11 research outputs found

    A semantic web rule language for geospatial domains

    Get PDF
    Retrieval of geographically-referenced information on the Internet is now a common activity. The web is increasingly being seen as a medium for the storage and exchange of geographic data sets in the form of maps. The geospatial-semantic web (GeoWeb) is being developed to address the need for access to current and accurate geo-information. The potential applications of the GeoWeb are numerous, ranging from specialised application domains for storing and analysing geo-information to more common applications by casual users for querying and visualising geo-data, e.g. finding locations of services, descriptions of routes, etc. Ontologies are at the heart of W3C's semantic web initiative to provide the necessary machine understanding to the sheer volumes of information contained on the internet. For the GeoWeb to succeed the development of ontologies for the geographic domain are crucial. Semantic web technologies to represent ontologies have been developed and standardised. OWL, the Web Ontology Language, is the most expressive of these enabling a rich form of reasoning, thanks to its formal description logic underpinnings. Building geo-ontologies involves a continuous process of update to the originally modelled data to reflect change over time as well as to allow for ontology expansion by integrating new data sets, possibly from different sources. One of the main challenges in this process is finding means of ensuring the integrity of the geo-ontology and maintaining its consistency upon further evolution. Representing and reasoning with geographic ontologies in OWL is limited. Firstly, OWL is not an integrity checking language due to it's non-unique name and open world assumptions. Secondly, it can not represent spatial datatypes, can not compute information using spatial operators and does not have any form of spatial index. Finally, OWL does not support complex property composition needed to represent qualitative spatial reasoning over spatial concepts. To address OWL's representational inefficiencies, new ontology languages have been proposed based on the intersection or union of OWL (in particular the DL family corresponding to OWL) with logic programs (rule languages). In this work, a new Semantic Web Spatial Rule Language (SWSRL) is proposed, based on the syntactic core of the Description Logic Programs paradigm (DLP), and the semantics of a Logic Program. The language is built to support the expression of geospatial ontological axioms and geospatial integrity and deduction rules. A hybrid framework to integrate both qualitative symbolic information in SWSRL with quantitative, geometric information using spatial datatypes in a spatial database is proposed. Two notable features of SWSRL are 1) the language is based on a prioritised de fault logic that allows the expression of default integrity rules and their exceptions and 2) the implementation of the language uses an interleaved mode of inference for on the fly computation (either qualitative or quantitative) deduction of spatial relations. SWSRL supports an OGC complaint spatial syntax, and a standardised definition of rule meta data. Both features aid the construction, description, identification and categorisation of designed and implemented rules within large rule sets. The language and the developed engine are evaluated using synthetic as well as real data sets in the context of developing geographic ontologies for geographic information retrieval on the Semantic Web. Empirical experiments are also presented to test the scalability and applicability of the developed framework

    Proceedings of the 12th European Workshop on Natural Language Generation (ENLG 2009)

    Get PDF

    Automated Deduction – CADE 28

    Get PDF
    This open access book constitutes the proceeding of the 28th International Conference on Automated Deduction, CADE 28, held virtually in July 2021. The 29 full papers and 7 system descriptions presented together with 2 invited papers were carefully reviewed and selected from 76 submissions. CADE is the major forum for the presentation of research in all aspects of automated deduction, including foundations, applications, implementations, and practical experience. The papers are organized in the following topics: Logical foundations; theory and principles; implementation and application; ATP and AI; and system descriptions

    Efficient Decision Support Systems

    Get PDF
    This series is directed to diverse managerial professionals who are leading the transformation of individual domains by using expert information and domain knowledge to drive decision support systems (DSSs). The series offers a broad range of subjects addressed in specific areas such as health care, business management, banking, agriculture, environmental improvement, natural resource and spatial management, aviation administration, and hybrid applications of information technology aimed to interdisciplinary issues. This book series is composed of three volumes: Volume 1 consists of general concepts and methodology of DSSs; Volume 2 consists of applications of DSSs in the biomedical domain; Volume 3 consists of hybrid applications of DSSs in multidisciplinary domains. The book is shaped upon decision support strategies in the new infrastructure that assists the readers in full use of the creative technology to manipulate input data and to transform information into useful decisions for decision makers

    Uma linguagem para formalização de discursos com base em ontologias

    Get PDF
    Tese (doutorado)—Universidade de Brasília, Faculdade de Ciência da Informação, Programa de Pós-Graduação em Ciência da Informação, 2015.Esta pesquisa propõe a arquitetura da informação de uma linguagem formal textual para representar discursos sobre entidades ontológicas e obter deduções a respeito de ontologias de domínio. Por meio do paradigma de metamodelagem, a linguagem permite tratamento de ontologias heterogêneas que podem ser descritas como instâncias de uma ou mais ontologias de fundamentação. A linguagem suporta comportamentos clássicos e modais sustentados por noções de prova baseadas no paradigma de Programação em Lógica (Modal). O arcabouço modal desenvolvido possibilita que diferentes interpretações modais sejam introduzidas às especificações das ontologias, e contempla especialmente sistemas baseados em lógicas de múltiplos agentes. Uma sistematização do fragmento endurante da Unified Foundational Ontology (UFO) é realizada com objetivo de compor parte do marco teórico que fundamenta a proposta e de servir de exemplo de instanciação do arcabouço desenvolvido. Como resultados complementares, destacam-se: uma sistematização de um conjunto ampliado de regras para produção de modelos conceituais e um glossário detalhado de termos e conceitos da UFO-A; protótipos funcionais que implementam os sistemas elaborados; traduções das teorias descritas no arcabouço proposto para linguagens visuais, como extensões da representação gráfica da OntoUML; e discussões a respeito da integração de Arquitetura da Informação, Modelagem Conceitual e Programação em Lógica (Modal) no contexto social aplicado.This research proposes the information architecture of a textual formal language to represent and reason about ontological entities based on foundational ontologies. Through metamodeling, the language is able to deal with heterogeneous ontologies that can be described as instances of one or more foundational ontology. The language provides classic and modal inference mechanisms supported by proof notions based on the (Modal) Logic Programming paradigm. The modalities introduced by the modal framework allow a wide range of interpretations, including multi-agent systems. A systematization of the endurant fragment of the Unified Foundational Ontology (UFO) is produced in order to compose part of the theoretical framework underlying the proposal, and to serve as an example instantiating the developed framework. As complementary results we highlight: a systematization of an extended set of rules for conceptual modeling and a detailed glossary of terms and concepts of UFO-A; functional prototypes implementing the developed systems; translations of the theories described as instances of the framework to diagramatic representations, as extensions of the OntoUML visual language; and discussions regarding the integration of Information Architecture, Conceptual Modeling and Logic Programming within Applied Social Science

    Safety and Reliability - Safe Societies in a Changing World

    Get PDF
    The contributions cover a wide range of methodologies and application areas for safety and reliability that contribute to safe societies in a changing world. These methodologies and applications include: - foundations of risk and reliability assessment and management - mathematical methods in reliability and safety - risk assessment - risk management - system reliability - uncertainty analysis - digitalization and big data - prognostics and system health management - occupational safety - accident and incident modeling - maintenance modeling and applications - simulation for safety and reliability analysis - dynamic risk and barrier management - organizational factors and safety culture - human factors and human reliability - resilience engineering - structural reliability - natural hazards - security - economic analysis in risk managemen
    corecore