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Due to the huge popularity of online social networks, many researchers focus

on adding links, e.g., link prediction to help friend recommendation. So far, no

research has been performed on link cuts. However, the spread of malware and

misinformation can cause havoc and hence it is interesting to see how to cut links

such that malware and misinformation will not run rampant. In fact, many online

social networks can be modelled as undirected graphs with nodes represents users and

edges stands for relationships between users. In this paper, we investigate different

strategies to cut links among different users in undirected graphs so that the speed

of virus and misinformation spread can be slowed down the most or even cut off.

Our algorithm is very flexible and can be applied to other networks. For example,

it can be applied to email networks to stop the spread of viruses and spam emails;

it can also be used in neural networks to stop the diffusion of worms and diseases.

Two measures are chosen to evaluate the performance of these strategies: Average

Inverse of Shortest Path Length (AIPL) and Rumor Saturation Rate (RSR). AIPL

measures the communication efficiency of the whole graph while RSR checks the

percentage of users receiving information within a certain time interval. Compared

to AIPL, RSR is an even better measure as it concentrates on some specific rumors’

spread in online networks. Our experiments are performed on both synthetic data

and Facebook data. According to the evaluation on the two measures, it turns out

that our algorithm performs better than random cuts and different strategies can

have better performance in their suitable situations.
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CHAPTER I

INTRODUCTION

1.1 Online Social Networks

One of the biggest innovations in the 20th century is the computer network, which

allows computers to exchange data. In computer networks, data is transferred in the

form of packets among remote computers along network links. The construction of

computer networks brings numerous benefits, such as file sharing, internet sharing and

resource sharing, etc. Along with the fast development of computer networks, there

are different types of topologies. The simplest one is called point-to-point network:

two endpoints communicate with each other through a permanent link [8]. However,

the number of hosts allowed to communication is limited. The other topology is a

bus: all the computers or services are connected together to a long cable. In this

way, they can communicate with each other. When each host is directly connected

to a central controller named hub or switch, a new topology called star is formed [8].

Another topology is a ring: each device is connected to other two devices with one

in each side, and finally formed a shape of ring. The data can only be transferred

around the ring in one direction, each device is used to strength the signal. However,

it is very vulnerable, since the destroy of one link can interrupt the transmission of

the whole graph. A more complicate network is called mesh network, which includes

fully connected network and partially connected [8]. In a fully connected network,

each node has a link with every other node in the network. In a partially connected

network, some nodes has more than one link with other nodes in the network.
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Along with the widespread of networks, our communication evolution has spawned

new tools such as online social networks, which change the communication way among

people such as young generations. In the past, people can only interact face-to-face

or through phone calls or text messages, which limit people’s circle of friends. Now

online social networks build the platforms for individuals to create a public profile

and a list of users with whom to share interests and activities. In this way, the friend

circles of people are significantly broaden. A good example of online social network

would be Twitter. Once a user has registered a Twitter account, he or she can add

other users to his or her friend list, post and read others’ messages. These messages

are called “tweets” [15] and can be sent through the web wherever there is a computer

and network. Also, with Twitter, a user can interact with other users no matter how

far they are. For example, Twitter can make a user close with famous people such

as president Obama. A registered user can read Obama’s Twitter updates and even

make comments. This can hardly be imagined in the old days without social networks.

In addition, due to the popularity of smart phones and tablets, mobile applications

(Apps) like Facebook and Twitter can be easily downloaded from platforms such as

Apple App Store and Google Play, which change the way of online social networking

from web-based communication to mobile phone-based communication. Also, the

convenience of these handy devices improves the frequency of online communications

in ways that are unimaginable to pre-smartphone days.

1.2 Graph Theory

Online social networks can be represented by graphs. So many terms in graph

theory should be clarified first. A graph can be represented by a formula G = (V,E),

where V stands for nodes or vertices and E stands for edges or links. An edge can
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be directed or undirected depending on whether it has a specific direction or not. In

addition, an edge can be assigned a number as a weight, which can be nonnegative,

integral or positive, etc. A node of a graph can also have different graph properties.

The degree of a node, which is defined as the number of edges incident to that node.

For a node, the number of edges with directions pointed to a node is called the

indegree of the node and the number of edges with directions pointed to other nodes

from a node is its outdegree [11]. Moreover, a node can has one edge or multiple

edges. A path is defined as several edges connecting a series of vertices, the number

of such edges is called a path length. If a path has the same starting and ending

vertex, which is called a closed path; if a path visit any vertex only once it is a simple

path; if a path is both simple and closed, then it is called a cycle [11].

