrol agents 

have many advantages, i.e. they are safe to human health, and do not pollute the environment 

or accumulate in the ecosystem (Meikle et al., 2002; Schöller, 2010; Edde, 2012). 

 

1.1.3.3. Physical control 

Physical methods are important methods to control stored product insects. There are two main 

physical methods including heat and cold temperature. Firstly, temperature control is widely 

used in postharvest to slow down degradation of produce caused by physiological processes, 

pathogens, and insects. The first record of using heat to control a stored grain insect pest was 

the heating of grain to 69°C in France in 1762 to control Sitophillus cerealella. There are 

records of heated rooms used to raise the temperature of wheat to 57°C to control Sitophilus 

spp. in Ohio in 1835. Nowadays, the use of heat treatment continues, and a few flour mills or 

breakfast food processors have used heat in their facilities for over 50 years. The temperature 

and duration of exposure required to control different stored product insect pests have been 

studied extensively (Burks et al., 2015; Fields, 1992; Strang, 1992; Mason and Strait, 1998). 

Fields (1992) showed that most stored grain insects are controlled under the following time-

temperature combinations: 30 s at 60°C, 1 min at 55°C, 5 min at 50°C, 12 h at 45°C and 24 h at 

40°C. Short exposure to high temperatures (35-40°C) can increase insect survival to 

subsequently high temperatures. Secondly, cold treatment was used to control stored product 

insects. Recently, low temperatures have been extensively used for pest control in storage 

facilities (Imai and Harada, 2006; Arthur et al., 2015). The ability of insects to survive in cold 

temperatures varies based on their cryoprotectants (Andreadis and Athanassiou, 2017). In 

general, stored product insect pests are generally unable to reproduce below 18°C and they are 

unable to move below 5°C, except for S. granarius, which can reduce at temperatures as low 

as 15°C. Ideally, when outside temperatures are below -17°C for three days cold treatments 

took place in the winter, all accumulations of product were removed, the facility thoroughly 

cleaned, the water lines either drained or filled with antifreeze, sensitive equipment removed 
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or insulated, the equipment opened, drive belts loosened, windows opened and fans used to 

circulate air to ensure even cooling (Butler, 1999; Fields, 1992).  

 

1.1.3.4. Modified atmosphere  

Modified atmosphere technology controls the proportions of oxygen, carbon dioxide and 

nitrogen and is a recognised way to preserve grain storage and prevent postharvest insects and 

insect pests attacking grain (Emekci et al., 2002; Navarro and Donahaye, 1990; Bakr et al., 

2013). The atmosphere is composed of more than 60% carbon dioxide, which can kill stored 

grain pests. There are many advantages for using carbon dioxide in the fumigant mixture, such 

as an increase in the toxicity of the fumigant, improvement in the distribution pattern, limitation 

of the levels of harmful residues in the treated commodity, and elimination of the flammable 

hazard of some fumigants (Navarro et al., 2004). Yehoshua (2005) reported that all stages of 

grain pests were killed when exposed to carbon dioxide at 26 c for four days. Many studies 

have been undertaken to determine whether the addition of carbon dioxide reduces the exposure 

period to phosphine/methyl bromide fumigations or decreases the effective dose to achieve a 

particular level of pest mortality. Nitrogen has many characters, which are colourless, odourless, 

tasteless and mostly diatomic non-metal gas. It has five electrons in its outer shell, so it is 

trivalent in most compounds. 

On the other hand, the Earth contains approximately 78% nitrogen (Croswell, 1996). According 

to Ren et al. (2012), there are many advantages to using nitrogen in store product pest 

management, including the air is a free source of nitrogen, it is non-toxic, offers residue-free 

grain, no resistance problems, no reaction with construction materials and grains do not need 

ventilation before they can be marketed. Nitrogen molecules occur mainly in the air, in water 

and soils, with nitrogen found in nitrates and nitrites. All of these substances are a part of the 

nitrogen cycle and they are all interconnected (Bothe et al., 2007). The average nitrogen 

concentrations for controlling all stages of S. oryzae (L.), Tr. castaneum (Herbst), R. dominica 

(F.) and T. variabile (Ballion) in wheat, barley, oats, lupins and canola, and the adult stages of 

the ladybird and the bronzed field beetle (Adelium brevicorne) in canola at 20–30°C were 95%–

99% balanced with oxygen (Ren et al., 2012). 
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1.1.4. Detection and identification  

Over the last few years, 134 species of Trogoderma have been identified (Háva, 2011), with 

many still undescribed. Identification of Trogoderma eggs and pupae usually depend on 

external features, which is difficult because they possess limited external features and larvae 

identification is difficult and requires experience. The larval exuviate can be used for 

identification and adults are the easiest to identify. There are different methods to detect the 

infestation in stored grains (Table 1-1) (Neethirajan et al., 2007). 

 

Table 1-1. Advantages and disadvantages of different detection techniques for stored-product 

insects in grain. 

Insect detection 

methods 

Pros Cons 

Grain probes and 

insect traps 

Widely used, inexpensive, used for 

finding insect density 

Labour intensive, limits the 

temporal availability of data, cannot 

detect internal insects, restriction in 

the placement of traps 

Pheromones Gives an indication of pest density Environmental factors affect trap 

catches 

Visual lures Can be effective in indoor situations Not very effective 

Acoustical 

methods 

Internal infestation can be detected Cannot detect dead insects and 

infestations by early larval stages 

Electrical 

conductance 

Hidden internal infestation can be 

identified 

Kernels with insect eggs and young 

larvae cannot be detected, efficiency 

is low compared to soft X-rays 

Berlese funnel 

method 

Cheap and commonly used method 

at elevators 

Very slow and internal infestations 

cannot be identified 

Near-infrared 

spectroscopy 

(NIR) 

Rapid method, no sample 

preparation 

Cannot detect low levels of 

infestation, sensitive to moisture 

content in samples, calibration of 

equipment is complex and frequent 
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Insect detection 

methods 

Pros Cons 

Machine vision Effective in detecting external 

insects 

Cannot detect internal insects 

X-ray imaging Non-destructive, highly accurate, 

detect both internal and external 

insects, able to detect both live and 

dead insects inside grain kernels 
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1.2. Literature review of Trogoderma spp. diagnostic and metabolic 

response to host grains  

1.2.1. Damage caused by and economic importance of Trogoderma spp. 

Trogoderma spp. is one of the world’s most destructive pests of grain products and seeds. 

However, there are many countries, such as the USA, Australia, China, Kenya, Uganda and 

Tanzania that have specific quarantine regulations against the possible importation of these 

species. Grain stocks can be completely destroyed because massive populations of these insects 

might develop. T. granarium is one of the 100 worst invasive species worldwide and it is 

difficult to control because of its ability to remain without food for long periods. This species 

can survive under dry conditions and low-moisture food, and it also has resistance to many 

insecticides. Most storage insects that are found worldwide occupy various niches, based on 

grains and weather conditions, although several species are not found in some countries (e.g., 

T. granarium Everts is not present in Australia). The two main pest insects in grain storages 

are T. granarium and T. variabile, presumably because these species can survive in harsh 

conditions. Some species damage whole cereals, legumes and grains, or solid cereal products. 

Some are cosmopolitan pests of grain products, such as flour, damaged grain and dried fruit. 

Stored product insects consume these materials and contaminate them with insect fragments, 

faeces, webbing and a variety of microflora, which reduces their commercial value (Snelson, 

1987). They can also increase the moisture content in grain locally, producing mould growth. 

Therefore, these insects constitute a major sanitation and quality control problem. 

Immature stages of these insects develop inside the kernel and then the adults emerge and leave 

an exit hole, which produces an insect-damaged kernel. When insects develop inside the seeds, 

they consume the germ and endosperm of the seeds, with the amount consumed increasing with 

each larval stage. Insect damage to grains can lead to loss of weight and nutrients, which might 

affect its germination ability, and thus increasing its susceptibility to contamination by fungi 

(Singh et al., 2016). The infestation of cereal grains and seeds of beans and other plants could 

adversely affect germination as the germ is attacked (Partida and Strong, 1975). Insect 

infestation in wheat can result in diminished loaf volume, dense and inflexible crumbs, bitter 

taste, and off-flavours due to legal contamination limits (Edwards et al., 1991; Perez-Mendoza 

et al., 2003). Insect fragmentation is another significant concern. Internal feeding insects are 

the most damaging and hard to detect (Pearson et al., 2003). Because this pest cannot penetrate 

deep into the grain, the infestation occurs mainly in the superficial layers. The destruction of 
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the embryo end of the grain is the major damage caused by this pest; however, during heavy 

infestations, the entire grain is destroyed. 

These insect species cause economic losses before and after harvest within a large range of 10% 

to 100%, especially in tropical countries (Mugisha-Kamatenesi et al., 2008). They also cause 

damage to stored products, leading to losses of 20% in developed countries and up to 50% in 

developing countries (Adam et al., 2006). Other losses result from injury that is down in the 

quality of the product, and the growth of mould contamination on the products (Hagstrum and 

Subramanyam, 2006). The young larvae of these insects can cause damage to seeds; however, 

the older larvae damage the entire grains. Analysis of wheat grain samples containing 5% to 

100% of T. granarium-infested grains showed that they had decreased protein, gluten, crude 

fat, and ash, and an increased number of damaged grains, whereas the alcoholic stability and 

free fatty acids values increased. Damage caused a loss in weight averaging 16.36%–95%. T. 

granarium has also been shown to decrease the mineral content of maize (Jood et. al., 1992). 

Huge decreases have been found for crude fat, total carbohydrates, sugars, protein, nitrogen, 

starch contents, true protein contents, vitamins thiamine, riboflavin, niacin, total lipids, 

phospholipids, galactolipids, polar and non-polar lipids in many grains, such as wheat, maize 

and sorghum (Jood et al., 1993; 1996a).  

The losses to Australian exports caused by Trogoderma spp. is approximately $46 million/year 

to $117 million/year, with these losses expected to increase over the last 30-year period from 

$200 million to $1.6 billion (McElwee, 2000). The costs associated with damage caused by the 

khapra beetle to Western Australia grains would be substantially less than the estimates quoted 

above. Conversely, even countries listed as containing khapra beetle might decrease the 

Western Australian wheat because they do not want a particular strain of the beetle to come to 

their country or because of market or political pressures. The khapra beetle can influence the 

environment by the destruction of grain products. Ingesting grain products potentially 

contaminated with insect body parts, setae and cast larval skins could result in gastro-intestinal 

irritation. Asthmatics and sensitised individuals are also at risk, as contaminants are highly 

allergenic. Because infestations are most likely confined to grain storage facilities and other 

buildings, this pest is not expected to have significant impacts on the natural environment or 

threatened species (Pasek, 1998). 

While Australia is free of T. granarium at present, the closely related species T. variabile has 

succeeded in invading and establishing in this country. In 1977, T. variabile was first 
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discovered in Griffith, Australia, and has since spread throughout the remainder of Australia 

(Hartley and Greening, 1983). T. variabile and T. granarium are the species that cause high 

damage to grain stores worldwide, with T. variabile regarded as a minor and persistent pest in 

Australia (Rees et al., 2003). However, this species is of considerable concern because it could 

mask the presence of the more damaging khapra beetle because of the morphological similarity 

between these two species (Rees et al., 2003).  

T. variabile larvae cause damage when they feed and damage all parts of the seed except for 

the shell. The damage caused includes loss of grain weight, reduction in quality, presence of 

larvae, masses of cast skins, live or dead insects and fine dust (Vincent and Lindgren, 1975). 

This pest has been reported infesting 119 different grains (Hagstrum et al., 2013). Most of the 

damage to stored products is caused by larvae, with adults reported as occasional feeders 

(Vincent and Lindgren, 1975). 

 

1.2.2. Host range 

Trogoderma spp. has a wide host range, having the ability to infect cereal products and grain, 

especially wheat, barley, oats, rice, flour, noodles and malt (Scholtz and Holm, 1985). 

According to Crop Protection Compendium (2005), the main hosts for these species are Cicer 

arietinum (garbanzo), Avena sativa (oat), Hordeum vulgare (barley), Glycine max (soybean), 

Lens culinaris (lentil), Oryza sativa (rice), Pisum sativum (garden pea), Sorghum bicolor (grain 

sorghums), Triticum aestivum (wheat), Vigna unguiculata (cowpea), Zea mays subsp. mays 

(corn), Arachis hypogaea (peanut), Juglans spp. (walnut), Carya illinoensis (pecan) and 

Prunus dulcis (almond). It can also infect animal food, including ground barley, corn, rice and 

dog food; rolled oats; dried orange pulp and cracked and ground wheat bran. These species 

sometimes prefer bread, dried coconuts, cornmeal, crackers, white and whole wheat flour, 

hominy grits, baby cereals, pearl barley and wheat germ. These pests can live under different 

conditions, for example, Pasek (1998) showed that the khapra beetle fed on grain and other 

product even when there was only 2% moisture. Dead mice, dried blood and dried insects can 

be developed by this pest. T. variabile is regarded as a persistent pest of grain storage because 

it is sometimes associated with residues. It can affect a wide host range of packaged goods. T. 

variabile is very close in appearance to the khapra beetle T. granarium, which is not present in 

Australia and is of quarantine concern (Rees et al., 2003). Thus, we cannot work in Australia 

with this latter species and hence we propose to use T. variable as our test insect. T. variabile 
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belongs to the order Coleoptera, superfamily Bostrichoidea, family Dermestidae (Myers et al., 

2016).  

1.2.3. Classification of target insects  

T. variabile and T. granarium belong to the order Coleoptera, superfamily Bostrichoidea, and 

family Dermestidae (Belov, 2013; EOL, 2013; Myers et al., 2016):  

Kingdom: Animalia (Animals) 

    Phylum: Arthropoda (Arthropods) 

        Subphylum: Hexapoda (Hexapods) 

              Class: Insecta (Insects) 

                   Order: Coleoptera  

                        Suborder: Polyphaga  

                             Superfamily: Bostrichoidea  

                                  Family: Dermestidae  

                                      Genus: Trogoderma 

                                           Species: variabile (warehouse beetle), granarium (khapra beetle) 

 

1.2.4. Life cycle  

The life cycle of the warehouse beetle is completed between 30 and 40 days in suitable climatic 

conditions (30°C and 75% relative humidity). The warehouse beetle can survive up to six 

months without food. A mature female can lay more than 100-270 eggs over two weeks. The 

female lays her eggs on dried plants, animal material and grain. The eggs hatch after six days 

to larvae. The larvae start crawling in the food and feeding. They are highly active and move 

from one infested place to another, only infesting new food sources and preferring the dark. 

The larvae have six instars and shed their skin approximately ten times during growth. During 

pupation, if natural crevices are unavailable, they will force their way through materials such 

as wood and mortar. This stage takes approximately five days to complete. The pupation stage 

generally occurs near the surface of the food. Females usually begin laying eggs one day after 

emerging and continue to do so for three days. The adults live for one to five weeks. In difficult 
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living conditions, the adults enter a resting state called facultative diapause, where metabolism 

tapers off and growth comes to a halt. This period of dormancy can last up to two years. The 

entire life cycle is completed in approximately six months.  

 

1.2.4.1. Eggs  

T. variabile eggs are pearly-white, translucent, extremely fragile and covered with a sticky 

secretion. The eggs are approximately 0.7 mm long and 0.25 mm broad, are initially milky-

white, and later a pale yellowish colour. They are typically cylindrically shaped, with only one 

rounded end and the other more pointed and bearing several spine-like projections, broader at 

the base and tapering distally (Rai, 2014). Loschiavo (1960) showed that there are five distinct 

brown spots or ocelli on each side at the anterior end of the egg, whereas the posterior end is 

dark brown owing to the coiled, long, simple hairs of the last abdominal segment. 

 

1.2.4.2. Larvae 

The length of the first instar is 1.6–1.8 mm, which consists of a long tail, made up of several 

hairs borne on the last abdominal segment. The body width is approximately 0.25–0.3 mm, 

with a yellowish-white colour, except for the head, which is brown or yellowish-brown. 

Moreover, the body hairs are brown. There is a short antenna with three segments on the head. 

There are two types of body hairs, which is a characteristic feature of the larvae. First are the 

simple hairs, in which the shaft bears many small, stiff, upwardly directed processes. Second 

are the barbed hairs, in which the shaft is constricted at regular intervals, and the apex consists 

of a barbed head. The larvae head is the longest part of the body and it is as long as the 

combined lengths of four of the preceding segments. Simple hairs are scattered over the body 

segments and dorsal surface of the head. The larvae tail consists of two groups of long simple 

hairs, borne on the 9th abdominal segment. Barbed hairs are found in pairs of tufts, borne on 

certain abdominal tergites. As the larvae increase in size, the colour changes progressively from 

the pale yellowish-white of the first instar larvae to a golden or reddish-brown. The density of 

the body hairs increases; however, these hairs and the tail become much shorter in proportion 

to the length and breadth of the larval body. The hairs give the appearance of four dark 

transverse bands in the 4th instar. The mature larvae are approximately 6 mm in length and 1.5 

mm in breadth (Rai, 2014; Loschiavo, 1960).  
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1.2.4.3. Pupa  

The larval skin splits at the last ecdysis; however, the pupa remains within this skin for its 

entire life. The pupa is of the exarate type. The pupa is wider than the larva and forces the skin 

apart, leaving the dorsal surface visible through the gap. It has a thin transparent skin that, at 

adult emergence, is passed to the posterior end of the larval skin. The male pupa is 

approximately 4.31 to 4.62 mm in length and 1.53 to 1.80 mm in width, whereas the female 

pupa ranges from 6.24 to 6.69 mm in length and 2.42 to 2.69 in width (Loschiavo, 1960). 

