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Abstract 

Heavy vehicle freight transportation is one of the primary contributors to socio-

economic development, but it also has great influence on the traffic environment. An 

accurate and comprehensive understanding of the influence of heavy vehicle freight 

transportation on traffic environment is critical for informed decision making 

concerning traffic and road systems management and for satisfying users’ 

requirements. The accurate analysis and efficient management of traffic environment 

can bring great benefits to communities for their easy access to roads and facilities, to 

industries for the efficiency improvement and cost reduction, and to authorities for 

smart management of road assets. To quantify the impacts of heavy vehicle freight 

transportation, this research develops a series of geospatial models for both 

geographically global and local assessment of the impacts.  

In this research, to explain the methodology, heavy vehicles and their traffic 

environmental impacts are analysed for the road network across the Wheatbelt in 

Western Australia (WA), Australia. The Wheatbelt is a major grain and other 

agricultural production region in Australia. It links the Perth Metropolitan region, the 

capital city of WA, with mining and agricultural production regions. Heavy vehicles 

are the predominant transportation tool of mining and agricultural equipment and 

products. The research consists of the following four stages. 

First, road infrastructure performance and factors that can affect the pavement 

performance are investigated from the geographical information systems (GIS) 

perspective. To understand the factors associated with the road infrastructure 

performance, previous research and critical methods about the burden of road 

maintenance from heavy vehicles, and the comprehensive impacts of multi-source 

factors on road infrastructure performance are reviewed. Meanwhile, to understand the 

advantages and potential of current indicators and methods for describing road 

infrastructure performance, geospatial decision making approaches for road 

infrastructure management are reviewed. In addition, BIM-GIS integration is an 

emerging platform that merges advantages of BIM and GIS. It is a rapid developing 

and innovative trend for both academic research and industries in construction field. 

In order to better satisfy users’ requirements in practical road and vehicle management, 
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BIM-GIS integration is reviewed and analysed from the aspect of spatio-temporal 

statistics.  

Next, to assess heavy vehicle impacts on the burden of road maintenance, two 

segment-based spatial prediction models, segment-based ordinary kriging (SOK) and 

segment-based regression kriging (SRK), are proposed for the spatial prediction of 

traffic volumes and masses of different types of vehicles. The segment-based spatial 

prediction models can provide new insights into the spatial characteristics and spatial 

homogeneity of a road segment during prediction. An R “SK” package is developed 

for performing the segment-based spatial prediction models. Results indicate that they 

can more accurately predict traffic conditions compared with traditional methods that 

deal with point-based observations. The methods are utilized in estimating the burden 

of road maintenance at road segment level across the road network.  

Third, the comprehensive impacts of vehicles, climate, properties of road and 

socioeconomic conditions on pavement infrastructure performance are investigated 

using segment-based spatial stratified heterogeneity analysis. In addition to the 

vehicles that are a primary factor of road conditions discussed above, various other 

variables also have significant influence on the roads. Meanwhile, their impacts vary 

greatly on different roads. The segment-based spatial stratified heterogeneity analysis 

can provide both the impacts of single variables and their interactions. An R “GD” 

package is developed for applying this approach. The approach in this study provides 

new ideas for spatial analysis for segmented geographical data and can objectively 

estimate the contributions of explanatory variables on pavement performance.  

Finally, to more comprehensively describe the overall performance of road 

infrastructure and to select a more accurate performance indicator, this study proposes 

a model-driven fuzzy spatial multi-criteria decision making (MFSD) approach for 

comparing different monitoring indicators and computing an overall indicator. The 

MFSD method can both generate an indicator and support decision making by 

integrating data-driven model-based decision making, fuzzy set theory, GIS and multi-

criteria decision making (MCDM). Results show that MFSD-based indicators can 

more accurately describe the spatial distribution of road maintenance burden compared 

with monitored indicators. The outcomes are applied in flexible multi-criteria decision 

making for road maintenance and management.  
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This study develops a series of new geospatial methods, and brings new 

theories and technologies together, for comprehensive investigation of road 

infrastructure performance and the factors of pavement performance. Using the 

developed new methods, this thesis provides new findings of road infrastructure 

performance from a geospatial perspective. In addition to the findings and outcomes, 

academic and industrial contributions are also summarized and presented in this 

research. From the academic perspective, this thesis enriches the types of spatial data, 

presents new knowledge to the theories and methods of road and vehicle research, and 

provides proper solutions to deep understand the data and the scientific problems. 

From the practical perspective, with the new methods, data-driven outcomes, tools and 

software, this study can support more accurate, geographically local and flexible 

decision making, and benefit local communities, traffic and road authorities and 

industries.  
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Chapter 1 Introduction 

1.1 Background 

The road network is the predominant transportation infrastructure, and road freight 

transportation is essential in socio-economic development for all nations. It is 

estimated that 89% of the variations in freight transportation are associated with 

economic conditions (Bennathan, Fraser, and Thompson 1992). However, 

continuously increased freight volumes have caused a series of challenges for local 

communities and road authorities. One of the primary impacts of road freight 

transportation is the severe damage to road surfaces and rapidly aging roads compared 

with maintenance plans. A direct result of such impacts is dramatically increased road 

maintenance costs. The impacts of road freight transportation also can lead to 

uncomfortable and unsafe driving, low quality of living environment for local 

communities and inaccessibility to industrial facilities for industries when they use the 

roads.  

In recent years, the quantification of impacts of road freight transportation has 

attracted researchers’ attention. A growing amount of data can be monitored through 

various sensors by road authorities and freight transportation industries to estimate the 

total masses of vehicles and road conditions. These data have been widely applied in 

road and vehicle management, but more importantly, geographically local and flexible 

analysis is still critically required for the effective and efficient management. To 

achieve these objectives, a series of problems about theories and methods have to be 

solved.   

First, it is increasingly critical to investigate road infrastructure performance 

and explore the factors from the geographical information systems (GIS) perspective. 

Road performance and factors data are greatly varied across road network. GIS has 

strengths in visualising the geospatial data with multiple layers, and supports accurate 

and geographically local analysis of the associations between road performance and 

factors. Thus, GIS provides diverse theoretical and methodological basis for the 

geospatial analysis of road and vehicle issues. In addition, the integration of building 
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information modelling (BIM) and GIS provides great potential of spatio-temporal 

statistical analysis of both road and vehicle data in this research and issues in the broad 

architecture, engineering and construction industry. BIM supports abundant semantic 

and geometric information of construction components during the whole life cycle of 

buildings and cities. GIS contains both theories and techniques of visualisation and 

analysis of geographical and spatial information. BIM-GIS integration will merge the 

new geospatial models that have been applied in spatial prediction, factor exploration 

and decision making related to road infrastructure management.  

From the GIS perspective, the road and vehicle spatial data that are linearly 

distributed along roads and across road network are different from the traditional GIS 

data sampled by points or areas. Thus, line segment-based spatial data of road and 

vehicle attributes should be defined to more accurately describe traffic conditions and 

road infrastructure performance. The impacts of freight transportation on roads across 

the whole road network are generally predicted based on data at monitored points and 

parts of road segments. The spatial data of roads and vehicles are characterised in the 

spatial heterogeneity along road segments, which is totally different from the 

traditional point-based spatial data. Thus, line segment based spatial data needs to be 

properly defined and the corresponding prediction methods are required for more 

accurate estimation of traffic conditions and impacts of freight transportation on roads.  

Meanwhile, influence of heavy vehicle freight transportation on road 

infrastructure performance need to be highlighted. Heavy vehicles are used as the 

predominant tool for road freight delivery. The total number of heavy vehicles reached 

4.14 million globally in 2017, which accounted for 4.26% of all vehicles in use 

(International Organization of Motor Vehicle Manufacturers 2018). Even though the 

heavy vehicles are much fewer than light vehicles, heavy vehicle freight transportation 

is the primary type of freight delivery. For instance, in Europe, the percentage of heavy 

vehicles is 2.15% of all vehicles, but they support 75.3% of the freight transport 

including roads, railways and waterways (The European Automobile Manufacturers' 

Association (ACEA) 2018, Eurostat 2018). In Australia, 2.33% of vehicles are heavy 

vehicles, but the freight moved by road accounts for 52% of tonnages moved and 42% 

of ton-kilometres travelled among the road, rail, sea and air networks (Australian 

Bureau of Statitics ABS 2002). The mass of a heavy vehicle ranges from 42.5 t to 

147.5 t (Main Roads Western Australia 2016a), while a light vehicle is only 1.65 t and 
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the gross vehicle mass (GVM) is generally lower than 4.5 t in Australia (Department 

of Transport - The Government of Western Australia 2016). Thus, due to the heavy 

masses, the impacts of heavy vehicles are much higher than light vehicles.  

Furthermore, road infrastructure is influenced by complex factors, including 

road age and materials, surrounding climate environment, and socio-economic 

conditions, in addition to the traffic vehicles. From the perspective of geospatial 

analysis, the spatiotemporal non-stationarity of road and vehicle data has become 

increasingly critical with more accurate quantitative research, innovative technologies 

and smart management in recent years. The stationarity means that the spatiotemporal 

law of a spatiotemporal random field is invariant across the study area and period. 

Strict stationarity is difficult to test, and thus, secondary-order stationarity is 

commonly assumed in geospatial analysis, which only requires the first two moments 

of the spatiotemporal process. In traditional pavement engineering and construction 

management, the variations of road and vehicle data are usually considered to be 

stationary during the road planning, construction and maintenance phases. In different 

places and periods of the whole life of roads, the variations of the values of road and 

vehicle attributes are regarded as a constant. However, the geospatial objectives are 

usually non-stationary due to the specific spatiotemporal characteristics. For the road 

and vehicle data, non-stationarity is a common phenomenon in that performance varies 

in different places with diverse climates and ecological environments, and during 

various periods with associated seasonal effects, long-term trends and short-term 

fluctuations (Qiu et al. 2013). Ignoring the spatiotemporal non-stationarity of road and 

vehicle data might lead to the reduction of road life. Meanwhile, the lack of the 

knowledge on the impact of local climate, environment and socio-economic conditions 

on road can lead to uniformed and less effective strategies for road maintenance.  

Finally, how to describe more aspects and provide more information of road 

infrastructure performance still represents an area of great need, even though data on 

additional indicators can be now collected through the development of sensing and 

monitoring techniques. Two questions that are important to researchers and 

practitioners need to be answered: which indicators are more reasonable and accurate 

in capturing road performance and how to develop overall indicators that can reflect 

the most relevant information from the monitoring data? To answer these questions, 

geospatial multi-criteria decision making (MCDM) is utilized for computing overall 
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indicators and making decisions on indicator selection. Different from previous 

MCDM approaches, monitoring data for multiple indicators and geospatial 

information associated with road infrastructure performance will be taken into account 

in this study.  

1.2 Scope 

This study focuses on applying developed geospatial models for the analysis 

and decision making of road and vehicle management. The scope of this study is 

defined from three aspects: key issues, data and methods. First, the key issues to be 

address include how to quantify the traffic environmental impacts of heavy vehicle 

freight transportation, and what are the impacts. Since the issues are essential for 

practical decision making of industries, data analysis, professional knowledge of 

engineering and management and practical experiences should all be considered in the 

study. Second, this study is a data-driven research, and data sourced from multiple 

sources are generally converted to geospatial data statistical and spatial statistical data 

analysis. Finally, for more effective and accurate analysis and decision making, 

proposing developed geospatial models are critical for data analysis in the study.   

1.3 Objectives  

The aim of this research is to develop a methodology incorporating geospatial 

models for mapping the traffic environmental impacts of heavy vehicle freight 

transportation. This methodology will be applied using a geographically regional, 

flexible, and accurate multi-criteria decision making (MCDM) model of road and 

vehicle management. To achieve this outcome, four objectives are established:  

(1) To critically understand road infrastructure performance and factors that 

have influence on pavement from a GIS perspective. First, the burden of road 

maintenance from heavy vehicles, the comprehensive impacts of multi-source factors 

on road infrastructure performance, and the geospatial decision making approaches for 

road infrastructure management will be reviewed. In addition, in order to better satisfy 

users’ requirements in practical road and vehicle management, the BIM-GIS 

integration, which is an emerging platform to merge the strong parts of BIM and GIS, 

will also be reviewed and analysed from the aspect of spatio-temporal statistics.  
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(2) To accurately investigate heavy vehicle impacts on the burden of road 

maintenance. The line segment-based spatial prediction models will be developed and 

the road maintenance burden caused by different types of vehicles will be evaluated. 

(3) To investigate comprehensive impacts of multi-source variables on road 

infrastructure performance. The accurate and geographically local impacts of vehicles, 

climate and environmental conditions on road infrastructure performance will be 

investigated.  

(4) To develop geospatial MCDM methods for transportation authorities using 

flexible, accurate and geographically regionalised decisions for road and vehicle 

management, such as road performance assessment and road maintenance. The 

usability and effectiveness of the developed models and decisions are validated 

through both statistical validations and the comparison with the real defects of 

pavement.  

1.4 Significance  

The following three main contributions can be obtained from this research: 

(1) An innovative research program developing geospatial models for 

accurate spatial analysis of road, traffic and the surrounding environment 

problems. 

This research innovatively develops geospatial models for the analysis of road 

and traffic issues. In this research, spatial heterogeneity of line segment based spatial 

data is investigated, and a series of segment-based spatial models are proposed. 

Compared to previous methods, geospatial models developed in this research could 

help describe and accurately map traffic and environmental impacts in terms of 

segment-based observations, which is one of the primary theoretical contributions of 

this research. Due to the improvement of geospatial models and multi-source variables, 

the prediction and estimation accuracy of the impacts of heavy vehicle freight 

transportation on road infrastructure performance will be significantly improved. 

Meanwhile, the models address the problems of multiple traffic variables, their 

nonlinear relationships with the impacts, spatial variability, spatial non-stationarity, 
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and segment-based spatial observations, which are all integral parts of the road and 

traffic analysis that have been overlooked by previous studies. 

(2) The development of flexible and accurate heavy vehicle freight 

transportation related decision-making approaches.  

Freight transportation by heavy vehicle is critical for the development of 

industries, but it usually produces road damage, rapid road aging and increased road 

maintenance burden and cost. Thus, it is necessary to establish flexible and accurate 

decisions about road and heavy vehicle management. Data-driven model-based spatial 

MCDM approaches that are able to accommodate uncertainty are proposed for spatial 

data supported decision making. The proposed methods can provide accurate and 

regional impact maps of heavy vehicles under various scenarios. The maps can support 

flexible decision making, such as accurate decisions on road asset management. 

Meanwhile, geospatial decisions support more effective monitoring and more accurate 

analysis of road infrastructure performance.   

(3) The optimisation of the road construction and management from a 

geospatial perspective. 

This research provides data-driven spatial analysis methods and more accurate 

datasets for road construction and management. For easy use of the proposed methods, 

software to implement the proposed spatial analysis methods is developed. The 

developed R packages can be freely downloaded and applied by users. In addition, this 

research integrates construction and procurement information from project-based BIM 

with the geospatial analysis and decision making for road and vehicles management. 

This is an important theoretical contribution for construction management. It can help 

industry to optimise road construction and management through relevant strategies, 

such as selecting the appropriate types of heavy vehicles, delivery routes and time 

sequencing to match the available road infrastructure.   

1.5 Thesis structure 

The remaining thesis is organized as in Figure 1-1 and the details are explained 

as follows.  
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Figure 1-1. Structure of thesis and relationships of chapters 

Chapter 2 reviews the background and methods of traffic vehicles studies and 

the assessment of road infrastructure performance.  

Chapter 3 explores the trends and opportunities of implementing BIM-GIS 

integration in road construction and management from a spatiotemporal statistical 

perspective.  

Chapter 4 analyses the burden of road maintenance through segment-based 

spatial prediction of traffic volumes and vehicle masses. Segment-based ordinary 

kriging (SOK) and segment-based regression kriging (SRK) methods are proposed for 

spatial prediction and burden estimation. 

Chapter 5 presents the comprehensive impacts of various factors from multiple 

sources on road infrastructure performance using segment-based spatial stratified 

heterogeneity analysis. A segment-based geographical detectors model is utilized in 

the exploration of factors.  

Chapter 6 computes an overall relative indicator for describing road 

infrastructure performance and compares the effectiveness and accuracy of different 

indicators using a data-driven model-based fuzzy spatial multi-criteria decision 

making (MFSD) approach.  
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Finally, Chapter 7 concludes the thesis and recommends future research 

directions.   
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Chapter 2 Heavy Vehicles and Road Pavement 

Performance: A Review 

In this chapter, previous work about the impacts of heavy vehicles on the traffic 

environment and the quantitative analysis methods are reviewed. The review aims to 

investigate the methods of previous research and to identify the gaps and potential for 

future development. It can provide a comprehensive understanding of the background 

and knowledge base in multiple fields of this research. The review is organized as 

follows. Section 2.1 reviews the background and methodology for assessing the 

impacts of heavy vehicle freight transportation on the burden of road maintenance. 

Section 2.2 presents a review of the comprehensive impacts of heavy vehicles and 

climate environment on road pavement performance. In Section 2.3, from the 

perspective of decision making, previous studies about the quantitative analysis of 

geospatial multi-criteria decision making for road and heavy vehicle management are 

reviewed. Finally, the trends and benefits of BIM-GIS integration in traffic 

environment analysis and management are reviewed in Section 2.4. 

2.1 Burden of road maintenance from heavy vehicle freight 

transportation 

Road transportation is one of the primary factors of road pavement damage that 

links the burden of road infrastructure maintenance. To assess the burden of road 

maintenance, the total masses of vehicles on the road network should be estimated. 

Due to various traffic conditions, such as types and volumes of vehicles, the masses of 

vehicles are distinct on different road segments. Thus, it is necessary to accurately 

estimate and predict traffic volumes for different types of vehicles and on various road 

segments across the road network to quantify the burden of road maintenance.  

Accurate spatial prediction of traffic volumes is of great importance for 

transportation analysis, planning and decision making. A wide range of methods have 

been applied for spatial prediction issues in the fields of road and traffic planning 

utilizing uncounted traffic data of road segments (Zou et al. 2012, Wang and 

Kockelman 2009, Zou et al. 2011). These studies can be divided into two categories: 
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statistical approaches and imaging approaches. Statistical approaches include studies 

such as multiple regression (Yang, Wang, and Bao 2011, Lowry 2014), time-series 

analysis (Tang et al. 2015, Tan et al. 2013), the U.S. Federal Highway Administration 

(FHWA) procedure (Rossi, Gastaldi, and Gecchele 2014, Guide 2012), machine 

learning algorithms (Islam 2016) and geostatistical methods (Selby and Kockelman 

2013). Imaging approaches provide predictions with the help of image data such as 

light detection and ranging (LiDAR) data (Toth, Barsi, and Lovas 2003) and high-

resolution remote sensing data (Jiang, McCord, and Goel 2006, McCord et al. 2002).  

Among these approaches, geostatistical or kriging-based methods are very 

advantageous in providing insights into traffic behaviours across large spatial scales 

by exploring spatial local correlations. These methods are a series of the best linear 

unbiased estimators for spatial data with expected bias of zero and minimized expected 

interpolation error, and can provide both predictions and their estimated uncertainty. 

Thus, compared with other models, their predictions tend to be more accurate and 

reliable. Comparison studies reveal that universal kriging (UK) performs much better 

than non-spatial multiple regression (Zou et al. 2012, Selby and Kockelman 2011) and 

has a small improvement over geographically weighted regression (Selby and 

Kockelman 2013) in the spatial prediction of traffic volumes. In addition, traffic data, 

such as traffic speed and volume, are spatially continuous and autocorrelated, which 

means that traffic conditions at adjacent road segments are usually identical or similar. 

Traffic congestion may appear at road intersections especially in regions with dense 

human activities, and diffuse spatially leading to regional congestions (Zou et al. 

2012). This phenomenon is explained as spatial autocorrelation that could be explored 

by geostatistical methods (Prasannakumar et al. 2011). For instance, geostatistical 

methods have been applied on traffic prediction issues including traffic count 

estimation (Selby and Kockelman 2011, Selby and Kockelman 2013), speed prediction 

of the traffic system (Hackney et al. 2007), travel time estimation (Miura 2010), 

congestion analysis (Prasetiyowati et al. 2016) and incident assessment (Molla, Stone, 

and Lee 2014).  

However, all these studies utilize point-based spatial interpolation and they are 

not straightforward in traffic prediction. Actually, point-based methods are dominant 

for the interpolation of spatially continuous data over areas of interest, since spatial 

distribution data are often collected from point sources (Li and Heap 2014, Song et al. 
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2016, Song et al. 2015, Wang, Ge, Song, et al. 2014). But these methods simplify lines 

of road segments with various shapes and lengths as single points. This simplification 

process enables simple traffic modelling, but ignores the spatial characteristics and 

spatial heterogeneity of lines of road segments. Ignoring these elements leads to 

inaccurate predictions which can negatively affect decision making by road agencies. 

Thus, a segment-based interpolation method is necessary for predicting uncounted 

traffic data.  

Previous studies have attempted to develop geostatistical methods for data with 

variable spatial support instead of traditional point support or regular pixel support of 

remotely sensed images. These methods include area-to-point kriging (ATPK) for 

estimation from area data to point data (Goovaerts 2009), area-to-area kriging (ATAK) 

for estimation of different areas (Pardo-Iguzquiza et al. 2011), top-kriging for 

estimation of data with variable spatial characteristics (Skøien, Merz, and Blöschl 

2005), and their relevant development such as area-to-area regression kriging 

(ATARK) (Ge, Liang, et al. 2015) and area-to-point poison kriging (Goovaerts 2006). 

They have been utilized for addressing interpolation problems with irregular spatial 

support from runoff of river networks (Skøien, Merz, and Blöschl 2005, Skøien et al. 

2014), geographical upscaling and downscaling (Ge, Liang, et al. 2015, Wang, Shi, et 

al. 2015, Zhang et al. 2017), population estimation (Liu, Kyriakidis, and Goodchild 

2008), and mapping disease and health data (Asmarian et al. 2012, Goovaerts 2006, 

Asmarian et al. 2013). However, there are few research attempts to develop 

geostatistical interpolation models for traffic prediction with the integration of the 

irregular shape of road segments.  

As an important continuous and regular construction task, cost effective road 

maintenance greatly relies on accurate traffic volume predictions. Road maintenance 

becomes increasingly critical for social and economic development, especially for 

safe, accessible and serviceable travel and freight transportation. The primary 

objectives of maintenance decisions of road networks include determining the road 

segments to be repaired, repair periods and treatment strategies (Chan, Fwa, and Tan 

1994). Among these works, road segment based maintenance burden analysis is a key 

evidence and foundation for engineering studies on road damage (Fakhar and 

Asmaniza 2016), evaluation of environmental impacts (Min et al. 2016) and 

construction management of road maintenance (Gao, Zhang, and Li 2016). The 
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gradual cracking and pulverization of road surfaces is usually caused by cumulative 

vehicle masses, especially trucks or heavy vehicles (Bilodeau, Gagnon, and Doré 

2017, Underwood et al. 2017), and the penetration of the road surface by saline 

groundwater (Dasgupta et al. 2014). In addition, road damage varies by location, since 

the degree and speed of the impacts of cumulative vehicle masses vary on different 

roads that primarily serve passenger or freight transportation, and the impacts of 

groundwater salinization are highly variable across space depending on the local 

volume of water, and the age and composition of road materials. Previous studies have 

stressed the importance of burden estimation of road maintenance due to its link with 

maintenance cost, but few of them accurately and geographically predict the burden 

distributions at segment level. 

2.2 Comprehensive impacts of heavy vehicles and climate 

environment on road pavement performance 

The condition of road infrastructure is affected by numerous factors and varies 

greatly on different roads. Road infrastructure is critical to the well-being and 

economic health of all nations, so a large number of civil investments are made on 

road construction and maintenance (Main Roads Western Australia 1996, Underwood 

et al. 2017). The Australian Government spends more than $7 billion for maintaining 

and renewing road infrastructure every year (Commonwealth Grants Commission - 

Australian Government 2011), which accounts for about half of the aggregated public 

roads budget in Australia (Department of Infrastructure and Transport - Australia 

Government 2011). Road infrastructure plays an essential role in both public travel of 

passengers and freight transportation. Main roads supported 77.4% of domestic 

passenger travel (300.7 billion passenger kilometres (bpkm)) and 31.7% of domestic 

freight transportation (213.9 billion tonne kilometres (btkm)) during 2015-16 financial 

year in Australia (Department of Infrastructure and Regional Development - Australia 

Government 2017). The main roads of Australia were primarily built in since 1940s, 

when the factors affecting pavement conditions were seldom considered in the road 

construction process. In fact, numerous factors, including traffic conditions, climate 

and environment, and the characteristics of the pavement itself, have sophisticated and 

significant influence on pavement condition (Neumann et al. 2015, Ede 2014). 

Ignoring these factors in road construction and pavement materials selection may lead 
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to a cumulative burden, premature damage, reduction of longevity and increased costs 

for road maintenance (Underwood et al. 2017, Wang et al. 2018). Thus, researchers 

have started to pay attention to the quantitative analysis of the impacts of various 

factors on pavement conditions in recent years. Pavement conditions are usually 

monitored and analysed using indicators of pavement infrastructure performance, such 

as deflections (Salour and Erlingsson 2013, Flintsch et al. 2013), roughness (Bridgelall 

2013, Shah et al. 2013) and cracking (Solla et al. 2014, Yang and Deng 2017). 

Vehicles and climate are two primary factors of pavement infrastructure 

performance concerned in recent research. Impacts of vehicles on pavement 

performance are from multiple aspects. Roads with high traffic volumes may face 

higher risk of pavement damage and higher cost of road maintenance (Smith and 

Peshkin 2011). Heavy vehicles produce substantial cumulative vertical stress on 

pavement due to their heavy mass (Steenkamp, Berman, and Benade 2016, Lee and 

Peckham 1990). Traffic mass overload can also increase risks of pavement damage 

and pavement repair costs, compared with vehicles under legal loads (Pais, Amorim, 

and Minhoto 2013). For climate factors, previous research generally uses temperature 

and precipitation as the direct and most important factors for pavement performance 

assessment. High temperatures and temperature variations usually lead to relatively 

large deflections (Lukanen, Stubstad, and Briggs 2000), slab, alligator and transverse 

cracking (Yu et al. 1998, Mohd Hasan, Hiller, and You 2016), strain rate reduction of 

asphalt pavement (Yin et al. 2016), permanent deformation (Mohd Hasan, Hiller, and 

You 2016) and increased pavement repair costs (Fletcher et al. 2016). Studies in the 

United States show that the longitudinal cracking of pavement is greatly influenced by 

temperature and precipitation, especially in wet climate areas where the expansion of 

frozen water contributes to cracking (Mohd Hasan, Hiller, and You 2016). 

