
University of Tennessee, Knoxville University of Tennessee, Knoxville 

TRACE: Tennessee Research and Creative TRACE: Tennessee Research and Creative 

Exchange Exchange 

Masters Theses Graduate School 

5-2023 

Tomato Flower Detection and Three-Dimensional Mapping for Tomato Flower Detection and Three-Dimensional Mapping for 

Precision Pollination Precision Pollination 

Kaitlyn McKensie Nelms 
knelms3@vols.utk.edu 

Follow this and additional works at: https://trace.tennessee.edu/utk_gradthes 

 Part of the Bioresource and Agricultural Engineering Commons 

Recommended Citation Recommended Citation 
Nelms, Kaitlyn McKensie, "Tomato Flower Detection and Three-Dimensional Mapping for Precision 
Pollination. " Master's Thesis, University of Tennessee, 2023. 
https://trace.tennessee.edu/utk_gradthes/9222 

This Thesis is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and 
Creative Exchange. It has been accepted for inclusion in Masters Theses by an authorized administrator of TRACE: 
Tennessee Research and Creative Exchange. For more information, please contact trace@utk.edu. 

https://trace.tennessee.edu/
https://trace.tennessee.edu/
https://trace.tennessee.edu/utk_gradthes
https://trace.tennessee.edu/utk-grad
https://trace.tennessee.edu/utk_gradthes?utm_source=trace.tennessee.edu%2Futk_gradthes%2F9222&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1056?utm_source=trace.tennessee.edu%2Futk_gradthes%2F9222&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:trace@utk.edu


To the Graduate Council: 

I am submitting herewith a thesis written by Kaitlyn McKensie Nelms entitled "Tomato Flower 

Detection and Three-Dimensional Mapping for Precision Pollination." I have examined the final 

electronic copy of this thesis for form and content and recommend that it be accepted in partial 

fulfillment of the requirements for the degree of Master of Science, with a major in Biosystems 

Engineering. 

Hao Gan, Major Professor 

We have read this thesis and recommend its acceptance: 

Lori A. Duncan, Annette L. Wszelaki 

Accepted for the Council: 

Dixie L. Thompson 

Vice Provost and Dean of the Graduate School 

(Original signatures are on file with official student records.) 



 

 

Tomato Flower Detection and Three-Dimensional Mapping for Precision Pollination 

 

 

 

 

 

 

 

A Thesis Presented for the 

Master of Science 

Degree 

The University of Tennessee, Knoxville 

 

 

 

 

 

 

 

Kaitlyn McKensie Nelms 

May 2023 



ii 

Acknowledgements 

I would like to extend my sincerest thanks to my major professor Dr. Hao Gan, who has 

been the greatest support in this endeavor. His encouragement and aid throughout this process 

was unprecedented, and he has set a tremendous example of the type of professor and advisor I 

can only hope to be one day. Additionally, I would like to thank my past and current lab mates 

for their help on this project. 

I would also like to thank Dr. Lori Duncan and Dr. Annette Wszelaki for not only serving 

on my committee but also being incredible sources of support in both my research and personal 

life during this project. Their guidance was extremely helpful and incredibly kind.  

Finally, I would like to thank my family, friends, and boyfriend for being by my side 

throughout this process. They have provided me with unwavering love and support, without 

which I would not have been able to succeed to this level.  

 

  



iii 

Abstract 

It is estimated that nearly 75% of major crops have some level of reliance on pollination. 

Humans are reliant on fruit and vegetable crops for many vital nutrients. With the intensification 

of agricultural production in response to human demand, native pollinator species are not able to 

provide sufficient pollination services, and managed bee colonies are in decline due to colony 

collapse disorder, among other issues. Previous work addresses a few of these issues by 

designing pollination systems for greenhouse operations or other controlled production systems 

but fails to address the larger need for development in other agricultural settings with less 

environmental control. In response to this crisis, this research aims to act as a vital first step 

towards the development of a more robust autonomous pollination system for agricultural crop 

production. The main objective of this research is to develop a flower detection and mapping 

system for a field crop setting. This research presents a method to detect and localize tomato 

flowers within a three-dimensional (3D) region. Tomato plants were grown in a raised-bed 

garden where images were collected of the overhead view of the plants. Images were then 

stitched together using a photogrammetry technique, accomplished by the Pix4Dmapper 

software, to form an orthomosaic and 3D representation of the raised-bed garden from a high 

spatial resolution aerial view. Various machine learning architectures were trained to detect 

tomato flowers from overhead images and were then tested on the orthomosaic images produced 

by the Pix4D software. The coordinates of the detected flowers in the orthomosaic were then 

compared to the 3D model representation to find approximate 3D coordinates for each of the 

flowers relative to a predefined origin. This research serves as a first step in autonomous 

pollination by presenting a way for machine vision and machine learning to be used to identify 

the presence and location of flowers on tomato crops. Future work will aim to expand flower 

detection to other crops varieties in varying field conditions.  
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Chapter 1: Introduction 
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1.1 Problem Overview 

  

 Biotic pollination is a major contributor to both the quality and quantity of yield in global 

crop production (Rader et al., 2016), but this vital ecosystem service is at risk. Due to colony 

collapse disorder, among other causes, there has been a notable decline in the availability of both 

wild and managed bee populations (Potts et al., 2010). With bees acting as one of the major 

contributors to crop pollination around the world (Iwasaki & Hogendoorn, 2022), their decline 

threatens overall crop yield and, therefore, the global human food supply. With many of the 

world’s populations heavily reliant on large-scale agricultural production operations for their 

primary supply of food, it is important that researchers work to develop new methods of 

pollination to meet this need. 

 The field of precision agriculture has had success in many areas such as weeding, 

harvesting, and monitoring (Fountas et al., 2020) due largely in part to advancements in 

technologies that allow for better integration with natural and agricultural systems. Many of 

these advancements involve the use of machine learning and vision systems in order to address 

complex environmental problems. The continued development of new deep learning 

architectures allows for the creation of more robust algorithms that are able to address complex 

tasks, like object detection, at a higher accuracy than prior methods. Additionally, advancements 

in robotic technologies and their associated power requirements encourage the use of many of 

these novel systems in settings where previous technologies would not be able to venture. By 

combining these advancements, they can be utilized to create innovative solutions to agricultural 

problems, such as the need for precision crop pollination. 

 Previous research on precision pollination has been largely focused on simplified 

agricultural problems, such as flower detection without localization, or designed for use with 

only one type of crop. While these studies are novel and provide important progress towards the 

end goal of autonomous pollination, there still remains a gap in the field for the design of a 

robust pollination system that can be utilized in a variety of crop production settings. With this in 

mind, this research aims to investigate and present initial work towards the design of a more 

robust system for autonomous precision pollination.  
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 Tomato plants were chosen as the initial crop to study because they are a self-pollinating 

crop, but insect or wind assisted pollination is needed in order to produce fruit (Toni et al., 

2021). Tomato plants are commonly grown in controlled environment agricultural (CEA) 

systems, where pollination is accomplished through flower vibration or hormone treatments 

(McGregor, 1976). Because tomatoes are one of the most widely grown CEA crops, the 

development of alternative pollination systems is an important area of research. Additionally, 

using tomato plants for this study allows for simplification of the flower detection task by 

eliminated the need for a model to determine the sex of a flower, seen in other types of crops. 

Furthermore, future testing of the system would only require a flower to be shaken for 

pollination, excluding the need for pollen to be transferred by a robotic system between flowers. 

For these reasons, this study focuses on detecting and mapping flowers on tomato plants. 

 

1.2 Crop Pollination Needs 

 

1.2.1 Importance of Animal-Assisted Crop Pollination 

 Pollination is the method by which plants reproduce, allowing for the production of 

commercially available fruits, vegetables, and other value-added products. Van der Sluijs and 

Vaage (2016) define it as “the active and passive transfer of pollen within or between flowers.” 

In agricultural systems, ensuring adequate crop pollination is essential for a successful yield. 

Many crops grown for food, fuel, and fiber are considered pollinator dependent, meaning that the 

quality and yield of these crops are either reliant on or improved by animal pollination (Rader et 

al., 2016).  

Approximately 30% of global food production can be attributed in part to animal-based 

pollination (Khalifa et al., 2021). Animal pollination increases fruit and vegetable production in 

20% of crops, with the majority of other crops experiencing potential limitations in production 

due to a decrease in pollinator contributions (Klein et al., 2007). More specifically, an estimated 

75% of crop species benefit from insect pollination (Klatt et al., 2014). While most staple crops 

are wind-pollinated or self-pollinated, such as wheat, corn, and rice (Ghazoul, 2005), many 
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crops, such as fruit, which contain important micronutrients for humans, are more reliant on 

flower visitation by animals (Chaplin-Kramer et al., 2014). Ninety-eight percent of available 

vitamin C is sourced from animal pollinated plants, mainly citrus and other fruits (Eilers et al., 

2011). Eilers et al. (2011) also found that around 74% of all lipids produced globally are from 

oils in plants that rely at least partially on animal pollination. Additionally, these plants are 

considered to be a primary source of important fat-soluble vitamins. Other plants that produce 

fruits and nuts, such as almonds, are strongly dependent on pollinators and contain a significant 

amount of plant derived minerals, including calcium and fluoride. Furthermore, many fiber crops 

used to feed livestock also have a level of dependence on insect pollination, indicating that 

animal pollination even affects livestock production (van der Sluijs & Vaage, 2016). Overall, 

animal-assisted pollination has a significant impact on many of the foods that humans consume 

globally.  

Animal-assisted pollination also plays a role in the economic sector of agriculture as it 

improves both production quality and quantity of many crops. Pollination contributed to about 

9.5% of the economic value of human food production worldwide in 2005, with the leading 

categories being vegetables and fruits followed by stimulants, nuts, and spices (Khalifa et al., 

2021). As part of the global gross domestic product (GDP), pollination services are valued at 

between one and two percent in the short-term (Lippert et al., 2021). Insect pollination 

specifically is worth around two-hundred and fifteen billion US Dollars globally (Klatt et al., 

2014). With the importance of agriculture to the world economy and global food security, 

pollination contributes to a significant amount of the value in this sector. 

 

1.2.2 Current Crop Pollination Concerns 

The agricultural production of many crops is benefited by insect and animal pollination 

(Khalifa et al., 2021; Klein et al., 2007), but there is a decline in wild and managed pollinators 

threating the availability of pollinator services (Potts et al., 2010). When natural pollinators are 

not abundantly available to visit agricultural fields, the current alternative is to acquire managed 

honeybee hives to pollinate fields (Klein et al., 2007). Even with this use of commonly managed 

pollinators, such as honeybees (Apis mellifera), a decline can still be seen and largely attributed 
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to colony collapse disorder (CCD) and other environmental factors (Bugin et al., 2022). Because 

of CCD and other factors, the use of honeybees as the main agricultural pollinators puts the 

human food supply at risk (Kremen et al., 2002). If managed pollinators are not able to be 

utilized, reliance on natural pollinators is required but their ability to contribute to the demand 

for pollination services in agricultural systems is not entirely known. A study by Kremen et al. 

(2002) found that native bee communities could provide sufficient pollination services to certain 

farms, but this capability diminished with growing agricultural intensification. Additionally, 

along with increases in agricultural intensification there was a significant reduction in both 

native bee abundance and diversity. With the decline in both native and managed bees, a threat to 

food security due to unmet demands in crop pollination services has arisen (van der Sluijs & 

Vaage, 2016). 

Several contributors to the decline in insect pollinators have emerged, such as 

insecticides, pathogens and parasites, and a lack of diversity in floral resources (Watson & 

Stallins, 2016). More specific to CCD, causes of honeybee hive fatality are commonly attributed 

to neonicotinoids, the emergence of the parasitic varroa mite and viruses, and agricultural 

monoculture practices. Additionally, these issues have also contributed to the decline of native 

bee species and other insect pollinators. In a study examining apple pollination by bees, it was 

found that exposure to neonicotinoids reduced flower visitation rates from colonies, resulting in 

decreased pollination services overall (Stanley et al., 2015).  There was also an observed 

reduction of thirty-six percent of seeds available in apples pollinated by colonies exposed to the 

pesticides, indicating a reduced quality in the apple yield. The observed effect of this pesticide in 

bees actively pollinating apples suggests that the use of this insecticide on other crops may also 

have effects on pollination services being administered by bees in those areas. It has been 

recognized that the use of neonicotinoids may negatively affect insect pollinators, but even 

newer systemic pesticides, with the potential to replace neonicotinoids, have also been shown to 

reduce foraging behaviors and ultimately pollination services of bees at field levels (Tamburini 

et al., 2021). Agricultural management practices also have a distinct effect on bee foraging 

activity (Nicholson et al., 2017). Farms surrounded by more natural area see an increase in native 

bee abundance and pollination activity attributed to the availability of more diverse floral 

resources in terms of timing and nutrient contents and availability natural nesting areas for the 
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colonies (Mader et al., 2010). An increase in farming intensity also reflected a negative effect on 

pollinators, citing an increase in agrochemicals and decrease in surrounding natural pollinator 

habitats as the primary reasons. It can therefore be concluded that many common agricultural 

practices contribute to the reduction of both natural and managed pollinator services resulting in 

a threat to global food security. 

 

1.2.3 Pollination Types and Flower Anatomy 

 Plants have two different forms of pollination: self-pollination and cross-pollination. 

Self-pollinating plants are able to fertilize themselves, while cross-pollinating plants require that 

pollen be taken to another flower of the same species for fertilization to occur (United States 

Forest Service, 2023b). Some self-pollinating plants include peppers, eggplants, tomatoes, wheat, 

oats, and barley. Examples of cross-pollinating plants include apples, pears, almonds, 

watermelons, pumpkins, and many types of squash. There are two ways to categorize the process 

of pollination: abiotic and biotic (United States Forest Service, 2023a). Abiotic is pollination 

without organisms, while biotic is pollination with the involvement of organisms. The two 

primary types of abiotic pollination are wind-mediated and water-mediated. Self-pollinating 

plants are typically able to be fertilized through abiotic means such as wind since they do not 

require the pollen to be transferred between plants (Zohary, 2001). This reduces genetic 

variability, which can be considered both a positive and negative in terms of agricultural 

production. Because crops pollinate themselves, the gene pool remains homogenous and more 

easily maintained as compared to cross-pollinating crops which require more maintenance to 

retain desired traits. Cross-pollination requires that pollen from one plant be transferred to the 

flower of another plant which can be facilitated through abiotic means, such as wind, or biotic 

means, such as the use of animal pollinators (Encyclopaedia Britannica, 2020). While cross-

pollinating crops may be more difficult in terms of maintaining certain traits, the ability to 

produce more genetic variability in a species allows for positive adaptations to occur within a 

crop species, which may not be as prevalent in self-pollinating species.  