 

1.2.4.4. Adult  

Females are usually larger than males. The ratio of length to width is 1.8:1 in females and 1.7:1 

in males. The adult beetles are capable of flight, similar to other Trogoderma spp. (Wright and 

Morton, 1995). The adults usually crawl, although they can spread their wings and fly in an 

almost vertical ascent. The adults only live for a short time and remain hidden and inaccessible 

most of the time but emerge for mating, oviposition and dispersal, termed the exposure period 

(Shapas and Burkholder, 1978; Wright and Morton, 1995). The flight behaviour of males is 

very different from that of females. T. variabile males fly for several hours after sunrise 

whereas females fly during daylight hours (Wright and Morton, 1995). Adults are less active 

at temperatures under 15°C. According to Loschiavo (1960), the adults of T. variabile do not 

require food to lay eggs. The overall sex ratio of adults (female: male) is approximately 1:1.2 

(Partida and Strong, 1975). 

 

1.2.5. Diagnostic tools for Trogoderma spp. 

Over the years, the genus Trogoderma has been reported to include 117 species (Mroczkowski, 

1968), 115 species (Beal, 1982), 130 species (Háva, 2003) and 134 species (Háva, 2011). The 

detection and monitoring of stored product insect pests are still a major issue and a variety of 

analytical methods for detecting insects and insect fragments in whole kernels and flour are 

currently applied. Among these are visual inspection, temperature and moisture monitoring, 

insect movement detection, pheromone traps, immunoassays, flotation and infrared 

spectroscopy-based methods. However, most of these are labour intensive and expensive, or 

they do not have enough sensitivity. New techniques for identifying grain insects could offer 
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easy, rapid solutions for the detection of grain insect pests, even in low densities. Using new 

techniques could help identify external and internal infestations so that decisive action can be 

taken as early as possible. The present study will focus on developing new diagnostic tools for 

Trogoderma spp. using SPME coupled with GC-MS and VNIH. 

 

1.2.5.1. Morphology 

Fundamental to the implementation of control measures is the correct identification of the 

organism. There are many problems associated with morphological identification especially 

when dealing with cryptic species in the invaded ecosystem or immature stages (Schutze et al., 

2006). Hebert et al. (2003) states that it is hard to identify immature stages morphologically 

because these stages lack unique morphological characteristics to enable them to be 

distinguished from closely related species and morphological keys, which are used to identify 

adult and larvae samples, might be geographically limited and effective for only a particular 

life stage. While morphologically distinct characters are often not present in larvae, there are 

many instances where two or more adult species are unified under the same taxonomic identity 

(referred to as a cryptic species) but have different life cycles and host preferences (Walter, 

2005). For instance, Bactrocera tryoni and B. aquilonis are two species that are 

morphologically similar but differ markedly in host specificity, locality and time of optimum 

daily activity (Wang et al., 2003). The presence of cryptic species can create problems for 

control methods and management strategies as each species may react quite differently to the 

treatments.  

Increased international trade has led to an escalation in the introduction of economically and 

environmentally destructive invasive species worldwide (Hulme 2009). Trogoderma contains 

some of the world’s most serious pests of stored grains and other food substances, including 

rice and barley (Beal 2003; Háva 2011). The larvae of most of these species are primarily 

generalist scavengers (Peacock 1993; Kiselyova and McHugh 2006; Zhantiev 2009).  

T. variabile is morphologically similar to several other Trogoderma species and is the less 

destructive species, making it difficult to distinguish between species. The eggs and pupae are 

morphologically uninformative (Beal, 1954). Morphological keys are geographically limited, 

of minimal use without a confirmed voucher collection, and confusing due to inadequately 

described morphological characters, compounding identification difficulties (Rees 1943; Beal 

1967, 2003). Larvae are difficult to identify because expert staff in identification are required 
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with skills in the dissection of small insects. According to Castalanelli (2011), T. granarium 

and T. variable can only be reliably identified by a limited number of highly skilled 

diagnosticians using traditional morphologically based keys. Delicate dissections of the 

genitalia and mouthparts are required to differentiate between these two species., the use of 

molecular markers in differentiating Trogoderma species was investigated to make the larvae 

identification more easily.  Accurate identification is important to prevent false positives, false 

negatives and unnecessary implementation of expensive, time-consuming quarantines and 

treatments, or worse. 

 

1.2.5.2. Molecular methods  

The development of a diagnostic method for Trogoderma spp. is urgently required. Molecular 

technology permits species discrimination regardless of life stage (Darling and Blum 2007; De 

Marco et al., 2007; Castalanelli et al., 2011). DNA marker technology is increasingly used to 

solve identification problems (DeSalle, 2006; Gwiazdowski et al., 2006; Foottit et al., 2008; 

Carew et al., 2009). The main advantage of molecular methods is their ability to test insect 

fragments, damaged specimens and larvae that are almost impossible to identify 

morphologically (Byrne et al., 2018). Insect species can be identified using DNA extraction 

methods where it is impossible to diagnose them morphologically. Previous studies on 74 

invasive insect species showed that molecular methods could provide valuable information 

regarding population structure, gene flow and dispersal pathways (Castalanelli et al., 2011). 

DNA taxonomy is the use of a DNA sequence to identify a species (Tautz et al., 2003). Hebert 

et al., (2003) showed that insect DNA taxonomy or population analysis are more specifically 

the use of the 5′ end of the cytochrome oxidase I gene, referred to as DNA barcoding. Molecular 

taxonomy is playing a significant role in understanding the phenotypic characteristics, 

identifying the morphonology features and revealing the presence of cryptic species (Hebert et 

al., 2003; DeSalle, 2006; Scheffer et al., 2006; Ros and Breeuwer, 2007; Foottit et al., 2008). 

We are unable to resolve morphological characters separating the new species because the 

method used for DNA extraction for 2001 to 2003 trapping specimens required the samples to 

be macerated; therefore, subsequent morphological examinations were impossible.  

Several aspects should be considered when applying a molecular marker. First, different 

markers vary in their suitability for addressing particular questions. Second, molecular markers 

are species-specific and provide valuable information about the organism; however, the results 
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might not be reproducible between laboratories, across similar taxa and, to a lesser extent, 

within the same taxon (Vignal et al., 2002; Armstrong and Ball, 2005; Behura, 2006). In other 

instances, this can make it difficult to select the most appropriate molecular marker to 

discriminate between species or populations. While most molecular markers are selected using 

the criteria discussed above, three population genetic concepts must be considered before 

discussing the marker types, their usage and issues relating to their use. These concepts are 

based on founder effect, genetic bottlenecks and genetic drift. Each of these concepts influence 

the chance of survival by the pest species and on the sequence-based marker variability and 

subsequently on how the marker can be applied to analysing an invasive pest (Tsutsui et al., 

2000; Puillandre et al., 2008; Kalinowski et al., 2010).  

 

1.2.6. Hyperspectral imaging technique coupled with deep learning  

1.2.6.1. Hyperspectral imaging technique  

Hyperspectral imaging is a new technology that gathers and processes data from across the 

electromagnetic spectrum. The objective of hyperspectral imaging is to obtain the spectrum for 

each pixel in the image in sight to detect processes or find and identify materials. There are two 

types of spectral imaging: snapshot hyperspectral imaging, which generates an image and push 

broom scanner, which over time an image examination. Hyperspectral imaging applications 

are used in many fields such as environmental, physics, agriculture, food processing, 

mineralogy, surveillance, astronomy and chemical imaging (Hans, 2007). Hyperspectral 

imaging is non-invasive, non-contact and non-destructive. Furthermore, it does not require any 

sample preparation, which makes it a preferred choice as an analytical method compared to 

conventional analysis methods. Hyperspectral imaging is an economical analytical method due 

to savings in the aspects of labour, turnaround time, reagents and waste treatment (Elmasry and 

Sun, 2010; Gaston, 2010). Despite the advantages of hyperspectral imaging, its limitations 

must be considered as well as the cost of the software and data analysis. Hyperspectral imaging 

is an indirect analytical method that requires standardised calibrations and model transfer 

procedures to be performed before the analysis can be conducted (Elmasry and Sun 2010). 

Recently, insect classification based on computer imaging has been developed as a safer 

identification method (Al-saqer et al., 2011). Near-infrared hyperspectral imaging has been 

used for the detection of insects and insect parts in whole grain and ground samples and to 

evaluate the quality of many cereal grains (Maghirang et al., 2003; Singh et al., 2006). Hidden 
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insects and internal damage can be found using hyperspectral imaging because it provides 

spectral information in a spatially resolved manner (Gowen et al. 2007). According to Singh et 

al. (2009), hyperspectral imaging can be transferred out in reflectance, transmission or 

fluorescence modes. Hyperspectral imaging has been used for the detection of coleopteran 

pests of rice and wheat (Dowell et al., 1998; Huang et al., 2013). Cao et al. (2015) identified 

stored product insect pests using hyperspectral imaging. Hyperspectral data for geographical 

strains of two insect species, the rice weevil (S. oryzae) and the maize weevil (S. zeamais), 

were collected and analysed. The overall recognition rates of the classification model for insect 

species were 100% and 98.13% for the calibration and prediction sets, respectively, whereas 

the rates of the model for geographical strains were 94.17% and 86.88%, respectively. Singh 

et al. (2009) investigated whole wheat kernels and wheat kernels that were damaged by the rice 

weevil (S. oryzae), lesser grain borer (R. dominica), rusty grain beetle (Crytolester ferrugineu), 

and red flour beetle (Tr. castaneum) in the wavelength range of 1000–1600 nm using 

hyperspectral imaging. Bhuvaneswari et al. (2011) conducted image analysis for detecting 

insect fragments of Tr. castaneum (Coleoptera: Tenebrionidae) in semolina. Furthermore, 

Wang et al. (2011) identified external insect damage in jujube fruits in the spectral region of 

400–720 nm with a hyperspectral reflectance imaging approach. Additionally, Voss et al. (2017) 

acquired external hyperspectral imaging data (77 spectral bands, 389–89 2nm) from the ventral 

and dorsal sides of an individual pupa of two species of blowfly (Diptera: Calliphoridae), 

Calliphora dubia Macquart 1855 and Chrysomya rufifacies Macquart 1842.  

 

1.2.6.2. Deep learning 

Statistical learning methods can be utilized to deal with hyperspectral data which are highly 

dimensional and heterogeneous. However, it is hard to know which features are essential for 

the classification task because there are various substances described (Makantasis et al., 2015). 

Deep learning tools automate the process of feature construction through assembling high-

degree attributes from low-level ones, to learn a scale of characteristics. Moreover, deep 

learning edifice is apt to solve the classification problem when faced with big datasets and large 

images with extremely high spatial and spectral resolution. Hence, deep learning detects 

objects, such as man-made ones (Mnih & Hinton, 2012, Montavon et al., 2012), in addition to 

classifying hyperspectral data (Chen et al., 2014). Deep learning has made many improvements 

in agriculture through the progress of science and research, such as leaf diseases identification 

and insect recognition (Zhang et. al. 2018; Xie et. al. 2018; Cheng et. al. 2017). In addition, 
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deep learning is used to classify the feature that vectors from insect image features based on 

the generalized learning ability of big data to quickly identify the categories of different insects. 

Meanwhile, the target detection technology based on deep learning can automatically learn and 

generalize the characteristics of large picture data. Image detection also has notably high 

research value in the field of stored grain pest detection. Nowadays, deep learning models such 

as Convolutional Neural Networks (CNN) and Capsule Network have become growingly 

popular in many applications for hyperspectral pest image classification. 

 

1.2.6.2.1. Convolution neural network (CNN) 

The Convolution neural network (CNN) module that has a large learning capacity. However, 

this module is helping to learn thousands of objects from millions of images. Because of this 

module have lots of prior knowledge to compensate for all the data we do not have, so the 

immense complexity of the object recognition. Furthermore, Convolutional neural networks 

(CNNs) constitute one such class of models (Fukushima et. al., 1983; Krizhevsky and Hinton, 

2010; LeCun et. al., 2004; Lee et. al. 2009). While this mosdule make strong and mostly correct 

assumptions about the nature of images and also their capacity can be controlled by varying 

their breadth and depth. Convolutional Neural Networks (CNNs) are a special type of neural 

network inspired by the cognitive mechanism of biological vision. The core of the 

convolutional neural network is the convolution operation. Therefore, a convolutional neural 

network has excellent performance in image classification object detection and other computer 

vision tasks. Without complex image preprocessing, a convolutional neural network can 

automatically extract the effective features from a large number of original input data, which 

makes image feature extraction simple and efficient (Shi, et. al., 2020). In recent years, deep 

learning models (DL) based on CNN are extensively used as a powerful class of models for 

classification of images in a variety of problems in agriculture field such as plant disease 

recognition, fruit classification, weed identification and crop pest classification (Kamilaris et. 

al., 2018). Convolutional neural network models were developed to diagnose and identify plant 

diseases from the leaf images of healthy and diseased plants (Ferentinos, 2018). Rice diseases 

identification method was proposed by Liu et al. (2017) based on deep CNN (DCNN) 

techniques to identify ten common rice diseases, which increases both the convergence speed 

and recognition accuracy. Later, transfer learning was introduced to fine-tune the pre-trained 

deep networks to improve learning efficiency. Recently, Too et al. (2019) reported the analysis 

of state-of-the-art deep learning models for plant disease identification.  
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1.2.6.2.1. Capsule networks 

Capsule Network is one of the specified Deep Learning models that developed by Hinton and 

his colleagues to overcome the deficiencies of CNN (Sabour et. al. 2017). However, Capsule 

Network are commonly used for the researching areas that CNN achieved well enough 

classification and segmentation performances in a few years. Capsule Networks has been 

identified as a promising concept that has demonstrated vast potential in outperforming other 

deep learning modles in various domains including computer vision and natural language 

processing. The main advantage of this module is able to discover and preserve the relative 

spatial and hierarchical relations among objects within an input (Sabour et al., 2017). Capsule 

networks  use dynamic routing to model spatial and  ierarchical relations among objects in an 

image (Sabour et al., 2017; Sabour et al., 2018).Furthermore, Capsule Network were applied 

in different area such as classification, character recognition and  computer vision (Jayasundara 

et al., 2019; Zhao et al., 2018). Xinyi and Chen (2018) mentioned that Capsule Network has 

been recently proposed to classify biological and social network graphs, yet, has not been 

applied to trees for programming languages processing yet. Capsule networks use similar 

approaches as CNNs to visualize different, and direct, stimuli to specialist capsules (modules). 

A capsule network adds layers within each hidden layer, rather than adding more layers (Sabour 

et. al. 2017). 

 

1.2.7. X-Ray 

 X-ray imaging is the non-destructive, encouraging technique utilized and direct method that 

can detect insect infestations in grain kernels (Yacob et al., 2005; Karunakaran et. al., 2003). 

Karunakaran et al. (2003) correctly identified wheat kernels infested by Sitophilus oryzae (L) 

larvae and pupae-adults with more than 97% accuracy from the soft X-ray images. However, 

they identified sound kernels with 99% accuracy and also indicated that in the future an 

automated line-scan X-ray system could inspect 1 kg grain in about 15 min compared to 5–6 h 

using a Berlese funnel. Karunakaran et al. (2003, 2004 a,b) showed that soft X-ray detected 

several stored-product insects and achieved an identification accuracy of 84% and 98%. 

However, Sitophilus oryzae (L.) were detected in wheat using soft x ray with more than 95% 

accuracy. High accuracy percent were achieved between 98% and 86% to detect internal 

infestation of R. dominica and T. castaneum larva respectively (Karunakaran et al., 2004 a,b). 
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Fornal et al. (2007) showed that the models developed from soft X-ray images accurately 

detected Sitophilus granaries (L.) eggs and other internal stages in wheat kernels from 5 days 

after oviposition. Moreover, the soft X-ray method also has the ability of detecting fungal 

infections in stored wheat kernels (Narvankar et al., 2009). Karunakaran et. al. (2003) used the 

soft X-ray method in detecting Cryptolestes ferrugineus (Stephens), T. castaneum (Herbst), 

Indian meal moth (Plodia interpunctella), S. oryzae (L.), and R. dominica (F.) in wheat kernels. 

The X-ray method is widely used as a test reference method. Thus, all modifications of the 

existing procedures making this method more accurate and easier to use are of great importance. 

The existing X-ray techniques enable the classification of at least four stages of insect 

development by measuring the area occupied by the insect, and an accurate classification is 

also possible based on visible insect morphology (Pearson et al., 2003). The soft X-ray 

technique has already been investigated and has shown very high accuracy for detection of 

sprout damage and vitreousness (Neethirajan et al., 2004) and internal and external insect 

infestations (Karunakaran et al., 2004a, Karunakaran et al., 2004b) in wheat. 

 

1.2.8. Trogoderma spp. metabolic response to host grain  

1.2.8.1. Solid phase microextraction (SPME) 

SPME was developed by Arthur and Pawliszyn (1989) for rapid sample preparation under 

laboratory conditions and on-site arrangements, and to provide an efficient method towards the 

integration of sample preparation with detection systems and separation (Arthur and Pawliszyn, 

1990; Holt, 2001; Wady et al., 2003). SPME is a new technique that is rapid, inexpensive and 

good for heat sensitive materials (Richter and Schellenberg, 2007). SPME is a very common 

technique that is available for rapid and selective sample preparation. SPME has several 

advantages such as sensitivity and provides linear results for a wide range of concentrations 

and analytes (Nerín, 2009).  