Precipitation also may decrease pavement life (Mndawe et al. 2015) due to premature 

damage of materials and structure.  

To explore the impacts of the factors on pavement infrastructure performance, 

two categories of methods have been commonly utilized in previous studies, including 

engineering methods and statistical methods. A widely used engineering method is the 

Pavement Design Mechanistic-Empirical (ME) model, which can calculate pavement 

performance variations resulting from climate change, traffic, pavement structure and 

materials, and is primarily applied on flexible and proper pavement design 
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(Underwood et al. 2017, Chatti et al. 2017, Gu et al. 2017, Yang, You, et al. 2017). 

The advantage of the method is that the expected performance and life of pavement 

can be estimated by involving parameters related to pavement structure and materials 

(Priest and Timm 2006, Li, Mills, and McNeil 2011). Another category of methods 

involves data-driven statistical methods, such as correlation analysis, statistical tests 

and regressions. For instance, Pearson correlation analysis and analysis of variance 

(ANOVA) are applied on assessing the effects of temperature and precipitation on 

pavement distresses, including various forms of cracking, rutting, pavement 

deformation and roughness (Mohd Hasan, Hiller, and You 2016). A seemingly 

unrelated regression model is utilized to study the impacts of the aggregate number of 

heavy vehicles on the side force, roughness and profile depth of pavement (Caliendo, 

Guida, and Pepe 2015). However, spatial heterogeneity is seldom considered in the 

above two categories of methods, even though pavement infrastructure performance is 

a typical geospatial problem. A major gap in the few considerations of spatial 

heterogeneity is that pavement observation data are distributed along line segments of 

the road network, which is different to traditional point or areal geographical 

observations distributed across the whole space and designed to capture the full range 

of variation of pavement condition and performance.  

One of the primary objectives of spatial analysis is to explore spatially varied 

and local impacts of factors on geographical issues (Song et al. 2017, Song et al. 2016, 

Ge, Song, et al. 2017, Song et al. 2015, Cai, Huang, and Song 2017b). In this study, 

segment-based spatial stratified heterogeneity analysis is utilized to deal with the 

segment-based data and consider spatial heterogeneity in the assessment of pavement 

infrastructure performance. Segment-based spatial stratified heterogeneity analysis 

integrates optimal discretisation of segment-based data and the geographical detector. 

Optimal discretisation aims at exploring the best combination, such as the 

discretisation method and number of breaking intervals, for discretising continuous 

variables. The geographical detector is a spatial statistical method that can analyse 

relationships between geographical variables based on spatial variance and 

geographical strata. The method was originally utilized to explore spatial stratified risk 

factors of disease (Wang et al. 2010). The method is increasingly used in spatial 

stratified heterogeneity analysis in broad fields, including public health (Ge, Zhang, et 

al. 2017), land use (Gao et al. 2017), carbon emissions (Fang et al. 2017), air pollution 
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(Zhou, Chen, and Wang 2018), economy (Yang, Hu, et al. 2017), etc., due to a series 

of advantages in spatial analysis. A primary advantage is that no linear assumptions 

are required for the relationships between explanatory and response variables, and for 

the relationships between pairs of explanatory variables, since the method objectively 

reveals the spatial associations between response and explanatory variables (Wang 

2017). In addition, interactive impacts between two variables or among multiple 

variables can be quantified with the geographical detector (Wang, Zhang, and Fu 2016, 

Ju et al. 2016). Finally, the types and stratifications of explanatory variables are 

flexible, where continuous variables can be discretised to categorical variables. 

2.3 Geospatial multi-criteria decision making for road and heavy 

vehicles management 

2.3.1 How to characterize infrastructure performance 

Road infrastructure is critical for passengers and freight transportation, and it 

is one of the predominant factors for socio-economic development. In general, the 

theoretical life of road infrastructure is about 25 – 40 years, which varies in different 

nations and for different types of roads (Main Roads Western Australia 1996). 

However, an increasing number of recent studies realize the lifespan might be 

significantly reduced due to various reasons, such as high vehicle mass loads and 

climate change, causing dramatically elevated and spatially uneven distribution of 

risks of road damage. Thus, how to more accurately monitor and evaluate the 

geographically local performance of road infrastructure raises researchers’ attention. 

A practical and widely used approach is using one or more indicators to assess road 

infrastructure performance, since the monitored data can directly and accurately reflect 

road performance such as structural and functional conditions. The performance 

indicators play an important role in the design, construction, maintenance, 

management and ensuring safety and reliability during the whole life cycle of road 

infrastructure (Council 1995).  

The measures of road infrastructure performance are commonly used to 

quantify the quality of service to road users. Road infrastructure performance is 

generally measured from four perspectives: pavement condition, traffic capacity, 

safety and population accessibility (Council 1995). Pavement condition measures 
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reveal the structure and functional condition of the road surface (Dong and Huang 

2015, Wadalkar, Lad, and Jain 2018). The traffic capacity of roads includes congestion 

of traffic flows, travel time, and the ratio of actual traffic volume to volume capacity 

(Çolak, Lima, and González 2016). Safety measures can examine if accident rates have 

associations with the road design and pavement conditions (Anastasopoulos, Sarwar, 

and Shankar 2016). Population accessibility measures are used to quantify the ease 

and resources with which people can access facilities and services through road 

transport (Song, Tan, et al. 2018). All the above measures are critical for the design, 

planning, maintenance and optimization of both public facilities and road 

infrastructure. This study focuses on the pavement condition measures. Pavement 

performance can be evaluated from multiple aspects, such as structural and functional 

indicators (Wadalkar, Lad, and Jain 2018). From the perspective of industrial practice, 

pavement condition measures are usually classified into three categories: deformation 

distresses, surface distresses and texture distresses. Commonly used deformation 

distress indicators include deflection, curvature, roughness and rutting (Ferreira et al. 

2011, Anastasopoulos et al. 2012, Sultana et al. 2018, Lin, Cho, and Kim 2016). 

Surface distresses usually measures the cracking, ravelling, different types of 

potholing and edge breaks on the pavement surface (Jain, Jain, and Jain 2017, Mullin, 

Liu, and McHattie 2014, Thube 2012). Pavement surface texture distress can be 

measured by the flushing and polishing conditions, texture depth and skid resistance 

(Kennedy, Young, and Butler 1990, Asi 2007, Lee, Mannan, and Wan Ibrahim 2018, 

Schnebele et al. 2015, Carmon and Ben-Dor 2018). These indicators are widely 

applied for monitoring, maintenance and management of road pavement. However, a 

single indicator generally cannot reflect the overall and comprehensive condition of 

pavement, even it has advantages for assessing pavement performance from one 

aspect. In fact, it is very difficult and challenging to have an overall indicator that can 

reflect every aspect of pavement performance that is accurate, informative and 

satisfactory for users (Council 1995). The overall indicators are usually more effective 

for assessing pavement performance compared with single indicators (Shah et al. 

2013). 

In addition to the structural and functional road conditions that can be revealed 

by the performance indicators, road infrastructure performance is also linked with the 

properties of roads and their surrounding environment (Schweikert, Chinowsky, 
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Kwiatkowski, et al. 2014, Schweikert, Chinowsky, Espinet, et al. 2014, Chinowsky et 

al. 2015, Melvin et al. 2017). On one hand, the continuous increase of traffic volumes 

brings a huge burden for road infrastructure. In 2015, the global number of motor 

vehicles reached 923.6 million, which is 1.68 times the number in 2000 and 6.61 times 

the number in 1965 (Williams, Davis, and Boundy 2017, Davis, Diegel, and Boundy 

2015). The annual rate of increase decreased from 8.44% in 1965 to -0.10% in 1993, 

and it is maintained at around 0% until 1999, but has started to increase since 2000. 

The annual average rate of increase during 2000 to 2015 is 5.39%, where the rate 

reaches 10.58% and 11.08% in 2000 and 2014, respectively. Meanwhile, the annual 

average increase of the number of vehicles per capita is 1.27 from 1965 to 2000, but it 

reaches to 2.71 from 2000 to 2015, and 4.25 from 2010 to 2015 (Williams, Davis, and 

Boundy 2017). On the other hand, the increased burden of road infrastructure also 

comes from the pronounced variability of climate change and extreme climate with 

growing frequency and intensity. The increased vulnerability of road infrastructure due 

to climate change is explored in a study in Alaska, United States. It reveals that climate 

change related road damage may cause at least 4.2 billion USD and an extra 1.3 billion 

USD by greenhouse gas emissions during this century (Melvin et al. 2017). Studies in 

Asia and Africa also show the huge costs of climate change related road damage. For 

instance, during this century, the average annual decadal costs for road infrastructure 

maintenance may reach 7.6 billion, 2.0 billion, 0.6 billion, and 86.3 billion USD in 

China, Japan, South Korean and Pan-Africa, respectively (Westphal, Hughes, and 

Brömmelhörster 2015, Chinowsky et al. 2011, Strzepek et al. 2012). Thus, predictive 

maintenance and proactive and resilience adaptions are required to reduce the impacts 

of climate change on road damage and the burden of road infrastructure maintenance 

(Melvin et al. 2017, Schweikert, Chinowsky, Kwiatkowski, et al. 2014).  

2.3.2 Literature review of methodology 

The MCDM is an effective approach for dealing with complex decision-

making problems. It can integrate the performance of decision alternatives across 

multiple criteria from various sources to derive a compromise solution (Opricovic and 

Tzeng, 2004). The MCDM is gradually improved by combining with methods and 

techniques in specific professional fields. To involve geospatial data and methods in 

decision making, the GIS-based MCDM (GIS-MCDM) method is proposed 

(Malczewski, 2006). In addition, the fuzzy MCDM method is developed to quantify 
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the uncertainty in the decision making (Suárez-Vega and Santos-Peñate, 2014). 

Compared with traditional decisions based on the knowledge and experience of 

experts, data and model drive decision-making methods rely more on the data and data 

analysis models, and they can effectively address sophisticated decision-making 

problems (Sari and Zarlis, 2018). In this section, we review the literature and concepts 

associated with the methodology to be applied in the research, including the MCDM 

method, the GIS-MCDM method, the fuzzy MCDM method and the data and model 

driven decision-making methods.  

The MCDM is a complex and dramatic process consisting of goals definition, 

available alternatives, various criteria and the preference structure of decision makers 

who evaluate the alternatives in terms of the criteria (Opricovic and Tzeng 2004). The 

commonly used MCDM methods include the AHP method (Saaty 2013, Saaty and 

Decision 1990), TOPSIS method (Hwang and Yoon 1981), VIsekriterijumska 

Optimizacija I KOmpromisno Resenje (VIKOR) method (Opricovic 1998), multi-

objective optimization on the basis of ratio analysis (MOORA) method (Brauers and 

Zavadskas 2006), weighted aggregated sum product assessment (WASPAS) method 

(Zavadskas et al. 2012), ELimination Et Choix Traduisant la REalité (ELECTRE) 

method (Benayoun, Roy, and Sussman 1966, Roy 1968, Roy and Bertier 1971, Roy 

and Bertier 1973, Roy 1978), preference ranking organization method for enrichment 

evaluation (PROMETHEE) method (Brans and Vincke 1985, Brans, Vincke, and 

Mareschal 1986), etc. Among the MCDM methods, the AHP and TOPSIS are more 

practical for applications compared with other methods due to the simplicity and ease 

of utilization (Sánchez-Lozano et al. 2013). The AHP method develops a hierarchical 

structure of objectives, alternatives and criteria, and compares alternatives in terms of 

the relative importance of the criteria and alternatives under each criterion using a pair-

wise comparison method (Saaty 2013). The TOPSIS method defines that the optimal 

alternative should have “the shortest distance from the ideal solution and the farthest 

distance from the negative-ideal solution” (Opricovic and Tzeng 2004), but it does not 

perform pair-wise comparisons among criteria and alternatives under each criterion.  

Further, GIS-MCDM is a critical spatial analysis method in geospatial decision 

making that integrates information stemming from multiple sources, including both 

spatial and non-spatial data (Feizizadeh et al. 2014, Sánchez-Lozano et al. 2013). GIS 

is a broad field for dealing with geospatial data and applications, and is used for the 
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storage and management of spatial and spatiotemporal data, visualization, spatial 

analysis and decision making (Berry 1996b). Especially, GIS has advantages over 

spatial and spatiotemporal characteristics analysis, factors exploration, prediction and 

simulation (Song et al. 2017). The combination of GIS and MCDM methods gradually 

becomes a framework for addressing sophisticated decision-making issues through 

hierarchical organization and construction of spatiotemporal relationships for the 

elements and components of the objectives (Malczewski 2006). Due to uncertainty in 

the information and processes of decision, fuzzy theory is increasingly utilized in GIS-

MCDM studies, such as land use evaluation, water resources management and 

infrastructure allocation issues (Zhang et al. 2014, Feizizadeh et al. 2014, Esmaelian 

et al. 2015, Bingham, Escalona, and Karssenberg 2016, Malczewski and Rinner 2005). 

Fuzzy set theory uses membership functions to describe the preference comparisons 

of the attributes of interest (Chang 1996). The fuzzy set theory can describe uncertainty 

of criteria using the degree of memberships for criteria in the MCDM process (Jiang 

and Eastman 2000, Suárez-Vega and Santos-Peñate 2014). The fuzzy MCDM 

approach provides greater flexibility for the evaluation in terms of geospatial data and 

the GIS-MCDM process (Jelokhani-Niaraki and Malczewski 2015).  

Meanwhile, compared with traditional decision making methods, data and 

model driven decision-making approaches and support systems can deal with the 

dramatically elevated complexity and uncertainty in the decision-making issues, 

especially the mega decisions, interdisciplinary and cross-domain problems (Power 

and Sharda 2007, Backer, Mertsching, and Bollmann 2001, Hedgebeth 2007). 

Traditional decision making methods are driven by knowledge from experienced 

decision makers and experts, so the accuracy of decisions depends largely on the 

decision makers, and the biases and uncertainties caused from human factors are still 

a critical problem (Power 2008, 2000). To reduce the biases and uncertainties from 

human factors, data and model driven methods aim at supporting decisions using data 

analysis models. Commonly used quantitative models of data and model driven 

decision making include regression models, classification models, prediction models 

and simulation models (Mandinach 2012, Sari and Zarlis 2018). However, data and 

model driven decision approaches are still at initial stage of development and have 

great potential. First, the framework and processes of data and model driven decision 

making are a priori, and they can be varied in different problems and fields. In addition, 
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the mainstream of current quantitative models of data analysis are linear and non-linear 

statistical models, which are practical and direct to derive the relationships between 

criteria and alternatives, but these methods are still limited in addressing sophisticated 

issues, especially the spatial and spatiotemporal problems examining during the GIS-

MCDM process. Finally, most of previous studies use a single or a limited number of 

statistical models to explore the relationships between criteria and alternatives in data 

and model driven decision making. Due to the differences in mathematical concepts 

of various statistical models and the parameters, the results of association functions 

might be different, even some of them might be identical or similar. Thus, it is 

necessary to apply more models to evaluate the relationships between criteria and 

alternatives to improve the accuracy and reduce the uncertainties of decisions.  

2.4 Trends and opportunities for BIM-GIS integration in the 

architecture, engineering and construction industry 

Worldwide growth of cities with rapid urbanization and global climate change 

are the two most critical issues in the current world (Grimm et al. 2008, Satterthwaite 

2009, McDonald et al. 2011). The concept of a smart sustainable city is an innovative 

concept that has been widely considered since the mid-2010s and aims at improving 

the quality of life of present and future generations under the conditions of 

urbanization and global climate change (Höjer and Wangel 2015, Kramers et al. 2014, 

Bibri and Krogstie 2017). With the wide utilization of information and communication 

technologies (ICTs) and the internet of things (IoT), urban services will be more 

efficient and cities will be more competitive for their socio-economic, environmental 

and cultural conditions (Griffinger et al. 2016). Thus, a smart sustainable city is 

characterized by widely used technology and comprehensive improvement of the 

sustainability of urban lifestyle, which requires massive and multi-source data for the 

use of technologies and management.  

The integration of building information modelling (BIM) and geographic 

information systems (GIS) is a strong support for smart sustainable cities due to 

capabilities in data integration, quantitative analysis, application of technologies and 

urban management (Ma and Ren 2017, Fosu et al. 2015, Yamamura, Fan, and Suzuki 

2017b). BIM-GIS integration in construction management has been a new and fast 
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developing trend in recent ten years, from research to industrial practice. BIM has 

advantages in rich geometric and semantic information through the building life cycle 

(Volk, Stengel, and Schultmann 2014), while GIS is a broad field covering 

geovisualisation-based decision making and geospatial modelling (Berry 1996a). 

Their respective advantages have been discussed in some of the previous review 

articles (Liu et al. 2017, Pauwels, Zhang, and Lee 2017, Ma and Ren 2017). BIM-GIS 

integration is to integrate the strong parts of both BIM and GIS for building and city 

modelling. During the past ten years, BIM-GIS integration has been applied in multiple 

cases such as visualization of construction supply chain management (Irizarry, Karan, 

and Jalaei 2013), emergency response (Teo and Cho 2016, Xu et al. 2016, Wu and 

Zhang 2016), urban energy assessment and management (Salimzadeh, Sharif, and 

Hammad 2016, Romero et al. 2016, Costa et al. 2016), heritage protection (Yang, 

Koehl, et al. 2016, Bento et al. 2016), climate adaption (Hjelseth and Thiis 2009) and 

ecological assessment (Zhou and Castro-Lacouture 2016).  

In previous BIM-GIS integration studies, researchers spent a lot of efforts on 

the integration technologies. Various BIM-GIS integration methods are proposed to 

address different problems (Pauwels, Zhang, and Lee 2017, Liu et al. 2017). For the 

integration pattern, more than half of the researchers prefer to extract data from BIM 

to GIS, and others integrate GIS data to BIM systems or integrating both BIM and GIS 

data on a third-party platform (Ma and Ren 2017). For instance, Industrial Foundation 

Class (IFC) and City Geography Markup Language (CityGML) are two of the most 

popular and comprehensive standards for exchanging semantic 3D information and 

geographic data for BIM and GIS respectively, and they are the primary standards for 

BIM-GIS integration (Gröger and Plümer 2012, Deng, Cheng, and Anumba 2016b, 

Hijazi et al. 2010). During the integration process, some significant details are lost due 

to the extraction and simplification of data from one system to another (Yuan and Shen 

2010). To avoid information losses, the unified building model (UBM) is proposed to 

cover information of both IFC and CityGML models (El-Mekawy, Östman, and Hijazi 

2012).  

Even though many technical issues related to the integration of BIM and GIS 

have been fully or partially addressed, few theoretical studies address how to fully 

integrate the respective strengths of BIM and GIS for further quantitative analysis. 

Spatial or spatio-temporal statistical modelling for the analysis of patterns and 
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exploration of relationships is regarded as the central function of GIS (Bailey 1994, 

Marshall 1991, F Dormann et al. 2007, Wang, Zhang, and Fu 2016, Wang et al. 2012), 

but it is scarcely mentioned in BIM-GIS integration studies. During the past thirty 

years, spatio-temporal statistical modelling has been widely applied to geosciences 

including geology, geography, agriculture, ecology, atmospheric science, hydrology, 

etc. (Fischer and Wang 2011), and location-based studies in other fields such as urban 

planning (Páez and Scott 2005, Chun and Guldmann 2014, Cai, Huang, and Song 

2017a), public health (Wang et al. 2010, Yang, Xu, et al. 2017) and social science (Ge, 

Yuan, et al. 2017, Ren et al. 2017, Chen and Ge 2015, Liao et al. 2017). From the 

perspective of the architecture, engineering and construction (AEC) industry, with the 

wide application of BIM, especially the collection of massive data, accurate 

mathematical modelling is required for the analysis and assessment of each stage of 

AEC industry, quality, cost, progress, safety, contract and information management, 

and coordination of various sectors.  
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Chapter 3 BIM-GIS Integration in Road 

Maintenance and Management: A Spatiotemporal 

Statistical Perspective 

3.1 Introduction 

This chapter aims to summarize applications of BIM-GIS integration and 

propose the potential of its future development in the AEC industry from a spatio-

temporal statistical perspective. 

In this thesis, the applications of BIM-GIS integration to characterize its 

evolution from three aspects are reviewed, (1) applications of BIM-GIS integration in 

the AEC industry during past ten years, (2) history of BIM-GIS integration from the 

perspective of surveying and mapping, and (3) comparative study of the evolution of 

GIS, BIM and integrated BIM-GIS. The analysis of evolution of BIM-GIS integration 

enables further and deep understanding of the central functions and primary scope of 

BIM, GIS and their integration. Based on the analysis, this review aims at summarizing 

the trends of applying BIM-GIS integration in the AEC industry and proposing 

potential opportunities of BIM-GIS integration from the perspective of spatio-

temporal statistical modelling. As a result, we propose three hypotheses for future 

development of BIM-GIS integration. 

This review-based analysis is structured as follows. Section 3.2 summarizes 

the methodology of review for the status quo of current applications of BIM-GIS 

integration globally. Section 3.3 analyses the evolution of BIM-GIS integration from 

the three aforementioned aspects. Section 3.4 discusses future trends and proposes 

potential opportunities of BIM-GIS integration in the AEC industry. Section 3.5 

concludes this analysis.  

3.2 Methodology of review  

In this thesis, the integration of BIM-GIS is reviewed to characterize the 

evolution of BIM-GIS integration. An evaluation of research and practical trends and 
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gaps is undertaken in order to propose the future opportunities. To achieve this goal, 

the literatures is analysed from three aspects. First, the current application trends since 

the concept of BIM-GIS integration are explored. Publications associated with BIM-

GIS integration are collected and statistically analysed. The literature is summarized 

according to multiple indicators including the annual number of publications, annual 

citation times, distribution of publications across countries/regions and 

universities/institutes, research areas the publications belong to, and the primary 

journals and conferences for BIM-GIS integration studies. The evolution of BIM-GIS 

integration needs to be described and the reasons why it has developed in this direction 

will be further discussed. Finally, the potential prospects, opportunities and drawbacks 

are evaluated from the spatio-temporal statistical perspective so that the functional 

analysis can be fully utilized in the practices of AEC industry. 

Literature about BIM-GIS integration was retrieved from the Web of Science 
TM Core Collection. Both journal and conference articles were retrieved. Journals are 

limited to Science Citation Indexed (SCI) or Social Sciences Citation Indexed (SSCI) 

journals, and conferences are indexed by the Conference Proceedings Citation Index-

Science (CPCI-S) or Conference Proceedings Citation Index-Social Science & 

Humanities (CPCI-SSH). “BIM” and “GIS” are keywords with the operator of “AND” 

for searching the topic of the literature, which includes title, abstract, author keywords 

and keywords plus®, and the publication language is limited to English. As a result, 99 

research articles were retrieved (before September 2017). Three articles among them 

were not related with BIM-GIS integration and they were removed. Thus, 96 articles 

concerning BIM-GIS integration were collected, including 36 articles from SCI/SSCI 

indexed journals.  

3.3 Evolution of BIM-GIS integration 

The evolution of BIM-GIS integration is characterized by three aspects: 

application evolution in AEC industry, history from the perspective of surveying and 

mapping, and comparison study of the evolution of GIS, BIM and integrated BIM-

GIS. The three aspects of BIM-GIS integration evolution are discussed in the 

following subsections.  
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3.3.1 Application evolution in AEC industry 

The evolution of BIM-GIS integration in the AEC industry reveals that BIM-

GIS integration has moved from simple cases to deep considerations and complex 

applications.  

Most of the early studies try to address technological problems of integration. 

In general, multiple integration methods are proposed to address various problems (Liu 

et al. 2017, Pauwels, Zhang, and Lee 2017). A mainstream of integration methods is 

extracting BIM data to the GIS context (van Berlo and de laat 2010, Liu et al. 2014). 

While, during this process, some significant details are lost (Yuan and Shen 2010). To 

address this problem, a unified building model (UBM) covering both IFC and 

CityGML models is utilized to avoid detail loss (El-Mekawy, Östman, and Hijazi 

2012). In addition, to ensure the construction details, geometric topological and 

semantic topological modelling are applied on capturing 3D features (Li et al. 2016), 

such as the application of floor topology detection (Dominguez, Garcia, and Feito 

2012). A series of methods are also proposed to ensure the interoperability of BIM and 

GIS, such as semantic web technology (Karan, Irizarry, and Haymaker 2016, de Farias, 

Roxin, and Nicolle 2015), semantic-based multi-representation approaches (Mignard, 

Gesquiere, and Nicolle 2011), implementation of prototypes (Hwang, Hong, and Choi 

2013), and resources description framework (RDF) (Hor, Jadidi, and Sohn 2016).  

After the initial development, researchers started to propose new standards and 

methods for building and urban database management. Concept of level of details 

(LoD) in CityGML is applied on the representation and management of buildings and 

building elements during BIM-GIS integration (Geiger, Benner, and Haefele 2015, 

Ryu and Choo 2015, Deng, Cheng, and Anumba 2016b). Studies also explain the 

techniques for the storage, query, exchange and management of spatial information 

(Musliman, Abdul-Rahman, and Coors 2010, Borrmann 2010, Isikdag, Zlatanova, and 

Underwood 2012, Zlatanova, Stoterand, and Isikdag 2012, Sergi and Li 2014, 

Ryzynski and Nalecz 2016). A web-based open source platform is considered as a 

well-behaved tool for the sharing and fusion of 3D information in digital buildings 

(Delgado et al. 2015, Isikdag 2015, de Farias, Roxin, and Nicolle 2015, Park and Kim 

2016, Kunchev 2016). In addition to building and urban database management, 

comparison studies and comprehensive applications are performed to explore the 
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advantages and disadvantages of 3D display methods and software, including 3D GIS, 

BIM, CAD, CityEngine, 3D Studio Max and SketchUp (Cengiz and Guney 2013, El 

Meouche, Rezoug, and Hijazi 2013, Jia and Liao 2017, Mijic, Sestic, and Koljancic 

2017). 

More specifically, publications are categorized based on their application areas 

and publication years to reveal the application evolution of BIM-GIS integration in the 

AEC industry (Table 3-1). Applications are classified into two categories according to 

the application object, a building or a city. The applications with the object of buildings 

are classified into four categories according to the construction phases, including 

planning and design, construction, operation and maintenance, and demolition. Results 

show that the application objects consist of both buildings and cities, which includes 

urban infrastructure. For applications with objects of buildings, 61% of the studies 

focus on the operation and maintenance phase but only a few studies explore the 

demolition phase.  