Another important term is graph connectivity, which is correlated to the spread of

information including rumor in online social networks. There are many measures of

connectivities that can be chosen. The density of a graph can be one of the measures,

which is defined as the number of actual edges divided by the maximum number of

edges that a graph can reach. It enables us to deeply understand the information

transmission speed among the nodes or which node has the potential to add more

links. The density of a graph can be easily computed according to its definition.

In an undirected graph, the density is 2|E|
|V |(|V |−1) . In a directed graph, the density is

|E|
|V |(|V |−1) . The diameter of a graph can also be another measure, which is defined

as the longest shortest path between any pair of vertices in the graph. It gives us a

insight on the minimum numbers of steps that are needed for any node to visit all

other nodes in the graph. One of such connectivities checks the minimum number of

elements (nodes or edges) that need to be removed to disconnect the remaining nodes
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from each other thus splitting the graph [7]. Average shortest path length can also

be a measure, which is defined as the average distance between any pair of nodes of

the whole graph [9]. It measures the efficiency of information diffusion in a graph.

Clustering coefficient is also a good candidate measure. The clustering coefficient of

a node can be calculated as: the number of existing edges connecting that node’s

neighbors to each other divided by the maximum possible numbers of such edges [7].

The global clustering coefficient is measured as the number of closed triplets over the

total numbers of triplets (both closed and opened) [7]. In all, clustering coefficient is

a ratio with a value between 0 and 1. It gives us an indication of the probability that

friends of a user are friends of each other.

The connections in online social networks can be modelled as graphs consisting

of many nodes (users) together with a set of edges. These graphs can be either

directed or undirected. For example, Twitter is a directed graph while Facebook is

an undirected graph. Whenever two users become friends in Facebook, there is an

edge between them. A graph is connected when there is a path between every pair of

nodes [7].

There are many types of graphs. A graph can be either directed or undirected,

depending on whether an edge has a specific direction or not. A graph can also be

weighted or unweighted depending on whether weights are assigned to it. A simple

graph is a graph with no self-loops and no multiple edges, while a multigraph is

a graph that multiple edges are allowed to connected to a pair of nodes [11]. A

complete (or full mesh) graph means every node is connected to other nodes. It can

also be defined as: every node has degree N-1 in a graph with N number of nodes. A

connected, simple graph without cycles is called a tree [11].
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There are many problems related to graphs is worth to analyze. One of them is

the shortest path problem. The single-source shortest paths problem, in which we

need to find the shortest paths from a given source vertex to another vertex (or several

vertices) in the graph [6]. One simplest and famous algorithm is bread-first search

(BFS). It starts at the tree root and visits its neighbors first before moving to the next

level of nodes. It can be applied to both directed graph and undirected graph with

time complexity O(E) [6]. In this paper, we use BFS as one of our measure. The detail

information of BFS can be found in out later section. However, BFS algorithm cannot

be applied to weighted graphs. Dijkstra’s algorithm makes up for the deficiency of

bread-first search algorithm with running time O((V + E) lg V ) [6]. It is widely used

in network routing protocols. Another algorithm in solving single-source shortest

paths problem is called Bellman-Ford algorithm. Compared to Dijkstra’s algorithm,

it is slower since it runs in O(|V | · |E|) time [6], but more versatile, as it can work

on graphs with negative edges. The all-pair shortest paths problem, is to find a

shortest path for every pair of vertices in the graph [6]. Floyd-Warshall algorithm

can be applied to both undirected and directed (no negative cycles) graph with time

complexity O(V 3) [6].

1.3 Rumor Issues in Online Social Networks

Online social networks such as Facebook and Twitter make news dissemination

faster than ever. However, virus, malwares, misinformation (such as rumors) will also

propagate quickly in such networks. Such propagation speed is hard to imagine in

the old days of fliers and/or floppy-drive virus infections.

In general, more edges in a graph will likely lead to higher speed of (mis)information

spread, and vice versa. A natural solution to slow down the spread of misinformation
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or rumor is to cut some edges. The question is which of the edges to cut so that the

spread of misinformation or rumor slows down the most.

In this work, we focus on the problem of how to choose edges to cut. A cut is

defined as the removal of an edge. With the removal of some edges, the new graph

will be less connected and thus it will take longer time for rumor to reach nodes.

More specifically, a rumor will reach fewer nodes within a certain delay, limiting its

impact. And the goal is to lower network connectivity the most with efficient cuts.