There are several different anatomies for plant flowers (Woodcock, 2012). Individual 

flowers can be male, female, or hermaphrodites, meaning they have both male and female parts 
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within one flower. Hermaphrodites are often referred to as complete flowers, while male and 

female flowers are referred to as incomplete. Plants with incomplete flowers are further 

classified as monoecious, meaning separate male and female flowers on the same plant, or 

dioecious, meaning separate male and female plants. The timing of when certain types of flowers 

are present on plants can also be varied. Self-pollinating plants with flowers that strictly pollinate 

themselves are called autogamous. Other self-pollinating plants, which are able to fertilize 

themselves or be cross-pollinated by flowers on the same plant are called geitonogamous. Cross-

pollinated plants that must be fertilized by a different plant of the same species are called 

xenogamous. There are several ways that plants ensure cross-pollination including the expression 

of male and female flowers at different times, physical separation of the male and female parts 

within a flower, and other chemical methods which halt the self-fertilization process. Some crops 

require cross-pollination with an entirely different cultivar to produce fruit. Examples of such 

plants include apples, pears, plums, and some additional orchard fruit varieties. It is important to 

take into account individual plant pollination needs and plant anatomies to create an efficient 

pollination system for each crop. 

 

1.2.4 Current Pollination Methods and Associated Costs 

 Traditionally, the majority of biotic pollination services were performed by native insects 

and animal populations. Several agricultural practices still rely heavily on these ecosystem 

services, but agricultural intensification has caused disruptions in the ability of native insect 

populations to serve as the sole source of pollination for some crops (Kremen et al., 2002). In 

some farm practices, native species may be able to provide sufficient pollination services if the 

agricultural operations are of a moderate size and land management practices allow for 

biodiversity in the environment surrounding the farmland. If management of agricultural lands 

can conserve native bee habitats and provide enough external resources for native bee 

populations, this pollination service is generally considered free. Having diverse wild bee 

populations in agricultural areas is shown to increase crop yields, however, the decrease in 

diversity of floral resources due to agricultural production can decrease their abundance (Iwasaki 
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& Hogendoorn, 2022). This decrease in population can then ultimately affect whether producers 

need to bring in other aids to ensure proper pollination and sustain crop yields. 

 In many cases, native pollinators are not able to meet the pollination requirements of 

crops at the production level demanded, thus commercially produced and managed bees are used 

to supplement pollination needs (Velthuis & Doorn, 2006). The most commonly commercially 

produced pollinator species are honeybees and bumble bees (Iwasaki & Hogendoorn, 2022). The 

use of honeybees as the primary commercially produced pollinator is due to their ability to be 

transported in hives and produce honey (Khalifa et al., 2021). They are used to pollinate many 

different crops including oilseed rape, buckwheat, and strawberries. Bumblebees are also used to 

pollinate crops but are typically attracted to fields through specific management practices rather 

than kept and transported in hives. They are also used to pollinate many different crops, 

especially buzz-pollination crops, such as blueberries and tomatoes.  The use of managed bee 

populations for crop pollination in the US can be traced back to the early 1900s, but it became 

more of a common practice in the late 1900s (DiDonato & Gareau, 2022). While the use of 

managed bees can aid in pollination services for agriculture, they can also compete with native 

insects for floral resources, even further affecting the abundance of native species. Managed bee 

populations introduced to new agricultural ecosystems may also unknowingly introduce novel 

pathogens to native species, leading to the endangerment of local pollinator communities. In 

addition to endangering native bee and insect populations, managed bee colonies are also seeing 

a decline attributed to colony collapse disorder, among other causes (Bugin et al., 2022). This 

decline in population threatens the supply of pollination services provided by managed bee 

producers. Thus, even with the use of managed and native pollinators, some crop producers may 

still need additional options to meet their pollination demands. 

In some agricultural environments, such as greenhouses, mechanized or manual pollination 

serves as an additional method of pollination (Wu et al., 2022). There are many types of 

mechanized pollination, where mechanical devices are used to distribute pollen to the stigma of 

plants in order to pollinate crops. Mechanical methods can often be used to provide pneumatic-

assisted pollination, spray pollination, or static electricity-assisted pollination. There are also 

mechanized methods of pollen collection, such as a vacuuming procedure, but certain crops are 

more difficult to use this method on and may require manual pollen collection, also known as 
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hand pollination. Depending on the type of crop, hand pollination may only require shaking the 

plant, while others may require more precise applications of pollen to the flowers. While hand 

pollination is simple and precise, it is often costly and labor intensive furthering a need for more 

developments to be made in mechanized methods. In general, the most common way to 

artificially pollinate crops is by hand, followed by the use of mechanical systems (Wurz et al., 

2021). These methods serve as an important solution to the growing need for more efficient and 

effective pollination in the absence of pollinators.  

 

1.3 Technology Contributing to Robotic Pollination 

 

1.3.1 Advancements in Agricultural Robotics 

 Advancements in robotics have resulted in more precise and efficient technologies that 

are slowly being integrated into agricultural production. Agricultural production has long used 

machines such as tractors, spreaders, sprayers, and harvesters, but advancements in these 

technologies have allowed for more efficient use of inputs and a reduction in the wasting of fuel, 

fertilizer, and seed (Rehman et al., 2016). As time goes on, adaptations to agricultural equipment 

allow for a more sustainable production processes, which aid in conservation of the environment 

as well as providing economic benefits to producers and consumers of agricultural products. A 

few examples of agricultural technologies include autopiloting equipment, crop sensors, GPS 

documentation of fields, and the integration of mobile technology for monitoring of agricultural 

systems (Khan et al., 2021). Integration of these and other technologies give producers 

monitoring and sensing capabilities, which were previously unavailable with reliance on more 

traditional equipment. Even with the availability of new technologies, there are still some 

challenges with the adoption of certain advancements due to economic, social, and infrastructural 

factors (Sidibé et al., 2021). With this is mind, it is also important for researchers and developers 

in the field of agriculture to consider producers’ situations and needs when designing new 

agricultural technologies. 
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 Many robotic systems designed for crop production attempt to be autonomous, mobile, 

and have decision-making capabilities (Lowenberg-DeBoer et al., 2020). Agricultural field crop 

systems are particularly difficult to automate due to the unstructured environmental conditions 

that result in constant changes to the system (Fountas et al., 2020). Many robotic field 

technologies focus on automating tasks such as weeding, seeding, plant/crop monitoring, 

spraying (i.e., herbicide application, fertilizer application, etc.), and harvesting. Many of these 

techniques, such as weeding, seeding, and harvesting, are more successful overall since the tasks 

are typically more defined, such as distinguishing a red apple from the green foliage of a tree for 

harvesting. Tasks such as pest and disease detection and plant management are more complex as 

the solution is not able to be as neatly defined. Many advancements in field robots remain 

heavily reliant on human operation, meaning they struggle to be fully autonomous for certain 

tasks (Lowenberg-DeBoer et al., 2020).  

Field robotics can be split into three main categories: large terrestrial, small terrestrial, 

and unmanned aerial vehicles. Large terrestrial robotics typically resemble traditional farm 

equipment, such as tractors, and are designed to be semi-autonomous meaning that they can 

complete certain tasks without requiring a driver (Spykman et al., 2021). Small terrestrial robots 

are a broader category of robotics, which typically describes newer robotic technologies 

designed to complete field tasks such as harvesting, weeding, or pollinating. Many of these 

smaller robotic designs are not based on traditional farm equipment. In agriculture, unmanned 

aerial vehicles (UAVs) are typically used for remote sensing, soil and crop monitoring, yield 

estimation, and spraying (del Cerro et al., 2021). Together, these three categories provide unique 

and important advancements to the field of agriculture. 

 In general, protected cultivation and greenhouse crop production have seen more growth 

in robotic systems compared to field crop production as they are more controlled environments 

than field crop operations (Lowenberg-DeBoer et al., 2020). Robotic applications within these 

systems are different than field robotics as they can often be designed to be stationary or with 

limited mobility. They may also have more reliable access to power supplies than robotics in 

agricultural fields. Substantial research has been conducted on greenhouse mechanization and 

found that many tasks can be almost fully automated (van Henten et al., 2013). Some examples 

of tasks automated in greenhouses include seeding, harvesting, transporting, and sorting. These 
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tasks are well-defined and require limited reasoning or decision making. Many greenhouse tasks 

also do not require a high degree of mobility from the robotic system. While some tasks are more 

easily accomplished in the controlled environment of a greenhouse, there are still many tasks that 

require complex solutions and need further research. 

 

1.3.2 Advancements in Deep Learning and Computer Vision 

 Over the years, the field of machine learning has experienced a tremendous amount of 

growth with applications seen in almost every field, including agriculture (Liakos et al., 2018). 

Machine learning succeeds by using large amounts of data to learn tasks without being precisely 

programmed to do so. Machine learning can be categorized into two main classes, supervised 

and unsupervised, based on how the model learns. Supervised learning utilizes a set of training 

data, which includes the input and outputs, so that the model is able to learn some set of rules in 

order to complete or predict the output given the input data. Unsupervised learning does not have 

a set of training data, but rather attempts to find patterns among unlabeled data. Some examples 

of supervised learning techniques include regression, Bayesian, decision trees, support vector 

machines (SVMs), and artificial neural networks (ANN). One of the most common examples of 

unsupervised learning is clustering.  

 Machine vision is another technique growing in application alongside machine learning. 

Traditionally, machine vision is the process of using a device to capture an image and then the 

processing of that image data through various techniques in order to extract different 

characteristics or meaning from the data (Gomes & Leta, 2012). Most machine vision 

applications involve several steps including data acquisition, pre-processing, and processing. 

Data acquisition is typically accomplished by obtaining an image in some form, which can be 

captured using many different types of devices and contains numerical representations of 

information from the ‘real life’ image which can be computationally processed. Pre-processing 

aims at improving the quality of the data collected and highlighting features of interest within 

image data. Finally, the processing step involves the final extraction of what is being recognized 

and interpreted from the image. Common tasks typically accomplished using machine vision are 

classification, object detection, and object segmentation. Applications of this technique in 
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agriculture and food production include, but are not limited to, object detection tasks (i.e., 

weeding and harvesting), quality detection (i.e., disease and deficiency detection), and vision-

based guidance systems (Mavridou et al., 2019). 

 Many of the complex agricultural tasks listed above are accomplished with the use of 

deep learning. Deep learning is a technique which uses complex multilayer ANNs, one of the 

machine learning techniques mentioned previously, to accomplish a goal. Deep learning is often 

implemented in machine vision applications using convolutional neural networks (CNNs). CNNs 

are neural networks that organize data differently than traditional networks and take into account 

spatial aspects of the image data. This is an important feature as it allows models to relate 

locations of pixels enabling them to be able to perform tasks such as object detection. While 

deep learning is currently considered the state-of-the-art technique in the field of machine 

learning, it relies heavily on the presence of large amounts of data and significant computational 

power, which limits its ability to be used in certain applications (Mavridou et al., 2019).  

 

1.3.3 Other Technological Advancements in Agriculture 

 In addition to advancements in robotics and computational techniques, the integration of 

Internet of Things (IoT) into agricultural production has brought many positive changes to the 

field (Xu et al., 2022). IoT involves the connection of physical objects to the internet via the use 

of technology, such as sensors, to exchange and communicate information. Agricultural IoT 

specifically monitors agricultural processes such as the tracking of environmental conditions or 

actions of livestock as well as the transmission of this data. This allows for intelligent 

management of various components of agricultural systems. The integration of IoT into 

agriculture also allows for the collection of a large amount of data, which lends itself well to 

potential machine learning applications. As previously mentioned, many state-of-the-art 

computing techniques require large amounts of data for training, and the increase in agricultural 

data collection opens up the possible use of deep learning on a more significant scale. 

Additionally, advancements in communication technology and availability also increase potential 

for integration of more computationally intensive techniques as data collection and processing 

can be done at different locations and transmitted between devices (Garg & Alam, 2020). 



13 

Overall, development potential of more advanced agricultural technologies is greatly improved 

by the integration of IoT into the field. 

 

1.4 Existing Research on Flower Detection and Precision Pollination 

 

 Using a combination of crop pollination knowledge and advancements in agricultural 

robotics and machine learning techniques, many researchers are taking on the challenging task of 

developing precision pollination systems. While still at its infancy, this research aims to provide 

producers with additional options for pollinating their crops. Many of the current research studies 

in this field focus on either flower detection systems or fully designed mechanisms for crop 

pollination. 

 

1.4.1 Crop Flower Detection Research 

 Many previous research studies on crop flower detection focus on the detection of 

flowers from up-close images or the segmentation of flowers from the background. One study 

focused on detecting the flowers of various apple varieties tested several deep learning models 

and found that YOLOv4 produced an accuracy of 97.3%, but when looking at image data used, 

the study only implemented up-close images of the flower blooms, shown in Figure 1.1 (Wu et 

al., 2020). This study achieved a high accuracy but excluded the challenge of detecting the 

bloom from the complex background of apple trees at farther distances. Another study focused 

on the detection and segmentation of flowers on pear, peach, and apple trees by training a 

DeepLab-ResNet network to detect flowers and then implemented a delineation method to 

segment flowers from the rest of the image (Sun et al., 2021). The study presented an average F1 

score, an accuracy metric which will be further explained in Chapter 2, of 80.9% across all 

datasets. The images (Fig. 1.2) used were taken farther away from the apple trees rather than up-

close like the previous research. Another study focused on detection of apple king flowers in 

field conditions, used a Mask R-CNN network with instance segmentation to improve upon other 

apple flower detection models, which only aimed to detect flower clusters (Mu et al., 2023).  
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Figure 1.1 Images of flower detection by YOLOv4 algorithm (Wu et al., 2020) 

 

 

 

Figure 1.2 Images of flower detection by DeepLab-ResNet and segmentation (Sun et 

al., 2021) 
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Apple king flower detection, shown in Figure 1.3, is important as the pollination of the king 

flower is key for increased yield production in apples. This model reported a range of accuracy 

from 65.5% to 98.7% based on floral bloom stage. While detection accuracy generally decreases 

with each additional step of added complexity, it demonstrates the need for continued research 

into this field as pollination requires these additional complexities and more. Another example of 

added complexity to the task of flower detection for pollination is shape classification of crop 

flowers. The goal of shape classification is to better predict the readiness of a flower for 

pollination. One study looking at tomato flowers accomplished this utilizing a CNN to classify 

whether or not a flower was ready for pollination, shown in Figure 1.4, and presented an 87.3% 

accuracy (Hiraguri et al., 2023). Overall this further depicts the complexity of flower detection 

when the intended use of this method is pollination.   