Table 3-1. Application evolution of BIM-GIS integration in AEC industry 

Application 
object Building 

City 
Construction 

phase 
Planning and 

design Construction 
Operation 

and 
Maintenance 

Demolition 

Year 

 
2008 

Site selection 
(Isikdag, 
Underwood, 
and Aouad 
2008). 

 

Fire response 
(Isikdag, 
Underwood, 
and Aouad 
2008); Web 
service 
(Lapierre and 
Cote 2008); 
Disaster 
scenarios 
(Lapierre and 
Cote 2008). 

 

3D city 
(Doellner and 
Hagedorn 
2008). 

 2009 

Climate 
adaptation 
(Hjelseth and 
Thiis 2009). 

   
Urban renewal 
projects (Kim 
et al. 2009). 

 2010  

Urban 
renewal 
projects (Choi 
et al. 2010). 

  

Urban facility 
management 
(Hijazi, 
Ehlers, and 
Zlatanova 
2010, Hijazi et 
al. 2010) (e.g. 
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road 
maintenance 
(Monobe and 
Kubota 
2010)); urban 
design (Gil et 
al. 2010). 

 2011 

Construction 
safety 
planning 
(Bansal 
2011a); 
construction 
space 
planning 
(Bansal 
2011b). 

Visualization 
of 
construction 
time control 
(Elbeltagi and 
Dawood 
2011). 

Existing 
buildings 
maintenance 
(Godager 
2011). 

  

 2012  

Highway 
construction 
management 
(Fu et al. 
2012). 

Emergency 
response 
(Zlatanova, 
Stoterand, 
and Isikdag 
2012). 

 

Urban crisis 
response 
(Chambelland 
and Gesquiere 
2012); human 
activity and 
land use 
(Porkka et al. 
2012) 

 2013 

Site selection 
of solar 
panels 
(Andrey and 
Luiza 2013). 

Visualization 
of 
construction 
supply chain 
management 
(CSCM) 
(Irizarry, 
Karan, and 
Jalaei 2013). 

Indoor 
navigation 
(Isikdag, 
Zlatanova, 
and 
Underwood 
2013); 
heritage 
protection 
(Bianco, Del 
Giudice, and 
Zerbinatti 
2013). 

 

 

Urban 
representation 
(Rua, Falcao, 
and Roxo 
2013, 
Stojanovski 
2013). 

 

2014   

Fire 
simulation 
and response 
(Chen, Wu, et 
al. 2014); 
heritage 
protection 
(Mezzino 
2014); large 
building 
operation 
(Forsythe 
2014). 

 

Urban facility 
management 
(Mignard and 
Nicolle 2014) 
(e.g. traffic 
planning 
(Wang, Hou, 
et al. 2014)). 

2015 
Building 
design and 
preconstructi

 
Facility 
management 
(Kang and 

Construction 
waste 
processing 

Tunnel 
modelling 
(Borrmann et 
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on operations 
(Karan and 
Irizarry 2015, 
Gocer, Hua, 
and Gocer 
2015); 
building 
energy design 
(Niu, Pan, and 
Zhao 2015, 
Iadanza et al. 
2015). 

Hong 2015); 
indoor 
emergency 
response 
(Tashakkori, 
Rajabifard, 
and Kalantari 
2015); 
heritage 
protection 
(Baik, 
Yaagoubi, 
and Boehm 
2015, He et 
al. 2015). 

(Liu et al. 
2015). 

al. 2014); 
energy 
assessment 
and 
management 
(Ronzino et al. 
2015, 
Redmond, 
Fies, and Zarli 
2015, De 
Hoogh et al. 
2015); district 
modelling 
(Del Giudice, 
Osello, and 
Patti 2015).  

2016 
Building 
design (Kari 
et al. 2016). 

Urban 
renewal 
projects 
(Gocer, Hua, 
and Gocer 
2016). 

Flood damage 
assessment 
and 
visualization 
(Amirebrahi
mi et al. 
2016b, Lyu et 
al. 2016, 
Amirebrahim
i et al. 2016a); 
indoor 
emergency 
response and 
route 
planning (Teo 
and Cho 
2016, Xu et 
al. 2016, Wu 
and Zhang 
2016); hazard 
identification 
and 
prevention 
(Ebrahim, 
Mosly, and 
Abed-Elhafez 
2016, Hu et 
al. 2016, 
Ferrari and 
Sasso 2016); 
heritage 
protection 
(Yang, Koehl, 
et al. 2016, 
Bento et al. 
2016); 
ecological 
assessment 
(Zhou and 
Castro-
Lacouture 
2016). 

 

Traffic noise 
analysis 
(Deng, Cheng, 
and Anumba 
2016a); 
walkability 
evaluation of 
urban routes 
(Kim et al. 
2016); energy 
assessment 
and 
management 
(Salimzadeh, 
Sharif, and 
Hammad 
2016, Romero 
et al. 2016, 
Costa et al. 
2016); utility 
compliance 
checking (Li, 
Cai, and 
Kamat 2016). 
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2017 

Lift planning 
of 
disassemblin
g offshore oil 
and gas 
platform (Tan 
et al. 2017). 

Resilient 
construction 
supply chain 
management 
(CSCM) 
(Wang et al. 
2017). 

Management 
of property 
interests 
(Atazadeh, 
Rajabifard, 
and Kalantari 
2017). 

 

Energy 
assessment 
and 
management 
(Yamamura, 
Fan, and 
Suzuki 2017a). 

As can be seen from the annual variations, applications tend to be diverse and 

complex from 2008 to 2017. Emergency and disaster simulation, response and 

management is a typical and hot topic (Isikdag, Underwood, and Aouad 2008, 

Zlatanova, Stoterand, and Isikdag 2012, Lapierre and Cote 2008, Chen, Wu, et al. 

2014, Tashakkori, Rajabifard, and Kalantari 2015). It has drawn more attention 

recently as there were nine publications related to this topic in 2016 (Amirebrahimi et 

al. 2016b, Lyu et al. 2016, Amirebrahimi et al. 2016a, Teo and Cho 2016, Xu et al. 

2016, Wu and Zhang 2016, Ebrahim, Mosly, and Abed-Elhafez 2016, Hu et al. 2016, 

Ferrari and Sasso 2016). This topic is a typical BIM-GIS integration problem that 

should be addressed with both large spatial scale and detail considerations of 

construction components. Maintenance and renewal of existing buildings is studied 

since 2010 (Choi et al. 2010, Godager 2011). This topic has great potential in future 

studies, since there will be high demand in the future for maintenance and renewal of 

existing buildings as a result of the age profile of the global building stock in developed 

nations and urbanized regions in developing nations. Maintenance and renewal of 

existing buildings has been a great challenge for BIM and represents a lot of 

opportunities for BIM-GIS integration. Compared with the management of old 

buildings, construction planning and design is more about new buildings. Applications 

of BIM-GIS integration on planning and design include multiple aspects, such as site 

selection and space planning (Isikdag, Underwood, and Aouad 2008, Andrey and 

Luiza 2013), climate adaptation (Hjelseth and Thiis 2009), safety planning (Bansal 

2011a), building design and preconstruction operations (Karan and Irizarry 2015, 

Gocer, Hua, and Gocer 2015, Kari et al. 2016), energy design (Niu, Pan, and Zhao 

2015, Iadanza et al. 2015) and planning of disassembling process (Tan et al. 2017). 

The popular topics of applying BIM-GIS integration on buildings also include indoor 

navigation (Isikdag, Zlatanova, and Underwood 2013), heritage protection (Bianco, 

Del Giudice, and Zerbinatti 2013, Mezzino 2014, Baik, Yaagoubi, and Boehm 2015, 

He et al. 2015, Yang, Koehl, et al. 2016, Bento et al. 2016), construction supply chain 

management (Wang et al. 2017, Irizarry, Karan, and Jalaei 2013), mega projects 
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management (Forsythe 2014), ecological assessment (Zhou and Castro-Lacouture 

2016), etc. For the applications of BIM-GIS integration on cities, 3D urban modeling 

and representations (Doellner and Hagedorn 2008, Rua, Falcao, and Roxo 2013, 

Stojanovski 2013), urban facility management (Hijazi, Ehlers, and Zlatanova 2010, 

Hijazi et al. 2010), and emergency response (Chambelland and Gesquiere 2012) are 

the primary aspects at the beginning of the integration attempt. In recent years, more 

studies utilize BIM-GIS integration to characterize human activities and their 

relationships with cities, such as traffic planning and analysis (Wang, Hou, et al. 2014, 

Deng, Cheng, and Anumba 2016a), walkability analysis (Kim et al. 2016), and energy 

assessment and management (Ronzino et al. 2015, Redmond, Fies, and Zarli 2015, De 

Hoogh et al. 2015, Salimzadeh, Sharif, and Hammad 2016, Romero et al. 2016, Costa 

et al. 2016, Yamamura, Fan, and Suzuki 2017a). 

The applications of BIM-GIS integration cover all construction phases of 

buildings, and city and urban infrastructure. In the applications, the strong parts of 

BIM and GIS are generally integrated for building and city modelling, but the 

respective functions of BIM and GIS utilized in these applications tend to be similar. 

BIM presents the rich geometric and semantic information of buildings, cities and 

infrastructure through the life cycle (Volk, Stengel, and Schultmann 2014). 

Meanwhile, GIS is commonly regarded as a 3D visualization system of built 

environment and urban system in current applications of BIM-GIS integration. The 

above summary of applications BIM-GIS integration reveals that current applications 

have three primary advantages. First, data and information with multiple spatial scales 

are integrated to address problems related to both construction components and built 

environment. This is also a starting point of using BIM-GIS integration. Second, the 

primary function of BIM has been applied that provides complete and detailed 

geometry and material information of building components. Finally, visualization-

based analysis improves the efficiency and performance of construction management 

in AEC projects.  

However, the applications are still limited in the use of integrated BIM-GIS, 

and the strengths of both BIM and GIS have not been fully integrated and utilized. 

First, the utilization of primary functions of GIS is very limited, since GIS is a broad 

field covering geovisualisation-based decision making and geospatial modelling 

(Berry 1996a) instead of a system of 3D visualization of built environment and cities. 
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Spatial and spatio-temporal statistical analysis are seldom considered and used in the 

current applications of BIM-GIS integration. Second, BIM provides geometry and 

semantic information of construction components, but the information of user 

requirements of AEC projects is rarely involved in BIM. In recent years, it is a 

necessary part of BIM applications to study and propose solutions of user requirements 

such as quality, time and cost management. Third, LoD is applied on the representation 

and management of buildings and building elements in IFC and CityGML models, but 

it has not been treated as the spatio-temporal attributes during the integration processes 

of analysis and decision making.  

3.3.2 History from the perspective of surveying and mapping 

Analysis of the application evolution of BIM-GIS integration indicates a trend 

to use integrated BIM-GIS to address diverse and complex problems in the AEC 

industry. Seen from the perspective of surveying and mapping histories, integrated 

BIM-GIS would have broader and deeper theories and methods for applications. 

Figure 3-1 shows the history of BIM-GIS integration from the perspective of surveying 

and mapping. GIS and BIM are the products of digitization of two sub-disciplines of 

surveying and mapping, geodesy and engineering survey. On one hand, a central 

function of GIS is to analyse patterns and explore relationships of spatial data, which 

are primarily collected by geodetic methods (Bailey 1994, Marshall 1991, F Dormann 

et al. 2007, Wang, Zhang, and Fu 2016, Wang et al. 2012). One of the primary products 

of field geodetic work is topographic maps with large spatial scales indicating terrain 

characteristics, infrastructure, buildings and land cover. After digitization of 

topographic maps, spatial data depicting natural attributes become data layers of GIS 

(Chang 2006). Further, due to the capability of spatial analysis, GIS becomes a science 

and system to analysis spatial data and have deep and comprehensive understanding 

of natural processes (Fischer and Wang 2011). On the other hand, BIM was originally 

used as a platform for model visualization, data exchange and analysis of digitized 

engineering drawings of buildings or infrastructure (Eastman et al. 2011). With wide 

applications from design to maintenance stages of construction management, BIM is 

changing the AEC industry (Wang, Sun, et al. 2015). BIM emerges as a system of 

creating, sharing, exchanging and managing building and urban information 

throughout the whole lifecycle among all stakeholders (Wang, Zhang, et al. 2015). 

Thus, in theory, beyond technology integration, i.e. platform or system integration, 
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BIM and GIS have great potential to be integrated from multiple aspects including 

integration of database management, theories and methods, analysis and products, etc. 

For addressing urban problems, both BIM and GIS emphasize the utilization of ICTs 

and new technologies. In addition to the ecological, energy and environmental issues 

solved by integrated BIM-GIS, BIM is also associated with the sustainability of 

buildings and urban infrastructure through a series of new methods such as lean 

production (Peng and Pheng 2011b, Wu and Feng 2012, Peng and Pheng 2011a, Peng 

2010), carbon emission assessment (Wu, Xia, and Wang 2015, Wu et al. 2016, Wu, 

Feng, et al. 2015, Wu et al. 2014, Wu et al. 2017) and green building design (Xia et al. 

2014). Therefore, BIM and GIS can be integrated at various stages for analysis in AEC 

industry and these integrations together can contribute to the theory and practice of 

smart sustainable cities.  

 

Figure 3-1. History of BIM-GIS integration from the perspective of surveying and 

mapping. 

3.3.3 Comparison of evolution of GIS, BIM and integrated BIM-GIS 

Compared with GIS, BIM is still relatively young and primarily serves as a 

collaborative platform, and more efforts are required to deeply understand and apply 

BIM in the AEC industry (Wang et al. 2016). Integrated BIM-GIS is in its initial stage 

and it has rapidly developed in the last three years. In general, both GIS and BIM have 

experienced six primary evolution stages, including origins, system development, 
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digitalization and visualization, database management, visualization-based analysis 

and mathematical modelling (Figure 3-2).  

 

Figure 3-2. Comparison of evolution of GIS, BIM and integrated BIM-GIS 

Spatial analysis of patterns and relationships is the central function of GIS 

(Bailey 1994, Marshall 1991, F Dormann et al. 2007, Wang, Zhang, and Fu 2016, 

Wang et al. 2012), which was first utilized in the analysis of epidemiology in France 

and London in the mid-nineteenth century (Rezaeian and Pocock 2012, Jangra et al. 

2013, Foster 2013). The term GIS was first used for regional planning by Roger 

Tomlinson in 1968 (RF 1969, Drummond and French 2008, Ezekwem 2016). The 

development of computer technology promoted GIS system development, such as 

Canada GIS (CGSI) for natural resources mapping (Griffith 1980, Fisher 1980) and 

ArcGIS for commercial applications (Johnston et al. 2001). GIS gradually developed 

through the computer mapping, spatial database management, visualization-based 

mapping analysis and spatial statistical modelling from the 1970s to 2000s, and has 

been widely applied to natural resources, facility management, public health, business 

and agriculture fields (Berry 1996a). In this thesis, the theories and methods of spatio-

temporal data analysis are summarized according to the research and application 

objectives, as listed in Table 3-2, including the description of spatio-temporal 

characteristics, exploration of potential factors and spatio-temporal prediction, 

modelling and simulation of spatio-temporal processes, and spatio-temporal decision 

making. In this way, researchers and practitioners of the AEC industry can easily 

access the methods and select proper methods in AEC projects.  
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Table 3-2. Summary of theories and methods of spatio-temporal data analysis 

Research and 
application 
objectives 

Theories and methods of spatio-temporal data 
analysis (Wang, Ge, Li, et al. 2014) Exemplar models 

Description of 
spatio-temporal 
characteristics 

- Spatio-temporal visualization (MacEachren et 
al. 1999); 

- Time-series of spatial statistical indicators; 

- Spatio-temporal indicators that reveal the 
comprehensive statistics of spatial and temporal 
variations (Wang, Ge, Li, et al. 2014); 

- Spatio-temporal clustering and hotspots 
exploration (Wang, Ge, Li, et al. 2014); 

- Spatio-temporal interpolation.  

- Spatio-temporal scan statistics 
(Kulldorff 1997); 

- Self organization mapping 
(Kohonen 1990); 

- Spatio-temporal kriging (Cressie 
and Wikle 2015); 

- Bayesian maximum entropy 
(BME) model (Christakos 2000). 

Exploration of 
potential factors and 
spatio-temporal 
prediction 

Spatio-temporal regression. 

- Spatio-temporal multiple linear 
regression; 

- Spatio-temporal panel model; 

- Spatio-temporal Bayes 
hierarchical model (BHM) 
(Haining 2003); 

- Geographically and temporally 
weighted regression (GTWR) 
(Huang, Wu, and Barry 2010); 

- Spatio-temporal generalized 
additive model (GAM) (Wood 
2017). 

Modelling and 
simulation of spatio-
temporal process 

- Spatio-temporal process modelling; 

- Spatio-temporal evolution simulation. 

- Cellular automation (CA) (Li 
and Liu 2007); 

- Geographical agent-based model 
(ABM) (Lin and Gong 2001); 

- Computable general equilibrium 
model (Yong and Jinfeng 2008). 

Spatio-temporal 
decision making Spatio-temporal decision-making model. 

Spatio-temporal multi-criteria 
decision making (MCDM) (Van 
Orshoven et al. 2011, Mollalo and 
Khodabandehloo 2016). 

BIM was first known as a building description system for digitization and 

visualization of building components in 1974 (Eastman et al. 1974). BIM was first 

termed by Van Nederveen and Tolman in 1992 (Van Nederveen and Tolman 1992), 

but became popular in the 2000s due to wide commercialization by Autodesk, Bently, 

Graphisoft, etc (Autodesk 2002, Laiserin 2003). BIM has been fast growing in the past 

ten years. For digitization and visualization, level of details/development (LoD) is 

applied in BIM to reflect the progression of the modelling geographic representation 
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from the lowest LoD of general 2D to the highest LoD of BIM involving 3D models 

and corresponding detailed non-geometric information (Fai and Rafeiro 2014, AIA 

2008, Bedrick 2013). BIM database management system (BIM-DBMS) is used for 

AEC data organization and management, and requires BIM-specific data management 

practices to ensure efficient applications for teams and projects (Singh, Gu, and Wang 

2011, Pavan et al. 2014). BIM-supported virtual design and construction (VDC) is a 

significant and fast expanding technology for visualization-based analysis and 

decision-making in the AEC industry (Gilligan and Kunz 2007, Khanzode, Fischer, 

and Reed 2008). Due to the requirement of applying BIM on mega projects, urban 

management and other complex situations, multiple dimensions such as time, cost and 

environmental impacts, are added to 3D BIM for mathematical modelling and analysis. 

For instance, 4D BIM enables project time allocation and construction sequence 

scheduling simulations. 5D BIM supports real time cost planning. 6D BIM is used for 

sustainable element tracking, and 7D BIM can help the life cycle of facility 

management (Smith 2014, Ikerd 2010). The concept of nD BIM is also proposed to 

allow all stakeholders to work cohesively and efficiently during the whole project life-

cycle, and retrieve and analyse information of scheduling, cost, sustainability, main 

tenability, stability and safety (Ding, Zhou, and Akinci 2014, Aouad, Lee, and Wu 

2005, Lee et al. 2005, Succar 2009).  

Analysis of application evolution of integrated BIM-GIS in the AEC industry 

reveals that BIM-GIS integration is primarily first used for urban emergency 

simulation, response and management. There are primarily three types of integration 

methods, extracting BIM data on GIS platforms, extracting GIS data on BIM platforms 

and using the third-party platforms, where more than half of the researches prefer the 

first method (Ma and Ren 2017). Even most of the current studies focus on integration 

technologies, few of them propos an independent system to achieve integrated BIM-

GIS. For the digitalization and visualization of integrated BIM-GIS, a mainstream 

approach is still required to visualize elements on respective BIM or GIS systems. 

Meanwhile, few studies discuss the issues about BIM-GIS database management and 

the data sets of BIM and GIS tend to be managed independently. Above discussion 

also reveals that studies about BIM-GIS integration have rapidly increased since 2015 

and tend to have been applied to more complex AEC cases and scenarios in the recent 
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three years. However, there is still a limited number of practical case studies and the 

integration lacks well supported theories.  

A key problem of current BIM-GIS integration is that the integrated BIM-GIS 

supported analysis and decision making is still in the initial stage. For visualization-

based analysis, the advantages of mapping analysis of GIS and VDC of BIM are 

combined and fully utilized (Figure 3-3), especially the mapping analysis such as 

spatial proximity analysis, overlay analysis and network analysis. For mathematical 

modelling, few studies involve both spatial or spatio-temporal statistical modelling of 

GIS and 4D/nD BIM to address AEC issues. In previous BIM-GIS integration studies, 

very limited studies utilize spatio-temporal statistical modelling in the applications, 

even though it is the central function of GIS. Most studies treat GIS as a 3D display 

platform for geovisualisation of large scale spatial data. However, it should be noted 

that in the recent twenty years, GIS is generally known as “geographical information 

science” that covers theories, concepts, methods, systems, database management, 

applications and decision making (Goodchild 2010). Spatio-temporal statistical 

modelling is used for accurate modelling of spatial and temporal patterns, exploration 

of relationships and potential statistical factors, prediction of future distribution 

scenarios and statistics-based decision making. Therefore, there is great potential for 

more accurate, deep and flexible application of integrated BIM-GIS and development 

of its specific theories and methodologies. 
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Figure 3-3. Relations among current and future evolution stages of BIM-GIS 

integration 

In addition to the lack of deep analysis and mathematical modelling, there are 

still massive blanks to be filled for future BIM-GIS integration as shown in Figure 3-

3. There are primarily seven stages of BIM-GIS integration, including technology, 

database, management, concept, analysis methods, theory and application integration. 

Technology integration means how to integrate both systems from a technological 

aspect, such as the utilization of IFC and CityGML models. Database integration is to 

link, interact and merge data from BIM and GIS. Management integration is the 

collaborative management of respective works, data and information, and systems. 

Concept integration is to link the terms, definitions, and professional ideas from both 

fields. Analysis methods integration allows the applications of mutual methods and 

new methods in the context of the AEC industry. Theory integration is driven by 

scientific objectives covering technologies, data and information, concepts, methods 

and management. In the above six integration stages, technology integration of 

systems can promote the development of concept and database integration. The 

development of database integration improves management integration. Meanwhile, 

concept integration promotes analysis methods integration. Both management and 

analysis methods integration can help the development of theory integration, which in 

turn can improve the technology integration of systems. In addition, application 

integration is to apply the above outcomes in the applications, including professional 

applications of experts, general applications of researchers and practitioners in the 

AEC industry, and public applications of public participants. The accumulation of 

applications can also improve the above six integration stages.  

BIM-GIS integration is currently at the technology integration and professional 

application stages. For the technology integration, professional application means that 

most of the researchers and practitioners of integrated BIM-GIS are experts in the 

fields of either the AEC industry or geosciences. Few of them are general and public 

users. The stages of general application and public application is critical for the 

application of technologies. GIS is utilized by experts, general users in institutes, 

companies and governments, and public users who can use simple codes or even no 

code to develop their own tools and address their own problems (Berry 1996a). For 

instance, Google Maps (https://www.google.com.au/maps) and OpenStreetMap 
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(http://www.openstreetmap.org) enable public users to upload and download their own 

data and perform simple analysis such as distance measurement, and commercial 

companies such as Carto (https://carto.com/) and Mapbox 

(https://www.mapbox.com/) allow public users to generate their own online interactive 

maps and perform spatial analysis using their own data and GIS methods. With the 

widespread mobile applications, millions of mobile applications are developed based 

on Google Maps (https://www.google.com.au/maps) (Lella, Lipsman, and Martin 

2015), Gaode Map (http://ditu.amap.com/), Baidu Map (http://map.baidu.com/), etc., 

for general and public users. Even though BIM is not fully used by public users, a great 

number of general users such as workers have applied BIM on their practical works in 

industries (Chai et al. 2017, Wang, Zhang, et al. 2015, Wang, Sun, et al. 2015). Thus, 

research and practice of GIS and BIM indicate that integrated BIM-GIS can have wide 

and deep general and public applications in the future. Similar to the application 

integration, their respective concepts need to be integrated based on the combination 

of expert knowledge, innovatively integrated database tools and methods, and analysis 

methods and theories to address BIM-GIS specific smart sustainable city problems.  

3.4 Future trends of BIM-GIS integration in AEC industry 

Based on the analysis of literature and explanations of BIM-GIS integration 

evolution progress, this thesis summarizes the future trends of applying BIM-GIS 

integration in the AEC industry and proposes potential opportunities for BIM-GIS 

integration from the perspective of spatio-temporal statistical modelling. Three 

hypotheses for future trends and opportunities of BIM-GIS integration in the AEC 

industry are proposed, including the technology (loose integration) hypothesis, the 

science (tight integration) hypothesis and the data source hypothesis as shown in 

Figure 3-4. The explanations of the hypotheses are presented in Table 3-3 and 

discussed in the following subsections.  
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Figure 3-4. Hypotheses of future development of BIM-GIS integration 

Table 3-3. Contents of three hypotheses of future trends of BIM-GIS integration 

Hypothesis Content 

The technology 
(loose integration) 
hypothesis 

BIM and GIS are independent systems and areas, and they are partially utilized 
together to address specific problems. 

The science (tight 
integration) 
hypothesis 

BIM will be developed as building information science for the AEC industry, and 
then a broader field of geo-information science will cover BIM, GIS and other 
location-based technologies, services and sciences. 

The data source 
hypothesis 

BIM is considered as a data source in the AEC industry for GIS and spatio-temporal 
statistical analysis. 

3.4.1 The technology (loose integration) hypothesis 

The technology hypothesis is also named as the loose integration hypothesis, 

which means BIM and GIS are independent systems and areas, and they are partially 

utilized together to address specific problems. Most current studies on BIM-GIS 

integration follow this integration model. The origin of BIM-GIS integration is that to 

address the AEC issues involving both buildings and its surrounding space, researchers 

try to combine the respective strong parts of BIM and GIS, especially the detailed 

representations of physical and functional components of facilities of BIM and spatial 

3D models depicting buildings and urban environments of GIS. Integration means 

extracting data from one system to another or extracting both datasets on a third-party 

platform for analysis. The difference between future and current integration is that 
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more strengths of BIM and GIS will be explored and used, and spatio-temporal 

statistics and 4D/nD BIM used for accurate mathematical modelling and analysis. The 

technology hypothesis has the following advantages: 

• This is an easy integration model. There will not be too many changes of future 

integration methods compared with current ones.  

• Concepts, methods, systems, and theories of BIM and GIS will not be changed.  

• It is flexible for users. They can choose the integration methods, extracting data 

from one system to another or using a third-party platform, based on their 

specific problems to address. 

