90,930 research outputs found

    Locating privileged spreaders on an Online Social Network

    Full text link
    Social media have provided plentiful evidence of their capacity for information diffusion. Fads and rumors, but also social unrest and riots travel fast and affect large fractions of the population participating in online social networks (OSNs). This has spurred much research regarding the mechanisms that underlie social contagion, and also who (if any) can unleash system-wide information dissemination. Access to real data, both regarding topology --the network of friendships-- and dynamics --the actual way in which OSNs users interact--, is crucial to decipher how the former facilitates the latter's success, understood as efficiency in information spreading. With the quantitative analysis that stems from complex network theory, we discuss who (and why) has privileged spreading capabilities when it comes to information diffusion. This is done considering the evolution of an episode of political protest which took place in Spain, spanning one month in 2011.Comment: 7 pages, 4 figure

    The critical periphery in the growth of social protests

    Get PDF
    Social media have provided instrumental means of communication in many recent political protests. The efficiency of online networks in disseminating timely information has been praised by many commentators; at the same time, users are often derided as “slacktivists” because of the shallow commitment involved in clicking a forwarding button. Here we consider the role of these peripheral online participants, the immense majority of users who surround the small epicenter of protests, representing layers of diminishing online activity around the committed minority. We analyze three datasets tracking protest communication in different languages and political contexts through the social media platform Twitter and employ a network decomposition technique to examine their hierarchical structure. We provide consistent evidence that peripheral participants are critical in increasing the reach of protest messages and generating online content at levels that are comparable to core participants. Although committed minorities may constitute the heart of protest movements, our results suggest that their success in maximizing the number of online citizens exposed to protest messages depends, at least in part, on activating the critical periphery. Peripheral users are less active on a per capita basis, but their power lies in their numbers: their aggregate contribution to the spread of protest messages is comparable in magnitude to that of core participants. An analysis of two other datasets unrelated to mass protests strengthens our interpretation that core-periphery dynamics are characteristically important in the context of collective action events. Theoretical models of diffusion in social networks would benefit from increased attention to the role of peripheral nodes in the propagation of information and behavior

    Efficient link cuts in online social networks

    Get PDF
    Due to the huge popularity of online social networks, many researchers focus on adding links, e.g., link prediction to help friend recommendation. So far, no research has been performed on link cuts. However, the spread of malware and misinformation can cause havoc and hence it is interesting to see how to cut links such that malware and misinformation will not run rampant. In fact, many online social networks can be modelled as undirected graphs with nodes represents users and edges stands for relationships between users. In this paper, we investigate different strategies to cut links among different users in undirected graphs so that the speed of virus and misinformation spread can be slowed down the most or even cut off. Our algorithm is very flexible and can be applied to other networks. For example, it can be applied to email networks to stop the spread of viruses and spam emails; it can also be used in neural networks to stop the diffusion of worms and diseases. Two measures are chosen to evaluate the performance of these strategies: Average Inverse of Shortest Path Length (AIPL) and Rumor Saturation Rate (RSR). AIPL measures the communication efficiency of the whole graph while RSR checks the percentage of users receiving information within a certain time interval. Compared to AIPL, RSR is an even better measure as it concentrates on some specific rumors' spread in online networks. Our experiments are performed on both synthetic data and Facebook data. According to the evaluation on the two measures, it turns out that our algorithm performs better than random cuts and different strategies can have better performance in their suitable situations

    Searching for superspreaders of information in real-world social media

    Full text link
    A number of predictors have been suggested to detect the most influential spreaders of information in online social media across various domains such as Twitter or Facebook. In particular, degree, PageRank, k-core and other centralities have been adopted to rank the spreading capability of users in information dissemination media. So far, validation of the proposed predictors has been done by simulating the spreading dynamics rather than following real information flow in social networks. Consequently, only model-dependent contradictory results have been achieved so far for the best predictor. Here, we address this issue directly. We search for influential spreaders by following the real spreading dynamics in a wide range of networks. We find that the widely-used degree and PageRank fail in ranking users' influence. We find that the best spreaders are consistently located in the k-core across dissimilar social platforms such as Twitter, Facebook, Livejournal and scientific publishing in the American Physical Society. Furthermore, when the complete global network structure is unavailable, we find that the sum of the nearest neighbors' degree is a reliable local proxy for user's influence. Our analysis provides practical instructions for optimal design of strategies for "viral" information dissemination in relevant applications.Comment: 12 pages, 7 figure

    Human-Centric Cyber Social Computing Model for Hot-Event Detection and Propagation

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.Microblogging networks have gained popularity in recent years as a platform enabling expressions of human emotions, through which users can conveniently produce contents on public events, breaking news, and/or products. Subsequently, microblogging networks generate massive amounts of data that carry opinions and mass sentiment on various topics. Herein, microblogging is regarded as a useful platform for detecting and propagating new hot events. It is also a useful channel for identifying high-quality posts, popular topics, key interests, and high-influence users. The existence of noisy data in the traditional social media data streams enforces to focus on human-centric computing. This paper proposes a human-centric social computing (HCSC) model for hot-event detection and propagation in microblogging networks. In the proposed HCSC model, all posts and users are preprocessed through hypertext induced topic search (HITS) for determining high-quality subsets of the users, topics, and posts. Then, a latent Dirichlet allocation (LDA)-based multiprototype user topic detection method is used for identifying users with high influence in the network. Furthermore, an influence maximization is used for final determination of influential users based on the user subsets. Finally, the users mined by influence maximization process are generated as the influential user sets for specific topics. Experimental results prove the superiority of our HCSC model against similar models of hot-event detection and information propagation
    • …
    corecore