 

1.4.2 Precision Pollination Systems 

In addition to previously mentioned examples of flower detection research for pollination 

purposes, researchers are also actively working to design full end-to-end precision pollination 

systems for other specific crops. Some examples of crops currently being researched include 

tomatoes (Yuan et al., 2016), bramble plants (Strader et al., 2019), vanilla (Shaneyfelt et al., 

2013), and kiwifruit (Barnett et al., 2017). One study centered on designing a robotic pollination 

system for tomato plants grown on a wire system in greenhouses (Yuan et al., 2016). This system 

utilized a ground-based robot that went alongside the plants and detected flowers by thresholding 

hue, saturation, and intensity values (HSI), filtering noise, and applying mathematical equations 

based on epipolar geometries to predict three-dimensional locations. Reported success rates for 

flower detection ranged from 50.0-87.5% based on the number of flowers in a cluster, with more 

flowers leading to a higher accuracy and single flowers having poor recognition accuracy. 

Another study designed a pollination robot named ‘BrambleBee,’ which pollinates bramble 

plants in a greenhouse setting. The robot is ground-based and maneuvers around bramble plants 

in order to detect flowers (Strader et al., 2019). The portion of the research focused on detection 

of flowers utilizes the deep learning architecture Inception-v3 with transfer learning on their own 

dataset of flowers. The position of the flower is acquired using a plant reconstruction created  
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Figure 1.3 Apple king flower detection denoted by blue outline (Mu et al., 2023)  

 

 

 

Figure 1.4 Tomato flower shapes for pollination readiness prediction (Hiraguri et al., 

2023) 
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through a simultaneous localization and mapping (SLAM) algorithm. This study reports an 

average precision of 78.6% and recall of 90.0%. An additional study designed a stationary 

pollination system for vanilla which included a pole that vanilla plants would grow up and robots 

extending from the top of the pole would reach downward to pollinate flowers (Shaneyfelt et al., 

2013). The method for flower detection included several steps of segmentation that appear to be 

based on color and ‘high energy’ area detection, but no accuracy metrics or results for flower 

detection were reported in the study. Another novel study created a robotic system for pollinating 

kiwi flowers in an orchard (Barnett et al., 2017). The robot traveled underneath the kiwi tree 

canopy and captured images of flowers in both day- and night-time conditions. Flower detection 

was accomplished through the use of an unspecified CNN, and flower localization was 

accomplished through stereo matching. They reported a flower detection accuracy of 89.3% with 

a localization accuracy of 71.9%. While all of these studies present novel designs for crop 

pollination, they are increasingly specific to one crop and generally lack robustness in their 

ability to be adapted to other crop production scenarios. Further examples and research will be 

explored in the coming chapters. 

 

1.5 Research Objectives 

 

 The main objective of this research is to detect and map the three-dimensional locations 

of tomato flowers relative to a predefined origin. The ability for crop flower locations to be 

mapped serves as an initial step towards future research and development of a more robust 

autonomous pollination system for agricultural crop production. This objective has been broken 

down into two parts, the first being two-dimensional detection of flowers using deep learning as 

an accurate method of detection, and the second being three-dimensional mapping of tomato 

plants and subsequent flowers in order to identify the third axis coordinate position for each 

flower. In an effort to reduce complexity and increase adaptability of this research to other crops, 

an overhead view was used to collect images of the tomato flowers. The results of this research 

will investigate the accuracy of methods used for both flower detection and three-dimensional 
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mapping and will include additional discussion on future research based on resulting analyses of 

methods explored.  
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 Chapter 2: Tomato Flower Detection 
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2.1 Introduction 

 

2.1.1 Overview 

A vital step towards the development of a robust autonomous pollination system is the 

establishment of a reliable and accurate method for crop flower detection. The complexity of 

detecting flowers varies by crop variety. Factors that can affect accuracy of detection include 

size, color, number, and visibility/occlusion. A proper detection system should take into account 

all of these factors and be designed accordingly in order to maximize detection accuracy and 

minimize complexity when possible. In a controlled setting, reducing complexity may not be as 

important, but as this research is extrapolated to real world ecosystems its importance drastically 

increases. In a field setting, it is difficult to access to proper power requirements needed for 

processing intensive computational tasks, which is therefore a critical aspect to consider when 

developing these designs for agricultural systems.  

 Natural pollinator species, such as bees, identify flowers through both visual and 

olfactory cues (Orbán & Plowright, 2014). Based on current technological advancements, visual 

detection of flowers is the most realistic method for identification in this application. Machine 

vision is the field of research focused on analyzing and interpreting the content of image data. In 

machine vision, the task of detecting a flower could be considered object detection or object 

segmentation. Object detection focuses on finding an object in an image and creating a bounding 

box around the object. Conversely, segmentation aims to detect an object and separate it 

completely from the rest of the background by classifying each pixel in an image as either the 

object or not the object. For the purpose of this research, object detection provides enough 

accuracy without adding the increased complexity of segmenting the flowers from the rest of the 

image. Techniques commonly used for these tasks include color filtering, detection of feature 

descriptors, and deep learning-based models. Many deep learning models are considered state-

of-the art as they consistently outperform other methods, but they also typically require 

significant amounts of training data and computational power compared to other methods 

(Mavridou et al., 2019). 
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2.1.2 Object Detection Methods 

Object segmentation by color is a commonly used technique that thresholds pixels in an 

image using different numerical color values. Colors are typically represented as a combination 

of three different values. Humans perceive colors as a combination of red, green, and blue 

(RGB), and these are usually considered the three primary colors that make up a colored image 

(Cheng et al., 2001). Based off the RGB color space, other color spaces can be derived. A few of 

the more commonly used color spaces include hue, saturation, value (HSV), hue, saturation, 

intensity (HSI), and CIELUV, a color space adopted by the International Commission on 

Illumination, commonly used in computer graphics. Within each color space, threshold values 

can be applied to each channel and only the pixels that fall within those threshold values will be 

segmented from the rest of the image. These resulting pixels represent the segmented object 

regions. An example of color segmentation can be seen in Figure 2.1, where the foliage is 

separated from the background sky, and the citrus fruits contain a mix of both red and yellow 

values. The selection of the best color space to use for object segmentation in an image is a 

complex decision and can be different for each application based on individual research data and 

objectives. In some contexts where there is a large contrast of color between the target object and 

the background of the image, color thresholding can be an accurate and valuable technique. In 

more complex settings where the color of the target object is similar to background objects or the 

lighting drastically changes within the image data, color segmentation may not be the best 

choice.  

 In addition to color segmentation, other feature descriptors, such as edges and key points 

can be used to detect objects. Traditionally object detection was accomplished in three different 

stages: information region selection, feature extraction, and classification (Zhao et al., 2019). 

Information region selection entails scanning the whole image with different scaled windows in 

order to find objects that may appear in any region of the image and at many different scales. 

Feature extraction is the process of extracting features in an effort to identify objects and 

classification is the process of classifying those objects. In general, this traditional pipeline is 

both unnecessarily computationally expensive and lacks robustness.  
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Figure 2.1 Color space thresholding of citrus fruit (Shamir, 2006) 
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The current state-of-the-art method for object detection is using deep neural networks 

(DNN). More specifically, the use of convolutional neural networks (CNN) has drastically 

improved object detection capabilities. Traditional DNNs contain several fully connected layers, 

which can be seen in Figure 2.2. CNNs (Fig. 2.3) are DNNs designed specifically to work with 

multi-dimensional data. CNNs have several types of layers including convolutional, pooling, and 

fully connected. Each layer acts as a feature map, performing different mathematical operations 

to extract features without being directly told what to look for by humans. Essentially, this 

allows the CNN model to learn the features that aid in object detection directly from the input 

data itself. For tasks where it is difficult to describe and program a model to detect what makes 

an object different from the background, CNNs are incredibly useful.  

 

2.1.3  Literature Review 

 Traditionally, object detection was accomplished by determining a specific feature(s) that 

differentiates an object, and then developing algorithms to look for those feature characteristics 

in order to detect an object within an image. A common example of this is color thresholding, 

which was previously described in section 2.1.2. Several studies have utilized this method in 

various forms in an effort to detect crop flowers. One such study presented a method for yield 

prediction in apple orchards by looking at flower density detected through traditional image 

processing techniques (Aggelopoulou et al., 2011). Their detection process first converted the 

RGB color image to grayscale and then set an image threshold with a specific value to turn it into 

a binary image where only white or black pixels remain. The white pixels then corresponded 

with apple flowers and were used to make predictions of yield based on flower densities. They 

report an average error of around 18.1%, but this is based on very specific lighting conditions. 

Additionally, a black screen was placed behind each apple tree to reduce complexity of the 

image background which contributes to a decrease in error compared to field condition testing. 

Another study converted images to a hue, saturation, luminance (HSL) color space and applied 

threshold values based on those three channels in an effort to detect apple flowers in an orchard 

(Hočevar et al., 2014). While this research is closer to field conditions than the previously 

mentioned study, it still had drastically different results based on lighting conditions and times of  
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Figure 2.2 Example of a deep neural network architecture (Sarker, 2021) 

 

 

 

 

Figure 2.3 Example of a convolutional neural network architecture (Sarker, 2021) 

 

 

 

 

 

 



25 

day, making it an overall unreliable system for field settings. One study aimed at detecting 

tomato flowers attempted to use color thresholding as a detection method, but with the added 

step of illumination estimation in an effort to correct any issues caused by inconsistencies in 

lighting (Ting et al., 2012). This research used a reference color region to detect lighting 

conditions and correct colors in the image based on those conditions. They adjusted brightness, 

white balance, and gains to compensate for changes in color and intensity caused by fluctuations 

in lighting conditions. While the study did not provide numerical results, they did present before 

and after comparisons indicating an improvement in color segmentation after applying this 

additional technique. Overall, while color segmentation using threshold values is a widely 

researched technique with several adjustments made to improve results, its accuracy is too 

variable to be considered a robust and reliable method for flower detection.  

 Deep learning is quickly becoming the state-of-the-art technique for machine vision tasks 

such as object detection due to its ability to address many different problems that may be 

difficult to directly program. Several studies have investigated the use of deep learning models 

for crop flower detection. Dias et al. (2018) used a combined CNN and support vector machine 

(SVM) approach to detect apple flowers in real-world field conditions. They broke their process 

into three steps: region proposals, feature extraction, and classification. The CNN was used for 

feature extraction, and then they applied a principal component analysis (PCA) to reduce feature 

dimensionality before using the SVM to classify superpixels identified by the previous steps. The 

CNN architecture employed in this research was the Clarifai network, and their method resulted 

in around 92.0% recall and 92.7% precision. This result shows a substantial increase in accuracy 

compared to the color segmentation methods. Another study presented a method of tomato 

flower detection using a CNN without the addition of an SVM for classification. This study 

focuses on optimizing a CNN called Faster Region-based Convolutional Network (R-CNN) on 

tomato flowers by using a pre-training architecture and applying transfer learning before 

applying additional fine-tuning methods to increase its sensitivity to tomato flowers (Rahim & 

Mineno, 2020). They report a recall of 96.0% and a precision of 93.1%. These results are 

comparable to the other approach presented, but it is also important to note the images from this 

study were taken in a greenhouse that may allow for some increases in accuracy as compared to 

more uncontrolled field conditions.   
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As mentioned in previous sections, deep CNNs are computationally expensive and have 

intensive power requirements that may be difficult to achieve in some agricultural settings. For 

this reason, research has been conducted on the implementation of lightweight CNNs that 

provide similar processing to traditional CNNs architectures, but with fewer layers than many of 

the popular deep CNNs. One study presented around a 90.3% accuracy on validation data but 

only a 69.2% accuracy for detecting flower locations in their testing data (Ärje et al., 2019). This 

result is unsatisfactory overall when compared to other deep CNNs, even if the lightweight CNN 

is less computationally expensive.  

Several other frameworks for deep CNNs exist, with each having different strengths and 

weakness. Currently, three of the major deep CNNs used for object detection tasks are Single 

Shot Detection (SSD), Faster Region based Convolutional Neural Networks (Faster R-CNN) and 

You Only Look Once (YOLO). There are several improvements upon each of these models, but 

in general they have certain attributes based on the general architecture of each that make them 

useful. YOLO is currently considered one of the most efficient models, as each improvement on 

the original has addressed previous issues making the YOLO models fast with an overall good 

performance, but the decision on which model to use for research should be based on many 

factors (Srivastava et al., 2021). For instance, if speed is not a concern and the dataset is 

relatively small Faster R-CNN might be a better choice.  

In research regarding flower detection for pollination, a few of the YOLO models have 

been explored. One study looked at using YOLOv4 for real-time apple flower detection (Wu et 

al., 2020). The results of this method showed around 98.2% recall and 89.4% accuracy with a 

detection speed of 72 frames per second. They also compared their results with results from 

Faster R-CNN, YOLOv2, SSD 300, YOLOv3, and EfficientDet-D5 and found that YOLOv4 

outperformed these models overall in terms of both recall and accuracy. An additional study 

presented an apple flower detection method based on applying a generative method to YOLOv5 

(Zhang et al., 2021). Before applying a generative method, models were tested for accuracy and 

YOLOv5 was found to have a recall of 92.8%, a precision of 87.1%, and a mean average 

precision (mAP) of 91.8%, making it one of the most accurate models compared to the several 

other models tested. After the addition of the generative model there was an improvement of 

detection on smaller objects. Overall, YOLO models, while slightly behind the accuracy given  
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by some Faster R-CNN models, have shown to be both accurate and fast as compared to most 

other models in a review of current literature on the topic.  

 

2.2 Methods 

 

2.2.1 Data Collection and System Design 

 Based on literature review, the complexity of an image and its background plays a 

significant role in the ability for any method to accurately detect flowers. Several studies chose 

to use a background screen to separate plants of interest or chose to take images at night using 

artificial illumination. Because this research aims to serve as a first step towards a robust 

pollination system, it was important to collect images in a way that is more realistic for 

applications in agricultural production settings. For this reason, an overhead view of the plants 

was selected in order to reduce background complexity and mimic the way images could be 

captured realistically in a field setting. The overhead view allows for the soil to act as a solid 

background. It also minimizes confusion on whether a detected flower is present on one specific 

plant or another plant in the background of the image. Based on observations, a majority of 

flowers on tomato plants can be seen from an overhead view, and if any flowers are occluded in 

one image, they can often be seen in another overhead image slightly offset from the initial 

position of the previous image. For this reason, the images collected contain a high degree of 

overlap at around 99%, which is helpful for detecting as many flowers as possible, even with 

occlusion, and will allow for three-dimensional mapping of the plants, which will be discussed in 

Chapter 3. 

