3,918 research outputs found

    Big Data Computing for Geospatial Applications

    Get PDF
    The convergence of big data and geospatial computing has brought forth challenges and opportunities to Geographic Information Science with regard to geospatial data management, processing, analysis, modeling, and visualization. This book highlights recent advancements in integrating new computing approaches, spatial methods, and data management strategies to tackle geospatial big data challenges and meanwhile demonstrates opportunities for using big data for geospatial applications. Crucial to the advancements highlighted in this book is the integration of computational thinking and spatial thinking and the transformation of abstract ideas and models to concrete data structures and algorithms

    Land Use And Land Cover Classification And Change Detection Using Naip Imagery From 2009 To 2014: Table Rock Lake Region, Missouri

    Get PDF
    Land use and land cover (LULC) of Table Rock Lake (TRL) region has changed over the last half century after the construction of Table Rock Dam in 1959. This study uses one meter spatial resolution imagery to classify and detect the change of LULC of three typical waterside TRL regions. The main objectives are to provide an efficient and reliable classification workflow for regional level NAIP aerial imagery and identify the dynamic patterns for study areas. Seven class types are extracted by optimal classification results from year 2009, 2010, 2012 and 2014 of Table Rock Village, Kimberling City and Indian Point. Pixel-based post-classification comparison generated from-to” confusion matrices showing the detailed change patterns. I conclude that object-based random trees achieve the highest overall accuracy and kappa value, compared with the other six classification approaches, and is efficient to make a LULC classification map. Major change patterns are that vegetation, including trees and grass, increased during the last five years period while residential extension and urbanization process is not obvious to indicate high economic development in the TRL region. By adding auxiliary spatial information and object-based post-classification techniques, an improved classification procedure can be utilized for LULC change detection projects at the region level

    Development of Geospatial Models for Multi-Criteria Decision Making in Traffic Environmental Impacts of Heavy Vehicle Freight Transportation

    Get PDF
    Heavy vehicle freight transportation is one of the primary contributors to the socio-economic development, but it has great influence on traffic environment. To comprehensively and more accurately quantify the impacts of heavy vehicles on road infrastructure performance, a series of geospatial models are developed for both geographically global and local assessment of the impacts. The outcomes are applied in flexible multi-criteria decision making for the industrial practice of road maintenance and management

    A Data-driven Methodology Towards Mobility- and Traffic-related Big Spatiotemporal Data Frameworks