 

The main principle of SPME is to expose a precoated surface to the sample matrix of interest 

(Camarasu, 2000). The coating on the exposed surface extracts the compound of interest, and 

once equilibrium is reached between the sample matrix and the coating on the surface, the 

extracted compounds are transferred to a sensing device. This sensing device can be a GC or 

other analytical instrument, which can sense the introduced sample, and identify them (Figure 

1-2). The objective of SPME is concerned only with attaining equilibrium as rapid as possible 
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(Zhang and Pawliszyn, 1993) and not exhaustive extraction (Camarasu, 2000). After 

equilibrium is reached, further exposure of the fibre does not increase the amount of compound 

extracted. Hence, using SPME, sample extraction and pre-concentration processes can be 

achieved in one single step (Davoli et al., 2003; Tuduri et al., 2003). SPME is a solvent-free 

adsorption and desorption technique where desorption occurs in the GC injector. Headspace 

analysis of SPME involves the insertion of a coated silica fibre above the sample, which allows 

the adsorption of VOCs for a specific period. Concentrated VOCs can be obtained without 

interference from food matrices and other non-volatile compounds from the headspace (Richter 

and Schellenberg, 2007). After that, the SPME needle is removed and inserted into the GC 

placed into the GC inlet and heating causes the VOCs, adsorbed by the fibre, to be released 

into the GC column. Finally, the VOCs are separated and characterised by GC or GC-MS 

(Martos and Pawliszyn, 1998; Reineccius, 2002; Turner, 2006). SPME employs a small volume 

of polymeric extracting phase coated on the outside of a metal alloy solid support or fused 

silica (Pawliszyn, 1997). SPME is applied for the isolation of analyses from a liquid matrix and 

purified extracts. Solid-phase extraction procedures are used to remove the interfering 

components of the complex matrices to obtain a cleaner extract containing the analyses of 

interest (Żwir-Ferenc and Biziuk, 2006). The identification of VOCs by headspace or thermal 

desorption GC uses different columns in combination with appropriate detection methods: MS, 

a FID, a flame photometric detector, an infrared analyser or a photoionisation detector 

(Dettmer-Wilde and Engewald, 2016). The efficiency and sensitivity of the SPME method 

depends on the extraction time and temperature. High temperature and long extraction times 

favour the collection of more analytes (Laopongsit et al., 2014). Senthilkumar (2010) showed 

that SPME has an absorptive layer that absorbs solutes above or from liquid or solid samples 

in both static and dynamic headspaces. The desorption of the solutes can be achieved with both 

thermal and liquid desorption methods. 
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Figure 1-2. Solid phase microextraction device. (Aulakh et al., 2005b)   

https://link.springer.com/article/10.1007/s11947-009-0299-3
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1.2.8.2. Gas chromatography-mass spectrometry (GC-MS) 

GC-MS is a contributory technique, in which complex mixtures of chemicals can be separated, 

identified and quantified. GC-MS has the ability to analyse hundreds of relatively low 

molecular weight compounds found in environmental materials (Natural Environment 

Research Council, 2002). GC-MS is sensitive and highly effective, even with a small quantity 

of sample and this detector can be used to identify the analytes in chromatograms from their 

mass spectrum (Skoog et al., 2013). GC-MS has many advantages. For example, GC-MS 

analysis is a very useful technique for analysing VOCs. GC-MS has many applications 

including the identification and quantification of unknown samples and contaminants and it 

can identify trace elements in samples, gases in a sealed environment and residual solvents 

(Mathias, 2014). Gas chromatography is one of the most powerful detectors which can add to 

the GC system and are capable of structure identification (Frysinger and Gaines, 1999; Mostafa 

et al., 2012).  

GC-MS is an analytical technique that can be considered as a GC with an MS as the detector 

or as an MS with a GC as the molecule separator in a mixture before the ionisation of separated 

molecules. The GC-MS results are more accurate than that of separate GC and MS machines 

because any compounds that have similar physical and chemical properties come out of the GC 

at the same time, with both compounds recognised as a similar compound; however, the 

presence of the MS eliminates this problem via the production of a mass spectrum 

(Senthilkumar, 2010). The operating molecular mass range of GC spans the interval 2–1500 

atomic mass units (amu) (Biniecka and Caroli, 2011) (Figure 1-3).GC has facilitated the 

unravelling of the trace-level composition of complex mixtures such as petrochemical analysis 

(Frysinger and Gaines, 1999) and pheromone analysis (Kalinová et al., 2006). Environmental 

analysis has been undertaken for polychlorinated biphenyls (Focant et al., 2004), fatty acids 

(Quinto Tranchida et al., 2008), amino acids (Halitschke et al., 2001; Michaud and Denlinger, 

2007), lipids (Vrkoslav et al., 2010) and other chemicals. The structural information and 

selectivity available from the MS made the combination of MS with a GC the most effective 

technique for the analysis of complex mixtures. The separation of the phase ions is achieved 

within the MS using electrical and magnetic fields to differentiate ions. The products are 

ionised before analysis in the MS. The GC-MS analysis produces an enormous amount of data; 

therefore, processing is essential. Chromatograms are visualised with the x-axis corresponding 

to retention times at the first dimension (Hites, 1997). GC is a rapid technique for the separation 

and validation of chemicals (Łaniewski et al., 2003). VOCs with mass of up to 200 amu can be 
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separated using this technique (Biniecka and Caroli, 2011). Phillips and Beens (1999) showed 

that low molecular weight chemicals can be separated using GC compared with other 

conventional instruments. GC-MS results in enhanced peak capacity high sensitivity due to 

multiple separation dimensions (Van Geem et al., 2010). 

 

 

Figure 1-3. Gas chromatography-mass spectrometry  

 

1.2.8.3. Flame ionisation detector (FID) 

There are more than 15 different types of detectors for GC instruments; however, the most 

common detectors used in insect volatile analysis are FIDs. The FID is one of the most 

successful and important techniques used to analyse VOCs because it is fast and can detect the 

narrow GC peaks (Marriott and Shellie, 2002; Shellie et al., 2003). The use of the FID as a 

universal GC detector has produced impressive results in terms of sensitivity, resolution, high 

acquisition rate, robustness, user friendliness, reliability and stability (Von Mühlen et al., 2006). 

The FID rapidly became a popular technique, overtaking several other ionisation detectors 

proposed at the same time (Ettre and Zlatkis, 1974). The FID is inexpensive, high linearity, 

linear dynamic range and sensitive for carbon-containing compounds, which make it the 

universal detector of choice. The FID passes the sample and carrier gas from the column 

through a hydrogen-air flame and then the hydrogen-air flame alone creates a few ions. 

However, this ion increases when an organic compound is burned. The FID detector works 

only for hydrocarbon and organic-containing compounds because of the ability of the carbons 
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to form cations and electrons upon pyrolysis, which generates a current between the electrodes 

(Harris, 1999; Higson,2004). Therefore, the importance of FID comes from its ability to 

produce narrower peaks than other detectors. Other positive aspects of the FID include a very 

large linear range 106 or 107 depending on the system. According to Holm (1999) and Amirav 

(2001), GC-FID is the most popular method for signal detection. FID was the first detector 

applied for GC (Liu and Phillips, 1991). Shellie et al. (2003) and Marriott and Shellie (2002) 

showed that GC-FID was the only universal detector that presents an acquisition rate up to 200 

Hz, which is fast enough to measure the fast GC × GC peak at the end of the 2D column. The 

FID detector works because burning of carbon compounds produces ions in the flame. The FID 

system is often referred to as a carbon counting device because hydrocarbons give ionisation 

responses in proportion to the number of carbon atoms (Holm, 1999). Thus, the ion current 

generated is proportional to the amount of C-compound present, and the ion-generation 

reaction is fast. However, the chemical nature of the sample molecule influences the 

effectiveness of the carbon atom in producing a flame ionisation response (David, 1974). This 

is reflected in the varying response factors found for different compounds; however, in many 

cases there is an approximately equal response factor for a given class of compounds. The 

response factor can be better referred to by considering the effective carbon number, where 

individual functional groups contribute a certain response magnitude to the total molecule 

response, compared with that of a carbon atom (Carin et al., 2006).   

 

1.2.8.4. Volatile organic compounds (VOCs)  

Insect detection in stored grains is an important measure of quality and deterioration for grain 

producers and it can significantly help to decrease quantitative loss, severe physical damage, 

off-odour and contamination caused by infestation (Bulla et al., 1978; Seitz and Saucer, 1996). 

There are several detection techniques available, both commercially and non-commercially. 

Manual sampling, traps and probes are generally the most basic commercial tools used on farms, 

whereas manual inspection, sieving, flotation and Berlese funnels are more advanced 

techniques used in grain handling facilities (Neethirajan et al., 2007). Moreover, odour 

detection techniques for insect infestation and grain quality evaluation are gaining popularity. 

Analysing VOCs released into the airspace surrounding stored products is a potential method 

of diagnosis and species identification (Laopongsti et al., 2014; Qiu et al., 2014). The 

measurement of VOCs facilitates the early detection of an infestation, storage age 

determination and varietal discrimination of food grains. Many studies have focused on the 
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detection of insects in grain by measuring their VOCs. One of the most successful techniques 

for identifying grain insects VOCs is HS-SPME coupled with GC-MS and gas 

chromatography-flame ionisation detection (GC-FID) (Schmidt and Podmore, 2015) (Figure 

1-4). SPME coupled with GC-MS has been widely used to examine volatile secretions in 

Coleoptera, e.g., the isolation and identification of the rhinoceros beetle and cerambycid beetle 

pheromones (Rochat et al., 2000; Ginzel and Hanks, 2005). It has also been used to detect the 

aggregation pheromones and other volatile metabolites from grain insects, such as R. dominica 

(F.) and T. castaneum (Seitz and Ram, 2004; Arnaud et al., 2002). Senthilkumar et al. (2012) 

detected T. castaneum and C. ferrugineus using HS-SPME coupled with GC-MS. Niu et al. 

(2016) used SPME coupled with GC-FID and GC-MS to establish relationships between 

storage period and grain quality, and grain quality and insect infestation of R. dominica in 

wheat. Some compounds from wheat infested by lesser grain borers were identified in their 

experiment. However, limited studies have used SPME to detect insect infestation in grain.  

Abuelnnor et al. (2010) identified distinct VOCs from infested wheat flour and wheat grain 

with T. confusum and S. granaries, respectively, using SPME coupled with GC-MS. Larval 

and adult insects secreted distinct VOCs that were useful for the early monitoring of the 

infestation. This is the first chemical method for the estimation of volatile quinones proposed 

as an indicator of T. castaneum infestation. Previous studies have identified VOCs in the 

headspace above Tribolium spp. (Villavarde et al., 2007) and in the headspace above the lesser 

grain borer, R. dominica (L.) (Seitz and Ram, 2004).  

The present study was undertaken to discover new VOCs and confirm the presence of 

compounds previously reported using SPME to collect and concentrate the headspace volatiles 

above the samples, with subsequent analysis with GC-MS. VOCs contribute significantly to 

food flavour and can be used as indicators of quality, age of storage and hygiene condition of 

stored products.  

The VOCs in the headspace of three different samples, healthy wheat, R. dominica and wheat 

with R. dominica, were analysed at 25°C by SPME coupled with GC-FID and GC-MS. Several 

researchers have used HS-SPME coupled with GC-MS methods to analyse the VOCs of stored 

wheat and R. dominica. Most of these studies have chosen non-polar columns to separate VOCs 

(Seitz and Ram, 2004) and many low molecular weight organic compounds emitted from stored 

grains have been identified (Niinemets et al., 2004). 
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To identify VOCs produced by T. variabile and other grains, it is necessary to develop a 

repeatable, sensitive, easy to operate, cost-effective and rapid method. To date, no studies have 

examined the use of the HS-SPME technique for T. variabile infestation. The SPME method 

has been excessively used for the analysis of VOCs. The HS-SPME technique is a new, rapid, 

simple, eco-friendly and solvent-free sample preparation technique for the extraction of VOCs 

(Najafian and Roewshan, 2012; Bicchi et al., 2000). The HS-SPME technique provides tens or 

hundreds of possible VOCs simultaneously and improved results when GC is combined with 

either MS or FID; however, it must be optimised for the VOCs being targeted (Dorea et al., 

2008; Jelen et al., 2012). 

 

 

Figure 1-4. Diagram showing extraction and analysis of compounds using solid-phase 

microextraction-gas chromatography-mass spectrometry (SPME-GC-MS) (Schmidt and 

Podmore, 2015) 
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1.2.8.5. Insect Lipids 

Lipids are compounds that are naturally excreted in animals and plants (Cerkowniak et al., 

2013). Lipids are essential to insects because they provide a significant role for their energy 

needs (Downer and Matthews, 1976). Insect lipids vary in quality and composition and depend 

on the species and developmental stage. Insect lipids contain wax, fatty acid, triacylglycerols, 

aldehydes, alcohols, ketones and hydrocarbons (Blomquist and Jackson, 1979; Gibbs, 1998; 

Gołębiowski et al., 2011; Cohen and Moussian, 2016). Insects commonly contain a high 

content of lipids, around 50%–75% of the dry weight of some insect are lipids (Bursell, 1970; 

Rumpold and Schlüter, 2013; Pino Moreno and Ganguly, 2016). Several methods have been 

applied to extract insect lipids. SPME has been used as an alternative to solvent extraction for 

studying the lipid composition of insects (Peeters et al., 1999; Roux et al., 2002; Lacey et al., 

2004). SPME has been used since 1989 and it is identified as a rapid and efficient method to 

detect chemicals using detection and separation systems (Arthur and Pawliszyn, 1990). 

Furthermore, one of the SPME method is direct immersion (DI-SPME), where the fibre is 

directly immersed in the liquid samples (Aulakh et al., 2005). The SPME technique is cheaper, 

easier, faster and more reproducible (Malosse et al., 1995).  

Various separation instruments have been used to identify insect lipids. The most commonly 

used techniques are GC, high performance liquid chromatography, and combined techniques 

such as GC-MS and liquid chromatography-mass spectrometry. Buckner et al. (1999) gas 

chromatography (CGC) combined with mass spectrometry (Cerkowniak et al. 2013). GC-FID 

has been used to identify hydrocarbons from Periplaneta species (Saïd et al., 2005). SPME 

coupled with GC-MS was used to identify Drosophila cuticular compounds (Everaerts et al., 

2010). GC-MS was used to analyse the cuticular hydrocarbons extracted from the pupal 

exuviae of necrophagous flies (Ye et al., 2007). However, the significant components of insect 

lipids are hydrocarbons (Gołębiowski et al., 2010). In the case of insect lipids are form the 

surface protective layer, and also are responsible for the interaction between species. In 

addition, surface waxes protect against various insect pathogens, such as fungi (Gołębiowski 

et al., 2008; Szafranek et al., 2012). The main function that the lipid layer provides is protection 

to the insect from desiccation and abrasion, and acts as a medium for communication (Lockey, 

1988; Howard and Blomquist, 2005).  

Lipids are a useful biochemical characteristic that can be used as a taxonomic tool for the 

identification and differentiation of species (Cohen and Moussian, 2016). CHCs of pupal 

exuviae are chemotaxonomically diagnostic for Aldrichina graham (Aldrich), Chrysomya 
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megacephala (F.), Lucilia sericata (Meigen), Achoetandrus rufifacies (Macquart), 

Boettcherisca peregrina (Robineau-Desvoidy), and Parasarcophaga crassipalpis (Macquart) 

with 100% correct identification by cross-regression analysis based on discriminant functions 

(Ye et al., 2007). Hydrocarbons include straight-chain saturated, unsaturated and methyl-

branched hydrocarbons, which are predominate in the cuticular lipids of most insect species; 

fatty acids, alcohols, esters, ketones, aldehydes, and trace amounts of epoxides, ethers, 

oxoaldehydes, diols, and triacylglycerols. Monnin et al. (1998) used SPME to analyse cuticular 

hydrocarbons from ants. Some insects are extremely similar to other species such as T. 

granarium and T. variabile and identifying these species is challenging for taxonomists. 

Successful diagnosis of insect species would help in successful pest control, habitat 

management and nature conservation projects (Paterson, 1991; Besansky, 1999; Copren et al., 

2005; Garros et al., 2006). Some studies showed that the lowest values had been found in 

Orthoptera and Odonata (less than 20%), whereas the highest total fat values were reported in 

Lepidoptera and Coleoptera (up to 30%) (Rumpold and Schlüter, 2013). Fat content depends 

on rearing conditions and feed composition and it also varies depending on the developmental 

stage. However, higher fat content was found in the preimaginal stages (larvae and pupae) than 

in the adult stages (Stanley et al. 1988; St-Hilaire et al. 2007; Chen et al. 2009). Fatty acids that 

synthesise in the insect body are stored in fat bodies as a form of triglyceride (Ad et al., 1985). 

Fatty acids are vital sources of energy and are required to build up cell membranes. Therefore, 

they are an important element for organism growth, differentiation, reproduction and 

homeostasis (Carballeira, 2008). Essential fatty acids are fatty acids that are essential to the 

growth and development of animals (Simopoulos, 1999). Free fatty acids store energy and 

usually bond with other compounds to build more composite lipids such as triglycerides 

(Desbois and Smith, 2010). Analysis of the cuticular lipids of Calliphora vicina, Dendrolimus 

pini and Galleria mellonella showed that the larval cuticle contains three main groups, 

including free fatty acids, hydrocarbons and triacylglycerols (Gołębiowski et al., 2008). 