We designed an algorithm named CDegree Cut, which cuts nodes’ edges depending

on the choice of degree and gets the best result. It is easy to understand by a given

situation as shown in Figure 1: two popular nodes A and B have lots of friends in the

graph and there are no connections among all of their friends. It is obviously that

cutting the edge between node A and B can make the graph disconnected: split into

two sub-graphs. As there is no path between node A and B, the rumor cannot be

transferred between the two sub-graphs. In this case, we choose edges of nodes with

the highest degree to cut.

Figure 1. A Simple Network.

Note that the above graph and discussion can be misleading. Usually there are

other paths, other than the link between these two popular nodes, connecting such
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subgraphs. Therefore, cutting just one link may not disconnect the graph. Still, it is

possible that cutting some of these links may help disconnect them.

1.4 Document Organization

The following paper is divided into four chapters followed by the references and

the appendix.

• Chapter II introduces the related work.

• Chapter III explains our schema and solution in detail.

• Chapter IV shows the simulations results to evaluate our work.

• Chapter V summarizes our work and discuss future works.
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CHAPTER II

RELATED WORK

Our work deals with link cuts to reduce rumor diffusion in online social networks,

which is the opposite of link prediction. So those designs of link prediction algorithms

and analysis of rumor and network features can give us some hints. In this chapter,

we discuss several related work in the following.

2.1 Background in Online Social Networks

In the real world, the online social networks seems very complex, but some stud-

ies showed it is actually a "small world". In the 1960s, Milgram et al. considered a

question: randomly choose two people from a large populations, through how many

intermediate ones they can know each other. That is where the famous "small world"

problem came [18]. In order to solve this problem, Milgram et al. set up several

experiments to study how some start persons forward documents to target persons

through some intermediaries in three distinct subgroups. Here they defined a com-

plete chain as the number of intermediaries, through whom the start persons can

forward documents to target ones successfully. Finally they found the relationship

between the number of intermediaries and the number of chains, also the relationships

between the number of incomplete chains and remove from start at which termina-

tion occurred [18]. Their study helped us realize the world is not as "big" as we ever

thought and laid the groundwork for further studies in interconnectedness in large

social networks.
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In 1998, a first small world model was generated by Watts and Strogatz, also they

found that networks can be classified by two structural features: clustering coefficient,

and characteristic path length [19]. According to the two classifiers, the small world

is between regular graph and random graph, it is highly clustered and with short

characteristic path length, in which diseases can be transmitted easier than in regular

lattices. Three empirical examples of small world networks investigated by them

are the collaboration network of film actors, the electrical power grid of the western

United States and the neural network of the worm C. elegans [19]. Finally they found

that a small world can be constructed by rewiring a regular network. In 1999, Watts

and Strogatz published another paper, in which they named their small world model

as Watts-Strogatz model [3]. Now the small world network is still a popular topic

which is studied by a lot of researchers.

2.2 Link Prediction Problems

In researches related to link changes, many researchers have investigated the link

prediction problem. Backstrom and Leskovec [2] assigned weights to the edges and

identified the heavy weights indicating the occurrence of the new links. Based on

such an observation, they developed an algorithm to predict potential links based on

Supervised Random Walks.

In addition, due to the fast growing of social networks, links may be missing

quickly. Many existing algorithms are unable to deal with this situation. Fire et al.

developed an algorithm based on the extraction of graph topological features; at the

same time, they pointed out a new topological feature named friends-measure, which

worked better than the traditional common-friends. Their algorithm can widely be
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used in indicating missing links and helping users to discover new friends in real online

social networks.

Link prediction problem also exists in recommender systems for online shopping

website like Amazon. Much work has been reported recently in this field. Sarwar et

al. proposed an item-based collaborative filtering recommendation algorithm by iden-

tifying relationships between different items, it outperformed traditional user-based

algorithm in producing higher quality recommendations and more recommendations

per second for millions of users [16].

In addition, cold start problem is also related to recommender systems. In order to

recommend those never or rarely rated items, Schein et al. developed three strategies

according to specific real world conditions by combining content and collaborative

data. Also, they gave a new measure named CROC curve to evaluate the performance

of different algorithms [17]. Finally, it turned out that their algorithm performed

better than a naive Bayes classifier.

Another paper relevant to this research was published by Huang. Unlike Sarwar

et al. who only focused on the linkage information itself [16], Huang exploited the

connection between link prediction and graph topological structure, analyzed gener-

alized clustering coefficients and finally designed a cycle formation model [9], which

made a big progress on solving link prediction problem.