The further development of deeper integration of spatio-temporal statistics and 

4D/nD BIM can provide more accurate analysis results, and new sense and knowledge 

for decision making to satisfy the user requirements of the AEC industry at every stage. 

The benefits of applying the technology hypothesis of BIM-GIS integration on the 

AEC industry can be explained by the comparison of using BIM in Table 3-4. 

Theoretical studies and industrial practices have proved that BIM can significantly 

improve the performance of both geometric modelling of buildings, infrastructure and 

cities, and the management of AEC projects (Bryde, Broquetas, and Volm 2013). For 

instance, most construction projects with the utilization of BIM report cost reduction 

and effective control.  

Table 3-4. Comparison of benefits of BIM and BIM-GIS integration in satisfying 

the user requirements of AEC industry 

User requirements of 
AEC industry Benefits of BIM Benefits of BIM-GIS integration 

(the technology hypothesis) 

Quality management 

- Improving design quality by 
defects detection, eliminating 
conflicts and decreasing rework; 

- Ensuring information consistency 
from design to construction (Chen 
and Luo 2014). 

- Exploring potential factors 
associated with defects dynamically 
across whole space during whole 
construction life-cycle; 

- Predicting potential spatio-
temporal distributions of risks for 
predictive decision making. 

Progress and time 
management 

- BIM-based simulation of 
construction works enables 
significant time savings throughout 
construction period (Bryde, 
Broquetas, and Volm 2013); 

- Effective information management 
and enhanced communication 

Construction works could be 
simulated spatially and temporally 
for more accurate progress 
management and time reduction.  
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reduces time consumption during 
information exchange. 

Cost management 

Cost reduction and control are the 
most common benefit from BIM in 
construction projects (Bryde, 
Broquetas, and Volm 2013). 

Cost is controlled not only seen from 
the result of construction projects 
during each stage, but also by the 
dynamically monitored and 
analysed spatio-temporal results. 

Contract management 

BIM enhances contract 
relationships, and optimizes 
construction procurement and 
contract management due to the 
improvement of execution 
efficiency of contracts (Olatunji 
2014, HE and ZHANG 2016).  

Execution and management of 
contracts are based on the dynamic 
and predictive decision making.  

Health, safety and 
environment (HSE) 
management 

- Classifying, organizing and 
integrating fragmented HSE 
information;  

- Supporting maintenance by 
identification, data processing, rule-
based decision making, and user 
interaction (Wetzel and Thabet 
2015, Riaz et al. 2014, Zhang et al. 
2013, Riaz et al. 2017).   

- Spatio-temporal statistical analysis 
plays more roles in the clustering 
analysis, correlation analysis, 
exploration of impacts of potential 
factors and prediction in HSE 
management;  

- A series of new methods can be 
proposed for the HSE management 
in AEC industry from the 
perspective of spatio-temporal 
statistical analysis by involving the 
characteristics of AEC projects.  

Information 
management 

Effective generation, collection, 
distribution, storage, retrieval, and 
disposition of component and 
project information (Bryde, 
Broquetas, and Volm 2013). 

- More information with large 
spatial scales is included in the AEC 
projects, such as the surrounding 
environment, suppliers far beyond 
the projects, road network and its 
geographical and socio-economic 
factors, and the participants of 
freight transportation, et al.  

- Spatio-temporal analysed results 
and predicted scenarios become one 
of the primary evidence included in 
the database for decision making, in 
addition to the collected and 
monitored raw data.  

Coordination of 
various sectors 

BIM affects project coordination 
mechanisms in its specific ways and 
depending on the served purposes, 
such as a centralized-decentralized 
structure and a hierarchical-
participative decision-making 
process (Aibinu and Papadonikolaki 
2017, Tommelein and Gholami 
2012).   

Coordination mechanisms are 
driven by the sense and knowledge 
sourced from data, information, and 
their analysis products, which are 
characterized as spatial and 
temporal varied, real-time, dynamic, 
interactive, accurate and practical.  

However, there are still challenges of using BIM and some cases show negative 

benefits during the application, especially the utilization of BIM software and the 

coordination phase (Bryde, Broquetas, and Volm 2013). Software issues are relatively 
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common in practice since multiple software have to be applied in a project, but they 

cannot be seamlessly combined due to the difference of software. Therefore, it is a 

trend to utilize IFC and CityGML models to integrate various functions and avoid 

detail losses (El-Mekawy, Östman, and Hijazi 2012). This solution also addresses the 

technical problems of integrating systems of BIM and GIS. In addition, the life cycles 

of AEC projects are typical spatial and temporal processes, but user requirements 

during construction cannot be accurately and dynamically described, modelled and 

managed, due to the lack of comprehensive data-driven spatio-temporal modelling of 

AEC projects. By involving spatio-temporal statistical analysis, integrated BIM-GIS 

can more accurately quantify and address these issues.  

Compared with BIM, BIM-GIS integration enhanced by spatio-temporal 

statistics and 4D/nD BIM provides spatial and temporal dynamic and predictive 

solutions for the user requirements in AEC projects. These solutions are significantly 

beneficial for satisfying user requirements in quality, progress and time, cost, contract, 

health, safety and environment (HSE), and information management, and the 

coordination of various sectors. The spatio-temporal analysed results and predicted 

scenarios become one of the primary evidence sources included in the database for 

decision making, in addition to the collected and monitored raw data that is commonly 

used in current BIM-based solutions. For BIM-GIS integration-based solutions, 

management methods and coordination mechanisms are driven by the sense and 

knowledge sourced from data, information, and their analysis products, which are 

characterized as spatial and temporal varied, real-time, dynamic, interactive, accurate 

and practical. 

3.4.2 The science (tight integration) hypothesis 

The science hypothesis, also named the tight integration hypothesis, is a 

relatively long-term hypothesis. This hypothesis assumes that BIM will be developed 

as building information science for the AEC industry, and then a broader field of geo-

information science will cover BIM, GIS and other location-based technologies, 

services and sciences. Under this hypothesis, location-based theories and technologies 

can be tightly integrated by combining their similarities and highlighting strengths. 

Thus, this hypothesis of BIM-GIS integration primarily relies on the development of 

BIM. At present, only a few studies consider BIM as building information science for 
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digitization, visualization and analysis of whole project life cycles (Karimi 2013), but 

it has been a trend of BIM development due to the theoretical needs to manage 

sophisticated and mega projects in recent years. Correspondingly, new theories and 

methods will be proposed for the scientific study of analysing user requirements and 

solutions for the AEC industry by involving the inherent spatio-temporal 

characteristics of AEC projects. The science hypothesis of BIM-GIS integration 

provides an opportunity for broadening the scope and comprehensive understanding 

of the AEC industry and smart sustainable city. 

3.4.3 The data source hypothesis 

The data source hypothesis considers BIM as a data source in the AEC industry 

for GIS analysis. Under the data source hypothesis, the role of BIM in the AEC 

industry is similar to remote sensing (RS) in monitoring natural resources and light 

detection and ranging (LiDAR) in photogrammetry. Remote sensing is characterized 

as rapid acquisition, large spatial coverage, and providing access to land, sea and 

atmospheric data with diverse spatial and temporal resolutions in natural resources 

monitoring and management (Ge et al. 2016). LiDAR including ground, vehicle, 

satellite-based and airborne LiDAR can rapidly and accurately measure and analyse 

dense point clouds without contact with danger and contaminants. Both remote sensing 

and LiDAR are primarily used as data collection tools, and they can also manage and 

analyse data, but they are generally combined with GIS to perform complex and 

comprehensive spatial and temporal analysis to deeply understand the attributes and 

phenomenon. In addition to remote sensing and LiDAR, there are a series of 

technologies that have similar roles of data source, such as traditional statistical data, 

surveying data, web-based data, global positioning system (GPS), and interferometric 

synthetic aperture radar (InSAR).  

Table 3-5 lists the GIS data sources including potential data sources of BIM, 

and the comparisons of their data examples, general formats, characteristics and 

application examples. The comparison shows that BIM is a proper data source for 

buildings and urban infrastructure due to its rich geometric and semantic information, 

multi-level of detail for various applications and building-level digital representation. 

In addition, geospatial analysis has been widely employed in the AEC industry 

including civil engineering and petroleum engineering (Zhou et al. 2007). Meanwhile, 
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BIM can provide diverse data due to different user requirements of AEC projects, 

quality data, progress and time data, cost data, contract data, and HSE data, et al. For 

these studies, GIS provides spatial statistical methods for modelling AEC data and 

problems. Some of the spatio-temporal statistical analysis results also can be regarded 

as data sources in the form of data and information products. Therefore, the data source 

hypothesis can enhance GIS applications and promote the strength of BIM for its role 

in the AEC industry.  

Table 3-5. Comparison of GIS data sources 

Data source Data examples General 
formats Characteristics Application 

examples 

Vector products 

- Administrative 
boundary 
(Nature Earth 
2017);  

- Spatial data of 
infrastructure 
(ArcGIS Hub 
2017, Center for 
International 
Earth Science 
Information 
Network - 
CIESIN - 
Columbia 
University and 
Information 
Technology 
Outreach 
Services - ITOS 
- University of 
Georgia 2013). 

.shp 

- Relatively low 
data volume; 

- Fast display; 

- Containing 
attributes 
information. 

- Disease 
mapping 
(Kassebaum et 
al. 2016);  

- Road and 
traffic analysis 
(Cai, Wu, and 
Cheng 2013, 
Laurance et al. 
2014).  

Raster products 

- Digital 
elevation model 
(DEM) 
(Tachikawa et 
al. 2011); 

- IPCC future 
climate change 
scenarios (Moss 
et al. 2010, Moss 
et al. 2008, 
Nakicenovic et 
al. 2000). 

.tif/.img/ 
Various 
formats 

- Full coverage 
and spatially 
continuous; 

- Good visual 
effect. 

- Gravity 
modelling 
(Rexer and 
Hirt 2014); 

- Future 
scenarios 
prediction 
(Song et al. 
2016, Gao and 
Bryan 2017). 

Surveying data 

- Wireless 
sensor network 
data (Ge, Liang, 
et al. 2015, Ge, 
Wang, et al. 
2015, Kang et al. 

Table/ 
Various 
formats 

- Including 
professional 
attributes;  

- 
Ecohydrologic
al analysis 
(Ge, Wang, et 
al. 2015); 
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2014, Wang, Ge, 
Song, et al. 
2014); 

- Air quality 
ground 
monitoring data 
(Ministry of 
Environmental 
Protection of the 
People's 
Republic of 
China 2017, 
Environmental 
Protection 
Agency United 
States 2017). 

- Used for specific 
issues.  

- Air quality 
analysis (Song 
et al. 2015, 
Zou et al. 
2015); 

Statistical data 

- Population 
census data 
(Australian 
Bureau of 
Statitics ABS 
2015); 

- Economic 
statistical data 
(Australian 
Bureau of 
Statitics ABS 
2017). 

Table 

- Including 
professional 
attributes; 

- Full coverage of 
a region. 

- Urban 
development 
(Zhang, He, 
and Liu 2014);  

- Tracking 
migration 
(Ebenstein and 
Zhao 2015). 

Web data 
Location-based 
social media 
data 

Text/ 
Various 
formats 

- Current, fine-
scaled and rich 
individual 
information 
(Noulas et al. 
2011, Andrienko 
et al. 2013). 

- Urban and 
human 
mobility 
studies (Wu, 
Wang, and Dai 
2016). 

Global positioning system 
(GPS) data 

- Location data 

- Ionosphere and 
troposphere data 

ASCII/ 
Binary/ 
Text 

- Accurate 
positioning and 
tracking. 

- Trajectory 
analysis of 
human and 
vehicles 
mobility (Feldt 
and Schlecht 
2016, Siła-
Nowicka et al. 
2016); 

- Spatial 
uncertainty 
analysis (Wu, 
Ge, et al. 2015, 
Ge, Wei, et al. 
2017). 

Active 
remote 
sensing 
(RS) data 

Radar Meteorological 
radar 

Various 
formats 

- Regardless of 
weather 
conditions; 

- Flood 
analysis 
(Barnolas et al. 
2008). 
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- Capable in 
extracting water 
regions. 

Light detection 
and ranging 
(LiDAR) 

Point cloud 
(ground, 
vehicle, 
satellite-based, 
or airborne) 

ASCII/ 
LAS/ 
Various 
formats 

- Fast measuring 
and analysis; 

- Avoiding 
contacts with 
dangers and 
contaminants; 

- Accurate 
distance 
measurement and 
dense points. 

- Generating 
accurate 3D 
models (e.g. 
DEM and 
BIM). 

- Landslide 
risk 
assessment 
(Abdulwahid 
and Pradhan 
2017, 
Palenzuela et 
al. 2015, 
Jebur, 
Pradhan, and 
Tehrany 
2014). 

Interferometric 
synthetic 
aperture radar 
(InSAR) 

- Topography 
data and ground 
deformation 
data 

Various 
formats 

- Slight 
deformation 
detection; 

- Large spatial 
coverage; 

- Regardless of 
weather 
conditions; 

- Obtaining 
underground 
information. 

- Ecological 
analysis 
(Kıncal et al. 
2017); 

- Ground 
deformation 
analysis 
(Yang, Peng, 
et al. 2016, 
Chen, Gong, et 
al. 2014, 
Zheng, 
Fukuyama, 
and Sanga-
Ngoie 2013, 
Chen et al. 
2017).  

Passive 
remote 
sensing 
(RS) data 

Satellite RS 
images 

- Land surface 
temperature 
(NASA 2016a); 

- Vegetation 
data (NASA 
2016a); 

- Land cover 
data (NASA 
2016a); 

- Nighttime 
lights (The Earth 
Observation 
Group 2017). 

.tif/ .hdf/ 
ASCII/V
arious 
formats 

- rapid 
acquisition; 

- Large spatial 
coverage; 

- Accessing to 
land, sea and 
atmospheric data 
with diverse 
spatial and 
temporal 
resolutions (Ge et 
al. 2016). 

Vast 
applications. 

- Urban 
studies; 

- Roads and 
infrastructures
;  

- 
Environment. 

Aerial 
photogrammetry 
data 

- Land cover 
data; 

.tif/ 
Various 
formats 

- Large spatial 
coverage; 

- 3D analysis 
(Marzolff and 
Poesen 2009); 
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- Topography 
data. 

- Massive 
geometric and 
physical 
information of 
features; 

- Fast mapping. 

- Land use 
analysis 
(Miyasaka et 
al. 2016). 

Unmanned 
Aerial Vehicle 
(UAV) 
measurements 

- Land cover 
data; 

- Topography 
data; 

- Building data. 

.jpg/ 
Various 
formats 

- Current and fine-
scaled 
information; 

- High spatial 
resolution. 

- 3D city 
modelling 
(GRUEN et al. 
2014); 

- Land use 
analysis (Hong 
2016). 

Building information 
modelling (BIM) data 

- Building 
projects (Lu, 
Won, and Cheng 
2016b, Volk, 
Stengel, and 
Schultmann 
2014); 

- Civil 
infrastructure 
projects (Cheng, 
Lu, and Deng 
2016). 

.ifc/ 
Various 
formats 

- Rich geometric 
and semantic 
information; 

- Multi-level of 
details for various 
applications; 

- Limited to 
building-level 
digital 
representation. 

- Building 
indoor 
analysis (Lin 
et al. 2013); 

- Mega project 
application 
(Cheng et al. 
2017, Tan et 
al. 2017). 

3.4.4 BIM-GIS integration for project life cycles 

From a spatio-temporal statistical perspective, the three hypotheses of BIM-

GIS integration enable more comprehensive applications through the life cycle of AEC 

projects. Planning and design stages are highly influential in setting the directions for 

the whole business and project, where BIM-GIS integration not only provides multi-

scale and rich geometric and semantic information for the decision makers (Ham et al. 

2008), but also evaluates scheduling, cost and sustainability at an early stage in a 3D 

virtual environment (Cheung et al. 2012). Besides, BIM-GIS integration can also be 

used to perform complex building performance analysis to ensure optimized building 

design of both the building and its surrounding space.  

During the construction stage, BIM-GIS integration is applied in different 

aspects that can impact the construction progress. For example, the construction site is 

the main area on which construction activities are conducted. BIM can provide 

building information to generate dynamic site layout models (Kumar and Cheng 2015) 

and GIS can help optimize element distributions (Abune'meh et al. 2016). Safety is 

another important factor during the construction stage, since accidents during 
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construction cause huge losses of human lives and increase project cost. An approach 

for safety management to use 4D/nD BIM visualization of construction components 

(Zhou, Ding, and Chen 2013, Zhang et al. 2015), and spatio-temporal analysis for risk 

distribution prediction and exploration of contributors. BIM-GIS integration can also 

be used for project cost control. BIM is used for cash flow and project financing 

recording during construction (Lu, Won, and Cheng 2016a) and GIS can be applied to 

spatial and temporal analysis of cost clusters and prediction of cost scenarios. 

Operation and maintenance stage is the longest stage of a project life cycle. 

More than half of previous BIM-GIS integration applications for buildings are in this 

stage. Under the three hypotheses, the enhanced BIM-GIS integration can address 

sophisticated problems and provide comprehensive strategies for emergency and 

disaster simulation, prevention, response and management, heritage protection, mega 

projects operation, indoor navigation and ecological assessment. Deep application of 

spatio-temporal statistical modelling and 4D/nD BIM can inspire researchers and 

practitioners to utilize integrated BIM-GIS to deal with more general AEC issues such 

as sustainability assessment and asset management. The application objects can be 

buildings, infrastructures, cities and other larger spatial scale objects.  

Demolition is the last stage of a construction project. In this stage, a building 

or structure is usually deconstructed which generates large amounts of waste materials. 

BIM is the digital representation of the existing buildings, so it is used for reliable and 

accurate waste estimation and efficient planning (Hamidi et al. 2014, Cheng and Ma 

2013). GIS can help analyse and optimize waste distribution processes, such as 

optimization of delivery networks, transport services, and environmental assessment. 

Enhanced BIM-GIS integration can optimize waste reuse and recycling to minimize 

waste materials, overall energy cost, demolition time and impacts on the surrounding 

environment.  

3.5 Conclusion 

With the explosive increase of studies and applications of BIM in recent ten 

years and BIM-GIS integration in recent three years, utilization of BIM-GIS 

integration in the AEC industry requires systematic theories beyond integration 

technologies, and deep applications of mathematical modelling methods, including 
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spatio-temporal statistical modelling in GIS and 4D/nD BIM simulation and 

management. This thesis reviews previous BIM-GIS integration studies from a spatio-

temporal statistical perspective to reveal its evolution and recommend future 

development trends. Evolution of BIM-GIS integration is characterized by three 

aspects: application evolution in the AEC industry, history from the perspective of 

surveying and mapping, and comparison study of evolution of GIS, BIM, and 

integrated BIM-GIS. Based on the analysis of literature and explanations of evolution 

progress, this thesis summarizes the future trends of BIM-GIS integration in the AEC 

industry and proposes potential opportunities of BIM-GIS integration from the 

perspective of spatio-temporal statistical modelling.  

We propose three hypotheses, including the technology hypothesis, the science 

hypothesis and the data source hypothesis of BIM-GIS integration in the AEC industry 

for future studies. From the spatio-temporal statistical perspective, the three 

hypotheses of BIM-GIS integration enable more comprehensive applications through 

the life cycle of AEC projects. BIM-GIS integration based solutions are significantly 

beneficial for the management methods and coordination mechanisms, including 

quality management, progress management and time reduction, cost reduction and 

control, improvement of health, safety and environment (HSE) performance, 

information management and the coordination of various sectors. These management 

methods and coordination mechanisms are driven by the sense and knowledge sourced 

from data, information, and their analysis products, which are characterized as 

spatially and temporally varied, real-time, dynamic, interactive, accurate and practical. 

Therefore, under the proposed hypotheses of BIM-GIS integration, comprehensive 

data-driven spatio-temporal modelling of AEC projects can provide more accurate and 

dynamic solutions for quantitative analysis, management and decision making in the 

future applications to satisfy user requirements of AEC industry. 
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Chapter 4 Burden of Road Maintenance from Heavy 

Vehicle Freight Transportation  

4.1 Introduction 

The study in this chapter employs segment-based ordinary kriging (SOK) and 

segment-based regression kriging (SRK) for more accurate spatial prediction of traffic 

volumes of different type of vehicles. SOK and SRK are developed from point-based 

ordinary kriging (OK) and regression kriging (RK), for traffic data with variable road 

segment support in the Wheatbelt region of Western Australia (WA). By borrowing 

ideas from ATAK and top-kriging, SOK and SRK integrate the spatial characteristics 

of road segments and the spatial homogeneity of each single segment, consider their 

spatial autocorrelation and enable segment-based data to compute the best linear 

unbiased estimation. Regression kriging (RK or SRK) is an effective supplement of 

ordinary kriging (OK or SOK) because it considers the information of covariates to 

deal with the non-stationarity of random functions (Ge, Liang, et al. 2015). Both 

segment-based and point-based models are applied for the estimation of diverse types 

of traffic volumes, including heavy, light or total vehicles. A comparative study of 

both kinds of models, together with point-based inverse distance weighting (IDW) and 

universal kriging (UK), and non-spatial linear regression (LR), will give an insight of 

different traffic behaviours and provide road agencies with proper models that have 

the best prediction performance. The traffic volumes predicted by segment-based 

geostatistical models are applied on the assessment of road maintenance burden in the 

Wheatbelt, WA, which can help provide quantitative and accurate evidence for road 

asset management. Road maintenance burden is determined by the integration of 

predicted traffic volumes and restricted access vehicles (RAVs) network based vehicle 

mass estimation, where RAV network regulates roads that can be accessed by different 

types of heavy vehicles. 

4.2 Methodology 

Figure 4-1 shows a schematic overview of predicting traffic volumes with a 

comparison of segment-based and point-based models. The study process includes 
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data pre-processing, variables selection, performance evaluation with cross validation 

for different categories of models and traffic volume prediction. As an implementation, 

the prediction results are applied to evaluate the distribution of road maintenance 

burden in the Wheatbelt, WA.   

 

Figure 4-1.  Schematic overview of predicting the distribution of road 

maintenance burden. 

4.2.1 Data pre-processing and transformation  

For both segment-based and point-based spatial prediction models, the 

dependent variable is a transformed normally distributed traffic volume of heavy 

vehicles, light vehicles or total vehicles due to the skewed distributed raw data. Box-

Cox transformation is commonly used to remove skewed distributions and ensure 

stabilizing variations of traffic data (Selby and Kockelman 2013, Lowry 2014). 

Observed traffic data 𝑌  is transformed by the maximum estimation of Box-Cox 

likelihood function 𝑔# 𝑌  over a power variable  λ (Collins 1991, Sakia 1992) and the 

transformed data 𝑌% is: 
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𝑌% = 𝑔# 𝑌 =
'
( )(*+
,-	())

				#12#32                                    (4-1) 

The maximum likelihood estimations of λ are -0.061, 0.101 and 0.141 for heavy, light 

and total vehicles respectively. Box-Cox transformation is performed by R FitAR 

package (McLeod et al. 2013). 

4.2.2 Variables generation and selection  

Widths, lengths and directions of road segments are used as predictor variables 

for both point-based and segment-based models. Population accessibility indices (AIs) 

are utilized to depict the accessing population within certain nearby buffer regions of 

count points or road segments. AIs used in this thesis include the sum of inverse 

distance weighted population (WAI) within a given distance of count locations or 

along road segments, and the population within a given distance (DAI) that determines 

a maximum correlation with traffic volumes. WAI at location or segment 𝑢  is 

computed by: 

𝑊𝐴𝐼8 =
9:;8<=%>:?@

AB@
C 				∀𝑘, 𝑑8H ≤ 𝑑J=KH                        (4-2) 

where 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛H is the population within buffer region 𝑘, 𝑑8H is the distance from 

count location or segment to the buffer region, 𝑑J=K is the maximum band distance 

(50 km in this thesis) and 𝜃 is a power parameter that ensures the maximum correlation 

between WAI and traffic volumes. Repeated computation of WAI and its correlation 

with traffic volumes derives that 𝜃 equals to 1.4, 1.6 and 1.6 for heavy, light and total 

vehicles respectively. To determine the distances of DAIs, the correlations between 

population within 5 km to 50 km (in increments of 5 km) and traffic volumes are 

computed for both point and segment observations of heavy, light and total vehicles. 

Results show that maximum correlation for heavy vehicles appears with 50 km buffer 

regions and that for light and total vehicles with 15 km buffer regions. Step-wise linear 

regression is used to select predictor variables with significant correlations with traffic 

volumes and remove insignificantly correlated variables and variables with 

multicollinearity. Variables selected for predicting heavy vehicle volumes include 

road segment width, WAI (50 km and 𝜃 = 1.4) and DAI (50 km), and those for the 

volume prediction of light vehicles and total vehicles are road segment width and DAI 

(15 km). 



53 

 

4.2.3 Segment-based geostatistical modelling  

SOK and SRK are proposed to predict traffic volumes at uncounted road 

segments that are characterized as linear road surfaces with various shapes and lengths. 

Segment-based geostatistical interpolation is primarily based on three assumptions. 

The first assumption is that traffic data are assumed to be spatially homogeneous 

within a segment, but they are spatially heterogeneous and autocorrelated for different 

segments. In general, a road segment is the specific representation of a portion of a 

road with uniform characteristics between two junctions or intersections (Austroads 

2016). It is usually defined by a series of rules such as same surface, width, number of 

lanes, pavement age and traffic conditions (Austroads 2016, Barua, El-Basyouny, and 

Islam 2016). Based on the above definition of a road segment, traffic behaviours tend 

to follow similar patterns within a road segment, so it is reasonable to assume the 

spatial homogeneity of traffic data within a road segment. In addition, the assumption 

can significantly simplify data analysis and decision making of segment-based traffic 

issues. Since transport authorities and researchers prefer to monitor traffic data (e.g. 

annual average daily traffic (AADT)) with the spatial unit of road segment, this 

assumption also ensures their convenient analysis, management and decision making 

based on the spatial predictions. Second, observed traffic data are regarded as the 

output of a continuous traffic process across the whole road network. In practice, 

traffic behaviours among road segments are spatially associated through road network, 

which means that the traffic data at near road segments are more similar than the data 

at distant roads segments. Finally, spatial stationarity, a general geostatistical 

assumption, is assumed for segment-based models where the expected variance 

between observations (or residuals for SRK) is a function of separation distance. SRK 

is a supplement of SOK by considering the information of covariates to deal with the 

nonstationary of random functions. 

Using SRK to estimate traffic volumes includes five steps. The first step is 

modelling trends of traffic data using linear regression where the dependent variables 

are transformed by Box-Cox function and the selected predictor variables.  