 In order to collect overhead images with this high degree of overlap, a raised-bed garden 

with a robotic gantry system mounted on top was used for data collection. The raised-bed garden 

measured approximately 9-ft 10-in by 3-ft 10-in. Fourteen plants were placed in the raised-bed 

garden, which was placed outdoors in ambient weather conditions. Three of the plants were Big 

Boy tomatoes, and the remaining were Roma tomatoes. The selection of tomato types was based 

on flower size and plant availability later in the growing season. The raised-bed garden layout  
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can be seen in Figure 2.4. The gantry system used for data collection was the Farmbot Genesis 

v1.5 (Cruz et al., 2014), which was mounted on the raised- bed garden (Fig. 2.5). A Logitech 

StreamCam was mounted on the gantry system approximately 3-ft 10-in above soil level and was 

used to collect the image data. The Logitech camera captures red, green, blue (RGB) images, has 

a 1080p/60fps maximum video resolution, and a 78-degree field of view. The system was 

controlled by a Raspberry Pi 3 Model B, which communicated with the Farmduino 

microcontroller on the FarmBot system, to control movements. Image collection was 

accomplished using Python scripts to move along a set path (Fig. 2.6) and collect several images 

with 99% overlap at a rate of 10 frames per second. 

 In addition to the set-up described above, several adaptations were made to the data 

collection process before finalizing the design. The initial system was set-up indoors with grow 

lights to reduce environmental effects on data collection, but this resulted in tomato plants not 

producing flowers. Since flower production is essential to this research, the raised-bed garden 

was moved outdoors during the next growing season, where flowering and plant growth 

drastically increased to expected levels. Once outside, the camera began having issues in bright 

sunlight conditions which caused the flowers and leaves to become over-exposed in the images. 

Even with changes to camera settings, the sunlight was too intense and therefore a canopy was 

placed over the system for data collection during bright times of the day. The canopy was not 

used for data collection during overcast or evening times. Additionally, initial images were 

collected at a lower resolution in an effort to reduce computational load later in the process, but 

testing determined that a higher resolution was necessary for accurate results, so the resolution 

was increased to 1080p for the remainder of the data collection. The resulting image data used in 

this research was collected September 2022 through November 2022.  

 

2.2.2 Data Pre-processing 

A subset of images was selected to incorporate a representative sample from the dataset 

including images with only a single flower and images with a large number of flowers. Special 

attention was paid to the selection of images from several vantage points and from different dates 

throughout the image collection timeline, so as to ensure the data was representative of several  
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Figure 2.4 Layout of tomato plants in raised-bed garden 

 

 

Figure 2.5 Web camera mounted on the Farmbot gantry system 
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Figure 2.6 Image collection path over raised-bed garden shown in red 
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different flowering stages of multiple plants. As previously mentioned, collected images were 

1080 by 1920 pixels in size. A large portion of the collected image data was saved for three-

dimensional models, which will be discussed in Chapter 3. There was a total of 273 images used 

for the flower detection task. For deep learning models, the data were separated into 60% 

training and 40% testing. For YOLO models, the testing data were further split into 50% testing 

and 50% validation. Each flower in the images was hand-labeled using the LabelImg (Tzutalin, 

2015) annotating software to draw bounding boxes, which were then used in the deep learning 

model training. No additional data augmentation techniques were used in this research outside of 

augmentation built into the CNN models. 

 

2.2.3 Models 

 For the purposes of this research, multiple object detection techniques were tested on 

tomato flower images. The first technique tested was color segmentation. Several images of 

tomato flowers were processed using different threshold values for yellow in the HSV color 

space in order to separate them from the background and detect their locations. This was 

achieved using a python script to find all pixels considered yellow by the using a lower threshold 

value of (20, 100, 100) and an upper threshold value of (30, 255, 255). Then a red contour was 

drawn around the yellow values to identify them as flowers. Sections of yellow pixels were 

filtered using size constraints in order to avoid bounding extremely small or extremely large 

sections that were unlikely to be flowers. Additional image processing techniques such as image 

blurring and erosion were also tested in an effort to eliminate noise and improve accuracy.  

 Due to the desire to limit unnecessary computational complexity for the purpose of 

agricultural field use, a light-weight neural network was explored before attempting other more 

complex networks. The light-weight CNN chosen was MobileNetv2 (Sandler et al., 2018). 

MobileNetv2 is a deep CNN specifically designed to run in mobile and resource constrained 

environments. For this research, MobileNetv2 is used as a feature extractor with SSDLite, a 

variant of regular SSD, in order to achieve object detection. In previous studies, MobileNetv2 

with SSDLite outperforms YOLOv2 and other SSD variants on the COCO dataset object 

detection task. COCO stands for Common Objects in Context and is a dataset commonly used as 
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a metric to compare different computer vision tasks. MobileNetv2 was chosen due to its 

comparatively high accuracy over other light-weight CNNs.  

 In addition to a light-weight CNN model, this study also compares the accuracy of 

several YOLO models, which many consider to be state-of-the-art for object detection. It is 

worth noting that many in the computer vision community only consider YOLO versions one 

through four and version seven, as “official” versions. YOLOv5 and YOLOv6 were created by 

separate creators but were heavily based upon the previous YOLO architectures. For the purpose 

of this paper, all of the YOLO models will be classified together. All of the YOLO models are 

considered to be single-stage object detectors. The first YOLO model explored is YOLOv5 

(Jocher et al., 2020). No peer-reviewed study has been published about YOLOv5, so all 

advantages and disadvantages of the model are derived from researchers comparing YOLOv5 

performance metrics to other models. YOLOv5 improves on previous models most notably by 

solving the “small object problem,” where traditionally smaller objects are detected at a lower 

accuracy than larger objects (Jiang et al., 2022). For this reason, YOLOv5 was chosen as the first 

YOLO model to explore in this research. YOLOv5 comes in several different sizes, four of 

which were tested on the tomato flower data. The other two YOLO models explored include 

YOLOv6 (Li et al., 2022) and YOLOv7 (Wang et al., 2022). YOLOv6 reports a higher 

performance on the COCO dataset than previous models in both mAP and in speed. Several size 

options are also available for YOLOv6 and four were explored in this research. Finally, 

YOLOv7 claims to be the fastest of all previous models while retaining accuracy. While 

YOLOv7 offers a few different model versions including a tiny version and one optimized for 

cloud computing, only the basic model was explored in this research with three different batch 

sizes. 

 

2.2.4 Metrics Used for Evaluation 

Several metrics are used to quantify the performance of different models on the tomato 

flower detection task. Mean Average Precison (mAP) is used to determine how well the models 

bound the flowers compared to labeled bounding boxes. The calculation for mAP is shown in 

Equation 2.1 Precision is the number of actual flowers out of all predicted flowers and is 
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calculated by Equation 2.2. Recall is the number of actual flowers found out of the total number 

of flowers and is calculated by Equation 2.3. The F1 score is a harmonic mean between the 

precision and recall values, and the calculation is shown in Equation 2.4. The F1 scores provides 

an estimate of the overall model performance, considering both the precision and recall.  

 

𝑚𝐴𝑃 =
1

𝑛
∑ 𝐴𝑃𝑘  

𝑘=𝑛

𝑘=1

(2.1) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(2.2) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(2.3) 

𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (2.4) 

 where, 

  n = number of bounding boxes 

  AP = average precision 

  TP = true positive 

  FP = false positive 

  FN = false negative 

 

2.3 Results 

 

2.3.1 HSV Color Segmentation 

 Several images were tested with different threshold HSV values for yellow, and the 

results varied drastically based on the lighting and image contents. Two examples of yellow 

segmentation with the background masked are shown in Figures 2.7 and 2.8. Figure 2.7 shows 

significant noise, attributed to other parts of the plant being a similar yellow color to the flower. 
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Figure 2.7 HSV segmentation of yellow color in tomato plant image 

 

 

 

Figure 2.8 Erosion on segmented pixels from tomato plant image 
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This image was then further processed, using an erosion image processing technique to reduce 

noise. The results of this process can be seen in Figure 2.8. It can also be noted that while it had a 

significant noise reduction effect, there are still non-flower segments of the image being 

identified by the yellow threshold. Further processing of the image attempted to draw a red 

contour around the flower (Fig. 2.9), but the contour does not cleanly segment the flower, and 

other non-flower objects in the image are also being bound by the red contour. For this reason, 

further experimentation with this technique was halted as it was not considered a robust enough 

method to be utilized in this research. 

 

2.3.2 MobileNetv2 

 MobileNetv2 was trained using TensorFlow (Abadi et al., 2016) and results were 

evaluated during the testing process. MobileNetv2 was trained on a computer with an Intel Core 

i7-10750H central processing unit (CPU) with 6 cores and 12 threads, 16GB RAM, and Intel 

UHD graphical processing unit (GPU). The metrics from MobileNetv2 evaluated on testing data 

can be seen in Table 2.1. Overall, while the mAP was moderate, the precision and recall for this 

model are too low for this to be a potential option for tomato flower detection in this research. 

While the light-weight architecture is appealing for this application, the accuracy was not high 

enough to move forward with further research using this model.  

 

2.3.3 YOLOv5 

 Several different sizes of the YOLOv5 model were trained and evaluated. The sizes 

tested were nano, small, medium, and large. The standard structure of the YOLOv5 model stays 

the same amongst sizes, but they differ in the number of tunable parameters, which means they 

also differ in training time and inference time. Typically, the larger model size with more 

parameters offers an increase in accuracy at the expense of training and inference time. The 

selection of size depends on the goal of the application. If the application is on a mobile device 

with less computational resources the nano size might be the best option, but if the model is run 

on a computer with adequate resources the large size may be the best option. Each model was  
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Figure 2.9 Red contours shown around HSV segmented pixels 

 

 

Table 2.1 MobileNetv2 Results 

 mAP 0.5 Precision Recall F1 

Standard Model 0.822 0.399 0.543 0.460 
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trained using a batch size of 16 for 600 epochs max, but some models stopped training sooner if 

improvements in performance became negligible. YOLOv5 was trained on a computer with an 

AMD Ryzen threadripper pro 3975wx CPU with 32-cores and 64 threads, 264GB RAM, and 

NVIDIA RTX A6000 GPU with 48GB VRAM. Results for all of the sizes can be seen in Table 

2.2. Overall, the results from the YOLOv5 models showed drastic improvement over the 

MobileNetv2 model.  

 

2.3.4 YOLOv6 

 Similar to YOLOv5, the YOLOv6 model comes in several sizes. The sizes tested were 

nano, small, medium, and large. Again, the general structure of the YOLOv6 model remains the 

same amongst sizes, but the sizes differ in tunable parameters meaning they also have 

differences in training time and inference time. Each model was trained with a batch size of 16 

for 600 epochs max, but some models stopped sooner based on negligible improvements in 

performance over time. YOLOv6 was trained on a computer with an AMD Ryzen threadripper 

pro 3975wx CPU with 32-cores and 64 threads, 264GB RAM, and NVIDIA RTX A6000 GPU 

with 48GB VRAM. Results for all sizes can be seen in Table 2.3. YOLOv6 performed 

comparable to YOLOv5 with a slight decrease in performance, but still a large improvement 

over the MobileNetv2 model. 

 

2.3.5 YOLOv7 

 YOLOv7 has three different models: tiny, basic, and one optimized for cloud-based 

computing. For this research only the basic size was tested as it is a relatively new YOLO model 

release, having been officially published in July 2022 (Wang et al., 2022). While there are ways 

to alter the size and create even more variety to the YOLOv7 models, for the purpose of this 

research, the basic model gave enough information on the overall performance on this YOLO 

version compared to previous versions. The YOLOv7 model was trained on a computer with an 

AMD Ryzen threadripper pro 3975wx CPU with 32-cores and 64 threads, 264GB RAM, and   
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Table 2.2 YOLOv5 Results 

Model Size mAP 0.5 Precision Recall F1 Inference 

Time (ms) 

Nano 0.907 0.948 0.847 0.895 2.8 

Small 0.939 0.942 0.888 0.914 4 

Medium 0.948 0.97 0.918 0.943 4.4 

Large 0.937 0.959 0.904 0.931 4.8 

 

 

Table 2.3 YOLOv6 Results 

Model Size mAP 0.5 Precision Recall F1 Inference 

Time (ms) 

Nano 0.831 0.798 0.75 0.773 1.87 

Small 0.842 0.84 0.881 0.841 2.64 

Medium 0.874 0.86 0.914 0.867 4.92 

Large 0.882 0.87 0.912 0.876 7.07 
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NVIDIA RTX A6000 GPU with 48GB VRAM. The model was trained for at least 600 epochs, 

but some stopped earlier if performance improvements became negligible. Results for 3 different 

batch sizes can be seen in Table 2.4. In general, YOLOv7 still performed well overall compared 

to MobileNetv2, but had slightly decreased performance compared to other YOLO models 

tested.  

 

2.4 Discussion 

 

 Overall, the use of a deep CNN for object detection proved to be the most accurate 

method, which is consistent amongst literature. Color segmentation, while the least 

computationally expensive method, was not robust enough to changes in environmental 

conditions to be used as a flower detector for real-world applications. Due to limitations in power 

requirements and computational resources in agricultural settings, the light-weight neural 

network, MobileNetv2, was researched for this application. MobileNetv2 had a relatively poor 

performance in terms of flower detection (recall) at around 54.3% and true positive detection 

(precision) at around 39.9%. It did have a moderate mAP, meaning the model is relatively stable, 

and while it could be trained further, it likely would not drastically improve the accuracy. 

YOLOv5 did well across all of the metrics for all four of the model sizes tested. The medium 

version of YOLOv5 had the best performance amongst all of the models tested in this study. A 

visual example of the medium weight YOLOv5 model’s performance can be seen in Figure 2.10, 

where the original image of the tomato plants can be seen on the left, and the flower detection 

with bounding boxes can be seen on the right. The high F1 score of 94.3%, which balances both 

recall and precision, in combination with a mAP of 94.8% insinuates that this model is both 

accurate and well trained for the task of flower detection. Additionally, it had a fast average 

inference speed at 4.4ms compared to the other YOLO models of its same size. YOLOv6 had a 

similar performance to YOLOv5, but with slightly lower metrics overall. It also outperforms 

color segmentation and MobileNetv2 by significant margins. YOLOv7 also outperformed both 

the color segmentation and MobileNetv2 models but had lower accuracy metrics than the other 

YOLO models tested. Interestingly, the mAP scores are slightly higher for YOLOv7 compared  
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Table 2.4 YOLOv7 Results 

Batch Size mAP 0.5 Precision Recall F1 Inference 

Time (ms) 

8 0.942 0.863 0.892 0.877 5.3 

16 0.922 0.898 0.84 0.868 6.2 

32 0.859 0.881 0.775 0.825 6.6 

 

 

 

 

Figure 2.10 Original image (left) vs YOLOv5 flower detection results (right)  
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to YOLOv6. YOLOv7 also has the slowest average inference times compared to the other two 

models in the medium size range. This is an interesting result because in literature one of its 

stated improvements over previous YOLO models was its speed. The results from this research 

did not support that claim. In general, all of the YOLO models performed relatively well, but the 

medium weight YOLOv5 model had the best performance in tomato flower detection and 

localization overall. 
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Chapter 3: Tomato Flower Three-Dimensional Mapping 
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3.1 Introduction 

 

3.1.1 Overview 

One key aspect when designing a robust pollination system is obtaining the locations of 

the flowers that the system intends to pollinate. There are generally two different methods for 

locating flowers, the first is real-time detection and pollination of flowers and the second is the 

mapping of flower locations relative to a predefined origin for visitation and pollination at a later 

time. Doing real-time detection and pollination typically has high computational and power 

requirements associated with the task, limiting current applications. While this is ultimately the 

end goal, the process of mapping and revisiting flowers is more realistic for real-world field 

applications given the current technology. Mapping and revisiting flowers would require data 

collection to happen in the field, but the heavier processing such as flower detection and 

mapping could occur offsite. Given the state of agricultural technology reviewed in section 1.3, 

image collection could be handled by a UAV or other robotic system, and once the data is 

collected it would then be sent to another location for processing using wireless communication 

technologies. The secondary processing location would ideally be placed somewhere with 

adequate access to power enabling the complex computing that is needed for the flower mapping 

process. Once the process is complete, the 3D locations of the flowers can then be sent to another 

robotic system, which will visit and pollinate the flowers.  