2.3 Rumors’ Influence in Online Networks

These studies on link prediction problem gave us some hints on solving link cuts

problem. In addition, many research studies have been carried out on analyzing

the behavior and damage of the rumor/misinformation in different networks, which

motivates us to design an algorithm to stop rumor’s propagation.
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In online social networks, reducing connectivity can slow down or even stop ru-

mor spreading. Chierichetti et al. studied the performance of rumor spreading in

the classic preferential attachment model of Bollobás et al, compare the efficiency

of disseminating information among different strategies: the standard PUSH-PULL

strategy, PUSH and PULL strategy [5]. These strategies have been insightful in the

development of our strategies in this work.

In email networks, viruses can be transmitted quickly through attachments. An

email network is a graph with email address books as sources and edges representing

communication. Newman et al. presented techniques to prevent virus infection by

analyzing how they spread [13].

In citation networks, nodes represent papers, edges represent citations. Therefore,

if one paper cites another, one directional edge would be added between these two.

Hummon and Doreian developed a new algorithm to analyze a citation network de-

scribing the development of DNA theory, the selected papers are identified through

their structural connectivity in the network [10].

Recently a study on the analysis of connectivity damage to a graph was done

by Cartledge and Nelson. The motivation for them to work on this paper is the

traditional methods like using the size of the largest connected component can not

reflect the damage to a graph especially when it is disconnected, instead they gave

a new measure: average inverse path lengths (AIPL) [4]. This measure can even be

used on the measure the influence caused by adding new edges in the graph. It offered

an idea for us on our work later.
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CHAPTER III

SCHEME DESIGN

In this section, we proposed an algorithm to reduce network connectivity, from

which 16 strategies can be chosen.

3.1 CDegree Cut

In general, the selection of edges to cut can be separated into two steps: deciding

which node’s links to cut and deciding which link from the chosen node to cut. While

there are many different selection criterion in making these two decisions, we focus

on a natural node property: node degree, defined as the number of neighbors that

each node has. In the first decision, we can see that there are four different strategies:

high-degree, medium-degree, low-degree, random. High-degree selection is to choose

the node with the highest node degree. Similarly, medium-degree and low-degree

selection are based on node degree being medium/lowest among all nodes. Random

selection is just randomly picking one node. The second decision again can be made

with four different strategies: high-degree, medium-degree, low-degree, random.

Combining these two decision, we would have 16 different strategies. Two ex-

amples are high-high and low-low selections. In the high-high selection, we choose

the node with highest degree and then sort all neighbors of the node based on the

neighbors’ degree from high to low. Edges will be chosen from the list in the same

order. In the low-low selection, the selection is basically the opposite. The node with

the lowest degree will be chosen first. Then all neighbors of the node will be sorted

based on their degrees from low to high. And cuts are performed from the sorted list.
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There is another parameter that will impact computation overhead, called L. L

is the number of edges to cut before sorting is performed again. Since cutting the

edges will change node degrees, sorting is needed in order to ensure that all further

selections are made accurately. Therefore, L is the “knob” to tune how strictly the

chosen algorithm is followed. Two extreme cases are L = 1 and L = ∞. When

L = 1, sorting is performed after every cut, rendering high overhead. When L =∞,

no sorting will be performed. All edges from a chosen node will be cut until K cuts

are made. In fact, when L is greater than the maximum degree of all nodes, these 16

strategies collapse to 4 as all links from a chosen node will be cut before L links are

exhausted.

Note that it may seem that such K cuts are sequential, i.e., cutting one edge after

another. In fact, these are all cut at once and we are interested in finding the best

set of edges to cut so that rumor will spread slowest in the new graph.

Suppose we are given an undirected graph G and need to find K edges to cut

in order to reduce G’s connectivity. We define two functions: f() for the choice of

which node’s link to cut and g() for the choice of which links of a chosen node to cut.

The two functions can be executed according to an input strategy and the updated

graph. For example, if we choose high-random cuts this time, function f() will rank

nodes’ degrees from high to low and choose the highest one’s index each time. Then

the second highest-degree node is chosen, etc., until L links are cut, at which time

the list is updated based on the new degrees. Similarly, function g() in high-random

cuts will choose edges from the chosen node randomly.

The pseudo-code of the procedure is shown in Algorithm 1 from step 2 to 3. We

regard the undirected graph as a directed graph with one edge in each direction in our
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connectivity matrix. Therefore, cutting one edge in the undirected G means cutting

two edges in both directions at the same time. After each cut is performed, we add

1 to the count of cuts that have been made. We apply steps 2 - 3 before resorting

degrees of the updated graph unless L numbers of edges from current node are cut or

K edges have been cut or all edges of the currently selected node have been cut.