    Get PDF
    Human population is increasing at unprecedented rates, particularly in urban areas. This increase, along with the rise of a more economically empowered middle class, brings new and complex challenges to the mobility of people within urban areas. To tackle such challenges, transportation and mobility authorities and operators are trying to adopt innovative Big Data-driven Mobility- and Traffic-related solutions. Such solutions will help decision-making processes that aim to ease the load on an already overloaded transport infrastructure. The information collected from day-to-day mobility and traffic can help to mitigate some of such mobility challenges in urban areas. Road infrastructure and traffic management operators (RITMOs) face several limitations to effectively extract value from the exponentially growing volumes of mobility- and traffic-related Big Spatiotemporal Data (MobiTrafficBD) that are being acquired and gathered. Research about the topics of Big Data, Spatiotemporal Data and specially MobiTrafficBD is scattered, and existing literature does not offer a concrete, common methodological approach to setup, configure, deploy and use a complete Big Data-based framework to manage the lifecycle of mobility-related spatiotemporal data, mainly focused on geo-referenced time series (GRTS) and spatiotemporal events (ST Events), extract value from it and support decision-making processes of RITMOs. This doctoral thesis proposes a data-driven, prescriptive methodological approach towards the design, development and deployment of MobiTrafficBD Frameworks focused on GRTS and ST Events. Besides a thorough literature review on Spatiotemporal Data, Big Data and the merging of these two fields through MobiTraffiBD, the methodological approach comprises a set of general characteristics, technical requirements, logical components, data flows and technological infrastructure models, as well as guidelines and best practices that aim to guide researchers, practitioners and stakeholders, such as RITMOs, throughout the design, development and deployment phases of any MobiTrafficBD Framework. This work is intended to be a supporting methodological guide, based on widely used Reference Architectures and guidelines for Big Data, but enriched with inherent characteristics and concerns brought about by Big Spatiotemporal Data, such as in the case of GRTS and ST Events. The proposed methodology was evaluated and demonstrated in various real-world use cases that deployed MobiTrafficBD-based Data Management, Processing, Analytics and Visualisation methods, tools and technologies, under the umbrella of several research projects funded by the European Commission and the Portuguese Government.A população humana cresce a um ritmo sem precedentes, particularmente nas áreas urbanas. Este aumento, aliado ao robustecimento de uma classe média com maior poder económico, introduzem novos e complexos desafios na mobilidade de pessoas em áreas urbanas. Para abordar estes desafios, autoridades e operadores de transportes e mobilidade estão a adotar soluções inovadoras no domínio dos sistemas de Dados em Larga Escala nos domínios da Mobilidade e Tráfego. Estas soluções irão apoiar os processos de decisão com o intuito de libertar uma infraestrutura de estradas e transportes já sobrecarregada. A informação colecionada da mobilidade diária e da utilização da infraestrutura de estradas pode ajudar na mitigação de alguns dos desafios da mobilidade urbana. Os operadores de gestão de trânsito e de infraestruturas de estradas (em inglês, road infrastructure and traffic management operators — RITMOs) estão limitados no que toca a extrair valor de um sempre crescente volume de Dados Espaciotemporais em Larga Escala no domínio da Mobilidade e Tráfego (em inglês, Mobility- and Traffic-related Big Spatiotemporal Data —MobiTrafficBD) que estão a ser colecionados e recolhidos. Os trabalhos de investigação sobre os tópicos de Big Data, Dados Espaciotemporais e, especialmente, de MobiTrafficBD, estão dispersos, e a literatura existente não oferece uma metodologia comum e concreta para preparar, configurar, implementar e usar uma plataforma (framework) baseada em tecnologias Big Data para gerir o ciclo de vida de dados espaciotemporais em larga escala, com ênfase nas série temporais georreferenciadas (em inglês, geo-referenced time series — GRTS) e eventos espacio- temporais (em inglês, spatiotemporal events — ST Events), extrair valor destes dados e apoiar os RITMOs nos seus processos de decisão. Esta dissertação doutoral propõe uma metodologia prescritiva orientada a dados, para o design, desenvolvimento e implementação de plataformas de MobiTrafficBD, focadas em GRTS e ST Events. Além de uma revisão de literatura completa nas áreas de Dados Espaciotemporais, Big Data e na junção destas áreas através do conceito de MobiTrafficBD, a metodologia proposta contem um conjunto de características gerais, requisitos técnicos, componentes lógicos, fluxos de dados e modelos de infraestrutura tecnológica, bem como diretrizes e boas práticas para investigadores, profissionais e outras partes interessadas, como RITMOs, com o objetivo de guiá-los pelas fases de design, desenvolvimento e implementação de qualquer pla- taforma MobiTrafficBD. Este trabalho deve ser visto como um guia metodológico de suporte, baseado em Arqui- teturas de Referência e diretrizes amplamente utilizadas, mas enriquecido com as característi- cas e assuntos implícitos relacionados com Dados Espaciotemporais em Larga Escala, como no caso de GRTS e ST Events. A metodologia proposta foi avaliada e demonstrada em vários cenários reais no âmbito de projetos de investigação financiados pela Comissão Europeia e pelo Governo português, nos quais foram implementados métodos, ferramentas e tecnologias nas áreas de Gestão de Dados, Processamento de Dados e Ciência e Visualização de Dados em plataformas MobiTrafficB

    Getting Into Networks and Clusters: Evidence on the GNSS composite knowledge process in (and from) Midi-Pyrénées

    Get PDF
    This paper aims to contribute to the empirical identification of clusters by proposing methodological issues based on network analysis. We start with the detection of a composite knowledge process rather than a territorial one stricto sensu. Such a consideration allows us to avoid the overestimation of the role played by geographical proximity between agents, and grasp its ambivalence in knowledge relations. Networks and clusters correspond to the complex aggregation process of bi or n-lateral relations in which agents can play heterogeneous structural roles. Their empirical reconstitution requires thus to gather located relational data, whereas their structural properties analysis requires to compute a set of indexes developed in the field of the social network analysis. Our theoretical considerations are tested in the technological field of GNSS (Global Satellite Navigation Systems). We propose a sample of knowledge relations based on collaborative R&D projects and discuss how this sample is shaped and why we can assume its representativeness. The network we obtain allows us to show how the composite knowledge process gives rise to a structure with a peculiar combination of local and distant relations. Descriptive statistics and structural properties show the influence or the centrality of certain agents in the aggregate structure, and permit to discuss the complementarities between their heterogeneous knowledge profiles. Quantitative results are completed and confirmed by an interpretative discussion based on a run of semi-structured interviews. Concluding remarks provide theoretical feedbacks.Knowledge, Networks, Economic Geography, Cluster, GNSS
    corecore