5,907 research outputs found

    A Software Suite for the Control and the Monitoring of Adaptive Robotic Ecologies

    Get PDF
    Adaptive robotic ecologies are networks of heterogeneous robotic devices (sensors, actuators, automated appliances) pervasively embedded in everyday environments, where they learn to cooperate towards the achievement of complex tasks. While their flexibility makes them an increasingly popular way to improve a system’s reliability, scalability, robustness and autonomy, their effective realisation demands integrated control and software solutions for the specification, integration and management of their highly heterogeneous and computational constrained components. In this extended abstract we briefly illustrate the characteristic requirements dictated by robotic ecologies, discuss our experience in developing adaptive robotic ecologies, and provide an overview of the specific solutions developed as part of the EU FP7 RUBICON Project

    Rapid Development and Flexible Deployment of Adaptive Wireless Sensor Network Applications

    Get PDF
    Wireless sensor networks (WSNs) are difficult to pro-gram and usually run statically-installed software limiting its flexibility. To address this, we developed Agilla, a new middleware that increases network flexibility while simplifying application development. An Agilla network is deployed with no pre-installed application. Instead, users inject mobile agents that spread across nodes performing application-specific tasks. Each agent is autonomous, allowing multiple applications to share a network. Programming is simplified by allowing programmers to create agents using a high-level language. Linda-like tuple spaces are used for inter-agent communication and context discovery. This preserves each agent’s autonomy while providing a rich infrastructure for building complex applications, and marks the first time mobile agents and tuple spaces are used in a unified framework for WSNs. Our efforts resulted in an implementation for MICA2 motes and the development of several applications. The implementation consumes a mere 41.6KB of code and 3.59KB of data memory. An agent can migrate 5 hops in less than 1.1 seconds with 92% reliability. In this paper, we present Agilla and provide a detailed evaluation of its implementation, an empirical study of its overhead, and a case study demonstrating its use

    Human-robot Interaction For Multi-robot Systems

    Get PDF
    Designing an effective human-robot interaction paradigm is particularly important for complex tasks such as multi-robot manipulation that require the human and robot to work together in a tightly coupled fashion. Although increasing the number of robots can expand the area that the robots can cover within a bounded period of time, a poor human-robot interface will ultimately compromise the performance of the team of robots. However, introducing a human operator to the team of robots, does not automatically improve performance due to the difficulty of teleoperating mobile robots with manipulators. The human operator’s concentration is divided not only among multiple robots but also between controlling each robot’s base and arm. This complexity substantially increases the potential neglect time, since the operator’s inability to effectively attend to each robot during a critical phase of the task leads to a significant degradation in task performance. There are several proven paradigms for increasing the efficacy of human-robot interaction: 1) multimodal interfaces in which the user controls the robots using voice and gesture; 2) configurable interfaces which allow the user to create new commands by demonstrating them; 3) adaptive interfaces which reduce the operator’s workload as necessary through increasing robot autonomy. This dissertation presents an evaluation of the relative benefits of different types of user interfaces for multi-robot systems composed of robots with wheeled bases and three degree of freedom arms. It describes a design for constructing low-cost multi-robot manipulation systems from off the shelf parts. User expertise was measured along three axes (navigation, manipulation, and coordination), and participants who performed above threshold on two out of three dimensions on a calibration task were rated as expert. Our experiments reveal that the relative expertise of the user was the key determinant of the best performing interface paradigm for that user, indicating that good user modiii eling is essential for designing a human-robot interaction system that will be used for an extended period of time. The contributions of the dissertation include: 1) a model for detecting operator distraction from robot motion trajectories; 2) adjustable autonomy paradigms for reducing operator workload; 3) a method for creating coordinated multi-robot behaviors from demonstrations with a single robot; 4) a user modeling approach for identifying expert-novice differences from short teleoperation traces

    Agilla: A Mobile Agent Middleware for Sensor Networks

    Get PDF
    Agilla is a mobile agent middleware for sensor networks. Mobile agents are special processes that can migrate across sensors. They increase network flexibility by enabling active in-network reprogramming. Neighbor lists and tuple spaces are used for agent coordination. Agilla was originally implemented on Mica2 motes, but has been ported to other platforms. Its Mica2 implementation consumes 41.6KB of code and 3.59KB of data memory. Agents can move five hops in less than 1.1s with over 92% success. Agilla was used to develop multiple applications related to fire detection and tracking, cargo container monitoring, and robot navigation

    Getting Out of the Ghetto: Harm Reduction, Drug User Health, and the Transformation of Social Policy in New York

    Full text link
    This dissertation is a qualitative study of the emergence and evolution of harm reduction drug policies in New York City. It examines harm reduction as a case of the institutionalization of a public health policy movement. Harm reduction seeks to treat the medical and social consequences of drug use without requiring abstinence. The dissertation examines the process by which harm reduction has managed, in the words of one informant, to \u27get out of the ghetto\u27 and become increasingly integrated into New York\u27s public health establishment. Harm reduction has undergone three stages of institutionalization. It began as an activist policy movement. This was followed by a period of partial institutionalization, characterized by grant funding, organizational autonomy and limited state support. Finally, with harm reduction\u27s integration into Medicaid as well as the widespread adoption of naloxone overdose prevention strategies, it has assumed a mainstream position within the health system. This dissertation argues that institutionalization has changed harm reduction at the grassroots level and also contributed to wider changes in the design and delivery of public health in New York State. While some activists remain skeptical of what they see as harm reduction\u27s co-optation, the process has created new relationships between marginalized communities and the state, and led to new forms of social and political inclusion for drug users. This research demonstrates the effectiveness of social movements as policy actors and provides a case study of progressive policy change during a period marked by the privatization and restructuring of social welfare provision. The harm reduction approach, pioneered by drug users and public health activists, is now being applied to the health system more broadly

    Self-organization in Communicating Groups: the emergence of coordination, shared references and collective intelligence\ud

    Get PDF
    The present paper will sketch the basic ideas of the complexity paradigm, and then apply them to social systems, and in particular to groups of communicating individuals who together need to agree about how to tackle some problem or how to coordinate their actions. I will elaborate these concepts to provide an integrated foundation for a theory of self-organization, to be understood as a non-linear process of spontaneous coordination between actions. Such coordination will be shown to consist of the following components: alignment, division of labor, workflow and aggregation. I will then review some paradigmatic simulations and experiments that illustrate the alignment of references and communicative conventions between communicating agents. Finally, the paper will summarize the preliminary results of a series of experiments that I devised in order to observe the emergence of collective intelligence within a communicating group, and interpret these observations in terms of alignment, division of labor and workflow
    corecore