Algorithm 1 CDegree Cut
input : G: an N ×N symmetric matrix represents a graph with N nodes

L: number of edges to cut before re-sorting;
K: total number of edges to cut;
schema: choose which strategy to apply (high, medium, low, random);

output: C: set of edges to cut

1 countK ← 0;
while countK < K do // not enough K cuts

2 countL ← 0;
nodeLeft ← f(G, schema);
connList ← g(G, schema, nodeLeft);
for i ← 1 to length(connList) do

3 nodeRight ← connList(i);
G(nodeLeft, nodeRight) ← 0,
G(nodeRight, nodeLeft) ← 0;
C ← (nodeLeft, nodeRight);
countK ← countK + 1;
countL ← countL + 1;
if countL == L then // L cuts?

4 break;
5 end
6 if countK == K then // K cuts?
7 break;
8 end
9 end

10 end
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3.2 Discussions on Schema Selection

Here we discuss our schema selection in f() and g() in the following.

Intuitively, in order to reduce network connectivity quickly, the graph should be

cut to be as sparse as possible. Cutting the links of the most popular nodes can be a

good choice, but we need to be careful of how many links should be cut. If cutting the

link of two popular nodes can split the graph into two subgraph, then cut it would

be helpful. However, online social networks are usually highly connected [1] and it is

difficult to split the graph. Then randomly cutting some of the edges or even all the

edges of a popular node would be useful, as it will cost all other nodes more steps

to transmit information among themselves. This method is called high-random cuts.

On the other hand, if we want to isolate a few nodes quickly, i.e., with a relatively

small number of cuts, from the graph, cutting the links of least popular nodes can be

a good choice. This is because of their small number of edges. The method is called

low-low cuts.

The intrinsic question is which method would be the most efficient. If we want

to see how many nodes can be affected by the source rumor information in just a

few steps (or delays, if we model the propagation of misinformation on each link as

one unit time), high-random cuts would be a good choice because such hubs can be

quickly dismantled. However, if a longer delay is allowed, low-low cuts would be more

efficient. The reason is the following: with a large allowable delay, misinformation

will most likely reach throughout the network except those isolated nodes. Therefore,

the best solution is to isolate some nodes with low-low cuts.
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CHAPTER IV

EXPERIMENTATION AND EVALUATION

4.1 Performance Evaluation

In this section, we evaluate different strategies in CDegree Cut with different L

values. Our evaluations are based on a subgraph of Facebook snapshot, obtained

from SNAP [12]. It is an undirected graph and consists of 4,039 nodes and 88,234

edges. Each node in the graph represents a user and each edge stands for a relation-

ship between two nodes. The network diameter (maximum undirected shortest path

length) of Facebook graph is 8, the average shortest-path length (APL) value is 3.7,

and AIPL value is 0.3066. The highest node degree is 1,045, the top-10 highest and

lowest degrees are shown on Tables 1 and 2. The maximum number of edges to cut is

set to K = 6, 000, about 7% of the number of edges on the graph. We use a baseline

algorithm called Random Cuts, which simply picks edges randomly to cut.

Table 1. Top Ten Highest Degrees of Facebook Graph.

Ranking 1 2 3 4 5

Degree 1045 792 755 547 347

Ranking 6 7 8 9 10

Degree 294 291 254 245 235
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Table 2. Top Ten Non-zero Lowest Degrees of Facebook Graph.

Ranking 1 2 3 4 5

Degree 1 1 1 1 1

Ranking 6 7 8 9 10

Degree 1 1 1 1 1

Before we present our results, we first introduce performance measures.

We mainly focused on two performance measures: Average Inverse of Shortest

Path Length and Rumor Saturation Rate.

Average Inverse of Shortest Path Length (AIPL) In graph theory, the

shortest path between any two nodes is an interesting and well-investigated problem.

We choose breadth-first search (BFS) to compute the shortest path from any node

to other nodes in the undirected graph, add all these path lengths for all nodes in

the graph. Then the sum is divided by the number of nodes. The result is usually

called average shortest-path length (APL), defined as the average number of steps

along the shortest paths for all possible vertex pairs on the graph [21]. However, the

APL measurement cannot handle partitioned graphs, on which some pairs of nodes

are infinity distance from each other [20]. For this consideration, we use the inverse

of the distance, since 1/∞ is simply 0. The average of all such inverse path lengths

is called average inverse of shortest path length (AIPL). It can be proven that the

range of AIPL is (0,1), where 0 means there is no edge in the graph and 1 means that

the graph is fully connected. Therefore, the goal of efficient cut in our investigation

is to lower AIPL.
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Rumor Saturation Rate (RSR) AIPL gives us the mean value of the inverse

lengths of the shortest paths between all possible pairs of vertices in G, but it still

does not tell us how quickly (mis)information can spread. Therefore, we look at a

new performance measure called rumor saturation rate (RSR), which can be obtained

through experimental settings. In order to find out RSR, S number of nodes are

chosen as the sources of the same misinformation (these are called “rumor sources”).