The second step is to estimate residuals by removing trends in step 1. Based 

on the assumption of the second-order stationarity of residuals, the segment-based 

variogram is assessed by maximum likelihood estimation with a great many point 
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values discretised from segments. The covariance calculation between any two 

segments with discretised points at each segment is shown in the sketch map Figure 4-

2. The discretised points are linearly distributed along road segments which are 

generally several kilometres long and a few metres wide. A variogram is then 

determined by the parameters of nugget, sill, range and shape. A proper shape is 

selected from exponential, spherical and Gaussian functions by the comparison of the 

sum of squared errors (SSE) of model fitness. Thus, the segment covariance 𝐶Y() 

between any two segments 𝑠>  and 𝑠[ is calculated with the equation  

𝐶Y 𝑠>, 𝑠[ =
1

𝑁 𝑠>
1

𝑁 𝑠[
𝐶 𝑝], 𝑝%

^ Y_

%3+

^ Y`

]3+
 

𝑝] ∈ 𝑠>, 𝑝% ∈ 𝑠[                                                   (4-3) 

where 𝑁() is the number of points derived from the discretisation of a segment and 𝑝] 

and 𝑝% are the discretised points within 𝑠>  and 𝑠[.  

 

Figure 4-2. Discretisation of two road segments and their covariance with 

discretised points. 

The third step is to calculate the estimate and error variance of segment-based 

residuals. The SRK value 𝑧() at segment 𝑠2 where traffic volumes are not counted is 

estimated by a linear combination of 𝑚 neighbouring segments under the assumption 

of the second-order stationarity of residuals by the equation  

𝑧 𝑠2 = 𝜔>(𝑠2)𝑧(𝑠>)J
>3+                                       (4-4) 
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where 𝑠> is the road segment over which traffic volumes are counted, and 𝜔>(𝑠2) is the 

weight for 𝑧(𝑠>) at segment 𝑠2. The weights are estimated by  

𝜔[ 𝑠2 𝐶Y 𝑠>, 𝑠[ + 𝜇 𝑠2 = 𝐶Y 𝑠2, 𝑠> , 𝑖 = 1,2, … ,𝑚J
[3+

𝜔[ 𝑠2 = 1J
[3+

           (4-5) 

and the corresponding error variance of SRK estimation at line 𝑠2 is calculated with 

the equation  

𝜎j 𝑠2 = 𝐶Y 𝑠2, 𝑠2 − 𝜔> 𝑠2 𝐶 𝑠2, 𝑠> − 𝜇 𝑠2J
>3+               (4-6) 

The fourth step is to generate the estimated traffic volumes by adding SRK 

estimates to their trends. The last step is using cross validation to validate the model 

performance of SRK by comparing with SOK and point-based interpolation methods, 

IDW, OK, UK and RK. Point-based interpolations are modelled by R automap and 

gstat packages, and segment-based models are done by R rtop package. 

4.2.4 Integration of segment-based and point-based predictions 

The inverse-variance weighting method is used for the integration of both SRK 

and RK derived results due to their respective contributions on diverse traffic 

behaviours. The inverse-variance weighted average traffic volume 𝑌>?%lm and its least 

estimation variance 𝜎>?%lmj  are 

𝑌>?%lm =
no
poq

r
os'

'
poq

r
os'

                                           (4-7) 

𝜎>?%lmj = +
'
poq

r
os'

                                           (4-8) 

where 𝑌t and 𝜎tj are the estimate and variance of model 𝜏 (𝜏 = 1,… , 𝑇). In this case, 

predictions and their kriging estimation variance of SRK and RK models are integrated 

for their combined predictions. 

4.2.5 Performance comparison between segment-based and point-based models  

To compare the prediction accuracy of different spatial prediction models, 

three statistical indices are used for prediction accuracy evaluation in the cross 

validation, including mean error (ME), mean absolute percentage error (MAPE) and 

the coefficient of determination (R2). The coefficient of determination stresses the 
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fitness of different spatial prediction models, and the mean error and mean absolute 

percentage error are used to highlight the prediction errors of different models. Their 

respective equations are: 

ME = +
?

𝑂z − 𝑃z?
z3+                                        (4-9) 

MAPE = +22
?

}~*9~
}~

?
z3+                                    (4-10) 

𝑅j = }~*}�
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}~*}�
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q 9~*9�
~s'

q                              (4-11) 

The mean estimation variance and estimated uncertainty of geostatistical models 

(OK, SOK, UK, RK and SRK) are also computed to compare the improvement of 

segment-based models with that of point-based models. Wherein, the inverse Box-Cox 

transformation of traffic volume 𝑌 is: 

𝑌 = 𝐺# 𝑌% = )�#�+
'
(

ln�
				#12#32                                 (4-12) 

where 𝑌%  is the predicted transformed data and 𝐺# 𝑌%  is the inverse transformation 

function. Thus, its estimated standard deviation 𝜎) is: 

𝜎) =
��(()�)
�)�

j
𝜎)�
j = ��(()�)

�)�
𝜎)� =

)�#�+
'�(
( �n�

ln��n�
				#12#32          (4-13) 

where 𝜎)�  is the standard deviation estimation of 𝑌% , and corresponding kriging 

estimation uncertainty is computed by: 

𝜇) =
�n
)

                                               (4-14) 

Further, the estimated volume of total vehicles 𝑌%:%=<  is that of heavy vehicles 

𝑌�l=�� plus that of light vehicles 𝑌<>m�%, so the estimated standard deviation 𝜎)����� and 

estimation uncertainty 𝜇)����� of total vehicle are: 

𝜎)����� = 𝜎)�����
j + 𝜎)�`���

j                                 (4-15) 

𝜇)����� =
�n�����
)�����

                                         (4-16) 
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4.2.6 Estimation of road maintenance burden  

In this step, segment-based prediction of traffic volumes is implemented on the 

estimation of road maintenance burden with the RAV network based vehicle mass 

estimation in the Wheatbelt, WA. 

4.3 Study area and data 

The Wheatbelt is one of the most important grain production regions in WA, 

Australia (Figure 4-3). Heavy vehicles are a primary tool for the transportation of grain 

and industrial production. In the Wheatbelt, there are 280 primary segments of main 

roads distributed within the road networks by RAV network. Regional areas and Perth, 

the capital of WA, are linked by six major roads running through the Wheatbelt, 

including Brand Highway, Great Northern Highway, Great Eastern Highway, 

Brookton Highway, Great Southern Highway and Albany Highway. The classification 

of RAV networks is based on axles of heavy vehicles, and lists the mass of heavy 

vehicles in each category (Main Roads Western Australia 2016a).  The total number 

of heavy vehicles accounts for about twenty percent of all vehicles, however, their 

impact on road damage is much greater than light vehicles. Heavy vehicles are 

primarily used for freight transportation and are characterized by large maximum 

permitted mass ranging from 42.5 t to 147.5 t (Main Roads Western Australia 

2016a).On the other hand, the weight of a standard light vehicle is only 1.65 t and the 

gross vehicle mass (GVM) is not allowed to exceed 4.5 t in Australia (Department of 

Transport - The Government of Western Australia 2016). Volume of heavy vehicles 

and light vehicles have been collected annually by Main Roads Western Australia, 

from fiscal years of 2008/2009 to 2013/2014 at 627 counting locations on 148 road 

segments distributed in the Wheatbelt (Main Roads Western Australia 2015). This 

means that traffic volumes on about half of the road segments on main roads are 

counted, and the other half of road segments are not counted, even though they are 

also very important RAV networks. The counted volumes are summarized at segment 

level for spatial and temporal consistency. The mean summarized segment-level 

observations of heavy, light and total vehicle volumes are 194.2, 809.2 and 1003.4 

vehicles/(km·day), respectively.  



58 

 

 

Figure 4-3.  Main roads and categories of RAV network in Wheatbelt, WA, 

Australia. 

In addition, predictor variables are used to model trends for kriging-based 

models with regression. The predictor variables collected include width (m), length 

(km) and direction of road segments (from east-west direction (0) to north-south 

direction (1)) and AIs, including WAI and DAI. Population is an effective indicator 

for traffic prediction since a dense traffic volume usually reveals dense human 

activities (Dong et al. 2016). Population data of raster type with a spatial resolution of 

1 km is obtained from NASA Socioeconomic Data and Applications Center (SEDAC) 

(Center for International Earth Science Information Network - CIESIN - Columbia 

University 2016). 

4.4 Experiments and Results  

4.4.1 Segment-based models for traffic prediction  

The SRK variograms for heavy and light vehicle interpolations are computed 

respectively (Fig 4-4). It illustrates the sample variograms and semivariogram 

functions of distance and spatial geometry, where solid lines represent semivariogram 

functions of equally sized segments and dotted ones are functions of the combination 

of various segments. The spatial characteristics of road segments are described by the 



59 

 

multiplication of segment length and width. The segment-based variograms are a 

series of functions of distance and combined spatial geometry, and their shapes are 

significantly different to point-based fitted variograms (dark line). Shape distinction 

in the variograms of SRK for heavy vehicles is larger than that of SRK for light 

vehicles.  

 

Figure 4-4. Sample and fitted variograms of SRK model for heavy vehicle (A) and 

light vehicle (B) predictions. 

4.4.2 Performance comparison for segment-based, point-based and non-spatial 

models  

Ten-fold cross validations are utilized to assess model performance with the 

statistical indices ME, MAPE and R2. The statistical summary of cross validation is 

listed in Table 4-1. For interpolation models without regression, prediction errors (ME 

and MAPE) are significantly reduced by SOK compared with IDW and OK. The 

performance of models with regressions is generally improved compared with pure 

spatial interpolations such OK (Zou et al. 2015). SRK performs better for predicting 

heavy vehicle volumes (ME = 8.5; MAPE = 25.0%) than non-spatial and point-based 

models, including UK (ME = 16.1; MAPE = 28.0%), RK (ME = 17.1; MAPE = 27.4%) 

and LR (ME = 17.3; MAPE = 27.4%). However, SRK with ME of 21.1 and MAPE of 

22.2% is weaker than RK (ME = 13.2; MAPE = 20.8%) for the prediction of light 

vehicle volumes. The integration of SRK for heavy vehicles and RK for light vehicles 

(SRK+RK) predicts total vehicle volumes with the smallest prediction errors of ME 

(21.7) and MAPE (18.8%) compared with those of pure point-based RK (ME =30.4; 

MAPE=19.2%), pure segment-based model SRK (ME = 29. 6; MAPE = 20.1%), and 
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the model without the differentiation of two types of vehicles (SRK(all)) (ME = 24.5; 

MAPE = 20.0%). In addition, the coefficient of determination R2 also proves that SRK 

with R2 = 0.677 fits better than other models for heavy vehicles, but RK with R2 = 

0.763 fits better than SRK with R2 = 0.606 for light vehicles. In total, cross validation 

R2 of SRK+RK is 0.805, which is higher than pure SRK but slightly weaker than the 

pure RK model due to the imbalance of vehicle volumes (i.e. the average number of 

light vehicles is four times as many as that of heavy vehicles). 

Table 4-1. Statistical summary for cross validation of segment-based, point-based, 

and non-spatial models  

Vehicle Model Mean ME MAPE R2 Mean variance 

Heavy 
vehicles 

IDW 154.5 39.712 0.392 0.538 / 

OK 153.5 40.780 0.367 0.579 5.224E+05 

SOK 169.4 24.803 0.366 0.564 1.301E+05 

LR 178.1 16.117 0.280 0.634 / 

UK 176.6 17.658 0.274 0.666 2.224E+05 

RK 177.0 17.279 0.274 0.654 2.265E+05 

SRK 185.7 8.499 0.250 0.677 4.941E+04 

Light 
vehicles 

IDW 751.4 57.756 0.458 0.424 / 

OK 661.3 147.859 0.423 0.274 1.812E+08 

SOK 767.9 41.253 0.382 0.431 2.603E+07 

LR 778.7 30.438 0.212 0.758 / 

UK 778.0 31.193 0.208 0.753 8.493E+07 

RK 796.0 13.151 0.208 0.763 8.205E+07 

SRK 788.1 21.109 0.222 0.606 5.312E+06 

Total 
vehicles 

(heavy plus 
light 

vehicles) 

IDW 905.9 97.468 0.423 0.452 / 

OK 814.8 188.638 0.396 0.350 1.818E+08 

SOK 937.4 66.055 0.360 0.470 2.624E+07 

LR 956.9 46.555 0.193 0.805 / 

UK 954.6 48.851 0.193 0.801 8.516E+07 

RK 973.0 30.430 0.192 0.811 8.232E+07 

SRK 973.8 29.608 0.201 0.685 5.381E+06 

SRK+RK 981.8 21.650 0.188 0.805 8.209E+07 

SRK(all) 978.9 24.525 0.200 0.686 / 
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Cross validation results indicate that the prediction performance of SRK is 

associated with the relationship between the spatial heterogeneity and spatial geometry 

of spatial segment-based data. According to the characteristics of road segments 

mentioned above, short roads tend to be distributed in urban and densely populated 

areas, such as towns, but long roads are primarily distributed in rural and regional 

areas, where heavy vehicle freight transportation is more frequent than in populated 

areas. This phenomenon enables SRK to predict segment-based traffic volumes of 

heavy vehicles better than those of light vehicles, since SRK characterizes the spatial 

geometry of road segments to predict traffic volumes, and the spatial geometry of long 

roads is more distinct than short roads compared with point-based observations. Due 

to the consideration of spatial geometry of road segments, spatial autocorrelations will 

be different between point-based and segment-based observations. In this thesis, the 

spatial local autocorrelations are presented by local indicators of spatial association 

(LISA) (Anselin 1995). The spatially significant autocorrelated roads are expressed by 

four groups, including high-volume roads and neighbours (H-H), low-volume roads 

and neighbours (L-L), low-volume roads and high-volume neighbours  (L-H), and 

high-volume roads and low-volume neighbours (H-L) (Ge, Song, et al. 2017). Figure 

4-5 (A-D) shows the spatial autocorrelations of point-based and segment-based 

observations of heavy vehicles and light vehicles respectively. Figure 4-5 (E and F) 

compares the spatial geometry of roads with significant spatial autocorrelations 

between point-based and segment-based traffic volumes. Since the numbers of roads 

with significant spatial autocorrelations are different for point-based and segment-

based data, the spatial geometry is summarized with mean and standard deviation 

between ten-quantile values. Schematic diagrams are added to explain the results. 

Results show that for the spatially significant autocorrelated volumes of all heavy 

vehicles, spatial geometry of roads with segment-based observations is larger than that 

with point-based observations, which means relatively long roads tend to be locally 

clustered and serve the heavy vehicles. While, when involving spatial geometry, 

volumes of light vehicles on short roads are significantly clustered, but the local 

autocorrelations of light vehicles on relatively long roads will be reduced. This result 

reveals that SRK can improve prediction accuracy for segment-based spatial data 

whose spatial autocorrelation is significant in segments with large spatial geometry 

than that in the segments with small spatial geometry. Thus, the SRK model relies on 
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both significant spatial heterogeneity of segment-based data and relatively large spatial 

geometry of segments. 

 

Figure 4-5. Spatial geometry comparison (E: heavy vehicles; F: light vehicles) 

between roads with significantly local autocorrelated point-based (A: heavy 

vehicles; B: light vehicles) and roads with segment-based observations (C: heavy 

vehicles; D: light vehicles). 

Figure 4-6 presents the results from the ten-fold cross validations performed 

for the predictions of heavy, light and total vehicle volumes on road segments 
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respectively. Scatter plots and simple linear regressions are used to present the 

relationships between traffic volume observations and predictions from point-based 

models OK and RK, and segment-based models SOK and SRK, together with the 

combination of SRK for heavy vehicles and RK for light vehicles for the prediction of 

total vehicles. Results show that SRK and RK can better predict heavy and light 

vehicle volumes respectively, and SRK+RK is the best prediction model for total 

vehicle volumes. 

 

Figure 4-6. Comparison of observations and cross-validation predictions from 

geostatistical segment-based and point-based models for heavy traffic volume (A), 

light vehicle volume (B) and total volume (C). 

Spatial autocorrelation of residuals reveals the fitting improvement of models. 

Moran’s I is used to describe spatial autocorrection with a more significant spatial 

autocorrelation showing large absolute values of I and Z. For models without 

regression, spatial autocorrelation of SOK fitted residuals is Moran’s I = 0.007, pseudo 

p = 0.331 and Z value = 0.383 for heavy vehicles and Moran’s I = 0.041, pseudo p = 



64 

 

0.074 and Z value = 1.472 for light vehicles, and that of OK fitted residuals is Moran’s 

I = -0.044, pseudo p = 0.104 and Z value = -1.116 for heavy vehicles and Moran’s I = 

0.044, pseudo p = 0.070 and Z value = 1.557 for light vehicles. This result shows that 

SOK reduces more spatial autocorrelations compared with OK for heavy vehicles but 

the reduction for light vehicles is slight. For kriging models with regression, spatial 

autocorrelation is reduced by SRK (Moran’s I = -0.034, pseudo p = 0.183, Z value = -

0.767) compared with RK (Moran’s I = 0.098, pseudo p = 0.012, Z value = 3.109) for 

the prediction of heavy vehicles. In contrast, it is not reduced by SRK (Moran’s I = -

0.041, pseudo p = 0.098, Z value = -1.090) for predicting light vehicle volumes 

comparing to RK (Moran’s I = -0.026, pseudo p = 0.234, Z value = -0.624). This result 

demonstrates that the traveling behaviours of heavy vehicles are more related with the 

spatial characteristics of road segments and segment-based models are more 

advantageous for explaining these characteristics. On the other hand, the traveling 

behaviours of light vehicles are different as they tend to have limited relationship with 

spatial geometry of segments and it is better to directly use a point-based model for 

their prediction. 

Table 4-1 and Figure 4-7 also illustrate the comparison of model performance 

from the perspective of kriging standard deviation and estimation uncertainty. 

Standard deviation is the squared root of spatial variance, and the estimated uncertainty 

is computed as kriging standard deviation divided by the prediction value (Skøien et 

al. 2014). Results show that the improvements of standard deviation of segment-based 

models, SOK and SRK, over point-based models, OK, UK and RK, are apparent. For 

the prediction of heavy vehicles, 78.19% of spatial variance and 69.03% of standard 

deviation are improved by SRK on average compared with RK, the best performing 

point-based model. It is also demonstrated that the fitting improvement of segment-

based models primarily comes from the reduction of estimated standard deviation. 

Figure 4-7(A) shows the relationships between residuals and standard deviation. It 

presents that most of the fitting residuals are located within three times the estimated 

standard deviation (grey curve) and two times the estimated standard deviation (black 

curve), and segments with small standard deviations generally have relatively small 

fitting residuals. Segment-based models have both lower residuals and standard 

deviations than point-based models. Figure 4-7(B) illustrates a comparison of the 

standard deviations among segment-based and point-based models. Segment-based 
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models, especially SRK, have much higher cumulative density at low standard 

deviations.  

 

Figure 4-7.  Standard deviation and uncertainty summaries of predicted errors 

for geostatistical segment-based and point-based models. Relationship between 

residuals and standard deviation (A), cumulative possibility density of standard 

deviation (B) and estimated uncertainty summary (C). 

Figure 4-7 (C) shows the statistical summary of estimated uncertainty. It shows 

that regression and segment-based models both run well on reducing estimated 

uncertainty and the reduction from segment-based models is apparent. On average, 

53.36% of estimated uncertainty is improved by SRK for heavy vehicles compared 

with RK. The uncertainty of the SRK+RK model with an average value of 0.160 is 

slightly higher than the pure SRK model due to the integration of the RK-based 

prediction for light vehicles whose estimated uncertainty is high, but it is still much 

lower than the uncertainty of purely point-based models, including UK and RK with 

average values of 0.484 and 0.470. Thus, the improvement of estimated uncertainty 

from the SRK+RK model is 65.96% compared with the point-based RK model. 
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4.4.3 Spatial prediction of heavy and light vehicle volumes 

Figure 4-8 shows the maps of predicted traffic volumes for heavy, light and 

total vehicles with the observations plotted at the middle points of road segments, and 

spatial distributions of respective prediction uncertainty. The mean predictions of 

heavy, light and total vehicle volumes are 277.4, 1006.0 and 1283.4 vehicles/(km·day), 

and the maximum volumes are 1172.0, 3547.0 and 4719.0 vehicles/(km·day) 

respectively. The corresponding distributions of kriging prediction uncertainty 

calculated by equation (4-14) and (4-16) are also displayed on the maps. Uncertainty 

of SRK-based heavy vehicle prediction model ranges from 0.13 to 0.43. Uncertainty 

of RK-based light vehicle prediction model ranges from 0.45 to 0.65, and uncertainty 

of SRK+RK-based total vehicle prediction model ranges from 0.30 to 0.58.   
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Figure 4-8.  Predictions of traffic volumes (heavy vehicle volume: A; light vehicle 

volume: B; total volume C) and corresponding prediction uncertainty (heavy 

vehicle volume: D; light vehicle volume: E; total volume F), where points are 

observations and lines indicate predictions. 

4.5 Discussion 

This study proposes segment-based models, SOK and SRK, for integrating 

spatial characteristics and spatial homogeneity of road segments with geostatistical 

interpolation methods to more accurately predict traffic volumes. Results show that 

segment-based models can reduce prediction errors compared with point-based models 

by the consideration of spatial geometry of road segments, and reduce prediction 

standard deviation and uncertainty. Segment-based models also can better explain 

spatial autocorrelation of residuals through involving spatial geometry information of 

segments in kriging models with segment-based covariance and semivariogram 

functions. SRK performs much better than point-based models for the prediction of 

heavy vehicles, because the traveling behaviours of heave vehicles are more relevant 

when spatial characteristics of road segments are included. In the Wheatbelt, heavy 

vehicles primarily run on main roads and are used for long-distance freight 

transportation between grain production areas and densely populated regions located 

in the west of the Wheatbelt, such as Perth (capital city) and Fremantle Port. In 

contrast, RK is a better model for the prediction of light vehicle volumes than SRK. 

This phenomenon can be explained by the characteristics of the SRK model that spatial 

geometry of segments is considered for prediction. SRK can improve prediction 

accuracy for segment-based spatial data whose spatial autocorrelation is higher in 

segments with large spatial geometry than that in the segments with small spatial 

geometry. Thus, we recommend that the relationship between spatial geometry of 

segments and the spatial heterogeneity of segment-based data should be examined 

before SRK modelling. A combination of SRK for heavy vehicles and RK for light 

vehicles is adopted for traffic volume prediction. Results reveal that the combined 

SRK+RK method has advantages on the prediction of both heavy and light vehicles 

with high prediction accuracy.  

The SRK+RK-based predictions of traffic volumes are applied on the 

estimation of road maintenance burden in the Wheatbelt, WA. Road maintenance 



68 

 

burden at segment level is estimated by the integration of the traffic volume predictions 

and the RAV network determined vehicle mass limitations. The distributions of the 

estimated ranges of vehicle masses for heavy, light and total vehicles are calculated at 

all segments, together with the statistical summaries shown in Figure 4-9. The 

minimum masses of vehicles shown in the maps are conservative estimates, which 

assume that loads of all vehicles are restricted within the minimum limitations of the 

RAV network. On main roads in the Wheatbelt, the average masses of heavy, light and 

total vehicles are [22.49, 22.69], [1.56, 4.26] and [24.05, 26.95] thousand tons per 

kilometre per day, and their total masses are [82.78, 83.88], [4.64, 12.66] and [87.42, 

96.54] million tons per day. The road maintenance burden from the mass of heavy 

vehicles is much bigger than that of light vehicles.  

 

Figure 4-9. Mass distributions for total vehicles (A), light vehicles (B) and total 

vehicles (C), and their statistical summary (D). 

To explain the distinct impacts of heavy and light vehicles on road 

maintenance, percentages of heavy vehicle volumes and masses among all vehicles are 

mapped and summarized in Figure 4-10. Results show that the percentage of heavy 

vehicles on road segments has a diverse range from 6.8% to 56.4% with a mean 
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percentage of 20.9%, but its impact on road maintenance ranges from 51.4% to 96.3%, 

and the mean impact for all road segments accounts for 82.1% of the road maintenance 

burden. In contrast, 17.9% of the mean impact on road maintenance burden is related 

to light vehicles, although its volume is around 79.1%, which is about four times higher 

than that of heavy vehicle. 

 

Figure 4-10. Distributions of percentages of heavy vehicle volume (A) and mass 

(B), and their statistical summary (C). 

Practically, grain production areas link densely populated cities with six 

primary main roads through the Wheatbelt, including Brand Highway, Great Northern 

Highway, Great Eastern Highway, Brookton Highway, Great Southern Highway and 

Albany Highway. To further analyse the impacts of heavy vehicles on the road 

maintenance burden, road segments are grouped by local government area (LGA) 

groups that are spatially related to the aforementioned six primary main roads. Figure 

4-11 shows the distribution of LGA groups, and the distribution of the impact of heavy 

vehicles related road maintenance burden in these groups. A general trend is that the 

percentage of heavy vehicle mass increases together with the percentage of heavy 

vehicle volume, but the relationships vary in different LGAs. The road maintenance 
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burden from heavy vehicles is relatively low at LGAs along Great Southern Highway, 

and high in LGAs along Great Northern Highway. The impact of heavy vehicles varies 

at LGAs along Great Eastern Highway with high impact recorded at Dowerin and 

Toodyay, and low impact at Yilgarn. 

 

Figure 4-11.  Impacts of heavy vehicles on road maintenance burden for local 

government areas (LGAs). 
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Even though the prediction accuracy for heavy vehicles is significantly 

improved by SRK (R2 = 0.677) as shown in the cross validation, the improvement is 

still necessary for more accurate prediction. Based on the whole process of data 

analysis in this study, the prediction accuracy can be improved from three aspects. 

First, more reasonable explanatory variables of traffic volumes should be explored and 

added in prediction, such as the percentages of different types of freight transportation 

served by roads. Both the physical process of pavement deterioration and engineers’ 

experience are required for selecting and determining explanatory variables. Second, 

reducing errors sourced from data might be helpful for improving prediction accuracy. 

The data errors usually come from the instrument errors during data collection, 

measurement errors, and errors from data pre-processing and the combination of 

multiple sources. Collecting more data at unobserved or sparsely observed locations is 

also critical for more accurate perdition, since the prediction uncertainty at these 

locations is usually much higher than the uncertainty at the locations with dense 

observations. Finally, since this study has proved that segment-based prediction 

methods can more accurately predict heavy vehicle volumes compared with point-

based methods, more segment-based spatial prediction methods need to be proposed 

and evaluated to improve the prediction accuracy. 