With the goal of flower mapping and revisitation in mind, the objective of this research is 

to present a method for predicting 3D locations of tomato flowers relative to a predefined origin. 

Based on research explored in Chapter 2, the CNN YOLOv5 will be used to detect flowers and 

localize them in two of the three dimensions. The third dimension needed will be the vertical 

position along the z-axis. This research will explore photogrammetric methods in order to predict 

the z-coordinates of tomato flowers. 
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3.1.2 Methods for 3D Coordinate Predictions and Associated Applications in 3D Mapping 

Photogrammetry is defined by the American Society for Photogrammetry and Remote 

Sensing (2023) as “the art, science and technology of obtaining reliable information about 

physical objects and the environment through processes of recording measuring and interpreting 

images and patterns of electromagnetic radiant energy and other phenomena.” There are two 

general types of photogrammetry: aerial and terrestrial (Aber et al., 2010). Aerial 

photogrammetry requires that the camera is in the air while terrestrial constitutes the camera 

being handheld or on a tripod. Small format aerial photography combines both by using an aerial 

vantage point while also maintaining high image detail using a small format camera. 

Stereophotogrammetry is a subset of photogrammetry specifically focused on deriving 3D 

coordinates of points on an object visible in two or more photos from different positions. In 

general, stereophotogrammetry works by using images from different vantage points in order to 

derive information from them using projection geometry, stereo matching, and additional 

mathematical and computer vision techniques (Do & Nguyen, 2019). In order for this method to 

be accurate, the photos need to have a large degree of overlap. These photos can be captured 

from several cameras specifically set at certain angles or one camera that moves to different 

positions over time. In addition to using a camera for passive sensing of depth 

(photogrammetry), active sensors, such as laser scanners and radars, can be used to directly 

gather 3D information (Remondino, 2011). Many applications use a combination of these 3D 

imaging techniques, but the choice of which methods to use heavily depends on dimension and 

surface structures of imaged objects, desired accuracy, location constraints, and more.  

One common application of 3D imaging is aerial photogrammetry and mapping. In this 

application, images are taken from an aerial viewpoint and stitched together to create a 3D map 

representation of the surveyed area (Nex & Remondino, 2014). The system holding the camera 

should follow a set-flight path, which ensures proper overlap of images, and the images should 

then be rectified using ground control points (GCPs) in order to ensure proper orientation, 

alignment, and scale. Once the images are properly oriented, the creation of the 3D 

reconstruction can begin, which produces a densified point cloud representing surfaces and 

geometries found in the images. Once a dense point cloud has been created, an orthomosaic, 

which can be defined as an orthorectified image mosaicked from the input images, can be created 
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of the scene. There are several commercial software programs available that produce this 

workflow given the proper image inputs. In general, aerial photogrammetry has been used for 3D 

mapping of urban, agricultural, and environmental landscapes, but its applications have 

continued to grow along with UAV technology.  

 

3.1.3 Literature Review 

The process of 3D mapping and modeling has been studied with applications in many 

different fields, including agriculture. Initially, remote sensing techniques for 3D mapping and 

modeling had a heavy reliance on expensive and complex equipment, but the advancements in 

UAV technologies have enabled simpler, low-cost options to become more accessible (Jurado et 

al., 2022). Examples of its use in agriculture include 3D reconstructions of terrain, plant 

morphologies, and more. Common data types for 3D mapping of terrain include thermal, 

multispectral, and hyperspectral images, but RGB images and other technology, such as ranging 

sensors, also have broad applications in certain fields. While the use of larger scale 3D mapping 

of terrain, from an aerial viewpoint, has seen growth in both research and real-life 

implementations, the localization of up-close agricultural and environmental systems is still 

considered a difficult problem that has yet to be fully addressed.  

A common algorithm used for localization and mapping (SLAM), briefly mentioned in 

section 1.4.2, typically has a certain level of reliance on detecting surrounding structures, which 

are not as readily available in agricultural settings. One study modified SLAM for an agricultural 

setting using 3D light detecting and ranging (LIDAR) data to help map a field and localize a 

robot’s location (Aguiar et al., 2022). Another study presented a similar method for using 3D 

LIDAR data to map and localize a robot in an agricultural field, but instead based their research 

on using the LIDAR Odometry and Mapping (LOAM) algorithm to build a 3D map and then 

localized the robot by comparing 3D scans of an area to the pre-built 3D map (Le et al., 2019). 

These studies are a step towards the development of a more detail mapping process for 

agricultural systems, but they only addressed the field as a larger 3D map for which robotic 

systems can travel through (Fig. 3.1), without including a method for the precise mapping of the 

plants in the field.   
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Figure 3.1 Example of Generic Row Crop Detection in a 3D Agricultural Mapping 

System (Aguiar et al., 2022) 
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In order to accomplish more concise agricultural tasks, such as harvesting or pollination, a 

method for 3D mapping crops and their features is needed. In an attempt to address this 

challenge, a study used LIDAR to map individual maize plants and create 3D point cloud 

representations (Fig. 3.2) of each (Weiss & Biber, 2011). While this is a useful technique for 

certain tasks, the LIDAR sensors cannot easily detect specific features on a crop, like flowers or 

fruits, which is a desired capability for many precision agriculture tasks. For this reason, another 

study developed a machine vision method, based off of the SLAM algorithm, to map sorghum 

crops (Qadri & Kantor, 2021). They designed their algorithm to work by using prior knowledge 

of the structure of agricultural fields, as well as using sorghum seeds as landmarks in the 

environment. In order to use the seeds as landmarks, they were initially segmented using a CNN, 

and then feature matched between stereo images in order to determine their relative positions. 

One final study created 3D models of almond trees in three different orchards by creating 

photogrammetric points clouds and applying object-based image analysis (OBIA) on them to 

extract information about the trees from the model (Torres-Sanchez et al., 2018). By using aerial 

images, the study was able to construct a 3D map of the trees in the orchard including the canopy 

of the trees and the ground between them. The OBIA techniques were used to characterize 

features such as individual tree height, width, and volume. The use of photogrammetry in the last 

two studies allows for better feature extraction than previously mentioned methods and provides 

a starting point for further development of precision agriculture tasks, such as automated 

pollination. 

 

3.2 Methods 

 

3.2.1 Data Collection 

Based on methods explored in the literature review, the 3D modeling of plants using 

photogrammetry of an up-close aerial view was chosen as the method to be explored in this 

research. The set-up for the 3D model data collection system is the same as previously 

mentioned in Chapter 2. A layout of the tomato plants in the raised-bed garden can be seen in 

Figure 2.4, and the path followed by the camera for image collection can be seen in Figure 2.6.  
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Figure 3.2 Point Cloud Models of Maize using LIDAR sensors (Weiss & Biber, 2011) 
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As previously mentioned, the camera used was a Logitech StreamCam mounted approximately 

3-ft 10-in above soil level, and the images collected had a resolution of 1080 by 1920 pixels. 

Images were collected along the entire path with 99% overlap at a rate of 10 frames per second. 

The purpose of this data collection design was to mimic the up-close image collection process 

that could be carried out by a UAV or similar device. The Farmbot system, described in more 

detail in Chapter 2, allowed for precise movements and data collection in a grid like pattern in 

order to produce images oriented in a manner conducive to 3D mapping of the small area, similar 

to larger-scale 3D mapping applications mentioned in section 3.1.3. Five replications, containing 

images along the entire path for the raised-bed garden, were fully processed using the workflow 

described in the following sections in order to predict 3D flower coordinates for the entire raised-

bed garden area. The images for the 5 models were taken throughout the data collection timeline 

on the dates September 21, October 28, November 1, November 6, and November 7 of 2022. For 

the remainder of this paper, these replications will be referred to as Model 1, Model 2, Model 3, 

Model 4, and Model 5, respectively.  

 

3.2.2 Pix4Dmapper Modeling 

There are several photogrammetry software programs available for 3D mapping. Some of 

the software packages available remotely connect to UAV devices to help with flight planning 

and image collection, but because the images in this research were collected using a gantry 

system to mimic an aerial set-up and not a UAV or other similar device, a software was chosen 

that focused purely on 3D mapping and modeling from input images. Additionally, the images 

collected of the tomato plants in the raised-bed garden are much closer to the camera than a 

traditional UAV flight, and they are not geolocated, meaning GCPs will need to be manually 

added to help scale the model. Given these requirements, Pix4Dmapper (Pix4D, 2022) was the 

chosen software as it can turn images into precise 3D maps, even without georeferenced images. 

Pix4mapper produces several useful outputs, such as densified 3D point clouds, digital surface 

and terrain models (DSM), orthomosaic images, and many more, which will be used in this 

research for predicting the 3D locations of tomato flowers. 
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For each model, approximately 1,000 images were uploaded to the Pix4Dmapper 

software. The software stitched the images together along the same path they were taken, which 

can be seen in Figure 3.3. Pix4Dmapper offers several model options, including 3D mapping and 

3D modeling. The main difference between the two is that mapping expects images to be from a 

camera pointed vertically down at the scene, while modeling can use images from different 

orientations to model an object. For this research, the 3D mapping option was used to recreate 

the raised-bed garden system. The computer used had an 11th Gen Intel Core i7-11700K CPU, 

32GB RAM, and an NVIDIA Quadro RTX 4000 GPU with 8GB VRAM. After the model 

finished initially processing the images, the software produced a ray cloud, GCPs were manually 

added, and it was subsequently reprocessed to scale it accordingly. The GPCs used can be seen 

in Figure 3.4, where three of the corners are used and the two points in the middle of the raised-

bed are at the top and bottom of a pole in order to provide GCPs with different z-values. After 

processing, error values were computed based on the GCPs. Several positions in the models were 

also compared to measurements of the actual raised-bed in order to determine error of the model 

produced in all three axes. The six validation points were placed around the raised-bed to create 

a representative sample of points along various locations on each axis and can be seen in Figure 

3.5. After the model was scaled, the software created a densified point cloud (Fig. 3.6), 

orthomosaic (Fig. 3.7), and DSM (Fig. 3.8). This process was repeated for all five model 

replications.  

 

3.2.3 YOLOv5 Orthomosaic Flower Detection 

After the Pix4Dmapper software produced all outputs, the orthomosaic was then cropped 

around only the soil area in the raised-bed garden. The cropped orthomosaic was then processed 

by the YOLOv5 object detection network in order to detect and localize the tomato flowers in the 

image. Details on training and accuracy of the YOLOv5 were previously discussed in Chapter 2.  

Flower bounding box coordinates are output by the YOLOv5 model in terms of pixel locations in 

the cropped orthomosaic image. 
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Figure 3.3 Image Placement Path on 3D Map 

 

 

Figure 3.4 Ground Control Point Locations Shown in Red 



52 

 

Figure 3.5 Validation Point Locations Shown in Red 

 

 

 

Figure 3.6 Densified Point Cloud 
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Figure 3.7 Orthomosaic Image 

 

 

 

Figure 3.8 Digital Surface Model with Scale 
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3.2.4 3D Coordinate Predictions 

Once bounding box coordinates for each flower are found using the YOLOv5 model, 

they are then converted to coordinate values in feet. This is accomplished by interpolating 

between the pixel dimensions of the raised-bed garden in the cropped orthomosaic and the actual 

dimensions of the raised-bed garden in feet. Once the bounding box coordinates are converted, 

the midpoint of each box is then calculated and used as the approximate x- and y- coordinates for 

each flower. These coordinates are then found in the DSM in Pix4Dmapper in order to estimate 

the z-coordinate using the model. This estimation is based on the assumption that the flower is 

visible to the camera and is therefore going to have a z-position that is predicted by the DSM. 

Once the 3D coordinate predictions have been gathered for each flower, these 3D points will 

then be marked on the densified point cloud as manual tie points in order to assess the accuracy 

of flower detection. 

 

3.2.5 Complete Workflow of 3D Flower Mapping 

The processes for mapping 3D coordinates of the tomato flowers in the raised-bed garden 

consisted of several steps including data collection, 3D modeling, flower detection with the 

orthomosaic (x-and y- coordinate prediction), and z-coordinate prediction from the DSM. A 

visual of the total workflow for this process can be seen in Figure 3.9. 

 

3.3 Results 

 

 

3.3.1 3D Model Creation Run Times 

Due to the complexity of processing 1,000 images using photogrammetry, the time it 

takes to process each model is an important factor to consider. Pix4Dmapper splits the 

processing time between the creation of the densified point cloud and the creation of the 

orthomosaic and DSM models. Table 3.1 shows the run time for each of these processes. In 

addition to the run time, each model is also scaled using five GCPs that have been manually 
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Figure 3.9 Complete 3D Flower Prediction Workflow 
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Table 3.1 Run Times for Model Construction [min] 

Process Model 1 Model 2 Model 3 Model 4 Model 5 

Point Cloud 49.15 22.62 19.83 23.73 23.3 

Orthomosaic 

and DSM 

28.38 28.03 19.30 21.97 20.58 
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labeled on several images since they are not georeferenced. The time for manually marking 

GCPs in several images and doing the image reprocessing ranged from 2 hrs to around 4 hrs 

depending on the model reprocessing time and if the GCPs had to be re-marked based on human 

error when initially labeling the GCPs on the images. Overall, the creation of the orthomosaic 

and DSM had similar run times, but the creation of the densified point clouds had variations 

among the models. 

 

3.3.2 3D Model Error 

After scaling the models, the error in the model can be estimated in several different 

ways. The measurements for error in GCPs are mean error (Table 3.2), standard deviation of the 

error (Table 3.3), and root mean square (RMS) error (Table 3.4). Additionally, six measurements 

on the actual raised-bed were used to test overall accuracy of measurements in the model 

compared to the real measurements. These measures included mean error (Table 3.5), standard 

deviation of the error (Table 3.6), and RMS error (Table 3.7). Compared to the GCP error, the 

error between the model and the actual measurements is much larger, with the largest error being 

along the z-axis. 