In each unit time, rumor is spread from all those nodes carrying it so far to all their

neighbors. Such a procedure continues until D unit times. RSR is defined as the

number of nodes who have seen the rumor D unit times later divided by the total

number of nodes N . Because of the random selections, RSR needs to be measured

through repeated Monte Carlo random experiments and it is a function of (S,D).

4.2 Experiments on Synthetic Data

Before testing on real data, we generate an undirected synthetic graph first: it

consists of 4039 nodes and 8823 edges, which is exactly the same number of nodes

as Facebook graph, but 10% edges of Facebook graph. All the edges in this graph

is generated randomly. We generate it because it is less complex than real Facebook

graph and easy to start our analytic. The graph’s average shortest path length is 5.6

and the highest degree is 13. In order to have a good understanding of the graph, the

top ten highest and lowest non-zero degrees are listed in Table 3 and 4 separately.

Before starting our experiment, there is one question to think about: how many total

edges should be cut from the graph? We consider all cuts should be up to 10% of the

number of the original links. Otherwise, the experiment will be meaningless as the

graph becomes very sparse and dysfunctional. So for this synthetic graph, total 600

cuts will be done later.
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Table 3. Top Ten Highest Degrees of Synthetic Graph.

Ranking 1 2 3 4 5

Degree 13 13 12 12 12

Index 1753 2382 3 742 1754

Ranking 6 7 8 9 10

Degree 12 11 11 11 11

Index 3080 2789 2978 3353 4016

Table 4. Top Ten Non-zero Lowest Degrees of Synthetic Graph.

Ranking 1 2 3 4 5

Degree 1 1 1 1 1

Index 22 25 43 129 167

Ranking 6 7 8 9 10

Degree 1 1 1 1 1

Index 183 201 215 246 294

During designing our algorithm, there is one question we need to confirm the

answer: when pick up the highest or lowest degree node, is it better to cut all of its

connected edges or just cut few of its links before re-sorting? In order to address this

issue, we add a variable L to our algorithm, which means cutting L links of selected

highest or lowest degree node every time. Let the number of total cuts K be 600,

try CDegree Cut in different L’s (L = 1-13), we compare the AIPL results in each
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method (high-random cuts and low-low cuts) with different L’s. It turns out there is

no big difference between the curves of different L.

Next, we need to compare the RSR results in our algorithm with different L’s. We

choose some groups of (S, D) values for test: (2, 2), (4, 2), (2, 7), (3, 8), also compute

the 95% confidence interval. We find out that, compared to the 95% confidence

interval, the difference between L’s curves is very small, which means we can almost

ignore the difference. In all, L can be ignored in our later test, or we can choose L be

equal with or greater than the highest degree, that is, select the highest degree node

each time, then cut all its links.

Next, we leave out L and use our algorithm to test AIPL and RSR. Figure 2

shows the AIPL values with different methods. Figure 3 show RSR results on several

different methods. When D is a small value, high-random cuts should perform better

than low-low cuts, since the rumor information can only be transmitted to a small

range with a small D, but with low-low cuts, we cut the link between the lowest

degree nodes, these nodes are in the border of the graph that cannot be affected by

rumor information. Thus it will not influence RSR value a lot; When D is a big value,

low-low cuts should perform better than high-random cuts when the number of cuts is

less than half of the original edges. As with a bigger D value, rumor information can

be transmitted through the most part of the graph, with low-low cuts, most lowest

degree nodes can be isolated, thus will reduce RSR a lot, but with high-random cuts,

nodes are not easy to be isolated, thus it can influence RSR a little.

Finally, we compare CDegree Cut with random cuts in the performance of AIPL

and RSR. In random cuts, we randomly choose one edge to cut each time until

reaching K = 600 cuts. In order to reducing errors from random number, we simulate
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it 20 times to get a lower standard deviation. From Figure 3, it is easy to see no

matter how many edges to be cut, CDegree Cut always performs better than random

cuts.
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Figure 2. AIPL of Different Cut Methods on Synthetic Graph. Low-low Cuts Seem
to Be The Best Method among All Shown.
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Figure 3. RSR Comparisons for (S, D) = (2, 7) on Synthetic Graph. S Represents
The Number of Rumor Sources and D is The Delay Before RSR is Measured. Low-low
Cuts Method is The Best in This Graph.