4.6 Conclusion 

Geostatistical methods have been widely used for spatial prediction and the 

assessment of traffic issues. Most previous studies use point-based interpolation, but 

they ignore the critical information of the road segment itself. This can lead to 

inaccurate predictions, which will negatively affect decision making of road agencies. 

To address this problem, segment-based regression kriging (SRK) is proposed for 

traffic volume prediction with differentiation between heavy and light vehicles in the 

Wheatbelt region of Western Australia (WA). Cross validation reveals that the 

prediction accuracy for heavy vehicles is significantly improved by SRK (R2 = 0.677). 

Specifically, 78% of spatial variance and 53% of estimated uncertainty are improved 

by SRK for heavy vehicles compared with regression kriging (RK), the best 

performing point-based geostatistical model. This improvement shows that SRK can 

provide new insights into the spatial characteristics and spatial homogeneity of a road 

segment. Implementation results of SRK-based predictions show that the impact of 
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heavy vehicles on road maintenance is much larger than that of light vehicles and it 

varies across space, and the total impacts of heavy vehicles account for more than 82% 

of the road maintenance burden even though its volume only accounts for 21% of 

traffic. 

This study reveals that by involving the spatial geometry information of 

segments, the segment-based spatial interpolation method can more accurately 

estimate the segment-based spatial data with significant spatial heterogeneity and large 

spatial geometry compared with point-based interpolations. Due to this characteristic 

of segment-based methods, they have strong capability in predicting traffic volumes 

of heavy vehicle freight transportation especially in rural and remote areas, where the 

roads are longer than urban road segments, the monitoring data are sparsely 

distributed, and it is difficult to collect global positioning (GPS) data of vehicles with 

high spatial and temporal resolutions. In addition, segment-based spatial interpolation 

methods can be used in spatial estimates for geographical objects with geometry of 

line segments. Besides the above academic contributions of this study, the methods 

and results also contribute to industrial practice. The application of SRK for predicting 

the distribution of heavy vehicle volumes indicates that SRK can significantly improve 

prediction accuracy by considering the spatial geometry of road segments. Segment-

based spatial interpolation methods are also a useful approach for the management of 

heavy and light vehicles, and can inform wise decision making of road maintenance 

strategies. 
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Chapter 5 Comprehensive Impacts of Heavy Vehicles 

and Climate Environment on Road Pavement 

Performance 

5.1 Introduction 

This chapter aims to explore the impacts of various factors on pavement 

infrastructure performance using segment-based spatial stratified heterogeneity 

analysis. The factors are from multiple sources and include all vehicles and heavy 

vehicles in particular, climate environment, road characteristics and the local 

socioeconomic conditions. The segment-based spatial stratified heterogeneity analysis 

includes two parts: optimal discretisation for segment-based pavement data, and 

assessing the impact of factors with a segment-based geographical detector. The case 

study used in this research is the Wheatbelt region in Western Australia (WA), 

Australia. Based on the case study, the influence mechanism of factors on pavement 

infrastructure performance is discussed, and future research directions and decision-

makings practices are recommended. 

5.2 Methodology 

Segment-based spatial stratified heterogeneity analysis is performed to explore 

the relationship between pavement infrastructure performance and its potential spatial 

variability along road segments. The geographical detector is commonly used for 

point-based or area-based geographical problems. The method contains four primary 

models: factor detector, interaction detector, risk detector and ecological detector 

(Wang et al. 2010, Wang, Zhang, and Fu 2016). In this study, deflections are monitored 

and analysed for each road segment and the observations are regarded as line segment 

based data. Therefore, a segment-based geographical detector is utilized by integrating 

the geometric characteristics of road segments and the geographical detector.  
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Figure 5-1. Schematic overview of assessing impacts of climate and heavy vehicles 

on pavement infrastructure performance with segment-based spatial stratified 

heterogeneity analysis 

The methods of segment-based spatial stratified heterogeneity analysis of 

pavement infrastructure performance are illustrated in Figure 5-1. There are two 

primary parts in the method: optimal discretisation for the geographical detector and 

assessing impacts of factors. The two parts are conducted through a three-step process. 

First, the factor detector model is introduced, since it is the core part of the 
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geographical detector and the calculation of optimal discretisation is based on the 

factor detector. Next, optimal discretisation is performed to analyse the scale effect to 

determine the best line segment length for segmenting the road network, and selecting 

the best combinations of discretisation methods and number of intervals for the optimal 

discretisation solutions. Finally, spatial stratified heterogeneity is analysed using the 

factor detector, interaction detector and risk detector models to assess the impacts of 

variables. In terms of the data and calculation processes in this study, we develop a 

“GD” R package for optimal discretisation and spatial stratified heterogeneity analysis 

using the geographical detector, which can be freely downloaded from the 

Comprehensive R Archive Network (CRAN) (https://cran.r-

project.org/web/packages/GD/index.html). A sample dataset sourced from this thesis 

is also provided so that users can easily access the models and perform their own 

experiments.  

5.2.1 Segment-based factor detector model  

A key part of the geographical detector is the factor detector model, which presents 

the relative importance of the determinants of geographical problems (Wang et al. 

2010, Wang, Zhang, and Fu 2016). In this study, the factor detector model is used 

twice. First, it is used for optimal discretisation with the segment-based geographical 

detector. Once the optimal discretisation solutions are determined, the factor detector 

model is then applied to the segment-based spatial stratified heterogeneity analysis for 

exploring the relative importance of the potential variables of pavement infrastructure 

performance. The mechanism of the segment-based factor detector is shown in Figure 

5-1. The segment-based factor detector is measured by a 𝑄 value, which presents the 

consistency of spatial patterns between pavement infrastructure performance and its 

potential variables. The 𝑄  value is equal to one minus the ratio of accumulated 

dispersion variance of deflections within sub-regions to that of the whole road 

network: 

𝑄 = 1 − ( 𝑁�,8𝜎�,8jY
83+ )/𝑁𝜎j                                       (5-1) 

where 𝐴 is a segment-level variable that its observations are distributed along the road 

line segments with the same segmenting length, 𝑁�,8 is the number of observations of 

pavement infrastructure performance on the road segments distributed on the 𝑢th (𝑢 =

1,… , 𝑠) sub-regions that are determined by segment-level variable 𝐴, the dispersion 
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variance of these observations is 𝜎�,8j , and 𝑁 and 𝜎j are the number and dispersion 

variance of all observations of pavement infrastructure performance on the whole road 

network. The 𝑄 value reflects the relative importance of variables, ranging from 0 to 

1. A variable with a large 𝑄 value has relatively higher importance than a variable with 

a small 𝑄  value. The result of 𝑄 = 1  due to 𝜎�,8j = 0  and 𝜎j ≠ 0  means that the 

spatial pattern of pavement infrastructure performance is identical to the distribution 

of variable 𝐴, and the result of 𝑄 = 0 shows that variable 𝐴 is completely unrelated to 

pavement infrastructure performance seen from the perspective of segment-based 

spatial stratified heterogeneity.  

5.2.2 Optimal discretisation for segment-level variables 

Since the input of the geographical detector should be categorical variables, an 

optimal discretisation framework is utilized to select the optimal discretisation 

solutions for discretising continuous variables along road segments (Figure 5-1). The 

optimal discretisation framework includes three objectives: assessing the impacts of 

scale effect of line segments to determine the best length for segmenting the road 

network, selecting the best combination of discretisation method and number of 

intervals for each variable that enables the largest 𝑄 value in the segment-based factor 

detector model, and calculating optimal discretised segment-based continuous 

variables.  

Scale effect is a common phenomenon in geospatial problems due to the 

modifiable spatial unit defined manually according to the understanding and 

experience of researchers (Jelinski and Wu 1996, Ju et al. 2016). Spatial effect means 

that changes in the size of a spatial unit usually lead to different spatial analysis results 

(Jelinski and Wu 1996), so scale effect analysis is critical for selecting an optimal 

spatial unit for reasonable geospatial analysis. For the general geographical detector 

for point or area based data, scale effect analysis aims at selecting the best grid size 

using the relative importance (𝑄 value) of variables, where stable ranks of 𝑄 values 

indicate the optimal spatial unit (Ju et al. 2016). In this study, the best length of line 

segment for segmenting the road network will be obtained through the comparison of 

associations between line segment lengths and the variations of relative importance 𝑄 

values. The optimal length of a line segment is selected when the ranks of 𝑄 values 

are stable. According to the geometric characteristics of the segments distributed on 
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the road network, seven lengths of line segments in the segment-based geographical 

detector are utilized for the scale effect analysis, including 100 m, 250 m, 500 m, 1 

km, 2 km, 4 km and 8 km, and the corresponding number of segments on the road 

network are 18 660, 7 523, 3 812, 1 958, 1 031, 567 and 335.  

In addition to selecting the optimal length of line segments, the best 

combinations of discretisation methods and numbers of intervals will be determined 

for discretising continuous variables. Under the optimal length of line segments, 

different discretisation methods and numbers of intervals can generate various break 

values. In this study, five commonly used unsupervised discretisation methods are 

utilized for discretising continuous variables, including equal breaks, natural breaks, 

quantile breaks, geometric breaks and standard deviation (SD) breaks. The five 

methods have their respective advantages in dividing the range of data values into 

specified intervals by considering data range, data distribution, data within or between 

intervals, and statistical characteristics (Fischer and Wang 2011, Cao, Ge, and Wang 

2013). All continuous variables are divided into ranges of 3 – 7 intervals using the five 

discretisation methods. The ranges of 3 – 7 intervals are proper numbers of intervals 

for most of the geographical variables, since if the number of intervals is too small, 

spatial stratified heterogeneity cannot be reflected by the variables, and if they are too 

large, data will be scattered across space. The relative importance (𝑄  values) are 

computed using a factor detector model for all combinations of discretisation methods 

and numbers of intervals, and the largest 𝑄  values determine the best parameter 

combinations for discretising continuous variables. 

Finally, once the optimal length of line segments is selected, and the best 

combinations of discretisation methods and numbers of intervals are determined for 

segment-based continuous variables, the road network will be segmented and the 

continuous variables are discretised and converted to corresponding categorical 

variables. Thus, the discretised variables and categorical variables, such as soil type 

and surface type, are equally regarded as the potential variables of pavement 

infrastructure performance and input for the segment-based geographical detector.  

5.2.3 Segment-based interaction detector and risk detector models  

In the segment-based geographical detector, the interaction detector is utilized 

to explore the interactive impacts of segment-based variables on the pavement 
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infrastructure performance, and a risk factor is computed to explore the road segments 

with high or low risk of damage. The interaction detector compares the importance of 

two combined potential variables to their independent importance to evaluate if the 

variables are enhanced or weakened by each other, or their impacts are independent. 

Figure 5-1 shows the interaction of two potential variables 𝐴  and 𝐵 , and their 

relationship with the distribution of pavement infrastructure performance. The 

importance comparison of the interaction variables and the independent variables are 

computed by the interaction detector as follows (Wang et al. 2010): 

𝑄�∩� < min	(𝑄�, 𝑄�)	
min 𝑄�, 𝑄� ≤ 𝑄�∩� ≤ max	(𝑄�, 𝑄�)
max 𝑄�, 𝑄� < 𝑄�∩� < (𝑄� + 𝑄�)

𝑄�∩� = (𝑄� + 𝑄�)
𝑄�∩� > (𝑄� + 𝑄�)

					

Nonlinear − weaken
Weaken/Uni − enhance

Bi − enhance
Independent

Nonlinear − enhance

          (5-2) 

where 𝑄�∩� is the relative importance of the interaction variables, and 𝑄� and 𝑄� are 

the respective relative importance of variables 𝐴 and 𝐵. In equation (5-2), the relative 

importance is gradually increased from “nonlinear-weaken” to “nonlinear-enhance”.  

Further, the risk detector computed with a t-test is utilized to explore the spatial 

distributions of relative risks, which are computed by the difference of average values 

within sub-regions defined by intervals of a potential variable (Wang et al. 2010). In 

this study, the average pavement deflections within sub-regions are calculated to 

reflect the relative conditions of road damage that are linked with the spatial patterns 

of potential variables. The average pavement deflection 𝐷8 within 𝑢th sub-region in 

risk detector analysis is calculated by: 

𝐷8 = 𝐷8,[
´B,_
[3+ (𝐿𝑀8,[)                                              (5-3) 

where 𝐷8,[  is the pavement deflection on 𝑗th road segment within 𝑢th sub-region, 

𝑀8,[ is the total number of road segments within the sub-region, and 𝐿 is the optimal 

length of line segments determined by scale effect analysis. The average pavement 

deflection 𝐷8 reflects the relative risk of road damage within an interval of a variable. 

A large value of 𝐷8 indicates a relatively high risk within a certain sub-region defined 

by an interval of a variable. Figure 5-1 illustrates the spatial distribution of road 

segments with the highest relative risks of pavement deflections.  
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5.3 Study area and data 

5.3.1 Road condition data 

The Wheatbelt region is located in southwestern WA and is made up of 42 local 

government authorities (LGAs) with an area of 154 862 km2. It is the primary grain 

production region in WA and includes important mining activities that generate 

substantial heavy haulage vehicle traffic (Figure 5-2). There are 280 road segments 

distributed on six major roads, including Brand Highway, Great Northern Highway, 

Great Eastern Highway, Brookton Highway, Great Southern Highway and Albany 

Highway. These road segments link the state capital (Perth) and major regional ports 

within the Wheatbelt region. Road maintenance, such as resurfacing, is a vital and 

regular construction task for road management authorities (Chong et al. 2016).  

 

Figure 5-2. Spatial distribution of pavement deflections across road network in 

the study area 

Road conditions are assessed via deflection measurements using a Dynatest 

8000 series Falling Weight Deflectometer (FWD) and calibrated with Calibration 

Method WA 2060.5 by Main Roads, WA (Main Roads Western Australia 2017b, a). 

Deflection is a pavement strength indicator measured as the maximum depression in 

the surface of pavement under a standard load. Figure 1 shows the spatial distributions 

of mean deflections on road segments. Deflections on the 280 road segments vary 
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across the road network, ranging from 153.0 µm to 1684.5 µm with the average value 

of 383.6 µm.  

5.3.2 Potential variables  

The potential variables of pavement infrastructure performance are collected 

from multiple data sources. They are pre-processed to have the same spatial and 

temporal scales with pavement infrastructure performance data, where the identical 

spatial scale is the road network in the Wheatbelt region, WA, and temporal scale is 

the year 2015. The potential variables and their respective data sources are listed in 

Table 5-1. Based on the collected data, 24 potential variables are derived and they are 

divided into four categories. Two primary categories of variables are vehicles and 

heavy vehicles (C1), and climate and environment factors (C2), and another two 

categories of auxiliary variables are road characteristics (C3), and socioeconomic 

factors (C4). Variables in different categories have comprehensive impacts on the 

pavement conditions. Figure 5-3 displays the spatial distributions of all 24 variables in 

the order listed in Table 5-1. 

Table 5-1. Descriptions of potential variables of pavement infrastructure 

performance 

Category No. Code Name (Unit) Data source 
Vehicles and 
heavy vehicles 
(C1) 

1 vlmsum Total volume of vehicles Main Roads Western 
Australia (Main Roads 
Western Australia 2015) and 
calculating using segment-
based regression kriging 
methods (Song, Wang, et al. 
2018). 

2 pcthvvlm Percentage of heavy 
vehicle volume (%) 

3 masssum Total mass of vehicles 
(t/(km·day) 

4 pcthvmass Percentage of heavy 
vehicle mass (%) 

Climate and 
environment 
(C2) 5 ap Annual precipitation (mm) 

Bureau of Meteorology, 
Australia (Bureau of 
Meteorology Australian 
Government 2017, Jones, 
Wang, and Fawcett 2009). 

6 maxtemp Annual maximum 
temperature (°C) Land surface temperature 

(LST) MOD11A2 from 
Moderate Resolution 
Imaging Spectroradiometer 
(MODIS) (Wan, Hook, and 
Hulley 2015). 

7 mintemp Annual minimum 
temperature (°C) 

8 meantemp Annual mean temperature 
(°C) 

9 tempdif Annual temperature 
difference (°C) 

10 soiltype* Soil type 

2016 State of the 
Environment (SoE) Land 
Australian Soil 
Classification Orders dataset 
(Ashton and McKenzie 
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2001, State of the 
Environment in Australia 
2017). 

11 rzsm Root-zone soil moisture 
(%) Bureau of Meteorology, 

Australia, and the Australian 
Soil Resources Information 
System (ASRIS) dataset 
(Johnston et al. 2003, Bureau 
of Meteorology Australian 
Government 2017). 

12 usm Upper soil moisture (%) 
13 lsm Lower soil moisture (%) 
14 dsm Deep soil moisture (%) 
15 dd Deep drainage (mm) 

16 ae Actual evapotranspiration 
(mm) 

17 evi Enhanced vegetation index 
(EVI) 

Enhanced vegetation index 
(EVI) MOD13A2 from 
Moderate Resolution 
Imaging Spectroradiometer 
(MODIS) (EARTHDATA 
2017). 

Road 
characteristics 
(C3) 

18 ravnw* Restricted access vehicles 
(RAV) network Main Roads Western 

Australia. 19 speed* Road speed limit (km/h) 
20 surftype* Road surfacing type 

Socioeconomic 
factors (C4) 
  

21 popbf1 Population within 1 km Population data with 1-km 
spatial resolution is from 
Gridded Population of the 
World fourth version 
(GPWv4) (NASA 2016b). 
  

22 popbf5 Population within 5 km 
23 popbf10 Population within 10 km 

24 wpop Weighted population 
within 50 km 

* The marked variables are categorical variables, and other variables are continuous variables.  
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Figure 5-3. Spatial distribution of potential variables of pavement infrastructure 

performance (part 1) 
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Figure 5-3. Spatial distribution of potential variables of pavement infrastructure 

performance (part 2) 

The four categories of potential variables are carefully pre-processed from the 

raw data to accurately reflect the impacts of the variables. The first category is the 

variables of vehicles and heavy vehicles. Traffic volumes are directly linked with 

pavement infrastructure performance, where heavy vehicles are a primary contributor 

due to the heavy mass. In general, the weight of a standard light vehicle is merely 1.65 

t and the gross vehicle mass (GVM) is limited to 4.5 t in Australia (Department of 

Transport - The Government of Western Australia 2016), but the mass of heavy 

vehicles used for freight transportation ranges from 42.5 t to 147.5 t (Main Roads 

Western Australia 2016a). Thus, the total traffic volumes and masses, and the 

respective percentages of heavy vehicles are calculated using segment-based 

regression kriging (SRK) methods (Song, Wang, et al. 2018) with traffic statistical 

data provided by Main Roads, WA (Main Roads Western Australia 2015). SRK is a 
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spatial prediction model for line segment-based spatial data, such as road properties 

and traffic conditions, by involving the spatial characteristics and spatial homogeneity 

of line segments (Song, Wang, et al. 2018). Compared with raw data released by Main 

Roads, WA, and the data predicted using traditional aspatial and point-based spatial 

methods, SRK provides more accurate prediction results with significantly reduced 

errors and autocorrelations of residuals. 

Another critical category of variables is related to the on-road and near-road 

climate and environmental conditions, including precipitation, temperature, soil type, 

soil moisture and vegetation in the Wheatbelt region, WA, in 2015. The annual 

precipitation data with a spatial resolution of 5 km is sourced from the Bureau of 

Meteorology in Australia (Bureau of Meteorology Australian Government 2017). This 

precipitation dataset is calculated based on daily precipitation grids produced from 

approximately 6,500 rain gauge stations across Australia (Jones, Wang, and Fawcett 

2009). Temperature variables including maximum temperature, minimum 

temperature, mean temperature and the calculated temperature difference during 2015 

are derived from 1-km spatial resolution 8-Day L3 Global Land Surface Temperature 

(LST) and Emissivity product (MOD11A2) from the Moderate Resolution Imaging 

Spectroradiometer (MODIS) (Wan, Hook, and Hulley 2015). Spatial data of soil type 

distributions is sourced from the 2016 State of the Environment (SoE) Land Australian 

Soil Classification Orders dataset (Ashton and McKenzie 2001, State of the 

Environment in Australia 2017). Soil moisture variables with a spatial resolution of 5 

km are sourced from the Bureau of Meteorology, Australia, and the Australian Soil 

Resources Information System (ASRIS) dataset (Johnston et al. 2003, Bureau of 

Meteorology Australian Government 2017). Soil type includes Calcarosol, 

Chromosol, Hydrosol, Kandosol, Podosol, Rudosol, Sodosol and Tenosol in the 

Wheatbelt region. Soil moisture reflects the relative soil water storage capacity within 

a soil layer between a certain range of depths. Variables of soil moisture data include 

root-zone soil moisture, upper soil moisture, lower soil moisture, deep soil moisture, 

deep drainage, and actual evapotranspiration (Bureau of Meteorology Australian 

Government 2017). Root-zone soil moisture is the sum of available water in the upper 

and lower soil layers in the top 10 cm and 10 cm - 1 m, respectively. Deep soil moisture 

represents the percentage of available water within the 1 - 6 m soil layer, which is 

determined based on the assumption that deep-rooted vegetation can access water 
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down to 6 m (Bureau of Meteorology Australian Government 2017). Deep drainage is 

the water draining from the bottom of the deep soil layer to the groundwater and 

represents diffuse groundwater recharge (Keese, Scanlon, and Reedy 2005). Actual 

evapotranspiration is the estimated total evapotranspiration from vegetation, soil and 

groundwater using event-based methods and adaptive analytical models (Gash 1979, 

Van Dijk and Bruijnzeel 2001). Ground vegetation conditions are explained by 1-km 

spatial resolution enhanced vegetation index (EVI) data, which is collected from the 

Terra Vegetation Indices 16-Day L3 MOD13A2 product from MODIS 

(EARTHDATA 2017).  

In addition to the variables of vehicles and climate, road characteristics and 

socioeconomic factors are also included as potential variables of pavement 

infrastructure performance. In WA, the restricted access vehicles (RAV) network used 

by Main Roads, WA, is a critical guideline for heavy vehicle services and road 

management operations for staff, operators and consultants in Main Roads and LGAs 

(Main Roads Western Australia 2017c). The RAV network defines ten categories of 

heavy vehicles and corresponding roads they can access (Main Roads Western 

Australia 2017e). Spatial vector data of the RAV network is provided by Main Roads 

WA (Main Roads Western Australia 2016b). In addition, Main Roads WA also 

provides speed limit spatial vector data (Main Roads Western Australia 2017d) and 

road surface type data, where surface type includes single seal, two coat seal, slurry 

seal, primer seal, asphalt dense graded, asphalt intersection mix, rubberised seal and 

asphalt open graded in the Wheatbelt region. For socioeconomic factors, populations 

near road segments are calculated to reflect the potential utilization of roads by 

surrounding residents. Population data with 1-km spatial resolution is obtained from 

Gridded Population of the World fourth version (GPWv4) (NASA 2016b), and the 

calculated variables include population within 1-km, 5-km and 10-km buffer areas of 

road segments, and the inverse weighted population within 50-km buffer areas (Song, 

Tan, et al. 2018).  
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5.4 Experiments and Results 

5.4.1 Optimal discretisation 

During the optimal discretisation process, seven lengths of line segments are 

analysed in the scale effect analysis, and five unsupervised discretisation methods and 

five intervals are included in selecting the best parameters for segmenting the road 

network and discretising continuous variables. In total, 175 groups (7×5×5) of 

experiments are performed for each of the 20 continuous variables listed in Table 1 for 

optimal discretisation analysis. In the experiments, the best combinations of 

discretisation methods and numbers of intervals are firstly selected by the comparison 

of relative importance using 𝑄 values for each of the seven lengths of line segments. 

Figure 5-4 shows the comparison of 𝑄 values and their ranks with the line segment 

lengths, where the best combinations of discretisation methods and numbers of 

intervals are set for the variables. Ranks of 𝑄 values show that when line segment 

length is less than 500 m, the ranks of variables (especially the top half ranks) are 

relatively stable. When line segment length is larger than 500 m, the ranks of variables 

are changed and the number of variables with significant relationships with pavement 

infrastructure performance are reduced. Thus, in the scale effect analysis, 500-m line 

segments are used for segmenting the road network and generating segment-based 

explanatory and response variables. The result of 500-m line segments is also 

consistent with the regional practice on sealing design by Main Roads, WA. 

Meanwhile, Figure 5-5 shows the process for selecting the best combinations of 

discretisation methods and the number of intervals for discretising continuous 

variables under the line segment length of 500 m. For each continuous variable, the 

best combination with the largest 𝑄 value is selected from 25 combinations formed by 

five discretisation methods and five intervals. The best combination is also calculated 

for the scenarios of other line segment lengths, and the results are utilized in the 

analysis of ranks of 𝑄  values (Figure 5-4). The results of discretising continuous 

variables are shown in Figure 5-6, and the best discretisation methods and numbers of 

intervals for continuous variables are summarized in Table 5-2, together with the 

categorical variables to be used in the segment-based geographical detector analysis. 

Results show that the combination of discretisation methods and the number of 

intervals have no relationship with 𝑄  values. The best combinations might be 
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associated with the distributions of variable data and the relationships between spatial 

patterns of pavement infrastructure performance and the potential variables.  
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Figure 5-4. Scale effects of line segment length on Q values (A) and ranks of 

variables (B) 
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Figure 5-5. Process of selecting the best combinations of discretisation methods 

and number of interactions for continuous variables 

 

Figure 5-6. Results of optimal discretisation of continuous variables 

Table 5-2. Summary of best discretisation methods and numbers of intervals for 

continuous variables 

No. Code Min Max Method Number of intervals 
1 vlmsum 100 5105 SD 7 
2 pcthvvlm 6.1 56.4 quantile 6 
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3 masssum 1780.1 138391.3 equal 6 
4 pcthvmass 67.5 98.0 quantile 7 
5 ap 237.6 761.8 geometric 7 
6 maxtemp 20.7 33.9 SD 6 
7 mintemp 9.8 15.4 natural 6 
8 meantemp 16.4 24.0 geometric 4 
9 tempdif 8.6 20.6 SD 6 

10 soiltype 
Categorical variable, including Calcarosol, 
Chromosol, Hydrosol, Kandosol, Podosol, 

Rudosol, Sodosol and Tenosol. 
8 

11 rzsm 4.64 33.11 equal 6 
12 usm 1.96 10.43 natural 7 
13 lsm 4.12 37.33 equal 6 
14 dsm 9.84 54.31 equal 5 
15 dd 0.5 179.3 natural 7 
16 ae 239.3 807.4 equal 5 
17 evi 0.04 0.38 SD 6 
18 ravnw Categorical variable, including 3, 4, 5, 6, 7 and 10. 6 

19 speed Categorical variable, including 50, 60, 70, 80, 90, 
100 and 110 (km/h). 7 

20 surftype 

Categorical variable, including single seal, two 
coat seal, slurry seal, primer seal, asphalt dense 
graded, asphalt intersection mix, rubberised seal 

and asphalt open graded. 