 

3.3.3 Orthomosaic Flower Visibility 

In the orthomosaic image, the foliage of the tomato plants was relatively blurry, but some 

flowers were still visible. In general, the orthomosaic images do not show some of the flowers, 

which are visible in the individual images themselves. Table 3.8 shows a comparison of flowers 

visible in the orthomosaic images for each model compared to the actual number of flowers 

present in the raised-bed garden. The visible flowers in the orthomosaic images were counted 

manually by visually observing each of the images. 
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Table 3.2 GCPs Mean Error [ft] 

Axis Model 1 Model 2 Model 3 Model 4 Model 5 Average 

X 0.00105 0.00011 0.00071 0.00001 0.00075 0.00053 

Y 0.00200 0.00005 0.00025 0.00012 0.00056 0.00060 

Z 0.00399 0.00050 0.00006 0.00082 0.00388 0.00185 

Average 0.00235 0.00022 0.00034 0.00032 0.00173  

 

 

Table 3.3 GCPs Standard Deviation of the Error [ft] 

Axis Model 1 Model 2 Model 3 Model 4 Model 5 Average 

X 0.01314 0.02662 0.01422 0.01054 0.03568 0.02004 

Y 0.01404 0.02188 0.01586 0.01226 0.03463 0.01973 

Z 0.01723 0.01933 0.02351 0.02198 0.01291 0.01899 

Average 0.01480 0.02261 0.01786 0.01493 0.02774  

 

 

Table 3.4 GCPs Root Mean Square Error [ft] 

Axis Model 1 Model 2 Model 3 Model 4 Model 5 Average 

X 0.01319 0.02662 0.01424 0.01054 0.03568 0.02005 

Y 0.01418 0.02188 0.01587 0.01226 0.03464 0.01901 

Z 0.01768 0.01934 0.02351 0.02199 0.01348 0.01920 

Average 0.01502 0.02261 0.01787 0.01493 0.02793  
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Table 3.5 Actual Mean Error of Model [ft] 

Axis Model 1 Model 2 Model 3 Model 4 Model 5 Average 

X 0.02376 0.02959 0.03376 0.02709 0.03626 0.03010 

Y 0.03604 0.02937 0.03771 0.03771 0.03437 0.03504 

Z 0.04167 0.06000 0.05333 0.05667 0.06167 0.05668 

Average 0.03382 0.03965 0.04160 0.04049 0.04410  

 

 

Table 3.6 Actual Standard Deviation of the Error of Model [ft] 

Axis Model 1 Model 2 Model 3 Model 4 Model 5 Average 

X 0.02261 0.02519 0.02716 0.02418 0.02492 0.02481 

Y 0.03272 0.02592 0.02851 0.02851 0.03024 0.02918 

Z 0.03656 0.05367 0.01633 0.01862 0.04579 0.03419 

Average 0.03063 0.03493 0.02400 0.02377 0.03365  

 

 

Table 3.7 Actual RMS Error of Model [ft] 

Axis Model 1 Model 2 Model 3 Model 4 Model 5 Average 

X 0.03147 0.03747 0.04188 0.03494 0.04280 0.03771 

Y 0.04680 0.03772 0.04581 0.04581 0.04408 0.04404 

Z 0.05339 0.07749 0.05538 0.05916 0.07449 0.06398 

Average 0.04389 0.05089 0.04769 0.04664 0.05379  
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Table 3.8 Number of Visible Flowers vs. Number of Actual Flowers 

Flowers Model 1 Model 2 Model 3 Model 4 Model 5 

Visible 2 16 20 18 25 

Actual 5 28 33 35 39 
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3.3.4 YOLOv5 Flower Detection 

The YOLOv5 model was run on all five orthomosaic images in order to detect and 

localize the tomato flowers. The inference time for each model is shown in Table 3.9. The visual 

representations of the YOLOv5 model performance for Model 1 (Fig. 3.10), Model 2 (Fig. 3.11), 

Model 3 (Fig. 3.12), Model 4 (Fig. 3.13), and Model 5 (Fig. 3.14) show the detected flowers 

bounded in red, along with corresponding confidence values. A confusion matrix for each model 

is shown in Tables 3.10 – 3.14, which provides more detailed information on the YOLOv5 

model’s performance for each orthomosaic image. When constructing the confusion matrix, the 

total number of flowers present in the orthomosaic was considered to be the number of flowers 

visually observed rather than the total amount present since this error was already addressed in 

section 3.3.3. 

 

3.3.5 3D Coordinate Predictions 

The midpoint for each flower, calculated from the bounding box predictions, was then 

manually identified on the Pix4Dmapper DSM, and a z-coordinate for each flower was 

predicted. The predicted 3D coordinates were then compared to the densified point cloud to 

determine the accuracy of the 3D predictions compared to the 3D model locations of the flowers. 

Only points that were considered true flower detections were included in error calculations. The 

mean, standard deviation, and RMS error for each axis on each of the five models can be seen in 

Tables 3.15-3.17. Two outlier points were left out of the error calculations (one in Model 3 and 

one in Model 4) in order to prevent skewing of the error results. In both cases, the z-predication 

was completely incorrect by a large margin, likely caused by errors in previous parts of the 

modeling process. 
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Table 3.9 Inference Time [ms] for Orthomosaic Images 

 Model 1 Model 2 Model 3 Model 4 Model 5 

Inference 

Time 

24.3 34 30.8 31.3 39.4 

 

 

 

 

Figure 3.10 YOLOv5 Flower Detection Results for Model 1 

 

 

 

Figure 3.11 YOLOv5 Flower Detection Results for Model 2 
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Figure 3.12 YOLOv5 Flower Detection Results for Model 3 

 

 

 

Figure 3.13 YOLOv5 Flower Detection Results for Model 4 
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Figure 3.14 YOLOv5 Flower Detection Results for Model 5 

 

 

Table 3.10 Model 1 Confusion Matrix 

 Actual Flower Actual No Flower 

Predicted Flower 1 0 

Predicted No Flower 1 0 

 

 

Table 3.11 Model 2 Confusion Matrix 

 Actual Flower Actual No Flower 

Predicted Flower 8 1 

Predicted No Flower 8 0 

 

 



65 

Table 3.12 Model 3 Confusion Matrix 

 Actual Flower Actual No Flower 

Predicted Flower 8 2 

Predicted No Flower 12 0 

 

 

Table 3.13 Model 4 Confusion Matrix 

 Actual Flower Actual No Flower 

Predicted Flower 9 1 

Predicted No Flower 9 0 

 

 

Table 3.14 Model 5 Confusion Matrix 

 Actual Flower Actual No Flower 

Predicted Flower 18 2 

Predicted No Flower 7 0 
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Table 3.15 3D Coordinate Mean Error [ft] 

Axis Model 1 Model 2 Model 3 Model 4 Model 5 

X 0.00000 0.00000 0.00360 0.00125 0.00200 

Y 0.00000 0.00305 0.00428 0.00500 0.00000 

Z 0.00000 0.01393 0.00571 0.00500 0.07278 

Average 0.00000 0.01393 0.00453 0.00375 0.02493 

 

 

Table 3.16 3D Coordinate Standard Deviation of Error [ft] 

Axis Model 1 Model 2 Model 3 Model 4 Model 5 

X 0.00000 0.00000 0.00951 0.00354 0.00522 

Y 0.00000 0.00862 0.01132 0.01414 0.00000 

Z 0.00000 0.08642 0.00787 0.01414 0.20134 

Average 0.00000 0.03168 0.00956 0.01061 0.06886 

 

 

Table 3.17 3D Coordinate RMS Error [ft] 

Axis Model 1 Model 2 Model 3 Model 4 Model 5 

X 0.00000 0.00000 0.00951 0.00354 0.00546 

Y 0.00000 0.00863 0.01132 0.01414 0.00000 

Z 0.00000 0.08965 0.00926 0.01414 0.20877 

Average 0.00000 0.03276 0.01003 0.01061 0.07141 
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3.4 Discussion 

 

3.4.1 Pix4Dmapper Model Creation 

Among all models, the process of producing the point cloud, orthomosaic, and DSM took 

around an hour. Initial processing of data and scaling the model could take between 2 hrs – 5 hrs. 

This would estimate the total processing time for the 3D model to be around 3 hrs – 6 hrs total, 

which is too long for field applications considering the size of the raised-bed garden compared to 

a field used for agricultural production. Some of this time can be attributed to the manual 

marking of the GCPs but automating this process in future research would reduce some of the 

total time required to create the 3D model. 

After adding GCPs to accurately orient and scale the model, the resulting error between 

the GCPs marked positions and the positions computed by Pix4Dmapper can be used to assess 

the accuracy of the model relative to the GCPs. In general, the mean error was relatively low 

with the maximum average amongst the models being less than 3/100s of an inch. The standard 

deviation was slightly higher with an average max of around 1/3 of an inch, meaning there is 

likely a large amount of variability among the error in each axis depending on the ground control 

point. This is similarly reflected in the RMS values. This is likely attributed to human errors in 

marking GCPs on the model, specifically in the ability to accurately reflect the z-coordinate 

values considering the soil level is highly varied across the garden area. Furthermore, the 

locations of the GCPs used could contribute to the error, especially in the z-axis where the 

majority of points were at the soil level. The addition of GCPs that are more varied in the z-axis 

could improve accuracy overall.  

Additionally, measurements on the model were compared to actual measurements taken 

from the raised-bed garden at six different points in order to determine the error. Overall, this 

error was higher than the error seen with the GCPs. The highest average mean error was around 

1/2 of an inch with the standard deviation close to 1/3 of an inch and the RMS error close to 1/2 

of an inch. Again, a significant source of error seen between the model and the real-world is 

introduced in the z-axis as it is difficult to accurately measure the z-position of points in the soil. 

The addition of GCPs that are more representative of variations in the z-axis could help. In future 



68 

work, a reliable method for determining z-coordinates will need to be developed in order to 

increase the relative accuracy of the 3D models. 

 

3.4.2 Tomato Flower Detection and Localization 

Looking at the results for the orthomosaic image, there seems to be a large discrepancy 

between the actual number of flowers present and the ones that are visible in the orthomosaic. 

When looking at the input images, the majority of flowers on the tomato plants are visible, but 

this same result was not seen in the orthomosaic image. This is likely due to how the 

orthomosaic is constructed using all of the input images, which causes blur around the foliage 

and likely covers many of the flowers. In future research, flower detection will likely need to 

occur in the individual images before the 3D model creation, or a better method for developing a 

clearer orthomosaic image will need to be investigated.  

The analysis of the results of YOLOv5 on the orthomosaic image are based upon the 

number of visible flowers in the orthomosaic. In general, the YOLOv5 model produced a low 

number of false positives, meaning the majority of flowers detected were truly flowers. This 

indicates that the YOLOv5 model had a relatively high precision across the orthomosaic images. 

Unfortunately, only about 50% of visible flowers were detected by the YOLOv5 model on a 

majority of the orthomosaic images with the exception of Model 5, which has a slightly higher 

detection rate. This means the YOLOv5 model had a lower recall value. The reason for this can 

likely be attributed to distortions in the flower caused by the creation of the orthomosaic image. 

The YOLOv5 model was trained on the original tomato flower images, not the tomato flowers 

present in the orthomosaic images, which means if the distorted flower in the orthomosaic 

images were different enough from the original images they may not be detected. In order to 

address this issue and increase flower detection accuracy, the YOLOv5 model would either need 

to be run on the images before the 3D model creation, or it would need to be trained on flowers 

present in orthomosaic images. 

Finally, the accuracy of the 3D coordinate predictions from the flowers detected with the 

YOLOv5 model and located on the DSM were relatively accurate. There were two outliers 
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where the DSM predicted the z-coordinate to be close to zero for the flowers, but for the most 

part, the 3D coordinates, which were predicted for each flower were on average under a 1/4 inch 

in error from the actual flowers seen in the point cloud representation. Some flowers had a larger 

error in the z-direction, specifically in Model 5, which is likely due to errors in the 3D model 

produced earlier in the process. Overall, considering the tomato plants are not completely 

stationary and have slight movements that may alter their positions, the resulting predictions 

were relatively accurate based on the 3D models. 
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Chapter 4: Conclusions 
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4.1 Introduction 

 

The main goal of this research was to investigate methods for crop flower detection and 

3D mapping as an initial step towards the development of a robust automated pollination system. 

The first objective was to determine an accurate method for flower detection through the 

exploration of machine vision and deep learning techniques. The second objective was to predict 

the 3D coordinates of flowers, relative to a predefined origin, through the exploration of 

photogrammetry as a method for 3D reconstruction of the crops. A summary of the findings of 

this research, its contributions to the field, its limitations, and future work will be discussed 

further in this chapter. 

 

4.2 Research Findings 

 

4.2.1 Flower Detection Methods 

Several methods of flower detection were explored including color segmentation and 

object detection using four different deep CNN architectures. The most accurate methods were 

the YOLO-based neural networks, with YOLOv5 having the highest accuracy on the validation 

data with an F1 score of 94.3%. YOLOv5 was therefore used to detect flowers in the 

orthomosaic images produced by the Pix4Dmapper software. The creation of the orthomosaic 

images seemed to cause areas of deep foliage to have a significant blur resulting in the loss of 

visibility of a large percentage of flowers present in the raised-bed garden. Additionally, several 

of the flowers that were still visible in the orthomosaic images had significant distortions 

introduced by the creation of the orthomosaic, which affected the accuracy of the YOLOv5 

model. Even with these complications, the model performed moderately well and detected about 

50% of the visible flowers in the orthomosaic images.  
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4.2.2 3D Flower Mapping 

The 3D model recreation had a relatively low mean error in terms of GCP locations 

compared to computed locations in the model, but there was a high degree of variability, which 

can likely be attributed to human error in collecting accurate measurements along the z-axis. 

Additionally, the error calculated between the model’s predicted measurements and the actual 

measured values was larger at around half of an inch. Again, this is likely due to human error in 

the collection of measurements used to scale the 3D model. The processing time for each model 

was between 2 hrs – 5 hrs. Overall, even with the error values, the software did well in the 

overall 3D reconstruction of the plants in the raised-bed garden. Once flowers were detected 

using the YOLOv5 model, the DSM was used to predict z-coordinates. Compared to the 3D 

locations of the flowers on the densified point cloud, the flower locations predicted had a 

relatively lower error overall, with the exception being in Model 5 where a larger error in the z-

axis was seen. If scaling of the model can be improved and the visibility of the flowers in the 

orthomosaic addressed, this technique may be applicable for the mapping of 3D flower 

coordinates of crops. 