4.3 Experiments on Facebook Data

We first investigated the effects of L. With K = 6, 000, we tested high-high cuts

for different L values and presented the results in Figure 4. As can be seen from

Figure 4, AIPL decreases as K increases, first rather quickly and then the rate of

AIPL decrease slowing down. Comparing the results of different L’s, we observe that

L = 1 and 20 have rather similar performance. L = 500 and 1,045are similarly better
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than L = 1 and 20. Therefore, a large L actually will result into a better performance,

with lower overhead (of re-sorting the new degrees). Similar comparison results have

been observed for other schemes for both AIPL and RSR. Hence, we conclude that

L can be chosen to a relatively large value such that the overhead of re-sorting is

low. In the following experiments, we chose L = 1, 045. In this case, the methods

in each strategy should have similar results, for example, high-random cuts, high-

medium cuts, high-high cuts and high-low cuts will finally cut the same edges, the

only difference is the order of edges to be cut and the final round of cut.
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Figure 5. AIPL Comparisons of Different Cut Methods on Facebook. Low-low Cuts
Seem to be The Best Method among All Shown.

In Figure 5, we showed the AIPL values of different cut methods for different K

values. The two random methods, random cuts and random-high cuts, ended with

similar results of very slow AIPL decrease. Medium-low cuts and high-random cuts

are better, but the best performance belongs to low-low cuts. Therefore, if we were

to conclude based solely on AIPL comparisons, low-low cuts would be a clear winner.

Interestingly, as to be demonstrated with RSR results, such is not always the case.
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Figure 6. RSR Comparisons for (S, D) = (2, 5) on Facebook. S represents The
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Cuts Method is The Best in This Graph.
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Figure 7. RSR Comparisons for (S, D) = (1, 6) on Facebook. S Represents The
Number of Rumor Sources and D is The Delay Before RSR is Measured. Low-low
Cuts Method is The Best in This Graph.
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Figure 8. RSR Comparisons for (S, D) = (2, 2) on Facebook. S Represents The
Number of Rumor Sources and D is the Delay Before RSR is Measured. High-random
Cuts Method is The Best in This Graph.
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Figure 9. RSR Comparisons for (S, D) = (5, 2) on Facebook. S Represents The
Number of Rumor Sources and D is The Delay Before RSR is Measured. High-
random Cuts Method is the Best in This Graph.

Figures 6, 7, 8, and 9 demonstrated different behaviors of different cut schemes

under various S and D values. Note that S represents the number of rumor sources

and D is the delay before RSR is measured. We choose these D values based on the

APL value of the graph. In Figures 6 and 7, i.e., when D is relatively large, low-low

cuts remain the best among all schemes. However, as shown in Figures 8 and 9, i.e.,

when D is rather small, high-random cuts outperforms other schemes. An intuitive

explanation is in order: when D approaches APL, rumors will reach a majority of the
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nodes in the graph and it would be better to cut away some nodes so that they are

isolated; However, when D is smaller than APL, it would be better to cut of some

of the major connectors of the graph (those high degree nodes) in order to lower the

rumor spread rate.

Comparing the results from Figures 5, 6, 7, 8, and 9, we can see that AIPL measure

has its limits in measuring network connectivity. In fact, sometimes, AIPL would

provide misleading indication of network connectivity. While RSR requires repeated

Monte Carlo experiments, it provides interesting insights into how fast information

could spread.

As we discussed, low-high, low-medium, low-low, low-random schemes work sim-

ilarly for large L because of the small number of links on such nodes. One would

naturally wonder which of the high-* schemes performs best. Figure 10 shows the

comparison of these schemes. From Figure 10, we can conclude that these schemes are

similar in performance. Considering computational overhead, high-random scheme

works fine as no sorting is needed.
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Figure 10. RSR for (S, D) = (5, 2), Different High-* Schemes on Facebook. The RSR
Results only Differ Slightly among Different High-* Schemes.

4.4 Rumor Propagation Models on Facebook Data

Probability theory deals with conditions in which the outcomes occur randomly.