8 

21 popbf1 1 2490 geometric 7 
22 popbf5 13 6946 geometric 7 
23 popbf10 49 12422 quantile 6 
24 wpop 8 2787 geometric 7 

5.4.2 Segment-based factor detector 

Under the 500-m line segment scenario for segmenting the whole road network 

in the Wheatbelt region, the segment-based factor detector is performed for all 

potential variables, including category and discretised segment-level variables. Figure 

5-7 shows the 𝑄 values and their ranks of variables with significant relationships with 

pavement deflections. The variables which have no significant 𝑄 values are removed. 

The removed variables include EVI, traffic speed limit and road surface type. In 

general, variables from the categories of vehicles and heavy vehicles, and climate and 

environment, make more contributions to the pavement deflections than the variables 

of road characteristics and socioeconomic factors. All four variables of vehicles and 

heavy vehicles are among the top-quartile ranks of 𝑄 values. The relative importance 

of total masses of vehicles (𝑄 = 0.243) and deep drainage (𝑄 = 0.156) are much 

higher than other variables. Weighted population within 50 km (𝑄 = 0.064) and RAV 



91 

 

network (𝑄 = 0.022) are the variables that have the largest contributions among their 

respective category of socioeconomic factors and road characteristics.  

 

Figure 5-7. Relative importance of potential variables explored by factor detector 

5.4.3 Segment-based interaction detector 

In this study, 276 pairs of interactions among 10 types of category interactions 

are computed between the 24 potential variables in the 4 categories. Figure 5-8 shows 

the impacts of all interactions between potential variables, including variable 

interactions, category interactions, 𝑄 values and ranks, where the top 20 interactions 

are marked by the ranks. Table 5-3 lists the top 20 interactions, which are all 

nonlinearly enhanced by both variables. The top 20 interactions are identified in the 

category interactions of (1) vehicles and heavy vehicles (C1∩C1), (2) vehicles and 

heavy vehicles, and climate and environment (C1∩C2), (3) vehicles and heavy 

vehicles, and socioeconomic factors (C1∩C4), and (4) climate and environment, and 

socioeconomic factors (C2∩C4). Half of the top 20 interactions are the category 

interaction of vehicles and heavy vehicles, and climate and environment (C1∩C2), 

four interactions are included in the category interactions of vehicles and heavy 

vehicles (C1∩C1), and another four interactions are between the categories of climate 

and environment, and socioeconomic factors (C2∩C4).  
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Figure 5-8. Relative importance of interactions of variables and categories 

derived by interaction detector 

Table 5-3. Interactions between variables of pavement deflections (top 20 

interactions) 

Category 
		 C1: Vehicles and heavy vehicles 		 C2: Climate and 

environment 

Variable vlmsum pcthvvl
m 

masssu
m 

pcthvma
ss   ap dd 

C1: Vehicles 
and heavy 
vehicles 

vlmsum        
pcthvvlm 0.543*       
masssum  0.451      

pcthvmass 0.457  0.532     

C2: Climate 
and 

environment 

ap  0.535  0.505    
soiltype  0.481 0.464 0.566*    

dd  0.496 0.544 0.525    
ae  0.516  0.435    

C4: Socio-
economic 

factors 

popbf1    0.407*    
popbf5    0.393    
wpop 0.385 0.384       0.453* 0.423 

* The largest interaction within each category, including C1∩C1, C1∩C2, C1∩C4, and C2∩C4.  
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The interaction that contributes the most to the pavement deflections is the 

percentage of heavy vehicle mass and soil type (𝑄 = 0.566), and the interaction with 

the second largest relative importance is the interaction between total mass of vehicles 

and soil deep drainage (𝑄 = 0.544). Both belong to the category interaction between 

vehicles and heavy vehicles, and climate and environmental factors (C1∩C2). The 

results indicate that the pavement infrastructure performance is significantly related to 

the interactive impacts between vehicles and heavy vehicles, and the climate and 

environmental conditions, and the impacts are nonlinearly enhanced by both categories 

of variables. Heavy vehicles are an important contributor among vehicles, and it has 

strong interactions with climate and environmental conditions. In addition to the soil 

type and soil deep drainage, precipitation and actual evapotranspiration also have 

strong interactions with the variables of vehicles and heavy vehicles, especially the 

percentages of heavy vehicle volume and mass.  

The interactions that have third and fourth highest relative importance are 

related to the category interaction within vehicles and heavy vehicles (C1∩C1), 

including the interaction between total volume of vehicles and the percentage of heavy 

vehicles (𝑄 = 0.543), and the interaction between total mass of vehicles and the 

percentage of heavy vehicle mass (𝑄 = 0.532). Results of the interaction of vehicles 

and heavy vehicles reveal that the volumes of vehicles and heavy mass have significant 

influence on the pavement infrastructure performance, and their impacts are 

nonlinearly enhanced.  

In addition, socioeconomic factors also have strong interactive impacts with 

variables from the categories of vehicles and heavy vehicles, and climate and 

environment. The interaction between population within 1 km from road segments and 

percentage of heavy vehicle mass (𝑄 = 0.407) is the most important interaction 

among the category interaction between socioeconomic factors and vehicles and heavy 

vehicles. Meanwhile, the interaction between weighted population within 50 km of 

road segments and annual precipitation (𝑄 = 0.453) has the largest contribution in the 

category interaction between socioeconomic factors and the climate and 

environmental conditions.  
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Figure 5-9. Levels of risk within sub-regions of variables within the category of 

all vehicles and heavy vehicles 

5.4.4 Segment-based risk detector 

The segment-based risk detector reveals the road segments with pavement 

deflections at high or low risks in different sub-regions of variables. The risks of 

pavement deflections are calculated using the segment-based risk detector for 

variables in the four categories, including vehicles and heavy vehicles (C1, Figure 5-

9), climate and environment (C2, Figure 5-10), road characteristics (C3, Figure 5-11), 

and socioeconomic factors (C4, Figure 5-12), where the variables that have no 

significant relationships with pavement deflections are removed. To deeply understand 

the spatial patterns of pavement deflections at high or low risks, five levels of risks are 

defined for the sub-regions of variables, including very high risk, high risk, medium 

risk, low risk and very low risk. The definitions and descriptions of pavement 

infrastructure performance risk levels are listed in Table 5-4. According to the 

definition, risks of pavement damage are directly linked with the sub-regions of 

variables. In this study, the variables with the top six 𝑄  values identified by the 

segment-based factor detector are used as examples for illustrating the risk 

distributions of pavement infrastructure performance. The six values include total 
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masses of vehicles, soil deep drainage, percentage of heavy vehicle mass, total 

volumes of vehicles, soil type and annual precipitation. The six variables have the 

largest relative contributions (𝑄 > 0.1) and they are included in 18 of the top 20 

interactions. Figure 5-13 shows the levels of risks within sub-regions of variables and 

the corresponding spatial distributions at high or low risks. For instance, road segments 

with very high risk associated with the total masses of vehicles are primarily located 

at the southern part of Brand Highway. Road segments of high risk are located at Brand 

Highway, Great Northern Highway, Great Eastern Highway and Albany Highway, and 

other road segments are at low risk. For the sub-regions determined by soil deep 

drainage, road segments at very high risk are primarily on Brand Highway, and those 

at very low risk are distributed on the southern part of Great Northern Highway, 

western part of Great Eastern Highway, and Albany Highway.  

 

Figure 5-10. Levels of risk within sub-regions of variables within the category of 

climate and environmental factors 
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Figure 5-11. Levels of risk within sub-regions of variables within the category of 

road characteristics 

 

Figure 5-12. Level of risks within sub-regions of variables within the category of 

socioeconomic factors 

Table 5-4. Definitions and descriptions of pavement infrastructure performance 

risk levels.  

Level of risk Description 

Very high risk Road segments within the sub-region of the highest risk of pavement 
deflections. 

High risk Road segments within the sub-region of the second highest risk of 
pavement deflections. 

Medium risk Road segments within the sub-regions of median risks of pavement 
deflections, and outside of other levels of risks.  

Low risk Road segments within the sub-region of the second lowest risk of 
pavement deflections. 
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Very low risk Road segments within the sub-region of the lowest risk of pavement 
deflections. 

 

 

Figure 5-13. Levels of risks within sub-regions of variables with top six Q values 

and the corresponding spatial distributions of pavement performance at high or 

low risks 

5.5 Discussion 

5.5.1 The segment-based spatial stratified heterogeneity analysis 

Compared with traditional point or area based geographical observations, 

segment-based observations have specific geometric and heterogeneity characteristics. 

In previous studies, only a few segment-based spatial analysis methods were used for 

processing segment-based spatial data. Road and traffic data, such as pavement 

deflections, are typical segment-based observations, which are spatially homogeneous 

within a segment, but spatially heterogeneous on different segments across the road 

network (Song, Wang, et al. 2018). In this study, optimal discretization for segment-

based pavement data and geographical detector are integrated in the segment-based 

spatial stratified heterogeneity analysis of exploring the impacts of potential variables 

on pavement infrastructure performance. This approach has the following innovations 

and advantages.  
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First, the geometric and heterogeneity characteristics of segment-based 

pavement data are included in the spatial stratified heterogeneity analysis. In general, 

spatial grids with certain sizes are applied on extracting response and explanatory 

variables from multi-source spatial data in a geographical detector. This method is 

reasonable and widely used in point and area based spatial observations (Cao, Ge, and 

Wang 2013, Wang et al. 2010). However, it is biased and unreasonable for segment-

based data which are distributed along the line segments, such as road segments across 

the road network, due to the various and diverse shapes of line segments. If spatial 

grids are applied on segment-based data, the shapes and lengths within a spatial unit 

will be largely different, leading to biased inputs of spatial data and errors in the spatial 

analysis. In this study, the road network is segmented using the spatial unit of line 

segments with the same length, and values of spatial variables are summarized along 

the corresponding line segments. As a result, the spatial units of response and 

explanatory variables are identical across the road network. In addition, this method is 

applied on the scale effect analysis in optimal discretization for segment-based data to 

select the best length of line segments for segmenting the road network. By involving 

the geometric and heterogeneity characteristics of segment-based data, the optimal 

discretization processes can reflect the spatial patterns and characteristics of 

explanatory variables and the real conditions of pavement engineering.   

In addition, to the best of our knowledge, this is the first study utilizing the 

geographical detector to address industrial and engineering problems. Results show 

that the segment-based geographical detector is suitable and practical in addressing 

industrial problems with line segment spatial data, such as assessing pavement 

infrastructure performance. The key reason is that no linear assumptions are required 

to both response and potential explanatory variables for the geographical detector in 

exploring their interrelationships (Wang et al. 2010). Meanwhile, both continuous and 

category spatial data can be used as explanatory variables in spatial stratified 

heterogeneity analysis, where continuous data are discretised. These characteristics of 

the geographical detector enable the wide prospects for its application on addressing 

industrial and engineering problems, and providing quantitative and accurate spatial 

analysis results for road maintenance decision-making. 

Finally, the geographical detector provides various results at different levels. 

Exploration of potential variables and their spatially varied impacts on pavement 
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infrastructure performance is critical for understanding current and historical 

conditions, and appropriate decision-making of road and transportation authorities. It 

is also a sophisticated issue associated with numerous factors that might have diverse 

impacts. In the segment-based geographical detector, the relative importance of 

potential variables is explained by the factor detector and the interactions between 

variables and between categories are revealed by the interaction detector. The road 

segments at high or low risk of pavement damage are identified using the risk detector. 

Thus, researchers and practitioners can use one or several models of geographical 

detector to address their own problems. Furthermore, comprehensive application of 

spatial analysis results at different levels is beneficial for an in-depth understanding of 

the mechanisms of how the factors can affect pavement infrastructure performance.  

5.5.2 Comprehensive impacts of climate and heavy vehicles 

There are three major findings in this study. Vehicles, especially heavy 

vehicles, and climate and environmental conditions, are two main categories of 

contributors to pavement damage. In general, engineers and road managers believe 

that vehicles are the primary contributors to road damage (Cebon 1988, Ede 2014). 

This study reveals the respective contributions of traffic volumes and vehicle mass. 

Results show that the vehicle masses have more influence than volumes on pavement 

infrastructure performance. The contributions of total mass of vehicles and percentage 

of heavy vehicle mass are 2.01 and 1.31 times the contributions of total volumes of 

vehicles and percentage of heavy vehicle volume, respectively. Similar results also 

appear in the relevant studies. For instance, vehicle mass has a cumulative effect on 

pavement damage (Ede 2014), and pavement maintenance costs lead by overloaded 

vehicles are twice the costs of the same vehicles within legal loads (Pais, Amorim, and 

Minhoto 2013). In addition, climate and environmental conditions are usually assumed 

to be constant in the current and past pavement design and maintenance, but they 

actually vary at different times and across space. This study indicates that the impacts 

of climate and environment are significant and the impacts vary on different road 

segments on the road network. Static assumptions of climate and environmental 

conditions may result in premature deterioration of pavements (Li, Mills, and McNeil 

2011). This study also presents that different variables of climate and environmental 

conditions have relatively different negative impacts on the pavement. Previous 

studies mainly focus on the impacts of temperature on pavement damage (Chinowsky, 
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Price, and Neumann 2013, Chinowsky et al. 2013, Neumann et al. 2015, Byram et al. 

2012, Qiao et al. 2013). For instance, it is estimated that warming temperatures will 

probably lead to US$13.6, US$19.0 and US$21.8 billion additional costs for pavement 

maintenance by 2010, 2040 and 2070 under RCP4.5 future climate change scenarios 

in the US (Underwood et al. 2017). In some regions that use asphalt pavements, 

pavement service life will be significantly reduced due to the increased temperatures 

and pavement designs that are not adapted to climate change (Qiao et al. 2013). 

However, this study shows that the impacts of different indicators, including soil 

moisture, soil type and precipitation are much greater than the impacts of temperature. 

Pavements are generally temperature sensitive, but the degrees are different due to 

various types of pavements and diverse surrounding environment. In the Wheatbelt 

region, the impacts of traffic masses and soil moisture are much higher than impacts 

of temperature on the pavement performance. For temperature variables, mean 

temperature along road segments is more important than the maximum temperature, 

minimum temperature and temperature difference. While the impacts from soil deep 

drainage, soil type and precipitation are 6.24, 4.76 and 4.48 times of the impacts of 

mean temperature, these factors were seldom considered in previous studies.  

In addition, variables of vehicles and heavy vehicles in particular and climate 

and environmental conditions have significant interactive influence on pavement 

infrastructure performance. The impacts from the interactions can explain more than 

half of the pavement damage. Only a few previous studies investigated the interactive 

or combined impacts of vehicles and climate on pavements, even though multiple 

variables are used for the prediction of pavement performance (Bianchini and Bandini 

2010, Marcelino, Lurdes Antunes, and Fortunato 2018). For example, experiments 

performed in Guangzhou, China, indicate that the dynamic behaviours of asphalt 

pavement structure are largely affected by the coupled loads of different temperature 

and vehicle masses using a coupling dynamic model (Xue et al. 2013). In this study, 

the interactions between different variables of vehicles and climate are explored and 

discussed in detail. From the perspective of relative importance measured by 𝑄 value, 

multiple interactions between the category of vehicles and heavy vehicles, and climate 

and environment, can explain more than half of the pavement damage. The interactions 

between percentage of heavy vehicle mass and soil type, soil deep drainage, and 

precipitation, can explain 56.6%, 52.5% and 50.5% of pavement deflections 
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respectively. The interaction between the total mass of vehicles and soil deep drainage 

explains 54.4% of pavement deflections. The interactions between the percentage of 

heavy vehicle volume and precipitation, and actual evapotranspiration, explain 53.5% 

and 51.6% of pavement deflections in the Wheatbelt. Meanwhile, this study shows that 

the interactions between vehicles and the percentage of heavy vehicles also make 

significant contributions to pavement damage. The interaction between total volume 

of vehicles and percentage of heavy vehicle volume, and the interaction between total 

masses of vehicles and percentage of heavy vehicle mass account for 54.3% and 53.2% 

of pavement deflections, respectively.  

Finally, the impacts of the above two categories of variables are also linked 

with the local socioeconomic conditions, such as populations that reflect the usage of 

local road segments. Segment-based spatial stratified heterogeneity analysis reveals 

that the weighted population within 50 km of road segments contributes to 6.4% of 

pavement deflection, and its interaction with precipitation can explain 45.3% of 

pavement deflection. The interaction between population within 1 km of road 

segments and percentage of heavy vehicle mass explains 40.7% of pavement 

deflection. Growing population usually leads to multiplied vehicles on the roads and 

can sharply increase the necessity for freight transportation, which have cumulative 

impacts on pavement damage (Ede 2014). Thus, socioeconomic factors are effective 

supplements for vehicles and climate variables for explaining the sophisticated 

problems of pavement damage.  

5.5.3 Practical recommendations 

Based on the spatial analysis results, this study has the following practical 

recommendations for optimizing and improving pavement design, management, 

construction and maintenance practices. First, for the design and construction of new 

roads, data-driven analysis of potential pavement performance should be assessed in 

terms of the surrounding climate, environment and socio-economic conditions to 

design the road pavement, such as the pavement service life, materials and thickness 

of asphalt concrete overlay (Wang 2012, Wen et al. 2017). The quantitative and 

accurate assessment of pavement performance can avoid underestimation of the 

burden of road maintenance and overestimation of pavement service life. Next, more 

attention should be paid to the impacts of climate and surrounding environmental 
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conditions on pavement performance. In general road management and pavement 

engineering practices, traffic volumes especially the masses of heavy vehicles are 

regarded as the primary source of pavement damage (Song, Wang, et al. 2018). In this 

study, the spatial segment-based stratified heterogeneity analysis indicates that the 

contributions of climate and environmental factors are as high as the impacts of 

vehicles, and they have nonlinearly enhanced interactive impacts on the pavement. 

Finally, spatial difference needs to be involved in the whole life-cycle of road 

pavement. The performance of pavement and its factors are significantly varied across 

the road network. The spatially local identification of pavement performance and the 

factors benefit for the more accurate and reasonable decision-makings for reducing the 

impacts of factors and resurfacing costs, and prolonging pavement life.  

5.5.4 Recommendations for future research 

Even though this study demonstrates the contributions of vehicles and heavy 

vehicles, climate and environment, socioeconomic factors and the characteristics of 

roads, and their interactions on pavement damage, more investigations are still 

required in the future research. Assessing the comprehensive impacts of multi-source 

factors on pavement infrastructure performance has been a key research area for 

researchers, engineers and managers since the 1930s (Main Roads Western Australia 

1996). In Australia, 12.9 million dollars was spent in 2015-16 on the 24-year long 

Austroads Long Term Pavement Performance Program (Austroads Ltd. 2016). In this 

research, several recommendations are proposed for future research about 

understanding factors of pavement infrastructure performance. From the perspective 

of methodology, prediction methods can be considered for spatial stratified 

heterogeneity analysis, so that future scenarios of pavement infrastructure 

performance can be predicted based on historical data, which is one of the most 

important sources of evidence for decision-making of predictive road maintenance. 

From the perspective of data, more variables can be monitored, collected and analysed, 

such as adverse and extreme weather condition data. Studies in other regions are also 

necessary to reflect the local pavement conditions and potential factors. 
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5.6 Conclusions 

Road infrastructure is important to the well-being and economic health of all 

nations. Comprehensive understanding of the impacts of climate and heavy vehicles 

on pavement infrastructure performance is critical and necessary for road 

infrastructure maintenance and management. The performance of pavement 

infrastructure is sophisticated and affected by numerous factors and varies greatly 

across different roads. This study explores the comprehensive impacts of vehicles and 

heavy vehicles, climate and environment, road characteristics and socioeconomic 

conditions on pavement infrastructure performance with spatial stratified 

heterogeneity of segment-based variables. Different from point and area geographical 

observation data, indicators of pavement performance are segment data distributed 

along road segments of the road network. Segment-based optimal discretization is used 

to discretise segment-based pavement data on the road network and applied on 

segment-based geographical detector. This approach provides new ideas for spatial 

analysis of segment geographical data. Spatial analysis reveals that vehicles and 

climate variables are the major factors associated with pavement damage, where the 

variables having the largest relative importance include total masses of vehicles, soil 

deep drainage, percentage of heavy vehicle mass, total volume of vehicles, soil type 

and precipitation. Vehicle masses have more influence than volumes. The 

contributions of total mass of vehicles and percentage of heavy vehicle mass are 2.01 

and 1.31 times the contributions of total volumes of vehicles and percentage of heavy 

vehicle volume, respectively. Meanwhile, the impacts from soil deep drainage, soil 

type and precipitation are 6.24, 4.76 and 4.48 times the impacts of mean temperature 

on pavement damage, but these factors are rarely considered. Instead, temperature has 

been commonly used as an indicator of climate in previous studies. In this research, 

soil and precipitation have more influence than temperature, which may be linked with 

the temperature insensitive pavements on some roads in the Wheatbelt region. The 

interactions between variables of vehicles and heavy vehicles and variables of climate 

and environmental conditions have significant influence on pavement infrastructure 

performance, which can explain more than half of the pavement damage. 

Socioeconomic conditions also have impacts on pavement performance to some 

extent, but the impacts of road characteristics are limited. The methodology in this 

study can objectively reveal the spatial associations between pavement performance 
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and explanatory variables. Nowadays pavement practices in developed countries focus 

more on maintenance and renewal. The findings provide quantitative contributions of 

variables on pavement performance, so the variations of pavement performance that 

are affected by variables needs to be considered in the practical decision-making for 

road design, construction and maintenance.   
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Chapter 6 Geospatial Multi-Criteria Decision 

Making for Road and Heavy Vehicles Management 

6.1 Introduction 

In this chapter, to more comprehensively investigate the overall performance 

of road infrastructure and to determine a more accurate performance measure, a model-

driven fuzzy spatial multi-criteria decision making (MFSD) is utilized for indicator 

selection and for deriving an overall indicator. The MFSD method integrates model-

driven decision making, multi-criteria decision making (MCDM), fuzzy set theory, 

and geographical information systems (GIS), and can both generate an overall 

indicator and support decision making. First, the MFSD method is developed based on 

MCDM, so it is used to select proper alternative indicators, where the factors affecting 

the indicators are taken into account for decisions. The analytic hierarchy process 

(AHP) is used to obtain weights of alternatives, and AHP and the technique for order 

of preference by similarity to ideal solution (TOPSIS) are comparatively applied in 

assessing the alternatives performance indicators. Second, the MFSD method is a 

model-driven decision-making method that replaces expert opinion in traditional 

decision making by data and models, such as statistical models, machine learning 

algorithms and spatial analysis models, to reduce the potential biases and uncertainties 

of linguistic descriptions. Third, fuzzy set theory is applied for modelling sophisticated 

systems that cannot be defined with exact numbers using membership functions. 

Finally, GIS is combined with the decision-making processes to integrate both spatial 

and aspatial data to identify alternative indicators and calculate a decision matrix of 

alternative indicators and factors. In this research, the methods are used to address road 

decision issues about the road network in the Wheatbelt in WA, Australia. The 

segment-based spatial data of four monitored pavement indicators, including 

deflection, curvature, roughness and rutting, are collected for quantifying road 

infrastructure performance. Correspondingly, three categories of spatial variables 

(road properties, traffic vehicles and climate conditions), are derived from multi-

source data and summarized to the spatial unit of road segment.  
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6.2 Study area and data 

6.2.1 Study area and alternatives 

Road freight transportation is one of the primary modes of transport in 

Australia. The freight moved by road shares 52% of tonnages moved and 42% of the 

whole ton-kilometres travelled among the road, rail, sea and air networks in Australia 

(Australian Bureau of Statitics ABS 2002). Main roads in WA, represent “one of the 

world’s most expensive road networks”, whose performance is continuously improved 

to meet the requirements of community, industry and other stakeholders (Main Roads 

Western Australia 2018b). WA undertakes approximately one third of the total ton-

kilometres of freight transportation of eight states and territories in Australia 

(Australian Bureau of Statitics ABS 2002). The primary contributors of the freight 

transportation are long-distance movements of heavy commodities, including mining 

(e.g. iron ore) and agricultural products (e.g. grain, beef and lamb). The Wheatbelt 

region plays a critical role in road freight transportation in WA, since it links the Perth 

Metropolitan region, the capital city of WA, and the mining and agricultural 

production regions (Figure 6-1). The Perth Metropolitan region is on the coast to the 

west of the Wheatbelt region, and there is a huge demand for industrial production and 

living materials. For instance, more than 78% of the population in WA live in the Perth 

Metropolitan region, and the total port trade including both imports and exports in 

Fremantle Port in Perth Metropolitan region reached 35.3 million tons in 2017 

(Fremantle Ports Australia 2018). Meanwhile, the Wheatbelt region and its adjacent 

northern, eastern and southern regions are the grain, sheep, metal and non-metallic 

mineral production regions (Department of Transport Western Australia 2017). In 

addition, improving the road infrastructure performance is increasingly important for 

reducing traffic incidents and ensuring road safety in WA and the Wheatbelt region. 

Even though the WA traffic fatality rate is reduced by one third compared to a decade 

ago, the WA traffic fatality ratio of 0.074‰ is still higher than the Australian traffic 

fatality ratio of 0.054‰ in 2016 (Bureau of Infrastructure and Economics 2016). The 

Wheatbelt fatality rate reaches 49.8 per 100,000 people, which is about seven times 

the state rate and ten times the Australia national rate in 2014 (Government of Western 

Australia 2015). The Wheatbelt serious crash rate is also the highest among all regions 

in WA. Among the factors of serious crashes, the top two contributors in the Wheatbelt 
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region, a single vehicle hitting an object (54%) and vehicle speed (16%), are higher 

than other regions (Government of Western Australia 2015). Thus, even though the 

traffic incidents are also associated with other factors, such as drink driving, the road 

and its surrounding environmental conditions are still the main contributors.  

 

Figure 6-1. Study area and the main road network. 