 

1.3. Research Gaps and aim of the study 

Currently, no research is known in using volatile organic compounds (VOCs) to diagnose 

Trogoderma granarium and Trogoderma variabile by using Solid phase micro extraction 

technique (SPME), Gas Chromatography GC/MS and Visible/near-infrared hyperspectral 

(VNIH) technique. Therefore, the objective of this study is: 
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1- Study the feasibility of the Solid phase microextraction (SPME) technique for identification 

of volatile organic compounds (VOCs), hydrocarbons and the insect metabolism. 

2- Develop new diagnostic tool for Trogoderma granarium and Trogoderma variabile 

identification using different life stages, body fragments and larvae skin based on visible near 

infrared hyperspectral imaging.   



 

35 
 

  



 

36 
 

 

 

 

 

 

 

Chapter Two 

Optimization and Validation for 

Identification of Volatile Organic 

Compounds (VOCs) released from 

Trogoderma variabile Ballion using 

Headspace Solid Phase Microextraction 

(SPME) Coupled with GC-FID/MS 
 

 

 

  



 

37 
 

2.1. Abstract 

Volatile organic compounds (VOCs) emitted by Trogoderma variabile at different life stages 

(larvae, adults including female and male) can help us to understand the chemical signals that 

are released by the beetle which can serve as biomarkers for diagnostic purpose. There are 

several factors that affect the optimization of VOC extraction including number of insects, 

duration of extraction, and gas chromatography (GC) conditions. This study used headspace 

solid phase microextraction (HS-SPME) fibre coupled with flame ionization detection (FID) 

and gas chromatography with mass spectrometry (GC-MS) to determine the optimal method 

for accurate, rapid and cost-effective extraction and identification of VOC from different life 

stages of T. variabile. The HS-SPME technique and the analytical conditions with GC and GC-

MS were optimized and validated for the determination of VOCs released from T. variabile. 

Selection of the number of insects was based on the height and the number of peaks. Results 

showed that 25 and 20 larvae and adults respectively gave the best number of peaks. Sixteen 

hours were optimized as the best extraction time for larvae and adults to get the maximum 

number of emitted VOCs. Some of the VOCs compounds identified from this insect that can 

be used as biomarkers are pentanoic acid; diethoxymethyl acetate; 1-decyne; naphthalene, 2-

methyl-; n-decanoic acid; dodecane, 1-iodo- and m-camphorene identified from larvae. 

However, butanoic acid, 2-methyl-; pentanoic acid; heptane, 1,1'-oxybis- 2(3H)-Furanone, 5-

ethyldihydro-; pentadecane, 2,6,10-trimethyl-; and 1,14-tetradecanediol VOCs, were found in 

male while pentadecane; nonanic acid; pentadecane, 2,6,10-trimethyl-; undecanal and 

hexadecanal were identified from female. 

 

2.2. Introduction 

Grains, especially wheat is the most important crop around the world. The economic 

importance of grains and its contribution to the diets of humans and livestock cannot be 

disputed. However, there are many problems with grains especially in the storage process; of 

which pest problem is a critical issue (Ress, 2004; Nansen et al., 2008). One of these insects is 

Trogoderma spp.; which has more than 134 species including T. granarium, T. glabrum, T. 

inclusum and T. variabile (Banks, 1994). In Australia, there are over 50 Trogoderma described 

species including T. variabile which is morphologically closest to T. granarium. T. granarium, 

is a quarantine pest in Australia. Suspected Trogoderma specimens found in grain products are 

usually the larvae which are difficult to diagnose morphologically (Banks, 1994). Adult 
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specimens are usually scarce and damaged and need expert dissection for identification (EPPO, 

2012; IPPC, 2012). Diagnostically the warehouse and khapra beetle can only be reliably 

identified by a limited number of skilled taxonomists. Many times, T. variabile and a 

comprehensive range of WA’s native Trogoderma species and related Dermestid species could 

potentially be mistaken for T. granarium. Misidentification of Trogoderma and related 

Dermestids has the potential to seriously compromise Australian grain exports (Szito, 1997). 

Early monitoring and detection of insects in the stored food grains become necessary for 

applying corrective actions. The capability of in-situ early detection, monitoring, reliability, 

cost, and labor requirements are the major factors that considered during for selection of the 

method. Detection of hidden infestation, whose population may be many times higher than the 

free-living insects is an important concern to mitigate the losses in bulk storage warehouses, 

so as to enable the early actions for fumigation or to dispose of the grain (Banga, 2018). Several 

detection techniques have been developed for the internal and external detection of insects in 

stored food grains such as detection probe, staining of the kernel, Berlese funnel method, 

acoustic techniques, uric-acid method, X-ray imaging, nuclear magnetic resonance imaging, 

thermal imaging and solid-phase micro-extraction method (Neethirajan, 2007). Some of these 

techniques are time-consuming, expensive, have potential health hazard, and less efficient. 

Manual sampling traps and probes are the most common methods used on farms, while manual 

inspection, sieving, and Berlese funnel method are used in grain storage and handling facilities 

(Neethirajan, 2007). The HS-SPME technique is a new, fast, simple, and highly sensitive and 

solvent-free sample preparation technique for the extraction of volatile compounds (Prosen and 

Lujcija, 1999; Wardencki et al., 2004; Mohammed et al., 2017; Villaverde et al., 2007). SPME 

is an establish technique to identify and analyses compounds released by insects (Zhang et al. 

2007; Kudlejova et al., 2012; Senthilkumar et al., 2012). The solid phase microextraction 

(SPME) technique coupled with GC-MS has been used in other studies to collect volatile from 

grain or horticulture insects, such as fruit fly, rhinoceros beetle and cerambycid beetle 

pheromones (Al-Khshemawee et al., 2017; Rochat et al., 2000; Ginzel et al., 2005); it was also 

used to detect the aggregation pheromone and other volatile metabolites of the lesser grain 

borer, Rhyzopertha dominica (F.) and the red flour beetle T. castaneum (Seitz and Ram 2004; 

Arnaud et al., 2002). Gas chromatography (GC) combined with flame ionization detection (FID) 

or mass spectrometry (MS) are known methods in detecting food flavors or insect metabolites 

using HS-SPME technique (Jelen et al., 2012; Niu et al., 2016). In the recent years, studies 

showed that using head-space solid phase microextraction (HS-SPME) coupled with gas 

chromatography–flame ionization detection (GC-FID), gas chromatographic 
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electroannographic detection analysis (GC-EAD) and gas chromatography–mass spectrometry 

(GC-MS) are a good technique for identifying volatiles in stored grains to detect infestation 

with insects (Pavia et al., 2005; Pureswoaran et al., 2004).  Using SPME fibre combined with 

GC-FID and GC-MS technique gives us an accurate, rapid, efficient and non-destructive 

method to extract volatile organic compounds from insects (Al-kshemawee et al., 2017; 

Mohammed et al., 2017). Many factors might affect the optimization of extraction conditions 

which include an optimum extraction time and the correct fibre for capturing the whole range 

of VOCs, the temperature during extraction and the fibre absorption time from the headspace 

(Nonogonierma et al., 2006). Identification of the volatile organic compounds emitted by grain 

insects in future can be used in early detection of insects in stored grains using headspace 

analysis (Niu et al., 2016; Senthilkumar et al., 2012). Based on previous studies, the aim of this 

study is to focus on developing optimal condition to collect volatile organic compounds from 

Trogoderma variabile including a number of insect and extraction time, followed by 

identification of unique peaks which can be used as early infestation detection tool for T. 

variabile.  

 

2.3. Materials and Methods  

2.3.1. Insect culture 

T. variabile was obtained from the Post-Harvest Plant Biosecurity laboratories, College of 

Science, Health, Engineering and Education, Murdoch University, Western Australia. To get 

different stages of T. variabile, around 150 adults were added into one kg jar containing 450 g 

of canola seeds covered with a meshed lid. Prior to use, canola seeds were sterilized at -20°C 

for a week and stored at 3°C until further use. The insects were reared in a controlled room 

with 29 ±2°C and 70±2% relative humidity. The jars were kept in the culture room for 1-2 

months to get the required number of insect population (larvae and adults) used for this study.  

 

2.3.2. Apparatus and equipment 

Solid phase microextraction (SPME) fiber Divinyl benzene/carboxen/polydimethylsiloxane 

DVB/CAR/PDMS fibre, 50/30 μm (Sigma-Aldrich Australia, catalog number 57299-U), was 

used in this study to collect volatile organic compounds (VOCs). An Agilent Technologies gas 

chromatograph 7829A (serial number CN14272038) fitted with an HP-5MS column (30 m x 

0.25 mm, film thickness 0.25 μm, RESTEK, catalogue number 13423) non-polar, with a flame 



 

40 
 

ionization detector (FID) was used. For identification of VOC’s GC Agilent GCMS 7820A 

equipped with a DB-35ms column (30 m × 250 μm × 0.25 μm) and MS detector 5977E (Agilent 

Technologies, USA) (Santa Clara, CA 95051, USA) was used. GC-MS operation conditions 

were as follows: Injector port temperature 250°C. The initial oven temperature kept at 50°C 

with an increase to 250°C (increment of 5°C/min). The flow rate of the column was 1.1 ml/min, 

while the split less mode was 20 ml/min at 1.5 min. The run time of GC-MS was 46 min. The 

glass vials 5 ml with screw tight cap with septa (SUPLICO, USA Lot: 82742) was used for 

collection of T. variabile VOCs by SPME. Three experimental replicates were taken during 

the optimization process and identification of peaks. 

 

2.3.3. Optimization of number of insects  

Different number of insects (15, 20, 25, and 30) were tested for each life stage to get the optimal 

number of insects. Larvae (mixed instars) and adults (mixed male and female). The insects 

were placed into five ml glass vial (SUPLICO, USA Lot: 82742) and kept at 35°C in 

thermostatic and humidity chamber (HWS, Ningbo southeast Dongnan Instrumental Ltd) for 

four hours to enhance the release of VOCs. 

 

2.3.4. Optimization of extraction time  

Four different extraction time (4, 8, 16 and 24h) were used to collect VOCs from warehouse 

beetle larvae and adults (mixed males and females). Solid phase microextraction (SPME) fibre 

was exposed to the headspace of 5 ml jar containing 15 insects for 4 hrs extraction times. After 

that, SPME fibre was injected into gas chromatography-flame ionization detector (GC FID) for 

10 min for desorption of the volatiles from fibre to GC column. Same procedure was repeated 

for 8, 16 and 24h. Each treatment was replicated three times. 

 

2.3.5. Analysis and identification of real samples using optimized method  

Once the optimal conditions were selected, the optimal conditions were applied on GC-MS to 

identify the emitted VOCs from two different stages of T. variabile (larvae and separate male 

and female). Each of the above test was replicated three times. 
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2.3.6. Data analysis 

The GC data including peak area and retention time were collected and integrated into the 

chromatography software Agilent Chemstation (Mass Hunter Quantitative Analysis Software, 

B.07.00), and then the data was exported to Microsoft Excel for further analysis. The 

repeatability of replicates from the same sample was verified by checking the chromatogram 

pattern features such as detected peak areas and retention times. The averages of compound 

areas were statistically performed by Metaboanalyst 4.0 using Partial Least Squares - 

Discriminant Analysis (PLS-DA).  

 

2.4. Results and Discussion 

2.4.1. Insect densities  

The number of GC peaks from different insect densities (15, 20, 25, and 30) for two life stages, 

including larvae and adults (mix male and female) were compared. The compounds peak areas 

were analyzed using Partial Least Squares Discriminant Analysis (PLS-DA). The result shows 

the scores plot between the selected PCs (Figure 2-1a and b). The model showed good 

separation between the tested treatment groups in this experiment, demonstrating the impact of 

the insect population density on the ability to emit the VOCs. The density of 25 larvae had the 

highest abundance of most metabolic products, including those which had high intensity in the 

GC-FID chromatogram like FID-18.442, FID-14.173, FID-5.136, FID-3.466, FID-20.011 and 

FID-23.693 (Figure 2-2a). However, results in Figure 2-2b showed that nine compounds out 

of 15 compounds gave the higher concentration of VOCs extracted from 20 adults based on 

GC-FID data such as FID-38.426, FID-11.275, FID-27.163, FID-39.899, FID-36.915, FID-

19.157, FID-18.422, FID-24.854, and FID-40.800. These results proved that this number of 

insects has an optimal density to produce abundant amount of VOCs that can be collected by 

SPME. Twenty insects in 8 ml glass jar were chosen as the optimum insect density to 

implement further optimization. Different number of insects can affect the amount of volatile 

released by these insects. This result showed that the less numbers of T. variabile insects gives 

more volatile compared with the high numbers and that could be due to the overcrowding in 

the small vial (8 mL). The overcrowding might have caused a reduction in the metabolism of 

insects due to an increase in the CO2 quantity which has a critical effect on the biological and 

physiological processes of insects (Guerenstein and Hildebrand, 2008; Nicolas and Sillans, 
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1989). Additionally, the amount of sample strongly affects the amount of the extracted analyte 

(Jelen et al., 2000). 
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Figure 2-1a and b. Partial Least Squares Discriminant Analysis (PLS-DA) shows volatile profiles from different T. variabile stages in different 

extraction time based on VOCs with three biological replicates.  

 

 

 

a: larvae b: adults 
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Figure 2-2a and b. Variable Importance in Projection (VIP) shows important features identified by PLS-DA from data of different insect 

densities based on Volatile organic compounds (VOCs) with three biological replicates. Codes in left side are the metabolic ID (FID indicates 

GC-FID detector and numbers indicate the retention times (min) while the right side indicate the high relative abundance of the corresponding 

metabolites in each group under study.  

a: larvae b: adults  
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2.4.2. Extraction time 

Once the insect densities were selected, the effect of extraction time on the VOCs emission 

from T. variabile (larvae and adults) was studied. In this study, four different extraction times 

(4h, 8h, 16h, and 24h) were tested to collect volatile organic compounds from two different T. 

variabile stages larvae (mixed instars) and adults (mix male and female). The areas of the peaks 

have been used to determine the optimal extraction period. The segregation of the results in the 

score plot model of the PLS-DA proves that extraction period has a significant effect on the 

VOCs emission from the larvae and adults of T. variabile (Figure 2-3a and b). Furthermore, 

results in Figure 2-4a and b showed that Variable Importance in Projection (VIP) scores play a 

significant effect on the metabolites that contributed in the PLS-DA model. However, the 

intensities of chromatogram peaks increased significantly after increasing the extraction time 

from 4 to 8, 16 and 24 h (Figure 2-4a and b). In case of larvae, at 16 h, some of the early 

compounds had higher abundance than other extraction periods like a compound at FID-

20.562, FID-3.466, FID-2.840, FID-20.011, FID-5.136, FID-5.804, FID-14.173, FID-18.422 

and FID-24.050. However, the abundant metabolic compounds (main compounds) in VIP score 

like FID-9.723, FID-24.661, FID-11.275, FID-24.854, FID-20.562, FID-19.157, FID-39.899, 

FID-27.163, FID-25.618, FID-35.903 and FID-34.805 were found to be higher at the 16 h 

extraction period than other extraction periods. Based on this result, the optimum time selected 

was 16 hours for adults. 

 

Extraction time is a significant parameter in head space solid phase microextraction. It is an 

important step to determine extraction time using SPME fibre method (Senthilkumar et al., 

2012; Dorea et al., 2008). The amount of extracted volatile depends on the sampling method, 

such as extraction time (Arnaud et al., 2002; Qazi et al., 1998). In this regard, other studies 

focused on the importance of extraction time, finding it as a crucial factor in recovering VOCs 

from a range of sample types (Kudlejova et al., 2012; Laopongsti et al., 2014; Niu et al., 2012). 

The temperature and extraction time significantly affect HS-SPME methodology because they 

effect equilibrium during extraction of volatile organic compounds (Zhang et al., 2007). 

 



 

46 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-3a and b. Partial Least Squares Discriminant Analysis (PLS-DA) shows volatile profiles from different T. variabile stages in different 

extraction time based on VOCs with three biological replicates. 

 

a: larvae b: adults 
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Figure 2-4a and b. Variable Importance in Projection (VIP) shows important features identified by PLS-DA from data of different insect densities 

based on Volatile organic compounds (VOCs) with three biological replicates. Codes in left side are the metabolic ID (FID indicates GC-FID 

detector and numbers indicate the retention times min) while the right side indicate the high relative abundance of the corresponding metabolites 

in each group under study.  
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2.4.3. Analysis and identification of real samples using optimized method 

The GC-MS was used to identify volatile compounds in larvae and adults. Results showed that 

there is difference in the amount of each chemical. Volatile organic compounds were identified 

based on their retention index and mass spectra in comparison with external n-alkane standards. 

Each value in the diagram represent three replicates. The lowest relative abundance of the 

compounds was specified as light color while the dark color represent the height of the peak. 