It is is one of the most important theories in mathematics as it can tell us how

likely an event will happen in our real lives. Firstly, we need to clarify some terms

in probability language. The conditions here are called experiments. The set of all

possible outcomes or results from an experiment is called a sample space, which is

represented by a symbol Ω [14]. A subset of a sample space is called an event [14].
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For example, when we flip a coin, there will be two possibly outcomes: one is a head,

the other one is a tail. Of course, the two outcomes cannot happen at the same time,

We use a number 0 to represent head and number 1 as tail , so Ω = {0,1}. If the coin

stops at tail side, this event can be denoted by A = {1}.

A probability can be denoted by P [14], which is a ratio between zero and one.

If an event has probability of 1, this event is certain to happen; if its probability is

equal to 0, the event will never happen. The probability of all the outcomes Ω is

P (Ω) = 1. If an event will happen with a probability of P (A), then the probability

that event will not happen is 1 − P (A). In the above coin flip example, either head

or tail can happen with an evenly probability of 50%. So the probability of the event

that the coin stops at head side can be: P (A) = 0.5.

Based on probability theory, we use a probability model for rumor propagation.

The model is designed as follows: let the probability is 25%. In the first step, each

source node, which contains rumor, flips a biased coin to decide whether it will forward

the rumor which it received so far toward all its neighbors. We realize this by applying

a simple rand() function in our algorithm: each source node makes a random selection

based on this function. If a node gets a value which is less than 0.25, it will be active

and forward the rumor; if the value is greater than 0.25, it will be inactive and not

forward the rumor. So here each node has a 25% chance of forwarding the rumor.

Suppose we have 40 nodes with the rumors, 40 × 0.25 = 10. So on an average, 10

of them will forward rumors to their neighbors. In the second step, for each selected

source nodes each of its links flips a biased coin to decide whether the link will forward

the rumor. Similar to the first step, we apply a rand() function to each link, a return

value will decide whether it will be active or not. Thus, each link will have 25% chance
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of forwarding the rumor. The probability of forwarding a rumor by two sequential

nodes of the same path would be 0.25 × 0.25 = 0.0625. We apply this model to

different cut schemes to check their performance.

We choose a lower D value (D = 2) to run the simulations and finally get the results

that are shown in Figure 11 and 12. It is easy to see: RSR values are much lower

compared to results in Section 4.3 and High-random cuts also perform best among all

the methods. This result is closer to reality, since not all the users on Facebook will

forward the rumors whenever they receive them, especially for those inactive users;

and not every user will forward the rumors to all of his friends, especially to whom

they rarely contact with.

33



0 1000 2000 3000 4000 5000 6000
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Number of cuts, K

R
S

R

 

 

random cuts
random−high cuts

medium−low cuts

high−random cuts

low−low cuts
95% confidence interval

Figure 11. RSR for (S, D) = (10, 2) with The Probability Model. S Represents The
Number of Rumor Sources and D is The Delay Before RSR is Measured. High-random
Cuts Method is The Best in This Graph.

34



0 1000 2000 3000 4000 5000 6000
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Number of cuts, K

R
S

R

 

 

random cuts
random−high cuts

medium−low cuts

high−random cuts

low−low cuts
95% confidence interval

Figure 12. RSR for (S, D) = (20, 2) with The Probability Model. S Represents The
Number of Rumor Sources and D is The Delay Before RSR is Measured. High-random
Cuts Method is The Best in This Graph.
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CHAPTER V

CONCLUSIONS AND FUTURE WORKS

In this paper, we have investigated the problem of efficient link cuts in large

online social networks to lower the speed of misinformation spread, which is exactly

opposite to the well-known link prediction problem. We have designed an algorithm

called CDegree Cut to choose such links. In this algorithm, 16 strategies can be chosen

based on the selection of degree to cut and a parameter L. CDegree Cut has gone

through extensive experimental evaluations through synthetic data and real Facebook

data with two different performance measures: AIPL and RSR. We have found that

L cannot be a factor as curves of different L’s in the same strategy do not differ a lot.

So let L be the maximum degree of all nodes, the 16 strategies have been collapsed to

4: high-*, medium-*, random-*, low-*. Then we have compared the four strategies,

the results from the two experiments coincide with each other, that is: when the

delay is larger than APL, low-low cuts should be used; if the delay is shorter than

APL, high-random cuts should be chosen. Also, we have found that our all strategies

perform better than random cuts. Another interesting observation is the ambiguity

of AIPL results. Instead, a more computation-intensive RSR measurement can help

to provide better insights in the comparison of different schemes. In addition, we

have applied rumor propagation models to our algorithm since that will be closer to

users’ behavior in online social networks. We have applied the updated algorithm to

Facebook data and discovered that the results math the previous ones.
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