 

4.2.3 Limitations in this Work 

There were several complications in the collection of data for this research such as issues 

with growing tomato plants in the raised-bed garden and with the collection of clear images of 

the flowers. For this reason, this work was based on a smaller subset of data than initially 

planned, which limits the ability for its results to be fully extrapolated to the real world without 

further research. Ideally, images collected of tomato plants would be spread throughout the 

growing season and replicated for multiple seasons. This would add robustness to the dataset 

creating a more realistic representation of the tomato plants overall. Additionally, without access 

to a greenhouse, the growth of tomato plants was constrained to the warmer months, which 

limited available time for data collection throughout this study. 
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4.3 Contributions to the Field of Precision Agriculture 

 

Based on a current review of literature, deep learning has been widely researched for use 

in precision agriculture as a method for object detection. This research extrapolates that work to 

the detection of tomato flowers from an overhead view. Additionally, while there are a small 

number of studies looking at the development of autonomous pollination systems, few attempt to 

map the 3D locations of flowers. Furthermore, the use of photogrammetry as a 3D recreation 

technique for detailed mapping of plant features has been rarely studied in literature. This 

research presents a novel approach to the detection and 3D mapping of crop flowers by 

integrating deep learning methods for flower detection and photogrammetry for 3D 

reconstruction of the plants. While there is room for improvement, this method acts as a building 

block for future work on the detection and 3D mapping of detailed crop features in the field of 

precision agriculture. 

 

4.4 Future Work 

 

4.4.1 Improvements in Flower Detection 

The first recommendation for future work would be the collection of more data in order 

to build a more robust dataset for training and testing of the methods described in this work. 

Additionally, due to the reduced visibility of flowers in the orthomosaic images, research should 

be done on detecting the flowers in the input images before creating an orthomosaic. If flowers 

are detected, located, and marked as tie-points in the input images, this will hopefully improve 

the accuracy of flower detection overall when mapping the entire growing area. This may also 

reduce the number of flowers that are missed by the YOLOv5 model since the flowers in the 

images will not yet be distorted by the orthomosaic. Additionally, moving the camera farther 

away from the plants could reduce distortions in the orthomosaic. 
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4.4.2 Improvements in 3D Mapping 

In order to improve the reconstruction of the 3D model, an accurate method of measuring 

locations of GCPs in all three axes should be determined. The higher error along the z-axis was 

likely due to the inability to accurately set a datum position that was consistent on the uneven 

soil. Because the testing area was smaller, compared to typical sizes of aerial mapping projects, 

even slight deviations in z-axis measurements cause large errors in the model. Future work 

should aim to find an accurate and precise method to define and measure the origin, datum, and 

GCPs in the modeled system. 

 

4.5 Summary 

 

This research serves as an initial step towards the design of a robust autonomous 

pollination system. The objectives of researching flower detection of 3D mapping methods were 

addressed by combining the use of both deep learning and photogrammetry. Several methods for 

flower detection were explored, such as color segmentation, light-weight CNNs, and deep CNNs. 

YOLOv5 was determined to be the most accurate of these methods. The software Pix4Dmapper 

was researched to apply the technique of photogrammetry to up-close aerial images in order to 

reconstruct a 3D model of tomato plants. The orthomosaic image created by the software was 

processed by YOLOv5 to detect visible flowers, and the z-coordinate for those flowers was 

predicted by the DSM. While this approach had a few errors and limitations, it adequately 

addressed the research objectives. This research contributes to the field of precision agriculture 

by presenting a novel approach for crop flower detection and mapping, which has not previously 

been explored in literature. 

 



75 

References 

 

  



76 

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S., Irving, 

G., & Isard, M. (2016). Tensorflow: a system for large-scale machine learning. Osdi,  

Aber, J. S., Marzolff, I., & Ries, J. B. (2010). Introduction to Small-Format Aerial Photography. 

In J. S. Aber, I. Marzolff, & J. B. Ries (Eds.), Small-Format Aerial Photography (pp. 1-

13). Elsevier. https://doi.org/10.1016/b978-0-444-53260-2.10001-8  

Aggelopoulou, A. D., Bochtis, D., Fountas, S., Swain, K. C., Gemtos, T. A., & Nanos, G. D. 

(2011). Yield prediction in apple orchards based on image processing. Precision 

Agriculture, 12(3), 448-456. https://doi.org/10.1007/s11119-010-9187-0  

Aguiar, A. S., Neves dos Santos, F., Sobreira, H., Boaventura-Cunha, J., & Sousa, A. J. (2022). 

Localization and Mapping on Agriculture Based on Point-Feature Extraction and 

Semiplanes Segmentation From 3D LiDAR Data [Original Research]. Frontiers in 

Robotics and AI, 9. https://doi.org/10.3389/frobt.2022.832165  

American Society for Photogrammetry and Remote Sensing. (2023). What is ASPRS? Retrieved 

March 15 from https://www.asprs.org/organization/what-is-asprs.html 

Ärje, J., Milioris, D., Tran, D. T., Jepsen, J. U., Raitoharju, J., Gabbouj, M., Iosifidis, A., & 

Høye, T. T. (2019). Automatic Flower Detection and Classification System Using a 

Light-Weight Convolutional Neural Network.  

Barnett, J., Seabright, M., Williams, H., Nejati, M., Scarfe, A., Bell, J., Jones, M., Martinsen, P., 

Schaare, P., & Duke, M. (2017). Robotic Pollination-Targeting kiwifruit flowers for 

commercial application.  

Bugin, G., Lenzi, L., Ranzani, G., Barisan, L., Porrini, C., Zanella, A., & Bolzonella, C. (2022). 

Agriculture and Pollinating Insects, No Longer a Choice but a Need: EU 

Agriculture&rsquo;s Dependence on Pollinators in the 2007&ndash;2019 Period. 

Sustainability, 14(6), 3644. https://www.mdpi.com/2071-1050/14/6/3644  

Chaplin-Kramer, R., Dombeck, E., Gerber, J., Knuth, K. A., Mueller, N. D., Mueller, M., Ziv, 

G., & Klein, A.-M. (2014). Global malnutrition overlaps with pollinator-dependent 

micronutrient production. Proceedings of the Royal Society B: Biological Sciences, 

281(1794), 20141799. https://doi.org/10.1098/rspb.2014.1799  

Cheng, H. D., Jiang, X. H., Sun, Y., & Wang, J. (2001). Color image segmentation: advances 

and prospects. Pattern Recognition, 34(12), 2259-2281. 

https://doi.org/https://doi.org/10.1016/S0031-3203(00)00149-7  

Cruz, J., Herrington, S., & Rodriguez, B. (2014). Farmbot.  

del Cerro, J., Cruz Ulloa, C., Barrientos, A., & de León Rivas, J. (2021). Unmanned Aerial 

Vehicles in Agriculture: A Survey. Agronomy, 11(2), 203. https://www.mdpi.com/2073-

4395/11/2/203  

https://doi.org/10.1016/b978-0-444-53260-2.10001-8
https://doi.org/10.1007/s11119-010-9187-0
https://doi.org/10.3389/frobt.2022.832165
https://www.asprs.org/organization/what-is-asprs.html
https://www.mdpi.com/2071-1050/14/6/3644
https://doi.org/10.1098/rspb.2014.1799
https://doi.org/https:/doi.org/10.1016/S0031-3203(00)00149-7
https://www.mdpi.com/2073-4395/11/2/203
https://www.mdpi.com/2073-4395/11/2/203


77 

DiDonato, S., & Gareau, B. J. (2022). Be(e)coming pollinators: Beekeeping and perceptions of 

environmentalism in Massachusetts. PLoS One, 17(3), e0263281. 

https://doi.org/10.1371/journal.pone.0263281  

Do, P. N. B., & Nguyen, Q. C. (2019). A review of stereo-photogrammetry method for 3-D 

reconstruction in computer vision. 2019 19th International Symposium on 

Communications and Information Technologies (ISCIT),  

The Editors of Encyclopaedia Britannica. (2020). cross-pollination. Encyclopaedia Britannica. 

https://www.britannica.com/science/cross-pollination  

Eilers, E. J., Kremen, C., Smith Greenleaf, S., Garber, A. K., & Klein, A. M. (2011). 

Contribution of pollinator-mediated crops to nutrients in the human food supply. PLoS 

One, 6(6), e21363. https://doi.org/10.1371/journal.pone.0021363  

Fountas, S., Mylonas, N., Malounas, I., Rodias, E., Hellmann Santos, C., & Pekkeriet, E. (2020). 

Agricultural Robotics for Field Operations. Sensors (Basel), 20(9). 

https://doi.org/10.3390/s20092672  

Garg, D., & Alam, M. (2020). Deep Learning and IoT for Agricultural Applications. In (pp. 273-

284). https://doi.org/10.1007/978-3-030-37468-6_14  

Ghazoul, J. (2005). Buzziness as usual? Questioning the global pollination crisis. Trends in 

Ecology & Evolution, 20(7), 367-373. 

https://doi.org/https://doi.org/10.1016/j.tree.2005.04.026  

Gomes, J. F. S., & Leta, F. R. (2012). Applications of computer vision techniques in the 

agriculture and food industry: a review. European Food Research and Technology, 

235(6), 989-1000. https://doi.org/10.1007/s00217-012-1844-2  

Hiraguri, T., Kimura, T., Endo, K., Ohya, T., Takanashi, T., & Shimizu, H. (2023). Shape 

classification technology of pollinated tomato flowers for robotic implementation. 

Scientific Reports, 13(1), 2159. https://doi.org/10.1038/s41598-023-27971-z  

Hočevar, M., Širok, B., Godeša, T., & Stopar, M. (2014). Flowering estimation in apple orchards 

by image analysis. Precision Agriculture, 15(4), 466-478. 

https://doi.org/10.1007/s11119-013-9341-6  

Iwasaki, J. M., & Hogendoorn, K. (2022). Mounting evidence that managed and introduced bees 

have negative impacts on wild bees: an updated review. Curr Res Insect Sci, 2, 100043. 

https://doi.org/10.1016/j.cris.2022.100043  

Jiang, P., Ergu, D., Liu, F., Cai, Y., & Ma, B. (2022). A Review of Yolo Algorithm 

Developments. Procedia Computer Science, 199, 1066-1073. 

https://doi.org/https://doi.org/10.1016/j.procs.2022.01.135  

https://doi.org/10.1371/journal.pone.0263281
https://www.britannica.com/science/cross-pollination
https://doi.org/10.1371/journal.pone.0021363
https://doi.org/10.3390/s20092672
https://doi.org/10.1007/978-3-030-37468-6_14
https://doi.org/https:/doi.org/10.1016/j.tree.2005.04.026
https://doi.org/10.1007/s00217-012-1844-2
https://doi.org/10.1038/s41598-023-27971-z
https://doi.org/10.1007/s11119-013-9341-6
https://doi.org/10.1016/j.cris.2022.100043
https://doi.org/https:/doi.org/10.1016/j.procs.2022.01.135


78 

Jocher, G., Nishimura, K., Mineeva, T., & Vilariño, R. (2020). yolov5. Code repository 

https://github. com/ultralytics/yolov5, 9.  

Jurado, J. M., López, A., Pádua, L., & Sousa, J. J. (2022). Remote sensing image fusion on 3D 

scenarios: A review of applications for agriculture and forestry. International Journal of 

Applied Earth Observation and Geoinformation, 112, 102856. 

https://doi.org/https://doi.org/10.1016/j.jag.2022.102856  

Khalifa, S. A. M., Elshafiey, E. H., Shetaia, A. A., El-Wahed, A. A. A., Algethami, A. F., 

Musharraf, S. G., AlAjmi, M. F., Zhao, C., Masry, S. H. D., Abdel-Daim, M. M., Halabi, 

M. F., Kai, G., Al Naggar, Y., Bishr, M., Diab, M. A. M., & El-Seedi, H. R. (2021). 

Overview of Bee Pollination and Its Economic Value for Crop Production. Insects, 12(8). 

https://doi.org/10.3390/insects12080688  

Khan, N., Ray, R. L., Sargani, G. R., Ihtisham, M., Khayyam, M., & Ismail, S. (2021). Current 

Progress and Future Prospects of Agriculture Technology: Gateway to Sustainable 

Agriculture. Sustainability, 13(9), 4883. https://www.mdpi.com/2071-1050/13/9/4883  

Klatt, B. K., Holzschuh, A., Westphal, C., Clough, Y., Smit, I., Pawelzik, E., & Tscharntke, T. 

(2014). Bee pollination improves crop quality, shelf life and commercial value. Proc Biol 

Sci, 281(1775), 20132440. https://doi.org/10.1098/rspb.2013.2440  

Klein, A., Vaissière, B., Cane, J., Steffan-Dewenter, I., Cunningham, S., Kremen, C., & 

Tscharntke, T. (2007). Importance of pollinators in changing landscapes for world crops. 

Proceedings. Biological sciences / The Royal Society, 274, 303-313. 

https://doi.org/10.1098/rspb.2006.3721  

Kremen, C., Williams, N. M., & Thorp, R. W. (2002). Crop pollination from native bees at risk 

from agricultural intensification. Proceedings of the National Academy of Sciences, 

99(26), 16812-16816. https://doi.org/10.1073/pnas.262413599  

Le, T., Omholt Gjevestad, J. G., & From, P. J. (2019). Online 3D Mapping and Localization 

System for Agricultural Robots. IFAC-PapersOnLine, 52(30), 167-172. 

https://doi.org/https://doi.org/10.1016/j.ifacol.2019.12.516  

Li, C., Li, L., Jiang, H., Weng, K., Geng, Y., Li, L., Ke, Z., Li, Q., Cheng, M., & Nie, W. (2022). 

YOLOv6: A single-stage object detection framework for industrial applications. arXiv 

preprint arXiv:2209.02976.  

Liakos, K. G., Busato, P., Moshou, D., Pearson, S., & Bochtis, D. (2018). Machine Learning in 

Agriculture: A Review. Sensors, 18(8), 2674. https://www.mdpi.com/1424-

8220/18/8/2674  

Lippert, C., Feuerbacher, A., & Narjes, M. (2021). Revisiting the economic valuation of 

agricultural losses due to large-scale changes in pollinator populations. Ecological 

Economics, 180, 106860. https://doi.org/https://doi.org/10.1016/j.ecolecon.2020.106860  

https://github/
https://doi.org/https:/doi.org/10.1016/j.jag.2022.102856
https://doi.org/10.3390/insects12080688
https://www.mdpi.com/2071-1050/13/9/4883
https://doi.org/10.1098/rspb.2013.2440
https://doi.org/10.1098/rspb.2006.3721
https://doi.org/10.1073/pnas.262413599
https://doi.org/https:/doi.org/10.1016/j.ifacol.2019.12.516
https://www.mdpi.com/1424-8220/18/8/2674
https://www.mdpi.com/1424-8220/18/8/2674
https://doi.org/https:/doi.org/10.1016/j.ecolecon.2020.106860


79 

Lowenberg-DeBoer, J., Huang, I. Y., Grigoriadis, V., & Blackmore, S. (2020). Economics of 

robots and automation in field crop production. Precision Agriculture, 21(2), 278-299. 

https://doi.org/10.1007/s11119-019-09667-5  

Mader, E. O., Spivak, M., & Evans, E. (2010). Managing Alternative Pollinators: A Handbook 

for Beekeepers, Growers, and Conservationists, SARE Handbook 11, NRAES-186.  