There were 12 compounds identified in larvae stage which was pentanoic acid; oxime-, 

methoxy-phenyl; diethoxymethyl acetate; 2(3H)-furanone,5-ethyldihydro naphthalene, 2-

methyl-; -; nonanal; 1-decyne; decanal; naphthalene, 2-methyl-; n-decanoic acid; dodecane,1-

iodo-; n-hexadecanoic acid and m-camphorene (Figure 2-5a). Compounds identified from T. 

variable male were different from those identified from female such as butanoic acid, 2-

methyl-; heptane, 1,1'-oxybis-;1,14-Tetradecanediol and n-hexadecanoic acid (Figure 2.5a and 

b). Four compounds were identified in all three different stages which were oxime-, methoxy-

phenyl, 2(3H)-Furanone, 5-ethyldihydro- and nonanal (Figure 2-5a, b and c). The compounds 

detected only from T. variabile larvae were identified as pentanoic acid; diethoxymethyl 

acetate; 1-decyne; naphthalene, 2-methyl-; n-decanoic acid; dodecane, 1-iodo- and m-

camphorene. Four compounds exclusively detected from female were pentadecane; nonanic 

acid; undecanal; hexadecanal and dodecane (Figure 2-5b). In case of male, three compounds 

can also be detected and identified which are butanoic acid, 2-methyl; heptane, 1,1'-oxybis- 

and 1,14-tetradecanediol (Figure 2-5c). Hence these compounds can act as biomarkers and as 

diagnostic compounds for the infestation stages. Identification of the volatile organic 

compounds released by insects can be used to detect insects’ in stored grains (Senthilkumar et 

al., 2012). There was an attempt to identify the VOCs compounds released by Cryptolestes 

ferrugineus (rusty grain beetle) and Tribolium castaneum (red flour beetle) by headspace 

analysis. According to the available literature there has not been a detailed study of the VOCs 

produced by T. variabile different stages. Some of the reported compounds in this study were 

identified on different insects such as oxime-methoxy-phenyl-_; decanal; nonanal; dodecane, 

pentadecane and nonanoic acid (Niu et al., 2016; Alnajim et al., 2019; Niu et al., 2015; Alnajim, 

2020). It is therefore significant, that from larvae pentanoic acid; diethoxymethyl acetate; 1-

decyne; naphthalene, 2-methyl-; n-decanoic acid; dodecane, 1-iodo- and m-camphorene were 

identified. However, butanoic acid, 2-methyl-; pentanoic acid; heptane, 1,1'-oxybis- 2(3H)-

Furanone, 5-ethyldihydro-; pentadecane, 2,6,10-trimethyl-; and 1,14-tetradecanediol VOCs, 

were found in male while pentadecane; nonanic acid; pentadecane, 2,6,10-trimethyl-; 



 

49 
 

undecanal and hexadecanal were identified from female. These too might also be potential 

biomarkers.
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Figure 2-5a, b and c. Volatile organic compounds (VOCs) detected from T. variabile different stages using headspace microextraction 

technique and gas chromatography mass spectrometry.  
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2.5. Conclusions 

HS-SPME fibre coupled with GC-MS and GC-FID can be used to detect volatile organic 

compounds from different T. variabile stages (adults and larvae). This study showed that the 

optimal number of insects were 20 and 25 for adults and larvae respectively. Also, the best 

extraction time was 16 hours for both adults and larvae. The optimized method was used for 

the identification of volatile organic compounds from the insects using GCMS. Identified 

VOCs compounds from larvae, female, and male of T. variabile can further be explored to 

develop a sensitive method for early and timely detection of infestation or development of 

lures. 
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3.1. Abstract 

The purpose of this work is to use the technique of gas chromatography coupled to mass 

spectrometry (GC–MS) to study the metabolite profile of Trogoderma variabile using different 

host grains including canola, oats, wheat, and barley. Also, as a part of the results, it is 

suggested that hydrocarbons profiling can be used as a chemo-taxonomical tool for insect 

species identification especially for very morphologically similar species like T. granarium. 

Samples from different T. variabile genders (female and male) were used in this experiment. 

T. variabile were reared on the four various commodities. For sample preparation insects were 

subjected for extraction with acetonitrile. Direct immersion-solid phase microextraction (DI-

SPME) was employed, followed by gas chromatography mass spectrometry analysis (GC-MS) 

for the collection, separation and identification of compounds. Results showed that insect host 

grains have a significant effect on the gender specific insect chemicals that were identified from 

T. variabile adults such as fatty acid and hydrocarbons. There were 23 compounds identified 

from adults reared on canola and wheat. However, there were 26 and 28 compounds detected 

form adults reared on oats and barley respectively. Results also showed that 11-

methylpentacosane; 13-methylheptacosane; heptacosane; docosane, 1-iodo- and nonacosane 

were the most significant compounds that identified form T. variabile male reared on different 

host grains. However, the main compounds that were identified from female cultuerd on 

different host grains include docosane, 1-iodo-; 1-butanamine, N-butyl-; oleic acid; 

heptacosane; 13-methylheptacosane; hexacosane; nonacosane; 2-methyloctacosane; n-

hexadecanoic acid and docosane.  

 

3.2 Introduction 

Trogoderma variabile (Ballion) or warehouse beetle, (Coleoptera: Dermestidae), is an 

internationally significant invasive pest that attacks wide range of packed goods and stored 

grain (Castalanelli, et al., 2011). Nowadays, T. variabile has been regarded as a persistent pest 

of grain storage and handling structures. Warehouse beetles are primary voracious feeders that 

infect variety of products such as cereal products, candy cocoa, corn, corn meal, dog food (dried 

and ‘burgers’), fishmeal, flour, oatmeal, milk powder, spaghetti, spices, peas, wheat, barley 

and pollen. In grain, they cannot feed on whole grain, but can feed on broken kernels that are 

usually present in the store (Mason, 2003). Larvae of T. variabile can infest 119 of different 

kinds of commodities (Hagstrum et al., 2013). 
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Lipids are compounds that are naturally excreted in animals and plants (Cerkowniak et al., 

2013). The significance of lipids is not only in their role as a main source of energy but also as 

an essential part of the cell membrane (Downer and Matthews, 1976). Lipids composition 

occurs naturally, performing an essential role in the metabolism of insects and plants 

(Cerkowniak et al., 2013; Ad et al., 1985). Insects commonly contain a high content of lipids, 

making up 50-75% of the dry weight in some insect (Pino et al., 2016; Rumpold and Schlüter, 

2013). Studies mentioned that the season of field collection, geographical origin of strain, 

genetic background, and number of generations has effect on lipid content of lesser grain borer, 

Rhyzopertha dominica (Cohen and Moussian, 2016). These factors affect the composition of 

different types of compounds, such as long chain hydrocarbons, waxes, alcohols, aldehydes 

and free fatty acids. Lipid types and content in insects vary according to the life stages and 

insect species. Total lipid content for grasshoppers and other related species (Orthoptera) is a 

relatively low; ranging from 3.8 g to 5.3 g/100 g fresh insects. In contrast, caterpillars 

(Lepidoptera) ranges from 8.6 to 15.2 g/100 g fresh (Bukken,1997). Other studies observed 

that the fat content of yellow mealworms was strongly affected by the different protein and 

starch content of their diets, suggesting that larvae fed with a low nutritional quality diet 

probably use fat reserves for energy, thereby reducing fat content (Van Broekhoven et al., 2015; 

Arrese and Soulages, 2010). Long chain fatty acids, such as palmitoleic, palmitic, stearic, 

linoleic, and oleic acids have been found in the cuticular extracts and exocrine secretions of 

many insects (Lockey, 1988). 

 

The development of analytical technology with powerful qualitative and quantitative 

capabilities, as well as high specificity, is essential for the study of metabolic samples. Previous 

studies showed that solid-phase microextraction (SPME) coupled with GC has been used 

because it provides an efficient method to detect chemicals (Al-Khshemawee et al., 2017; 

Najafian and Rowshan, 2012; Bicchi et al., 2000). Proving that SPME technique is a cheaper, 

easier and faster, so it can be used as an alternative extraction method (Malosse et al., 1995). 

Also, SPME has been used to extract cuticular hydrocarbons from ants (Monnin et al., 1998). 

The SPME technique coupled with GC-MS has also been used to detect long-chain free fatty 

acids from insect exocrine glands (Maile et al., 1998).  

 

This study investigates the feasibility of using high-resolution direct immersion-solid phase 

microextraction (DI-SPME) coupled gas chromatography mass spectrometry analysis (GC-

MS) for profiling of T. variabile adults. DI-SPME is more sensitive compared with HS-SPME, 
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and it is the method of choice for the analysis of clean aqueous samples (Menezes et al., 2010). 

The two extraction modes were evaluated and, despite being less sensitive than HS-SPME in 

the case of the more volatile compounds, direct immersion DI-SPME mode successfully 

extracted 16 pesticides, compared to HS-SPME which was able to extract only 12 compounds 

(Arthur and Pawliszyn, 1990). In previous studies, eight solvents were used to extract lipids 

Tribolium castaneum and Rhyzopertha dominica and acetonitrile extract showed the highest 

peak numbers with 41 compounds; including some of the fatty acids and hydrocarbon waxes 

(Alnajim et al., 2019). 

 

Numerous tools have been used to identify Trogoderma spp., such as genetic tools, 

morphological and taxonomic keys. However, these methods are expensive and inefficient 

because it takes time for identification and need professional taxonomic staff. Also, insect 

hydrocarbons could be used as an alternative method when the taxonomical identification of 

the insect is not feasible due to its damaged condition or if its DNA is too degraded (Braga et 

al., 2013).  

 

The aim of this paper is to use the technique of gas chromatography coupled to mass 

spectrometry (GC–MS) to study the metabolism of T. variabile that reared on different host 

grains including canola, oats, wheat, and barley and use the hydrocarbons chemicals for insect 

identification.  

 

3.3. Materials and Methods  

3.3.1. Insect culture 

Trogoderma variabile were obtained from the Post-Harvest Plant Biosecurity and Food Safety 

laboratory, School of Science, Health, Engineering and Education, Murdoch University, 

Murdoch, Western Australia, Australia. To get adult females and males of T. variabile, 150 adults 

were added into 1-L plastic jars containing 450 g of sterilized canola, oats, wheat, and barley 

separately and then the jars were covered with a meshed lid. Prior to usage the insect food was 

sterilized by keeping it at -20°C for five days using 4 L glass jars and then maintained the jars at 

4°C until used. Before using the insect food for culture, it was thawed at room temperature. The 

insects were reared in a controlled room with 29 ± 2°C and 70 ± 2% relative humidity.  
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3.3.2. Apparatus and equipment.  

Gas chromatography GC-MS 7890B equipped with a 5977B MSD mass spectrometer (Agilent 

Technologies, Santa Clara, CA, USA), with an Agilent HP-5MS column (30 m, 0.25 mm, 0.25 

µm film thickness) were used in the experiments. Helium was used as a carrier gas with 99.99% 

v/v purity (BOC, Sydney, Australia). GC-MS operation conditions were as follows: injector port 

temperature was 270°C. The initial oven temperature was 60°C with an increase to 270°C 

(increasement of 5°C/min) MS Quad at 150°C; MS source at 230°C; pressure at 10.2 psi. The 

flow rate of the column was 1:1 ml/min, while the split less was 30 ml/min at 1.2 min. The total 

run time of GC-MS was 54 min.  

 

3.3.3. The extraction and analysis method  

Adults of Trogoderma variabile reared on different grain (canola, oats, wheat, and barley) were 

used in the trials. One adult male or female from each host grains was separately transferred into 

2 mL plastic microtube (Benchmark Scientific, From Sigma-Aldrich, lot no.3110, USA). Then, 

two milling balls were added. After that, 200 µL of acetonitrile ≥ 99.9 v/v (HPLC grade, fisher 

chemical scientific, Glee, Belgium) was added to the microtube using micropipette and 

homogenized for two minutes using BeadBug microtube homogenizer. The extract was 

centrifuged at 8150× g for three minutes by Dynamica mini centrifuge (Model no. velocity 13µ), 

and then was transferred to 300µl insert glass (Thermo scientific micro- insert, 31x6mm clear 

glass, 15 mm top) placed into 2000 µL clear screw HPLC vial (Agilent Technology, China) using 

micropipette. Finally, solid phase microextraction (SPME) fibre 50/30 µm with 2cm 

DVB/CAR/PDMS coating (Sigma-Aldrich, Bellefonte, PA, USA) was inserted into extracted 

samples for 16 hours in the room temperature (25 ± 2°C). After that, the fibre was withdrawn 

and removed from the vial and immediately introduced into the GC-MS injector port for thermal 

desorption.  

 

3.3.4. Data collection and analysis 

The GC–MS signals were collected by the Mass Hunter Acquisition software (Agilent 

Technologies, Santa Clara, CA, USA). The National Institute of Standards and Technology 

(NIST) mass spectra library was used to identify chemical compounds. The retention index was 

used to assist identification. The experiment was repeated three times to confirm the chemicals. 

The area, which represents each peak in the chromatogram, was extracted using Mass Hunter 
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Acquisition software (quantitative analysis) B.06.00 (Agilent Technology, USA). After selecting 

the compounds, peak area of each compounds was generated to Microsoft Excel 2016, which 

was also used for data arrangement and sorting. Data were statistically analyzed using 

MetaboAnalys version 4 

 https://www.metaboanalyst.ca/MetaboAnalyst/upload/StatUploadView.xhtml  

 

3.4. Results and Discussion 

3.4.1. Effect of insect gender of T. variabile on the compound production 

Results in Table 3-1 showed that T. variabile cultured on canola produced overall 23 

compounds from male and female. Also, differences in the number of compounds are gender 

specific. Female yielded 20 compounds while male yielded 22 compounds. Sixteen compounds 

showed a significant difference which were 1,2-benzisothiazole; 2-decenal, (E)-; heptadecane; 

methoxyacetic acid, 2-tridecyl ester; 1-decanol, 2-hexyl-; n-hexadecanoic acid; oleic acid; 

docosane; tetracosane; heptadecane, 9-octyl-; pentacosane; 11-methylpentacosane; 2-

methylhexacosane; hexacosane; heptacosane; docosane, 1-iodo-; 13-methylheptacosane; 2-

methyloctacosane and nonacosane. Some compounds were only detected in male including 

heptadecane; methoxyacetic acid, 2-tridecyl ester and docosane, 1-iodo- while 1-decanol, 2-

hexyl- were identified from female. 

 

Furthermore, results in Table 3-1 showed that rearing insects on oats affected the quantity, 

quality, and number of the compounds produced by female and male. DI-SPME and GC-MS 

method extracted and detected overall 26 compounds from both genders. Results showed that 

22 and 23 compounds were identified from the female and male respectively. Statistical 

analysis revealed that there were significant differences in the GC-MS response (peak areas) 

using insect samples collected from oat such as nonanal; decanal; 2-decenal, (E)-; 2-undecenal; 

dodecanal; caryophyllene; 1-decanol, 2-hexyl-; pentadecanoic acid; oleic acid; docosane; 

heptadecane, 9-hexyl-; tetracosane; heptadecane, 9-octyl-; pentacosane; 11-

methylpentacosane; hexacosane; heptacosane; 13-methylheptacosane; 2-methyloctacosane 

and nonacosane. However, some compounds were identified from male which were nonanal; 

decanal and caryophyllene compared with 2-decenal, (E)-; 2-undecenal; dodecanal and 

pentacosane while nonanal and decanal were only detected from female reared on oats and not 

from male (Table 3-1).  

https://www.metaboanalyst.ca/MetaboAnalyst/upload/StatUploadView.xhtml
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There were 23 compounds obtained from both female and male reared on wheat. Fourteen 

compounds were significantly different between these two genders including tetradecanoic 

acid; n-hexadecanoic acid; nonadecanoic acid; oleic acid; tricosane, 2-methyl-; tetracosane; 

11-methylpentacosane; 2-methylhexacosane; hexacosane; heptacosane; docosane, 1-iodo-; 13-

methylheptacosane; 2-methyloctacosane and nonacosane (Table 3-1).  

 

In the case of female and male reared on barley, results in Table 3-1 showed that there were 

differences among compounds for each gender. Some of the compounds detected in female, 

were found to be absent in male. From 28 compounds in total detected from T. variabile adults 

reared on barley, 23 compounds produced by the female. Many compounds were detected in 

male but not in female and these included hexadecanes; decanoic acid, hexyl ester; 2-

hexadecanol; heptadecane and 1-decanol, 2-hexyl-. However, 22 compounds showed a 

significant different such as 1-butanamine, N-butyl-; 2-decenal, (E)-; hexadecane; decanoic 

acid, hexyl ester; 2-hexadecanol; heptadecane; 1-decanol, 2-hexyl-; pentadecanoic acid; 

nonadecanoic acid; oleic acid; docosane; heptadecane, 9-hexyl-; tricosane, 2-methyl-; 

heptadecane, 9-octyl-; pentacosane; 11-methylpentacosane; 2-methylhexacosane; hexacosane; 

docosane, 1-iodo-; 13-methylheptacosane; 2-methyloctacosane and nonacosane. This study has 

focused on the metabolism of T. variabile adults, which reared on different host grains 

including canola, oats, wheat and barley.  

 

Our results confirmed that there was a significant difference in the chemical compounds 

between female and male. this finding was agreed with data that collected by Howard (1992) 

where their study confirmed that there were significant differences between T. variabile 

genders lipids content. Furthermore, differences in lipid content of insects were found between 

adult males and females (Lease and Blair, 2011). 

 

The current study showed that male tend to produce more compounds than female. Results 

showed that 22,23,23,28 compounds were detected from male reared on canola, oats, wheat 

and barley respectively. Our data is incosistent with Kinn et al. (1994) study where they found 

that females of Dendroctonus frontalis were heavier, had more lipid. Where Kinn et al (1994) 

confirmed that lipids content between genders varied based on their activity such as flying. 

Beetles that tend to fly have more lipids compared with others lowest lipids content (Perez-

Mendoza et al., 1999). 
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Our data showed that chemical compounds identified from female and male were qualitatively 

similar, while showing appreciable quantitative differences between them. Previous studies 

marked that females and males, had similar chemicals components but in different proportions 

(Nelson et al., 2003). In addition, insect lipid allocation was varied between female and male 

and that agreed with the results that collected by Lease and Blair (2011). Furthermore, the 

chemicals components profiles especially hydrocarbon of male and female Bagrada hilaris 

were qualitatively equal but marked sex-specific quantitative differences were observed for 

some of the linear alkanes (De Pasquale et al., 2007). 

 

As hydrocarbons used in many previous studies as a reliable chemotaxonomically tool for 

classification of insect species (Barroso et al., 2014; Kather and Martin, 2012) therefore we 

propose that the results of chemical compounds that identified in this study especially 

hydrocarbons might be useful as a taxonomy tool between T. variabile and other species like 

T. granarium, however, no data is available for comparison because of unavailability of T. 

granarium live culture in Australia.  

 

The identification of the insect’s species according to their hydrocarbon composition 

demonstrates that this is a highly reliable tool in insect taxonomy and play an important role in 

chemotaxonomy (Kaib et al., 1991; Nowbahari et al., 1990). The lipids considered a successful 

diagnostic tool for the identification of insect, especially hydrocarbons which are biochemical 

characteristics and chemotaxonomic tools for identification of insects (Lockey,1988; Braga et 

al, 2013; Yi et al., 2013; Pradesh, 2011). Soares eta al. (2017) investigated that some 

compounds were identified in three species of Mischocyttarus (Hymenoptera: Vespidae) 

Mischocyttarus consimilis, M. bertonii, and M. latior and these compounds include 

heneicosane, docosane, pentacosane, octacosane, hexacosane, 2-methylhexacosane, 2-

methyloctacosane. The compounds of henicosane, oleic acid, docosane, tricosane, tetracosane, 

pentacosane, hexacosane, octacosane, 2-methylhexacosane, 13-methylheptacosane and 

nonacosane were reported in Tribolium castaneum (Herbst) and Rhyzopertha dominica 

(Alnajim et al., 2019). Oleic acid was also identfied to be the primary fatty acid in the larvae 

of Oryctes rhinoceros, Imbrasia belina, and Rhynchophorus phoenicis (Ekpo et al., 2009; 

Raksakantong et al., 2010). 
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Table 3-1. Compounds peak areas (105) detected from T. variabile male and female reared on canola, oats, wheat, and barley 

 
compounds  

  

feature ID 

  

RI NIST 

  

RI 

  

Canola Oats Wheat Barley 

Female  Male Female  Male Female  Male Female  Male 

1-butanamine, N-butyl- 7.59_129.15 1015 948.6 51.86±20.49 50.32±1.16 77.68±14.93 55.12±13.99 37.00±7.97 43.03±5.32 292.29±0.00 50.11±6.56* 

nonanal 15.72_142.13 1104 117.7 n.d. n.d. 4.46±0.93 n.d.* n.d. n.d. 2.37±0.23 1.87±0.12* 

decanal 19.58_156.15 1204 1164.2 4.92±0.61 1.98±1.13* 3.49±0.45 n.d.* n.d. n.d. n.d. n.d. 

1,2-benzisothiazole 20.21_135.01 1208 1200.4 2.04±0.73 6.41±1.19* 2.50±0.24 4.35±1.14 n.d. n.d. n.d. n.d. 

2-decenal, (E)- 21.53_154.25 1212 1202.1 n.d. n.d. n.d. 4.46±0.61* n.d. n.d. 7.98±0.15 0.77±0.20* 

2-undecenal 24.42_168.15 1311 1325.8 n.d. n.d. n.d. 2.50±0.07* n.d. n.d. n.d. n.d. 

dodecanal 25.77_184.18 1402 1408.8 n.d. n.d. n.d. 1.91±0.35* n.d. n.d. n.d. n.d. 

caryophyllene 25.95_204.18 1494 1489.7 n.d. n.d. 1.86±0.58 n.d.* 3.34±0.61 2.32±0.80 2.30±0.59 2.00±0.87 

hexadecane 30.38_226.26 1612 1560.8 n.d. n.d. n.d. n.d. n.d. n.d. n.d. 1.24±0.16* 

tetradecanal 30.67_212.21 1601 1601.3 4.52±0.62 2.72±1.17 n.d. n.d. 4.33±1.00 3.03±0.21 n.d. n.d. 

decanoic acid, hexyl ester 31.27_256.24 1779 1629.9 n.d. n.d. n.d. n.d. n.d. n.d. n.d. 1.60±0.28* 

2-hexadecanol 32.11_242.26 1774 1704 n.d. n.d. n.d. n.d. n.d. n.d. n.d. 3.72±0.06* 

heptadecane 32.65_240.28 1711 1669.4 n.d. 1.35±0.11* n.d. n.d. n.d. n.d. n.d. 2.27±0.18* 

tetradecanoic acid 34.05_282.20 1769 1778.8 n.d. n.d. 17.89±11.38 4.80±0.25 6.97±0.69 2.21±0.02* 4.72±1.02 2.55±1.25 

methoxyacetic acid, 2-tridecyl ester 34.69_272.23 1791 1780.3 n.d. 2.17±0.56* n.d. n.d. n.d. n.d. n.d. n.d. 

1-decanol, 2-hexyl- 34.85_242.26 1790 1854.1 2.67±0.97 n.d.* 1.98±1.15 5.16±0.56* 5.98±1.72 4.32±0.65 n.d. 4.04±0.28* 

pentadecanoic acid 36.16_242.22 1869 1890.3 n.d. n.d. 36.19±6.10 11.19±4.27* 4.58±1.45 4.18±0.31 9.27±0.69 1.22±0.06* 

n-hexadecanoic acid 38.24_256.24 1968 2012.3 27.6±5.53 32.77±5.96 136.64±17.45 123.27±28.93 118.54±13.51 91.26±4.32* 130.46±27.33 73.33±2.42* 

nonadecanoic acid 40.14_188.22 2266 2209.9 n.d. n.d. n.d. n.d. 5.20±2.49 25.31±3.82* 1.74±0.25 4.98±4.40 

oleic acid 41.58_282.25 2175 2171.9 5.20±0.76 34.38±1.65* 273.15±11.20 21.40±7.94* 57.02±3.32 41.62±0.54* 44.31±3.00 28.04±5.68* 

docosane 44.07_310.35 2228 2230.2 57.2±7.49 89.62±9.38* 27.49±2.31 138.22±1.31* 183.01±32.86 226.47±9.73 65.55±9.92 181.15±7.82* 
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*Significant different between male and female in each host grain. Feature ID includes retention time (min) and m/z ratio; RI NIST is retention 

index from National Institute of Standards and Technology database (NIST); RI is retention index calculated by running n-alkane standard 

C7-C40; n.d is not detected. 

 

 

heptadecane, 9-hexyl- 44.76_324.37 2413 2308 69.3±8.18 62.54±2.55 37.93±8.43 180.55±14.86* 158.62±22.55 130.85±16.11 135.41±17.92 214.12±3.40* 

tricosane, 2-methyl- 45.35_338.39 2343 2398.7 n.d. n.d. n.d. n.d. 28.05±2.19 6.60±3.73* 26.77±3.41 18.58±4.25 

tetracosane 45.77_338.39 2407 2412.6 10.6±0.66 20.46±3.11* 28.20±2.21 19.01±2.75* 31.24±5.77 27.27±2.75 33.39±1.98 38.64±1.26* 

heptadecane, 9-octyl- 46.22_352.40 2442 2449.9 20.4±3.54 22.83±0.64 10.36±6.20 56.43±7.38* 37.71±10.26 52.16±8.11 30.41±1.67 89.77±4.93* 

pentacosane 47.17_352.40 2506 2501.6 17.2±4.84 103.99±2.68* n.d. 165.10±26.26* 44.56±12.62 187.61±10.4* 41.52±5.36 209.31±9.82* 

11-methylpentacosane 47.85_366.42 2542 2533.7 72.5±10.6 585.63±13.16* 59.56±8.55 5.71±0.17* 222.97±8.95 1353.±28.4* 171.41±7.45 931.22±15.7* 

2-methylhexacosane 48.42_380.43 2641 2566.3 51.9±11.8 9.46±2.90* 13.58±4.41 20.37±12.44 154.95±22.33 39.15±12.5* 118.15±16.60 25.11±2.40* 

hexacosane 48.98_366.42 2606 2610.4 427.±26.4 48.71±21.85* 282.85±18.33 108.90±3.54* 745.58±22.50 83.89±6.87* 597.08±15.63 117.95±11.6* 

heptacosane 50.16_380.43 2705 2666 179.±7.28 130.61±11.37* 94.72±1.53 119.56±6.89* 439.06±25.03 661.69±5.26* 329.46±25.75 343.69±17.7 

docosane, 1-iodo- 50.25_436.25 2622 2611.5 n.d. 217.95±11.37* 112.64±34.64 132.84±9.18 412.46±20.80 127.75±2.26* 172.70±12.53 272.96±15.8* 

13-methylheptacosane 50.67_394.45 2740 2692.5 147.±27.9 76.67±11.44* 9.00±0.55 540.74±14.85* 385.43±9.02 351.7±18.3* 170.53±20.57 235.55±11.52* 

octacosane 51.13_394.45 2840 2718.6 54.20±14.44 57.21±8.73 n.d. n.d. n.d. n.d. n.d. n.d. 

2-methyloctacosane 51.31_408.46 2840 2723.6 76.1±10.6 54.55±10.13 47.45±6.47 97.60±14.70* 177.90±19.17 132.77±14.65* 195.80±18.67 77.75±15.4* 

nonacosane 52.91_408.46 2904 2846.1 123.±10.7 78.90±2.06* 42.01±5.31 364.20±4.86* 249.27±14.01 155.79±8.16* 198.61±3.39 43.67±13.2* 
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3.4.2. Effect of host grains (canola, oats, wheat and barley) on the 

compound production 

The PCAs showed the effect of host type on quality and quantity of the chemical compounds 

(Figures 3-1a and b and 3-2a and b). The PCs in score plot describe the differentiation among 

the host grain (Figures 3-1a and 3-2a). According to the graph, the separation was obvious 

among all the diet types. However, the most intensive differentiation in female and male 

samples was between oats and other grain types. The loading plots in Figures 3-1b and 3-2b 

show the most important compounds that significantly participated in the differentiation among 

the diet types. Results showing that docosane, 1-iodo-; 1-butanamine, N-butyl-; oleic acid; 

heptacosane; 13-methylheptacosane; hexacosane; nonacosane; 2-methyloctacosane; n-

hexadecanoic acid and docosane in the female samples (Figure 3-1b). While 11-

methylpentacosane; 13-methylheptacosane; heptacosane; docosane, 1-iodo- and nonacosane 

were the most significant compounds that identified form T. variabile male (Figure 3-2b). The 

results showed that insect host grains have a significant effect on the chemical compounds such 

as fatty acid and hydrocarbons. The number of extracted compounds from different host grains 

varied, whereas barley produced the highest compound number compared to the other host 

grains. In addition, the host grains influenced the peak area of some compounds.  

 

Results in Table 3-2 showed the number of compounds detected from female and male reread 

on different diets. In female, results showed that there were 15 compounds detected in all kind 

of host grains from both genders 1-butanamine, N-butyl-; n-hexadecanoic acid; oleic acid; 

docosane; heptadecane, 9-hexyl-; tetracosane; heptadecane, 9-octyl-;11-methylpentacosane; 2-

methylhexacosane; hexacosane; heptacosane; docosane, 1-iodo-; 13-methylheptacosane; 2-

methyloctacosane and nonacosane. Results also showed that octacosane and methoxyacetic 

acid, 2-tridecyl ester were identified from the T. variabile reared on canola compared with two 

compounds detected from oats that include 2-undecenal and dodecanal. Furthermore, there 

were four compounds identified from T. variabile reared on barley such as nonanal; 

hexadecane; decanoic acid, hexyl ester; 2-hexadecanol. 

 

However, three compounds were detected in canola which is not detected in other grains, such 

as decanal; methoxyacetic acid, 2-tridecyl ester and octacosane while two detected in oats, for 

example, 2-2-undecenal and dodecanal. In case of barely, our results in Table 3-2 showed that 
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three compounds were detected in barley including Hexadecane; decanoic acid, hexyl ester and 

2-hexadecanol. 

 

Our findings consistent with the data collected in previous studies that showed the significant 

effect of different host grains on the lipids content of T. garanarium larvae (Mohammadzadeh 

and Hamzeh, 2018). Also, our results agreed with other previous studies where the extracted 

lipids of insects strongly affected by their vary host grains (Paul et al., 2016; Xin et al., 2018). 

The diet of insects is mainly responsible for the variations in the lipids and fatty acids (FAs) 

composition of the insects (Barroso et al., 2014; Henry et al., 2015). Other studies showed that 

diet appears to be another factor that influences the fat content of insects. A comparison of the 

fat content of the wild orthopteran Heteracris littoralis, at 8.2%, with captive-bred orthopterans 

(Acheta domestica, Gryllus assimilis and Locusta migratoria), with a higher proportion of fat, 

suggests that diet could affect lipid content (Barroso et al., 2014; Paul et al., 2016). The data 

obtained in this experiment agree with (Justi et. al. 2003) who showed that fatty acids content 

of insects is more dependent on diet. Other studies showed that different diet can lead to 

differences in lipids profile in some species (Etges et al., 2014; Liang and Silverman, 2000). 

 

 

 

 

 

 

 

 

 

 

Figure 3-1a and b. a. Score plot of principle components analysis (PCA) for chemical 

compounds obtained from T. variabile female reared on different host grains (canola, oats, 

wheat and barley), b. loading plot shows the most significant compounds that participated in 

the differentiation. 

a b 
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Figure 3-2a and b. a. Score plot of principle components analysis (PCA) for chemical 

compounds obtained from T. variabile male reared on different host grains (canola, oats, wheat 

and barley), b. loading plot shows the most significant compounds that participated in the 

differentiation. 

 

  

a b 
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Table 3-2. Compounds that were detected and not detected from T. variabile female and male 

reared on canola, oats, wheat and barley.  

+    detected compounds; - not detected compounds 

Chemical compounds 

Female  Male 

Canola Oats Wheat Barley Canola Oats Wheat Barley 

1-butanamine, N-butyl- + + + + + + + + 

Nonanal - + - + -   - - + 

Decanal + + - - + - - - 

1,2-benzisothiazole + + - - + + - - 

2-decenal, (E)- - - - + - + - + 

2-undecenal - - - - - + - - 

Dodecanal - - - - - + - - 

Caryophyllene - + + + - - + + 

Hexadecane - - - - - -  - + 

Tetradecanal + - + - + - + - 

decanoic acid, hexyl ester - - - - - -  - + 

2-hexadecanol - - - -  -  - - + 

Heptadecane - - - - +  - - + 

tetrdecanoic acid - + + +  - + + - 

methoxyacetic acid, 2-tridecyl ester - - -  - +  -  - - 

1-decanol, 2-hexyl- + + + - - + + + 

pentadecanoic acid - + + + - + + + 

n-hexadecanoic acid + + + + + + + + 

nonadecanoic acid - - + + - - + + 

oleic acid + + + + + + + + 

Docosane + + + + + + + + 

heptadecane, 9-hexyl- + + + + + + + + 

tricosane, 2-methyl- - - + + - - + + 

Tetracosane + + + + + + +  

heptadecane, 9-octyl- + + + + + + + + 

Pentacosane + - + + + + + + 

11-methylpentacosane + + + + + + + + 

2-methylhexacosane + + + + + + + + 

Hexacosane + + + + + + + + 

Heptacosane + + + + + + + + 

docosane, 1-iodo- - + + + + + + + 

13-methylheptacosane + + + + + + + - 

Octacosane + - - - + - - - 

2-methyloctacosane + + + + + + + + 

Nonacosane + + + + + + + + 
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3.5. Conclusions 

In this study, identified chemicals were used to study T. variabile adult’s metabolism. As 

hypothesized, there should be difference in metabolites based on the gender of T. variabile and 

the commodity the insects were reared upon. This difference can be used as developing future 

diagnostic methods. The result from this study support this hypothesis. SPME coupled with 

GC-MS could be performed successfully to identify lipids such as fatty acid and hydrocarbons 

from T. variabile male and female. Also, results showed that there was a significant difference 

between adults fed on four different host grain. Thus, the chemical hydrocarbons could be used 

for comparison as taxonomic tool to identify different T. variabile adults including female and 

male from other Trogoderma sp.   

  



 

68 
 

 



 

69 
 

 

 

 

 

 

Chapter Four 
 

 

Identification and diagnosis of whole 

body and fragments of Trogoderma 

granarium and Trogoderma variabile 

using visible near infrared 

hyperspectral imaging technique 

coupled with deep learning 
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4.1. Abstract 

The khapra beetle, Trogoderma granarium Everts, is the most critical biosecurity pest threat 

which threatens the grains industry worldwide. To prevent incursion of the khapra beetle, very 

accurate and reliable diagnostic tools are required to differentiate the khapra beetle from other 

morphologically, closely related Trogoderma sp., in particular the larvae stage. However, at 

present, it can only be identified by highly skilled taxonomists. Furthermore, often suspected 

Trogoderma sp. found in grain products are the body fractions such as larval skins or 

fragmented adult, which are impossible to diagnose morphologically. This work explored the 

combination of visible near infrared hyperspectroscopy (VNIH) and deep learning tools to 

identify the khapra beetle. About 2000 hyperspectral images were acquired under this study. 