Mavridou, E., Vrochidou, E., Papakostas, G. A., Pachidis, T., & Kaburlasos, V. G. (2019). 

Machine Vision Systems in Precision Agriculture for Crop Farming. Journal of Imaging, 

5(12), 89. https://www.mdpi.com/2313-433X/5/12/89  

McGregor, S. E. (1976). Insect pollination of cultivated crop plants. Agricultural Research 

Service, US Department of Agriculture.  

Mu, X., He, L., Heinemann, P., Schupp, J., & Karkee, M. (2023). Mask R-CNN based apple 

flower detection and king flower identification for precision pollination. Smart 

Agricultural Technology, 4, 100151. 

https://doi.org/https://doi.org/10.1016/j.atech.2022.100151  

Nex, F., & Remondino, F. (2014). UAV for 3D mapping applications: a review. Applied 

Geomatics, 6(1), 1-15. https://doi.org/10.1007/s12518-013-0120-x  

Nicholson, C. C., Koh, I., Richardson, L. L., Beauchemin, A., & Ricketts, T. H. (2017). Farm 

and landscape factors interact to affect the supply of pollination services. Agriculture, 

Ecosystems & Environment, 250, 113-122. 

https://doi.org/https://doi.org/10.1016/j.agee.2017.08.030  

Orbán, L. L., & Plowright, C. M. (2014). Getting to the start line: how bumblebees and 

honeybees are visually guided towards their first floral contact. Insectes Soc, 61(4), 325-

336. https://doi.org/10.1007/s00040-014-0366-2  

Pix4D. (2022). Pix4Dmapper. Retrieved March 15 from 

https://www.pix4d.com/product/pix4dmapper-photogrammetry-software/ 

Potts, S. G., Biesmeijer, J. C., Kremen, C., Neumann, P., Schweiger, O., & Kunin, W. E. (2010). 

Global pollinator declines: trends, impacts and drivers. Trends in Ecology & Evolution, 

25(6), 345-353. https://doi.org/https://doi.org/10.1016/j.tree.2010.01.007  

Qadri, M., & Kantor, G. (2021). Semantic Feature Matching for Robust Mapping in Agriculture.  

Rader, R., Bartomeus, I., Garibaldi, L. A., Garratt, M. P., Howlett, B. G., Winfree, R., 

Cunningham, S. A., Mayfield, M. M., Arthur, A. D., Andersson, G. K., Bommarco, R., 

Brittain, C., Carvalheiro, L. G., Chacoff, N. P., Entling, M. H., Foully, B., Freitas, B. M., 

Gemmill-Herren, B., Ghazoul, J., . . . Woyciechowski, M. (2016). Non-bee insects are 

important contributors to global crop pollination. Proc Natl Acad Sci U S A, 113(1), 146-

151. https://doi.org/10.1073/pnas.1517092112  

https://doi.org/10.1007/s11119-019-09667-5
https://www.mdpi.com/2313-433X/5/12/89
https://doi.org/https:/doi.org/10.1016/j.atech.2022.100151
https://doi.org/10.1007/s12518-013-0120-x
https://doi.org/https:/doi.org/10.1016/j.agee.2017.08.030
https://doi.org/10.1007/s00040-014-0366-2
https://www.pix4d.com/product/pix4dmapper-photogrammetry-software/
https://doi.org/https:/doi.org/10.1016/j.tree.2010.01.007
https://doi.org/10.1073/pnas.1517092112


80 

Rahim, U. F., & Mineno, H. (2020). Tomato flower detection and counting in greenhouses using 

faster region-based convolutional neural network. Journal of Image and Graphics, 8(4), 

107-113.  

Rehman, A., Jingdong, L., Khatoon, R., Hussain, I., & Iqbal, M. S. (2016). Modern agricultural 

technology adoption its importance, role and usage for the improvement of agriculture. 

Life Science Journal, 14(2), 70-74.  

Remondino, F. (2011). Heritage Recording and 3D Modeling with Photogrammetry and 3D 

Scanning. Remote Sensing, 3(6), 1104-1138. https://www.mdpi.com/2072-4292/3/6/1104  

Sandler, M., Howard, A. G., Zhu, M., Zhmoginov, A., & Chen, L.-C. (2018). MobileNetV2: 

Inverted Residuals and Linear Bottlenecks. 2018 IEEE/CVF Conference on Computer 

Vision and Pattern Recognition, 4510-4520.  

Shaneyfelt, T., Jamshidi, M., & Agaian, S. (2013). A vision feedback robotic docking crane 

system with application to vanilla pollination. Int. J. of Automation and Control, 7, 62-

82. https://doi.org/10.1504/IJAAC.2013.055096  

Sidibé, A., Olabisi, L. S., Doumbia, H., Touré, K., & Niamba, C. A. (2021). Barriers and 

enablers of the use of digital technologies for sustainable agricultural development and 

food security: Learning from cases in Mali. Elementa: Science of the Anthropocene, 9(1). 

https://doi.org/10.1525/elementa.2020.00106  

Spykman, O., Gabriel, A., Ptacek, M., & Gandorfer, M. (2021). Farmers’ perspectives on field 

crop robots – Evidence from Bavaria, Germany. Computers and Electronics in 

Agriculture, 186, 106176. https://doi.org/https://doi.org/10.1016/j.compag.2021.106176  

Srivastava, S., Divekar, A. V., Anilkumar, C., Naik, I., Kulkarni, V., & Pattabiraman, V. (2021). 

Comparative analysis of deep learning image detection algorithms. Journal of Big Data, 

8(1), 66. https://doi.org/10.1186/s40537-021-00434-w  

Stanley, D. A., Garratt, M. P. D., Wickens, J. B., Wickens, V. J., Potts, S. G., & Raine, N. E. 

(2015). Neonicotinoid pesticide exposure impairs crop pollination services provided by 

bumblebees. Nature, 528(7583), 548-550. https://doi.org/10.1038/nature16167  

Strader, J., Nguyen, J., Tatsch, C., Du, Y., Lassak, K., Buzzo, B., Watson, R., Cerbone, H., Ohi, 

N., Yang, C., & Gu, Y. (2019, 3-8 Nov. 2019). Flower Interaction Subsystem for a 

Precision Pollination Robot. 2019 IEEE/RSJ International Conference on Intelligent 

Robots and Systems (IROS),  

Sun, K., Wang, X., Liu, S., & Liu, C. (2021). Apple, peach, and pear flower detection using 

semantic segmentation network and shape constraint level set. Computers and 

Electronics in Agriculture, 185, 106150. 

https://doi.org/https://doi.org/10.1016/j.compag.2021.106150  

https://www.mdpi.com/2072-4292/3/6/1104
https://doi.org/10.1504/IJAAC.2013.055096
https://doi.org/10.1525/elementa.2020.00106
https://doi.org/https:/doi.org/10.1016/j.compag.2021.106176
https://doi.org/10.1186/s40537-021-00434-w
https://doi.org/10.1038/nature16167
https://doi.org/https:/doi.org/10.1016/j.compag.2021.106150


81 

Tamburini, G., Pereira-Peixoto, M.-H., Borth, J., Lotz, S., Wintermantel, D., Allan, M. J., Dean, 

R., Schwarz, J. M., Knauer, A., Albrecht, M., & Klein, A. M. (2021). Fungicide and 

insecticide exposure adversely impacts bumblebees and pollination services under semi-

field conditions. Environment International, 157, 106813. 

https://doi.org/https://doi.org/10.1016/j.envint.2021.106813  

Ting, Y., Kondo, N., & Wei, L. (2012). Sunlight Fluctuation Compensation for Tomato Flower 

Detection Using Web Camera. Procedia Engineering, 29, 4343-4347. 

https://doi.org/https://doi.org/10.1016/j.proeng.2012.01.668  

Toni, H. C., Djossa, B. A., Ayenan, M. A. T., & Teka, O. (2021). Tomato (Solanum 

lycopersicum) pollinators and their effect on fruit set and quality. The Journal of 

Horticultural Science and Biotechnology, 96(1), 1-13. 

https://doi.org/10.1080/14620316.2020.1773937  

Torres-Sanchez, J., de Castro, A. I., Pena, J. M., Jimenez-Brenes, F. M., Arquero, O., Lovera, 

M., & Lopez-Granados, F. (2018). Mapping the 3D structure of almond trees using UAV 

acquired photogrammetric point clouds and object-based image analysis. Biosystems 

engineering, 176, 172-184.  

Tzutalin. (2015). LabelImg. In. 

United States Forest Service. (2023a). Plant Pollination Strategies. United States Forest Service. 

Retrieved January 10 from 

https://www.fs.usda.gov/wildflowers/pollinators/Plant_Strategies/index.shtml 

United States Forest Service. (2023b). What is Pollination? https://www.fs.usda.gov/managing-

land/wildflowers/pollinators/what-is-pollination  

van der Sluijs, J. P., & Vaage, N. S. (2016). Pollinators and Global Food Security: the Need for 

Holistic Global Stewardship. Food Ethics, 1(1), 75-91. https://doi.org/10.1007/s41055-

016-0003-z  

van Henten, E. J., Bac, C. W., Hemming, J., & Edan, Y. (2013). Robotics in protected 

cultivation. IFAC Proceedings Volumes, 46(18), 170-177. 

https://doi.org/https://doi.org/10.3182/20130828-2-SF-3019.00070  

Velthuis, H. H. W., & Doorn, A. v. (2006). A century of advances in bumblebee domestication 

and the economic and environmental aspects of its commercialization for pollination. 

Apidologie, 37(4), 421-451. https://doi.org/10.1051/apido:2006019  

Wang, C.-Y., Bochkovskiy, A., & Liao, H.-Y. M. (2022). YOLOv7: Trainable bag-of-freebies 

sets new state-of-the-art for real-time object detectors. arXiv preprint arXiv:2207.02696.  

Watson, K., & Stallins, J. A. (2016). Honey Bees and Colony Collapse Disorder: A Pluralistic 

Reframing. Geography Compass, 10(5), 222-236. 

https://doi.org/https://doi.org/10.1111/gec3.12266  

https://doi.org/https:/doi.org/10.1016/j.envint.2021.106813
https://doi.org/https:/doi.org/10.1016/j.proeng.2012.01.668
https://doi.org/10.1080/14620316.2020.1773937
https://www.fs.usda.gov/wildflowers/pollinators/Plant_Strategies/index.shtml
https://www.fs.usda.gov/managing-land/wildflowers/pollinators/what-is-pollination
https://www.fs.usda.gov/managing-land/wildflowers/pollinators/what-is-pollination
https://doi.org/10.1007/s41055-016-0003-z
https://doi.org/10.1007/s41055-016-0003-z
https://doi.org/https:/doi.org/10.3182/20130828-2-SF-3019.00070
https://doi.org/10.1051/apido:2006019
https://doi.org/https:/doi.org/10.1111/gec3.12266


82 

Weiss, U., & Biber, P. (2011). Plant detection and mapping for agricultural robots using a 3D 

LIDAR sensor. Robotics and Autonomous Systems, 59(5), 265-273. 

https://doi.org/https://doi.org/10.1016/j.robot.2011.02.011  

Woodcock, T. S. (2012). Pollination in the Agricultural Landscape: Best Management Practies 

for Crop Pollination. https://studylib.net/doc/8933720/pollination-in-the-agricultural-

landscape 

Wu, D., Lv, S., Jiang, M., & Song, H. (2020). Using channel pruning-based YOLO v4 deep 

learning algorithm for the real-time and accurate detection of apple flowers in natural 

environments. Computers and Electronics in Agriculture, 178, 105742. 

https://doi.org/https://doi.org/10.1016/j.compag.2020.105742  

Wu, S., Liu, J., Lei, X., Zhao, S., Lu, J., Jiang, Y., Xie, B., & Wang, M. (2022). Research 

Progress on Efficient Pollination Technology of Crops. Agronomy, 12(11), 2872. 

https://www.mdpi.com/2073-4395/12/11/2872  

Wurz, A., Grass, I., & Tscharntke, T. (2021). Hand pollination of global crops – A systematic 

review. Basic and applied ecology, 56, 299-321.  

Xu, J., Gu, B., & Tian, G. (2022). Review of agricultural IoT technology. Artificial Intelligence 

in Agriculture, 6, 10-22. https://doi.org/https://doi.org/10.1016/j.aiia.2022.01.001  

Yuan, T., Zhang, S., Sheng, X., Wang, D., Gong, Y., & Li, W. (2016, 19-21 Nov. 2016). An 

autonomous pollination robot for hormone treatment of tomato flower in greenhouse. 

2016 3rd International Conference on Systems and Informatics (ICSAI),  

Zhang, Y., He, S., Wa, S., Zong, Z., & Liu, Y. (2021). Using Generative Module and Pruning 

Inference for the Fast and Accurate Detection of Apple Flower in Natural Environments. 

Information, 12(12), 495. https://www.mdpi.com/2078-2489/12/12/495  

Zhao, Z. Q., Zheng, P., Xu, S. T., & Wu, X. (2019). Object Detection With Deep Learning: A 

Review. IEEE Transactions on Neural Networks and Learning Systems, 30(11), 3212-

3232. https://doi.org/10.1109/TNNLS.2018.2876865  

Zohary, D. (2001). Domestication of Crop Plants. In S. A. Levin (Ed.), Encyclopedia of 

Biodiversity (Second Edition) (pp. 657-664). Academic Press. 

https://doi.org/https://doi.org/10.1016/B978-0-12-384719-5.00199-4  

  

https://doi.org/https:/doi.org/10.1016/j.robot.2011.02.011
https://studylib.net/doc/8933720/pollination-in-the-agricultural-landscape
https://studylib.net/doc/8933720/pollination-in-the-agricultural-landscape
https://doi.org/https:/doi.org/10.1016/j.compag.2020.105742
https://www.mdpi.com/2073-4395/12/11/2872
https://doi.org/https:/doi.org/10.1016/j.aiia.2022.01.001
https://www.mdpi.com/2078-2489/12/12/495
https://doi.org/10.1109/TNNLS.2018.2876865
https://doi.org/https:/doi.org/10.1016/B978-0-12-384719-5.00199-4


83 

Vita 

McKensie was born and raised in Knoxville, TN. She received her Bachelor of Science 

degree in Biosystems Engineering from the University of Tennessee in December of 2020. In 

January of 2021, she continued her studies at the University of Tennessee to pursue a Master of 

Science degree in Biosystems Engineering, which she completed in May 2023. Her research is 

focused on developing crop flower detection and three-dimensional mapping techniques as initial 

steps towards the design of a robust autonomous pollination system. 

 


	Tomato Flower Detection and Three-Dimensional Mapping for Precision Pollination
	Recommended Citation

	tmp.1681951023.pdf.cQ6f9