Images of T. granarium and Trogoderma variabile, adult, larvae, larvae skin, fragments of 

adult and larvae images, were subjected to two deep learning models; Convolutional Neural 

Networks (CNN) and Capsule Network for analysis. Overall, above 90% accuracy was 

obtained with both models, whereas Capsule Network achieved a higher accuracy of 96%. For 

whole adult body and adult fragments, the accuracy achieved was 96.2% and 91.7%, 

respectively.  For whole larvae, larvae skin and larvae fragment, accuracies of 93.4%, 91.6%, 

and 90.3% were achieved. Ventral orientation gave better accuracy over dorsal orientation of 

the insects for both larvae and adult stages. Based on the above results, VNIH imaging 

technology coupled with appropriate machine learning tools can be used to identify one of the 

most notorious stored grain pests, the khapra beetle, from other morphologically similar 

Trogoderma sp. like T. variabile. Particularly, the technology offers a new approach and 

possibility of an effective identification of Trogoderma sp. from its body fragments and larvae 

skins, which are otherwise impossible to diagnose taxonomically. 

 

4.2. Introduction 

The Khapra beetle, Trogoderma granarium Everts (Coleoptera: Dermestidae) is the most 

critical biosecurity pest threat worldwide. It remains as the number one most dangerous stored 

grain pest and is devastating if it is accidentally introduced to any country.  Once this pest 

establishes in a country, the export restrictions have to be applied. This pest not only damages 

stored food commodity, but also makes it unfit for consumption because of contaminants like 

larvae exuviae, skin, dead bodies or their fragments. The exuviae is also known to cause 

irritation of mucous membranes in the respiratory tract amongst people working in warehouses 
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and on-board ships (Maliński et al., 1986). T. granarium may also result in contamination by 

Aspergillus flavus (Sinha and Sinha, 1990). With the increase of exportation, interception 

numbers of the khapra beetle have increased world-wide; including Australia, United States 

and other non khapra countries. In Australia, interceptions of the khapra beetle have been 

reported in 2007 and in 2016 (Day and White, 2016). In USA, initially, the number of 

interceptions were about 11 between 2007 and 2009, but rose to 100 in 2011 (Customs, 2011). 

Between 1957 and 1973, 46 to 131 interceptions were detected every year in commodities 

entering England (Day and White, 2016). Eradication is very costly. For example, an 

interception in Western Australia in 2007 alone cost AUD 207,685 for its eradication (Day and 

White, 2016). The introduction of T. granarium to the countries which do not have khapra 

beetle would be economically disastrous, and hence accurate confirmation of the species is 

exceedingly critical. There are over 134 described Trogoderma species worldwide (Háva, 2012) 

and, many yet to be discovered. Apart from the khapra beetle, there is the less significant pest, 

the warehouse beetle, Trogoderma variabile Ballion, which has already established in 

Australia and many other countries. To diagnose the khapra beetle from other morphologically 

similar Trogoderma species, highly experienced personnel with exceptional skills in dissection 

of small insects are required. This becomes more difficult when border security inspectors 

usually get incomplete specimens with missing body parts and without morphological features, 

thus making it impossible to identify morphologically (ISPM, 2012). 

 

Identification through eggs and pupae is still not possible as they possess very few external 

features. Hence, larvae and adults are the only stages that are used for identification purposes. 

Skilled personnel can identify adults by dissecting out the genitalia and examining them under 

the stereomicroscope, which is a cumbersome and time-consuming procedure. For larval 

identification, mouthparts need to be dissected by trained personnel and observed under 400× 

to 800× magnification for satisfactory identification (ISPM,  2012)  However, most of the time, 

adults received in cargo are broken into pieces or are brittle and have a high chance of 

fragmenting when handled. Sometimes the body fragments don’t even have the required 

diagnostic parts, which makes the taxonomic identification procedure impossible. 

Identification methods have also been developed using immunological and molecular 

techniques but are still not reliable enough to be used as quarantine diagnostic techniques 

(ISPM, 2012). 
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Given these drawbacks, an alternative technique is to use a hyperspectral imaging system. 

Hyperspectral images are high-resolution images which are used by experts in geolocation 

identification, plant species identification, and identifying pest damages on plants (Camps- 

Valls et al., 2014; Singh et al., 2010; Cao et al., 2015). As hyperspectral imaging combines the 

properties of imaging and spectroscopy, it can attain both spatial and spectral information from 

an object, making it more sensitive and reliable. The hyperspectral image acquired consists of 

hundreds of continuous wavelengths for each spatial position of the target object. Consequently, 

each pixel contains an individual spectrum, enhancing the sensitivity of the image over a 

normal RGB image. The technique can more sensitively and simultaneously measure multiple 

parameters, including internal structure characteristics, morphological information, and 

chemical composition in comparison to a single machine vision technology or spectroscopy 

analysis technology (Gowen et al., 2007). In the past, the technique has been used for inspection 

of fruit quality and ripeness (Lu, 2003; Polder et al., 2002). It has also been used in the 

identification of internal infestations and quality in wheat kernels (Ridgway and Chambers, 

1998; Singh et al., 2009). Moisture and oil content in corn kernels have been studied using near 

infrared hyperspectral imaging as well (Cogdill et al., 2004). 

 

Once the hyperspectral images are captured, for accurate analysis, it is required to establish 

reliable machine learning models (Krizhevsky et al., 2012). Machine learning approaches have 

been used on hyperspectral images with promising results (Ebrahimi et al., 2017). Recently, in 

the area of machine learning, deep learning models have become growingly popular in many 

applications. In this paper, the Convolutional Neural Networks (CNN) and Capsule Network 

were investigated for hyperspectral pest image classification. CNN has the capability of 

handling non-linear classification (LeCun et al., 1989). Capsule Network uses the concepts of 

a combination of nested capsules (layers) of neurons to perform classification. The lower levels 

of capsules are capable of learning the sections of an image separately as a capsule and pass 

the prediction to a higher-level capsule, which would make an overall decision for the set of 

capsule predictions. The model would learn section by section, allowing the learning model to 

learn sections faster than other models (Sabour et al., 2017). The high definition of 

hyperspectral images would produce an in-depth image representation. The in-depth 

representation has a potential to support the Capsule Network’s learning capability. 
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Thus, the objective of this paper is to address biosecurity surveillance and identification gaps 

for the khapra beetle by establishing proof of concept and an effective hyperspectral pest image 

classification system based on deep learning algorithms which can be used in the future by 

biosecurity personnel to accurately and timely identify exotic khapra beetle from other 

Trogoderma sp. that is T. variabile. 

 

4.3. Materials and Methods 

4.3.1. Insects 

Stock culture of T. variabile was reared on non-fumigated canola whole seeds.  Initial culture 

was taxonomically confirmed from Department of Primary Industries and Regional 

Development (DIPRD), South Perth, Western Australia. Canola seeds were disinfested by 

keeping at -20 °C for one week and then thawing at room temperature for 24 h before use. Once 

the canola seeds reached room temperature, about 800 g of seeds were added to the insect 

culture box with mixed age larvae and then covered with a wet paper towel to maintain the 

moisture. After that, the boxes were closed with meshed lids and kept in culture room with 

temperature and relative humidity at 30°C and 60%, respectively. The frequency of change of 

culture was done once in 3 months. Using same way, T. variabile was also reared on wheat, 

barley, rice, maize, and oats. Dead Specimens of T. granarium adults both males and females, 

larvae (mixed instars) and larvae skins in ethanol were procured from Spain, Greece, and 

Pakistan. All the specimens were provided to us by taxonomist in DPIRD after taxonomic 

confirmation. 

 

For body fragments, adults and larvae specimens were damaged by cutting adults down the 

dorsal midline or by removing appendages or mouth part from the specimen. For larvae, the 

body was cut into the head or upper region, and the lower or tail region. 

 

4.3.2. Hyperspectral imaging system 

Visible near infrared hyperspectral imaging system at State Agricultural Biotechnology Centre 

(SABC), Murdoch University was used. The system consists of spectral imager (Applied 
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Science Imaging, Model: CCD-1300DS, Germany) with two light sources to illuminate the 

samples: 1) a 150 W quartz halogen illuminator, and 2) a Light Emitting Diode (LED) bulb 

(Philips 470 lm-D65). Since the current spectral imager can cover spectral range only up to 800 

nm, so halogen lamp with a higher spectral power was used to provide an extended wavelength 

range from 800 to 1000 nm. The imager was hooked up to a microscope with 10 times 

magnification. Spectra Cube was used as the spectral imaging acquisition system. 

 

4.3.3. Spectral sample preparation 

Insects were killed by immersing in 100% ethanol for 24 h and then transferring the dead ones 

on Whatman™ filter paper 1 to soak up all the ethanol. Once all the ethanol has dried up, the 

insects were transferred on to their respective slides for imaging. Glass slides with the black 

background made by permanent marker ink was used as the image background color to avoid 

overexposure. 

 

4.3.4. Image acquisition 

About 2000 images were acquired (Table 4-1), comprising T. granarium from Spain (colony 

material), Greece, Pakistan and Germany (colony material) and T. variabile, cultured on rice, 

wheat, canola, barley, maize and oats, along with wild T. variabile which were collected and 

identified through National  Trogoderma  trapping  program by the DPIRD in Western 

Australia. The images were acquired for adults, larvae, larvae skin, fragmented adult and larvae, 

and for both dorsal and ventral orientation. 

 

To acquire the image, individual insect was kept on black background glass slide with brush 

and imaged under the image analyzer through 10× magnification. Image capture parameters 

used were 256 frames and 45 steps to get the best resolution image between 400 and 1000 nm. 

Exposure time used were 24 and 26 ms−1 for the dorsal and ventral position, respectively. The 

parameters were kept consistent for all the images. The resulting hyperspectral images was a 

special block of 704 × 1248 × 80 reflectance image, representing a 3-D image with X-axis and 

Y-axis coordinate information and the other representing the spectral information at 80 

different wavelengths after ten spectral binning operations. This information was stored for 

subsequent analyses. 
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Table 4-1. Number of images acquired for each insect species, including specimen type and 

orientation. 

 

TG stands for T. granarium and TV stands for T. variabile.  

Insect 

species 

Specimen type Geographical location and commodity Number of images 

Ventral Dorsal 

TG Whole Adults Germany 29 29 

TG Whole Adults Pakistan 17 17 

TG Whole Adults Spain 29 29 

TV Whole Adults Canola 59 59 

TG Whole Larvae Germany 55 55 

TG Whole Larvae Pakistan 20 20 

TG Whole Larvae Spain 63 63 

TV Whole Larvae Barley 59 59 

TV Whole Larvae Canola 60 60 

TV Whole Larvae Oats 58 58 

TV Whole Larvae Rice 56 56 

TV Whole Larvae Wheat 60 60 

TG Larvae Skin Germany 28 28 

TG Larvae Skin Pakistan 18 18 

TG Larvae Skin Spain 21 21 

TV Larvae Skin Barley 60 60 

TV Larvae Skin Wheat 30 30 

TV Larvae Skin Canola 69 69 

TG Fragmented Greece 27 27 

 adults    

TV Fragmented Wild 20 10 

 adults    

TV Fragmented Canola 9 9 

 adults    

TG Fragmented Spain 25 25 

 adults    

TV Fragmented Barley 28 28 

 adults    

TG Fragmented Spain 34 34 

 larvae    

TV Fragmented Canola 26 26 
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4.3.5. Deep learning model for pest classification 

CNN based approach and Capsule Network based approach were used. The data set was 

randomly divided into training dataset (80% of the images) and testing dataset (20% of the 

images). 

4.3.5.1. Dataset description 

The available hyperspectral pest images are mainly divided into T. granarium and T. variabile. 

The whole hyperspectral image including the background was used by CNN and Capsule 

Network based approach. 

4.3.5.2. Convolutional Neural Network (CNN) 

CNN was initially developed for identifying hand-written zip code recognition. This 

application showed that CNN is capable of learning the features of the whole image well when 

properly trained. The images are passed on to the CNN pre-processing. The images are rescaled 

to 1/255, and the images are zoomed to 0.2. In order to generalize the CNN, the images were 

randomly flipped (augmented). 

The CNN has 5 convolutional blocks and the final layer was a fully connected dense layer to 

classify the images (Figure 4-1). The CNN has the activation function relu with max pooling. 

The fully connected dense layer contains a relu activation function with a dropout rate of 0.5. 

Thousand epochs were used to train the CNN. CNN classifier was implemented in Python using 

Keras package. An overview of the procedure is given below. 

The input image is converted into a vector, 

ui = vector (input) 

Then the vector is transformed using affine function, 

𝑼𝒋|𝒊
̂ =  𝑾𝒊𝒋 𝒖𝒊 

 

The weighting sum of the network is defined as, 

𝒔𝒋 = ∑ 𝒄𝒊𝒋𝒊  𝒖𝒋|�̂� 

while the nonlinear activation function is, 
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𝒗𝒋= 
||𝒔𝒋||𝟐

𝟏 + ||𝒔𝒋||𝟐 
𝒔𝒋

||𝒔𝒋||
 

 

and the final output is defined as: 

output = vector (vj) 

where: 𝑢𝑖is the image converted into the vector. 𝑊𝑖𝑗 is the weight for each vector value 𝑢𝑖. 

𝑐𝑖𝑗is the bias and sj being the sum of the network. 𝑣𝑗 is the activation function generated from 

the 𝑠𝑗. 

 

 

Figure 4-1. The CNN architecture used for the pest image classification. CNN contains 5 layers 

and the last layer consists a dense (fully connected) network.
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Figure 4-2. Schematic diagram showing Capsule Network, which has 2 convolutional layers and a fully connected layer to perform the pest 

classification.
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Figure 4-3. Capsule Networks loss plot for the training and testing datasets. The plot 

demonstrates the Capsule Networks adaptability to the dataset. The graph shows that the 

Capsule Network trains and achieve the optimal loss values within a few epochs of training. 

 

4.3.5.3. Capsule Network 

Capsules are a group of neurons selected to perform a particular task in order to combine as a 

unit to produce the final result (Sabour et al., 2017). Active capsules are at a level that makes 

predictions and passes results to the higher-level capsules. When multiple predictions agree, a 

higher level of capsule activates. These higher-level capsules yield the final results. Capsule 

Network has been shown to achieve the best results in MNIST dataset. Capsule Network has 

been applied to CIFAR10 dataset and shown to increase accuracy with an added final 

convolutional layer (Xi et al., 2017). Capsule Network considers images as capsules (sections) 
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and performs classification separately and integrates each capsule output to generate the final 

classification results (Figure 4-2). The Capsule Network is defined as follows. The input image 

is defined as; 

 

xi = scalar (input) 

weighting sum is defined as, 

 

aj = ∑ 𝒘𝒊 𝒊 𝒙𝒊 + 𝒃 

 

nonlinear activation function is, hj = f (aj) 

Output is, output = scalar (hj) 

Where: xi is the scaled value for the input, the wi is the weight and b are the bias. aj weighted 

sum. f is the non-linear activation function generating hj. The final output is scales the hj.  

 

4.4. Result and discussion 

4.4.1. Training of algorithms 

Two deep learning models (Capsule Network and CNN) were investigated, and the Capsule 

Network performs slightly better than the CNN. Figure 4-3 shows the loss graph for the 

Capsule Network. The graph demonstrates that the Capsule Network can achieve the optimal 

loss values within a few epochs of training.  It also shows that the loss value is very small, 

which clearly indicating that the Capsule Network is capable of adapting faster to the new 

images and generate accurate results when comparing to the CNN model. Figure 4-4 

demonstrates the CNNs loss curve graph during training. Although the Capsule Network 

outperforms the CNN, Figure 4-4 indicates that the CNN is also able to be trained for the new 

dataset, in which generalisation can be observed. However, comparing the loss curve of CNN 

and Capsule Network (Figures 4-3 and 4-4), CNN tends to give slightly larger loss values and 

higher error rate when compared to Capsule Network. In CNN, the initial layers are used to 

learn the basic features of the objects, and the deeper layers are used to learn more complex 

features. All the learned features are then used to generate the final prediction. However, as 
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CNN does not retain much spatial information, it does not hold invariant information well, 

such as the position of the pest. CNN learns to identify khapra from warehouse beetle using 

the training set.  If new images with different orientations of the pest were given to CNN, the 

accuracy of CNN could be affected. To fully utilise the benefits of a CNN, normally a large 

number of training image data is required. Capsule Network can alleviate this problem. 

Capsule Network creates an equivariance between capsules. The orientation of the features is 

generated and learned as capsules. The information was detected and passed from capsules to 

capsules at different layers. Each capsule detects sections of the image separately and 

integrates them into producing the final output classification. In this way, each capsule can be 

trained to identify individual features of the image. Given the limited number of training 

images in our study, the Capsule Network could outperform CNN and should be used as an 

alternative method. 

 

 

Figure 4-4. Loss graph for CNN for binary classification. The CNN’s training and testing aligns 

with each other which indicates that the CNN has not over trained. 
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4.4.2. Optimisation of larvae and adult orientation 

A binary classification was conducted between T. granarium and T. variabile for both larvae 

and adult stages using both dorsal and ventral orientations. As shown in Table 4-2, ventral 

orientation has better accuracy results as compare to dorsal orientation for both larvae and 

adults using both CNN and Capsule Network. In the case of larvae, the accuracy of 93.4% and 

93.0% respectively for ventral and dorsal orientation was observed using Capsule Network and 

the accuracy of 89.8% and 88.7% respectively, was observed with CNN. In the case of adults, 

the difference in the accuracy between ventral and dorsal was more significant. Capsule 

Network gave an accuracy of 96.2% and 92.5%, respectively for ventral and dorsal orientation, 

while CNN gave an ac- curacy of 92.5% and 88.9% respectively for ventral and dorsal 

orientation. Based on the outcome, the best orientation to be used for subsequent experiments 

is ventral images for the larvae and adult fragments. Better accuracy with ventral orientation 

could be because of more discriminating features on the ventral side of larvae and adults, like 

denser setiferous punctures on setae of the adults (ISPM, 2012). Voss et al. (2017), have also 

found 89% accuracy with ventral orientation and 82% accuracy with dorsal orientation for two 

blowfly puparia species: Calliphora dubia Macquart 1855 and Chrysomya rufifacies Macquart 

1842, using hyperspectral imaging (Voss et al., 2017). Based on our results, ventral orientation 

was applied as the most preferred orientation for developing the models for larvae skin, 

fragmented adults, and larvae. 

 

Table 4-2. Binary Classification between T. granarium and T. variabile for identification 

accuracy using both CNN and Capsule Network for larvae (ventral and dorsal), adult (ventral 

and dorsal), larvae skin, fragments of adults and larvae. 

Insect specimen Insect body 

Tissues 

Accuracy using 

CNN (%) 

Accuracy using Capsule 

Network (%) 

Larvae Ventral 89.8 93.4 

 Dorsal 88.7 93.0 

Adult Ventral 92.5 96.2 

 Dorsal 88.9 92.5 

Fragment Larvae skin 88.2 91.6 

 Adult 89.1 91.7 

 Larvae 88.9 90.3 
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Table 4-3. Confusion metrics using CNN and Capsule Network for both larvae and adult with 

ventral and dorsal orientation 

Insect stage Deep learning tool Species and orientation Predicted TG Predicted TV 

Larvae CNN TG (ventral) 25 3 

TV (ventral) 6 52 

TG (dorsal) 24 4 

TV (dorsal) 6 52 

Capsule Network TG (ventral) 26 2 

TV (ventral) 4 54 

TG (dorsal) 26 2 

TV (dorsal) 3 55 

Adult CNN TG (ventral) 13 2 

TV (ventral) 0 12 

TG (dorsal) 13 2 

TV (dorsal) 

 

1 11 

 

 

 

Capsule Network TG (ventral) 14 1 

TV (ventral) 0 12 

TG (dorsal) 14 1 

TV (dorsal) 1 11 

TG stands for T. granarium and TV stands for T. variabile 

 

4.4.3. Classification using larvae and adults of T. granarium and T. variabile 

As shown in Table 4-2, both CNN and Capsule Network have shown to achieve classification 

accuracy above 90% in discriminating T. granarium and T. variabile larvae. Table 4-3 depicts 

the confusion matrix using optimal CNN and Capsule Network for larvae. For this total 86 test 

insect images including 28 images of T. granarium larvae, and 58 images of T. variabile larvae 

were used. From these generated confusion matrices with CNN for T. granarium, out of 28 

images, 25 were identified as T. granarium, and 3 and 4 were misidentified as T. variabile for 

ventral and dorsal orientation respectively. For confusion metrics generated using Capsule 

Network out of 28 images of T. granarium, 26 were identified correctly, and two were 

identified as false positives. Thus, both methods performed well. In contrast, Capsule Network 

gives 2 false negatives and CNN gives 3 and 4 larvae false positives for ventral and dorsal 

orientation respectively for T. granarium. Similarly, for T. variabile out of 58 images classified 

52 were identified correctly, and 6 were misidentified for CNN, while 4 and 3 were 

misidentified in case of Capsule Network for ventral and dorsal orientation, respectively (Table 

4-3). With adults, Capsule Network outperformed in terms of accuracy of 96.2% and 92.5% in 

comparison to 92.5% and 88.9% for CNN with ventral and dorsal orientation, respectively 
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(Table 4-2). Detailed recognition results using 27 test adult insect images, through confusion 

matrices (Table 4-3) shows that in case of identification of T. granarium using CNN for both 

ventral and dorsal orientation 2 T. granarium were false identified as T. variabile but in case 

of T. variabile 100% were identified as T. variabile using ventral orientation with no false 

positive. Using Capsule Network, out of 15 T. granarium only one T. granarium adult was 

identified as T. variabile (false negative) for both the orientation. Similar to CNN, in Capsule 

Network also, with ventral orientation no false positive T. variabile was identified (Table 4-3). 

The identification of insect species using visible near infrared hyperspectral technique is based 

on the difference in reflectance and absorbance spectra in the region between 400 and 1000 nm. 

The surface of the insect body is covered with cuticle, which is further made up of many layers 

made up of lipids. Hydrocarbons constitute the main part of cuticular lipids (Maliński et al., 

1986). The cuticular lipids give peaks corresponding to the C-H overtones in near infrared 

region (700–1100 nm) (Baker et al., 1999; Ridgway et al., 1999). This could be the reason of 

difference in the spectra of the hyperspectral images be- tween T. granarium and T. variabile. 

The reason how T. granarium can be identified from T. variabile with an accuracy of more 

than 96.2% is consistent with this hypothesis. As cuticle are well developed in adults, so from 

the result, it shows that identification accuracy with adults is far better than larvae. The results 

are also consistent with previous research in which adults of Sitophilus oryzae (Linnaeus)  (rice  

weevil) and S. zeamais Motschulsky (maize weevil) were differentiated with  more than 98% 

accuracy and puparia of two species of blowfly Calliphora dubia and Chrysomya rufifacies 

where distinguished with the ac- curacy of 92% using similar technology (Cao et al., 2015; 

Voss et al., 2017). Researchers in the past have used cuticular hydrocarbons in insect 

recognition system, as qualitative and quantitative composition of the insect cuticular 

hydrocarbon depending on the order, group, subgroup, species and even sex of the insects 

(Jackson, 1976). 

 

4.4.4. Classification between larvae skins, fragments of adults and larvae of 

T. granarium and T. variabile 

Since ventral orientation gave better accuracy for both larvae and adults, ventral orientation 

images of larvae skins, fragments of adult and larvae were used to find the accuracy between 

T. granarium and T. variabile using optimised CNN and Capsule Network. From the current 

model, more than 90% accuracy can be achieved for the body fragments and larvae skin by 
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using Capsule Network (Table 4-2). This again supports the hypothesis stated above, that 

cuticular hydrocarbon peaks corresponding to the C-H  overtones  in  near  infrared  region  

(700–1100 nm) (Baker et al., 1999; Ridgway et al., 1999) could be the reason of difference in 

the spectra even for the body fragments or the larvae skin of T. granarium and T. variabile. 

The presence of larvae skins in commodities is a common indicator of infestation by either T. 

granarium or T. variabile, but with larvae skin it is not possible to differentiate the species 

taxonomically. When trading the commodities be- tween the countries, it is also common to 

get broken specimens and larvae skin. At the time of quarantine inspection, identification of 

in- sects especially khapra beetle becomes very difficult, as most of the time the identifying 

morphological features are lost, hence visible near infrared hyperspectral technology can be an 

effective diagnostic tool in that scenario. 

 

4.5. Conclusion 

This paper introduces hyperspectral imaging technique coupled with appropriate machine 

learning tools to identify one of the most notorious stored grain pest khapra beetle from other 

morphologically similar Trogoderma sp. that is T. variabile. This otherwise, can be identified 

only by experienced and trained personnel following detailed dissecting protocol on insect 

whole bodies. With respect to the whole insect body, the identification accuracies achieved by 

the hyperspectral imaging technique using Capsule Network was 96.2% and 93.4% for adults 

and larvae respectively. The ventral orientation of the insect body gave better accuracy over 

dorsal orientation. Additionally, this technique can effectively differentiate between the two 

species with accuracies of 91.6, 91.7 and 90.3% for larvae skin, adult fragments, and larvae 

fragments, respectively. The taxonomic identification of these two species becomes impossible 

if larvae skin or fragmented adult or larvae bodies are available. The technology thus offers a 

new approach and possibility of an effective identification of Trogoderma sp. from its body 

fragments and larvae skins, which are otherwise impossible to diagnose taxonomically.  

For future work, we intend to further improve the accuracy of the algorithms by generating and 

collecting more image profiles of T. granarium and other Trogoderma species from different 

geographical locations. In addition, we will expand this to other desired stored grain species. 

The outcomes of these research will then help to incorporate the technology into actual 

quarantine practice.  



 

86 
 

 

 

 

 

 

Chapter Five 
 

General Discussion 

 

  



 

87 
 

5.1. General discussion 

Australian grains are globally regarded for their high quality and reliability, both as bulk 

commodity exports and as value-added products. It was valued at approximately $22.8 billion 

in 2013–14 (Sarina 2014). The total amount of wheat grain grown across Australia was 25 

million tonnes per year (AEGIC 2015) and WA was the largest wheat grain exporter in 

Australia. The value of WA grain exports in 2014/2015 was worth over $ 5.1 billion with $3 

billion of this value from wheat (Department of Agriculture and Food WA 2016).  Trogoderma 

spp. has been identified as the most notorious stored grain insects throughout the world. Grains 

infested by these insects could be destroyed because of the massive populations of the insect 

which may develop. Furthermore, they cause the biggest economic losses and T. granarium 

has been recognized as a quarantine pest in some countries. Khapra beetle can affect on 

environment by destruction of grain products. Those pests have been reported infesting 119 

different commodities. Many damages can be caused by T. variabile and T. granarium, such 

as loss of grain weight, reduce in quality, the presence of larvae, masses of cast skins, live or 

dead insects, and fine dust. The important of these two species comes from the close 

morphological features which can make identification uncertain.  In order to achieve this aim, 

three experiment chapters were conducted. These experiments progressed for understanding (1) 

the optimal conditions to collect volatile organic compounds and then apply these optimal 

conditions to collect volatile organic compounds from different T. variabile life stages (Chapter 

two); (2) to understand T. variabile metabolism reared on different host grains such as  canola, 

oats, wheat, and barley and to identify chemical hydrocarbons can be used as a chemo-

taxonomical tool for insect species identification especially for very morphologically similar 

species (Chapter three); and (4) visible near infrared hyperspectral imaging coupled with deep 

learning can be used to identify one of the most world destructive pests, T. granarium, from 

other morphologically similar Trogoderma sp. like T. variabile (Chapter four).  

 

Briefly, the major aims from this research were: 

➢ Study the feasibility of the Solid phase microextraction (SPME) technique for 

identification of volatile organic compounds (VOCs), hydrocarbons and the insect 

metabolism. 
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➢ Develop new diagnostic tool for Trogoderma granarium and Trogoderma variabile 

identification using different life stages, body fragments and larvae skin based on 

visible near infrared hyperspectral imaging. 

 

The aim of the second experimental chapter (Chapter 2), was to determine the best conditions 

for extracting VOCs from T. variabile different stages including larvae and adults. The SPME 

technique coupled to the GC FID/MS was found to be a robust, rapid and reliable method to 

analyse VOCs. These findings agree with Villaverde et al., (2007) who used an SPME fibre to 

extract VOCs from Tribolium castaneum (Herbst). Therefore, different parameters were 

optimized for the analysis of emitted VOCs to ensure maximum release of VOCs from the fibre 

without compromising the composition of VOCs released.  Four different insect densities 

(15,20,25, and 30) were tested to analysis VOCs from two different stages including larvae and 

adults (male and female). Moreover, the results proved that different insect densities can affects 

the VOCs amount emitted from insects. This result showed that less densities of T. variabile 

gave more VOCs. This could be attributed to the overcrowding which might have caused a 

reduction in the metabolism of insects due to an increase in the CO2 quantity which has a 

critical effect on the biological and physiological processes of insects (Guerenstein and 

Hildebrand, 2008; Nicolas and Sillans, 1989) Furthermore, Jelen et al. (2000) mentioned that 

the amount of sample has a significant effects on the amount of the extracted analyte. The 

second aspect in this chapter was to focus on the using different extraction time including (4h, 

8h, 16h, and 24h) to provide the optimal parameters for determining VOCs from T. variabile 

larvae and adults (male and female). Previous studies showed that extraction time play a 

significant parameter in headspace solid phase microextraction. In this regard, other studies 

focused on the importance of extraction time, Senthilkumar et al. (2012) showed that it is an 

important step to determine extraction time using SPME fibre method. The amount of extracted 

volatile depends on the sampling method such as extraction time (Arnaud et al., 2002; Qazi et 

al., 1998). Finally, it would be appropriate to determine if the fibres used in the present study 

can be inserted inside silos and left for various periods of time, before being processed by HS-

SPME together with GC/FID and GC/MS to accurately monitor VOCs produced by storage 

Insects. In addition, the fibres could be used to detect VOCs in other insects such as T. 

castanium and R. dominica. Diversity profiling and VOCs profiles are both potentially useful 

tools to confirm the presence of grain stored insects such as T.varibaile and T. garanarim  at 

an early stage of contamination of grain during storage. Furthermore, T. variabile is of 
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considerable concern because it could mask the presence of the more damaging T. granarium 

because of the morphological similarity between these two species. 

The aim of the third chapter was to study T. variabile adult’s metabolism on different hosts, 

separate and identify T. variabile adults’ hydrocarbons with possibility of using these 

compounds as taxonomic tool for this insect. To analyse T. varibaile adults lipids, DI-SPME 

method coupled with GC-MS was used to detect lipids which include hydrocarbons and fatty 

acids. Host grains have a significant effect on the insect lipids such as fatty acid and 

hydrocarbons. Different number of compounds were extracted from T. variablile adults. There 

were 23 compounds that identified from adults reared on canola and wheat compared 26 and 

28 compounds detected form adults reared on oats and barley respectively. Several other 

studies explain the impact of host grains on the lipids, and lipids might vary based on the insects 

host grains (Mohammadazadeh,2018; Paul, 2016; Xin et. al., 2018). Results showed in females 

the major compounds are docosane, 1-iodo-; 1-butanamine, N-butyl-; oleic acid; heptacosane; 

13-methylheptacosane; hexacosane; nonacosane; 2-methyloctacosane; n-hexadecanoic acid 

and docosane.. While 11-methylpentacosane; 13-methylheptacosane; heptacosane; docosane, 

1-iodo- and nonacosane were the most significant compounds identified form T. variabile male. 

The aim of the fourth experimental chapter (Chapter 5) is to address biosecurity surveillance 

and identification gaps for the khapra beetle by establishing proof of concept and an effective 

hyperspectral pest image classification system based on deep learning algorithms which can be 

used in the future by biosecurity personnel to accurately and timely identify exotic khapra 

beetle from other Trogoderma sp. that is T. variabile.  Due to high similarity between two of 

Trogoderma sp. Including T. granarium and T. variabile, a modern technique was used which 

is visible near infrared hyperspectroscopy (VNIH). The hyperspectral imaging technique 

therefore has the ability to rapidly and simultaneously monitor morphological characteristics. 

It is also non‐destructive and reagent less analytical technique (Cogdill et. al. 2004 and Migdall 

et. al., 2009). T. granarium from different geographical locations were obtained while T. 

variabile were reared on different host grains. Different stages (adult, larvae, larvae skin, 

fragments of adult and larvae) from both species were used in this study. Results were applied 

using two different models including Convolutional Neural Networks (CNN) and Capsule 

Network for analysis. In comparison between these two models, Capsule Network achieved a 

higher accuracy of 96% compared with 90% obtained from CNN model. This technique 

showed ability to identify whole insect body as well as fragment samples. The percent of 

accuracy were 96.2% and 93.4% for whole adults and larvae respectively. In case of fragment 
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and skin, the accuracy was 91.7%, 90.3% and 91.6% for fragment adult, fragment larvae and 

larvae skin respectively. Our results have proved that the hyperspectral imaging technique is 

superior for distinguishing between very similar sibling insect species such T. granarium and 

T. variabile. The need of using VNIH technique in quarantine is increased because it saves 

time and cost. Cao et. al. (2015) showed that a hyperspectral imaging technique could 

potentially be developed to identify stored‐product insect species and geographical strains.  

 

5.2. Conclusion 

To conclude, the series of experiment reported in this thesis time of extraction and number of 

insects are effect on the VOCs of T. variabile. SPME coupled with GC-FID and GC-MS is a 

useful technique to collect VOCs form different stages of warehouse beetle. As well as this 

technique can be used to study T. variabile metabolism. Identifying the volatile organic 

compounds and chemical hydrocarbones from T. variabile can help quarantine facilities to 

identifying this species from other Trogoderma sp. such as T. granrium. The current study can 

be used to establish database of warehouse beetle that could potentially be used for the 

comparison of Khapra beetle VOCs, metabolism and chemical hydrocarbons. Finally, VNIH 

coupled with deep learning could be to used identify khapra beetle from other similar 

morphology Trogoderma sp. Such as warehouse beetle.  

Recommendations for future research and development includes developing these dosgnostic 

technology for grain silos as early doiagnostic tool for timely management of stored grain pests. 

We encourage further evaluation of interaction between VOCs of T. variabile and other grain 

storage insects.  
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