To describe the road infrastructure performance, four indicators of pavement 

conditions are monitored, including deflection, curvature, roughness and rutting 

(Figure 6-2). The data are collected by Main Roads WA with different length units 

along roads across the whole main road network in the Wheatbelt region. In the study, 

the main roads are spatially defined as 297 road segments in the road network, where 

road segments are parts of roads with similar construction, geographical and 

environmental conditions between junctions or intersections (Austroads 2016, Song, 

Wang, et al. 2018). Then, the values of four pavement performance indicators are 

spatially summarized to the road segment based spatial data. Deflection is a pavement 

strength indicator that is measured as the maximum depression of pavement surface 

under a standard load, and it is monitored using a Dynatest 8000 series Falling Weight 

Deflectometer (FWD) device and calibrated with Calibration Method WA 2060.5 by 

Main Roads WA (Main Roads Western Australia 2017a). The segment-based 

deflection ranges from 151 µm to 762 µm and the mean deflection is 368.8 µm in the 

study area. Curvature is an indicator of asphalt fatigue that represents the shape of 

deflected pavement surface caused by loads. The value of curvature equals the 

maximum deflection for a certain test point minus the deflection at this point when the 

test load is 200 mm from the test point where there is a maximum deflection. The 
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segment-based curvature ranges from 43.7 mm to 237.6 mm with a mean of 132.1 mm 

in the Wheatbelt region. Roughness, measured with the International Roughness 

Index (IRI), can reflect road surface deviations of the longitudinal profile. The 

roughness conditions can affect vehicle dynamics, vehicle operating costs, driving 

comfort, and safety and pavement loading. In Australia, the acceptable maximum 

roughness values are determined by the road roughness acceptability functions, which 

present the comparison between the objective service quality levels, including the 

travel time cost and time, to practical levels of user satisfaction with service quality 

(Potter et al. 1992). In terms of the road strategic asset management plan in the 

Australian Capital Territory (ACT), the roughness of at least 88% of roads should be 

lower than 4.2 to satisfy the road performance target (Bureau of Infrastructure 2017). 

In this study, four road segments (8 km) have roughness higher than 4.2 among 297 

road segments (3595 km) in the Wheatbelt region, which indicates that the Wheatbelt 

roughness performance is within the above recommended road asset management 

plan. It should be noted that the road roughness target varies in different places due to 

diverse road constructions and local environment. Rutting is an indicator of pavement 

surface and structural conditions and the potential aquaplaning problems. It is 

measured as the largest upright displacement of the road surface transverse profile 

(White 2002). In Australia, the maximum rutting of 20 mm is used as the intervention 

threshold for main roads (Smith, Cercina, and Peelgrane 1996, Fwa, Pasindu, and Ong 

2011). In the Wheatbelt region, the maximum rutting within the spatial unit of a road 

segment is 10.1 mm, which means the rutting in all road segments are under the 

intervention level.  
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Figure 6-2. Spatial distributions of alternatives for assessing road conditions and 

road maintenance burden.  

6.2.2 Explanatory variables of criteria 

The explanatory variables of criteria are collected from three categories: 

properties of road, statistics of traffic vehicles, and local climate and environmental 

variables. The three categories of variables correspond to the three criteria: road, 

vehicles and climate. The spatial distributions of the raw data of the road, vehicles and 

climate explanatory variables are presented in Figures 6-3, 6-4 and 6-5, respectively. 

Then the variables are pre-processed and summarized to the segment-based data with 

the consistent spatial unit (road segment) of road performance indicators. Table 6-1 

lists the segment-based spatial data of criteria explanatory variables. The brief 

descriptions and data sources of the three categories of explanatory variables are 

introduced in the following paragraphs.  
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Figure 6-3. Spatial distributions of variables of road characteristics. 

 

Figure 6-4. Spatial distributions of variables of vehicles and traffic conditions. 
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Figure 6-5. Spatial distributions of variables of climate and environmental 

conditions. 

Table 6-1. Summary of segment-based spatial data of explanatory variables of 

criteria  

Criteria/ 
Category of 

variable 

Sub-criteria/ 
Variable 

Code of 
variable Min Max Mean 

Road 

RAV network ravnw 2 10 5.9 
Road length 

(km) length 0.8 64.2 12.1 

Surfacing 
width (m) surfwidth 5.1 15.2 8.3 

Surfacing 
year (to 2015) surfyear 0 39 12.2 

Road density 
(km/km2) roaddens 0.5 8 1.4 

Vehicles 

Traffic speed 
(km/h) speed 50.8 110 100.6 

Volume of 
heavy 

vehicles 
(vehicles/day) 

vlmhv 30.1 2133.7 253.7 

Volume of 
light vehicles 
(vehicles/day) 

vlmli 105.4 8565.8 876 
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Volume of 
total vehicles 
(vehicles/day) 

vlmtt 136.3 9525.3 1129.7 

Mass of 
heavy 

vehicles (104 
ton/day) 

masshv 0.26 22.94 2.55 

Mass of light 
vehicles (104 

ton/day) 
massli 0.05 3.85 0.39 

Mass of total 
vehicles (104 

ton/day) 
masstt 0.37 25.1 2.95 

Percentage of 
heavy vehicle 
volumes (%) 

pcthv 7.4 54.5 23.7 

Percentage of 
heavy vehicle 
masses (%) 

masspcthv 51.8 97.1 84.5 

Climate 

Annual 
average daily 

minimum 
temperature 

(°C) 

tmin 3.15 10.34 5.68 

Annual 
average daily 

maximum 
temperature 

(°C) 

tmax 31.86 49.09 42.83 

Annual 
average daily 

mean 
temperature 

(°C) 

tmean 19.18 28.37 24.26 

Annual 
average daily 
temperature 
difference 

(°C) 

tdif 22.57 43.16 37.15 

Soil moisture 
(%) sm 4.9 28.7 9 

Deep 
drainage 

(mm) 
dd 2.3 135.4 25.9 

Annual 
rainfall (mm) rain 250.9 681.2 341 

 

The road performance variables are used to describe the road functional 

properties, geographical and geospatial characteristics, and the surfacing information 

of pavements. RAV networks classify roads based on the maximum permitted size and 

mass of heavy vehicles, including number of axle groups, length and height (Main 

Roads Western Australia 2016b). It is used to guide vehicles to access appropriate 

roads. Only vehicles with the loads and sizes lower than the regulated standards can 
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access the roads of RAV network. Road length is the length of the central line of a 

road segment. Surfacing width is the average width of the pavement surface of a road 

segment. Surfacing year is the age of latest pavement surface until 2015. For instance, 

if the latest surfacing of pavement is 2000, then the surfacing year is 15. Road density 

is calculated using a kernel density function with both local roads and main roads to 

present the density of roads connected to and near the segments of main roads. The 

spatial data of main roads and local roads are provided by Main Roads WA and shared 

by Western Australian Land Information Authority (Main Roads Western Australia 

2018a).  

The variables of criteria vehicles indicate the traffic conditions and the roles of 

different types of vehicles on the road network. Traffic speed of road segments are 

summarized based on the legal speed limits that are used to regulate the speed of road 

vehicles in WA (Main Roads Western Australia 2017d). Traffic volumes, including 

the volumes of heavy, light and total vehicles, are the annual average daily traffic data 

monitored by Main Roads WA, and shared on the data port of Western Australian 

Land Information Authority (Main Roads Western Australia 2018b). The traffic 

volumes on the road segments without observations are predicted using a segment-

based regression kriging (SRK) method. The SRK method can more accurately predict 

traffic conditions compared with point-based spatial prediction methods due to the 

integration of the information of segment-based spatial data and the regression kriging 

method using a segment-based spatial covariance function (Song, Wang, et al. 2018). 

The SRK method is performed using the SK R package (Song 2018b). Then, the traffic 

masses on road segments, including the masses of heavy, light and total vehicles, and 

the percentages of heavy vehicle volumes and masses are computed based on the 

predicted traffic volumes.  

The climate criteria variables reveal the local climate and environmental 

conditions along and around the road segments. The climate variables include 

temperature variables, soil moisture, soil deep drainage and annual rainfall. The 

temperature data are the day-time and night-time temperatures sourced from 1-km 

resolution 8-Day L3 Global Land Surface Temperature (LST) and Emissivity product 

(MOD11A2) from the Moderate Resolution Imaging Spectroradiometer (MODIS) 

(Wan, Hook, and Hulley 2015). The temperature data are then processed to the 

temperature variables, including annual average daily maximum, minimum and mean 
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temperatures, and temperature difference. The soil moisture, deep drainage and annual 

rainfall data with spatial resolution of 5 km are sourced from soil moisture data 

products provided by the Bureau of Meteorology, Australia (Bureau of Meteorology 

Australian Government 2017). Similar to the road and vehicles criteria variables, the 

climate data are also summarized to the segment-based spatial variables for the 

spatially corresponding roads.  

6.3 Model-based fuzzy spatial multi-criteria decision-making (MFSD) 

method 

The MFSD method is a decision making method integrating MCDM, GIS, 

fuzzy theory and model-based decision making. The MFSD method includes the 

following five steps. (1) Select criteria and variables and pre-process data using 

exploratory data analysis methods. This step is introduced in Section 6.3.1. (2) 

Compute contributions of criteria and variables on alternatives based on multiple 

models, which include statistical models, machine learning algorithms and spatial 

analysis models in this study. This step is introduced in Section 6.3.2. (3) Use fuzzy 

set theory to calculate fuzzy membership functions of criteria variables to quantify 

their relative importance and weights based on the model-based contributions of 

criteria. The fuzzy set theory and fuzzy extent analysis are presented in Section 6.3.3. 

(4) Apply fuzzy MCDM in computing an indicator with the weighted criteria and 

decision making for ranking alternatives. The mathematical concepts and processes of 

fuzzy analytical hierarchy process (FAHP) and fuzzy technique for order preference 

by similarity of an ideal solution (FTOPSIS) are presented in Section 6.3.4 and 6.3.5 

respectively. The process of MFSD-based indicator for mapping road maintenance 

burden is presented in Section 3.6. The MFSD-based decision making for ranking 

alternatives of road performance indicators is presented in Section 6.3.7. (5) Analyse 

sensitivity of MFSD-based decision making due to the input parameters, which is 

presented in Section 3.7.  

6.3.1 Criteria selection and data pre-processing 

The selection of criteria consists of two parts. First, collect data of potential 

variables of criteria. The principle of criteria selection is that they should reasonably 

represent and contribute to the final objective, which is to describe the overall road 
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infrastructure performance and the burden of road maintenance in this thesis. In the 

study, spatial data of three criteria, including road, vehicles and climate, and 21 sub-

criteria are collected as shown in Section 6.2.2. To ensure consistent spatial units with 

the road performance indicators, the criteria data are all processed and summarized as 

segment-based spatial data.  

Once the datasets are collected, variables should be normalized to the range [0, 

1] to eliminate the impacts of different units and scales of variables. The normalization 

function of a variable 𝑣𝑎𝑟 is: 

𝑓 𝑣𝑎𝑟	 = ¿*ÀÁ-	(�=]	)
ÀÂÃ �=]	 *ÀÁ-	(�=]	)

                                 (6-1) 

or 

𝑓 𝑣𝑎𝑟	 = ÀÂÃ �=]	 *�=]	
ÀÂÃ �=]	 *ÀÁ-	(�=]	)

                                 (6-2) 

where equation (6-1) is for positively related variables and equation (6-2) is for the 

negatively related variables associated with the study objective.  

Second, select statistically correlated variables with alternatives to eliminate 

variables without significant correlations. The process of variable selection in this step 

is determined in terms of the models for computing contributions of criteria. For the 

statistical models, machine learning algorithms and spatial regression models, one of 

the following two techniques to select variables is recommended. One method is the 

combination of correlation analysis and multi-collinearity analysis. If the variables are 

normally distributed, the Pearson correlation can be used for correlation analysis; if 

they are not normally distributed, the Spearman correlation is recommended 

(Heuvelink 1998, Ge, Song, et al. 2017). The collinearities among variables can be 

diagnosed using the variance inflation factors (VIFs). In general, a variable should be 

removed when VIF is higher than 4 due to its significant collinearity with other 

variables. Another approach for variable selection is step-wise linear regression. The 

main idea of step-wise linear regression is that the regression model is built from a set 

of candidate explanatory variables through entering and removing variables in the 

model in a step-wise manner until no entering and removing are required (Bendel and 

Afifi 1977).  
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6.3.2 Model-based contributions of criteria 

In the MFSD approach, criteria contributions to objectives are computed with 

a series of models instead of experts or decision makers. In this study, the contribution 

computation models include 11 models in three categories: statistical models, machine 

learning algorithms and spatial models (Table 6-2). For all models, the criteria data 

should be pre-processed and the variables should be selected through the two steps 

mentioned in Section 6.3.1. Optionally, if all the selected variables are theoretically 

associated with the objective and alternatives, the variables with statistically 

significant correlations with alternatives are not required for a few models, such as 

ridge regression and geographical detectors, since they can avoid the impacts of 

variables that are not significantly correlated with alternatives. The brief descriptions 

and mathematical processes for computing contributions of criteria of the three 

categories of models are presented in the following three paragraphs.  

Table 6-2. List of models used for computing contributions of criteria 

Category of models Model Code 

Statistical models 

Correlation analysis correlation 

Step-wise linear regression steplm 

Ridge regression  ridger 

Generalized additive model (GAM) GAM 

Machine learning 
algorithms 

Artificial neural network (ANN) ANN 

Support vector machine (SVM) SVM 

Regression tree (RT) RT 

Random forest (RF) RF 

Spatial models 

Geospatial generalized additive model (GeoGAM) GeoGAM 

Geographically weighted regression (GWR) GWR 

Geographical detectors (GD)  GD 

Statistical models for criteria contributions calculation include correlation 

analysis, step-wise linear regression, ridge regression and generalized additive model 

(GAM). The mathematical theories of the four models are distinct and can reflect 

different aspects of data. Correlation analysis examines the contributions of variables 

to alternatives by correlation coefficient and the corresponding significance level. In 

general, the range of correlation coefficient is [-1, 1], where a larger absolute value 

means a stronger correlation. The value of the correlation coefficient does not fully 
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reflect the extent of correlation because of the degree of freedom, so the corresponding 

significance level should be considered (e.g. 0.05). In this study, the Pearson 

correlation is used since the four alternative road performance indicators are all 

normally distributed. Step-wise linear regression regresses multiple variables and 

removes explanatory variables that are not significantly correlated with response 

variables simultaneously. Ridge regression is a robust regression method that can 

avoid overfitting and multi-collinearity without removing predictor variables (Hoerl 

and Kennard 1970, Marquaridt 1970). The R glmnet package is used for the 

computation of ridge regression, where cross validation is utilized to determine tuning 

parameters that control the penalty term strength (Friedman, Hastie, and Tibshirani 

2010). GAM is a widely used nonlinear regression model. In GAM, the nonlinear 

relationships between responses and explanatory variables are described via 

nonparametric smoothing functions (Hastie and Tibshirani 1990). The R mgcv package 

is used for GAM calculation (Wood 2017, 2003). The parameters of smoothing 

functions are automatically determined through the iteration of the generalized cross 

validation (GCV) criterion, which has benefits for the improvement of computation 

efficiency and the assessment of impacts of variables on GCV scores (Wood 2006, 

Song et al. 2015).  

Machine learning algorithms used in the study are support vector machine 

(SVM), artificial neural network (ANN), regression tree (RT) and random forest (RF). 

The four models can be used for both classification and regression, and they are used 

for regression in this study. They are different from statistical linear or nonlinear 

regression in that the forms of functions are pre-specified, the four models have the 

assumptions of relationship functions. Due to the complex nonlinearity and relatively 

high fitness of machine learning models, strict statistical variable selection and multi-

collinearity analysis are required before modelling to avoid overfitting. In ANN 

models, the learning process is performed through massive interconnected artificial 

neurons and weighted links among elements and outcomes (Lek and Guégan 1999, 

Schalkoff 1997). The information flows in a single direction through hidden layers 

from input layers to output layers. Then, the best solution is identified in terms of 

network complexity of the adaptive learning and the support of explanatory variables. 

The ANN analysis is performed with R nnet package (Venables and Ripley 2002). The 

ANN model is run 100 times and use the mean overall fitness and relative importance 
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of variables to calculate the reliable contributions of criteria. In SVM for regression or 

support vector regression (SVR), to determine the best regression function, a 

hyperplane is constructed to maximize the margin and to minimize the regression error, 

where margin is the distance between hyperplane to the closest neighbour point 

(Drucker et al. 1997). Similar to the ANN model, the SVM model is run 100 times to 

derive the reliable contributions of criteria, and it is performed by the R rminer 

package (Cortez 2010). RT constructs a series of rules for explanatory variables and 

recursively divides data into ordered subsets with binary splits in terms of each 

explanatory variable (Breheny 1984, Breiman 2017). Then, the best split is selected 

through a thorough search and assessment of splits of all variables. In general, the split 

with maximum homogeneity regarding response variable is selected. The RT model is 

run by R rpart package (Therneau, Atkinson, and Ripley 2018). RF builds massive 

decision trees for training data and regresses with average predictions of individual 

trees (Ho 1995, Barandiaran 1998). The trees grow from randomly selected sub-groups 

of variables of split parts, and they can grow without trim. The trees grow 

independently to the maximum size sampling from a bootstrap of training, then 

remaining samples are used for calculating the unbiased out-of-bag error rate and the 

relative importance of variables (Breiman 2001, Prasad, Iverson, and Liaw 2006). RF 

is robust to noise in data, overfitting problems and small sample sizes, and requires 

minimal manual parameterization. The RF analysis is run with the R randomForest 

package (Liaw and Wiener 2002). The above four models can provide an overall 

contribution and the respective relative importance of variables in the models. The 

contribution of variable 𝑥>	(𝑖 = 1,… , 𝑛) is computed using the equation: 

𝛽> = 𝛽2 ∙
]`
]``

                                                    (6-3) 

where 𝛽>  is the contribution of variable 𝑥> , 𝛽2  indicates the overall contribution of 

selected variables, and 𝑟> presents relative importance of variable 𝑥>.  

Spatial analysis models consist of geospatial generalized additive model 

(GeoGAM), geographically weighted regression (GWR) and geographical detectors 

(GD). GeoGAM is an extension of GAM, and integrates geographic information in 

the nonlinear regression models to describe spatial heterogeneity that is not presented 

by the explanatory variables (Kneib, Hothorn, and Tutz 2009, Fahrmeir et al. 2007). 

The geographic information might be the residence address, local statistical area (e.g. 
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block and village), county and location. In this study, GeoGAM is coded based on the 

GAM run by R mgcv package (Wood 2017, 2003). GWR is a critical local method to 

investigate geospatial non-stationarity of data relationships (Fotheringham, Charlton, 

and Brunsdon 1998). Different from aspatial regression models, such as linear 

regression, GWR enables locally varied regression parameters through location-wise 

estimation for each spatial variable (McMillen 2004, Fotheringham, Brunsdon, and 

Charlton 2003, Fotheringham 2000). In this study, the contributions of variables are 

calculated with the total fitness of the GWR model and the mean local coefficients of 

variables. GD is a spatial statistical model for analysing spatial relationships of 

variable with spatial variance and geographical strata (Wang et al. 2010). Since the 

contributions of variables are fully determined by the variance and geographical strata, 

no linear assumptions and collinearity test are required for a single variable and pairs 

of variables (Wang 2017). In this study, GD model is run by the R GD package (Song 

2018a). 

6.3.3 Fuzzy set theory  

In this research, fuzzy set theory is integrated in decision making to involve the 

criteria contribution analysis from various models in this study. Fuzzy set theory is 

widely applied in complex system modelling that cannot be comprehensively 

described by crisp numbers or crisp boundaries. Fuzzy logic allows vague and 

ambiguous information in the input (Kaya and Kahraman 2010). Fuzzy sets theory 

uses membership functions to describe the preference of the attributes of interest 

(Chang 1996). Its application in spatial decision making usually utilizes membership 

functions where the values range in [0, 1] to present the degree of membership of 

variables (Jelokhani-Niaraki and Malczewski 2015). In this study, fuzzy set theory is 

used to compute model-based criteria contributions to reduce the inherent differences 

of contributions from various models, even though they tend to be consistent and 

similar. During decision making processes, fuzzy set theory can enable pairwise 

comparison of criteria and alternatives under different criteria.  

In a study data space 𝑅, the fuzzy set 𝛷 is presented as a set of data pairs: 

𝛷 = 𝑣𝑎𝑟, 𝜇È 𝑣𝑎𝑟 , 𝑣𝑎𝑟 ∈ 𝑅                                            (6-4) 
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where 𝜇È is the membership function, which presents the degree of membership of 

fuzzy set 𝛷 to the data space 𝑅 (Chang 1996). The fuzzy number 𝑀 is presented as a 

triangular fuzzy number, and its function is denoted by 𝑙, 𝑚, 𝑢 , where 𝑙 ≤ 𝑚 ≤ 𝑢, 

and they indicate the lower, most possible and upper values, respectively (Kahraman, 

Cebeci, and Ulukan 2003). Then, the equation of the membership function is:  

𝜇´ 𝑥 =

0 𝑥 < 𝑙
K*<
J*<

𝑙 ≤ 𝑥 ≤ 𝑚
8*K
8*J

𝑚 ≤ 𝑥 ≤ 𝑢
0 𝑥 > 𝑢

                                            (6-5) 

For two triangular fuzzy numbers 𝑀+ = (𝑙+,𝑚+, 𝑢+)  and 𝑀j = (𝑙j,𝑚j, 𝑢j) , 

they have the following operation laws (Chang 1996): 

Additive law: 𝑙+,𝑚+, 𝑢+ ⊕ 𝑙j,𝑚j, 𝑢j = (𝑙+ + 𝑙j,𝑚+ + 𝑚j, 𝑢+ + 𝑢j)      (6-6) 

Multiplicative law: 𝑙+,𝑚+, 𝑢+ ⊗ 𝑙j,𝑚j, 𝑢j ≈ (𝑙+𝑙j,𝑚+𝑚j, 𝑢+𝑢j)                 (6-7) 

𝜂, 𝜂, 𝜂 ⊗ 𝑙+,𝑚+, 𝑢+ = (𝜂𝑙+, 𝜂𝑚+, 𝜂𝑢+)                                (6-8) 

Reciprocal law: 𝑙+,𝑚+, 𝑢+ *+ = (1/𝑙j, 1/𝑚j, 1/𝑢j)                                         (6-9) 

6.3.4 Fuzzy MCDM in MFSD approach 

In a MCDM problem, let 𝐴 = (𝐴+, 𝐴j, … , 𝐴;) to be the vector of alternatives 

and 𝐶 = (𝐶+, 𝐶j, … , 𝐶Í) to be the vector of criteria, then the decision matrix is: 

𝑍 =

𝑧++ 𝑧+j ⋯ 𝑧+Í
𝑧j+ 𝑧jj ⋯ 𝑧jÍ
⋮ ⋮ ⋱ ⋮
𝑧;+ 𝑧;j ⋯ 𝑧;Í

                                          (6-10) 

where 𝑧>[(𝑖 = 1,2, … , 𝑝; 𝑗 = 1,2, … , 𝑞) is the value of the 𝑖th alternative under the 𝑗th 

criterion. The relative importance of criteria 𝐶 is regarded as weights to decisions: 

𝑤 = [𝑤+, 𝑤j, … ,𝑤Í]                                            (6-11) 

In the general MCDM problems, the weights are derived from the subjective basis of 

expert judgements or decision makers’ opinions in terms of their experience and 

knowledge. In the MFSD approach in this study, the weights are computed on the basis 

of data-driven model-based contributions of criteria. The model-based contributions 

of criteria are firstly converted to triangular fuzzy numbers in terms of fuzzy logic 
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method. Then, for the fuzzy MCDM, the decision matrix is composed by the triangular 

fuzzy numbers with the equation: 

𝑍 =

𝑧++ 𝑧+j ⋯ 𝑧+Í
𝑧j+ 𝑧jj ⋯ 𝑧jÍ
⋮ ⋮ ⋱ ⋮
𝑧;+ 𝑧;j ⋯ 𝑧;Í

                                           (6-12) 

where 𝑧>[ is a triangular fuzzy number. 

6.3.5 Fuzzy analytical hierarchy process (FAHP) 

In the MFSD approach, the FAHP is utilized both for computing the overall 

indicator for mapping road maintenance burden, and for the decision making for 

ranking alternatives. AHP has been widely applied in MCDM and GIS-MCDM (Ho 

2008, Zahedi 1986, Esmaelian et al. 2015), and the components of the methodology 

have been continuously improved in previous studies (Ishizaka and Labib 2011). 

However, AHP is limited in dealing with the uncertainties and even biases from expert 

judgements and the preference of decision makers by crisp numbers (Feizizadeh et al. 

2014). There is still subjectivity in the pair matrix derived from the comparison of 

expert judgements, and the uncertainty of subjective judgements may have impacts on 

the final decisions (Kritikos and Davies 2011). Fuzzy set theory is utilized in MCDM 

through the membership functions of criteria to replace the crisp numbers (Bingham, 

Escalona, and Karssenberg 2016). Thus, FAHP is increasingly applied for decision 

making, especially GIS-MCDM, by integrating AHP and fuzzy logic approaches. 

FAHP has many advantages and great flexibility in the alternatives assessment and 

decision making. First, due to the use of fuzzy membership functions of criteria, the 

uncertainty from the initial judgments is reduced (Jiang and Eastman 2000). In this 

study, even the subjectivity of expert judgments is eliminated by the data-driven 

model-based decision-making approach, the contributions of criteria are still varied in 

different models for their different strengths in relationship calculation. Second, FAHP 

can reflect the strengths of multiple models that are used for criteria contribution 

calculation. The approximate information and uncertainty of the different 

contributions computed by models are all involved in the decision-making. Finally, 

FAHP is flexible in addressing the decision problems with multi-source data of 

criteria, which has great benefits for GIS-MCDM.  
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Once the model-based contributions of criteria are transformed to triangular 

fuzzy numbers, then the corresponding fuzzy comparison matrix is: 

(D);×; =

(1,1,1) 𝑙+j,𝑚+j, 𝑢+j ⋯ 𝑙+Í,𝑚+Í, 𝑢+Í
𝑙j+,𝑚j+, 𝑢j+ 1,1,1 ⋯ 𝑙jÍ,𝑚jÍ, 𝑢jÍ

⋮ ⋮ ⋱ ⋮
𝑙Í+,𝑚Í+, 𝑢Í+ 𝑙Íj,𝑚Íj, 𝑢Íj ⋯ 1,1,1

;×;

            (6-13) 

where D>[ = (𝑙>[, 𝑚>[, 𝑢>[) is a pair comparison of criteria 𝑐>  and 𝑐[(𝑖, 𝑗 = 1,… , 𝑞), 

and D>[*+ = (1/𝑙>[, 1/𝑚>[, 1/𝑢>[)  for 𝑖 ≠ 𝑗 . When criteria 𝑐>  is relatively more 

important than criteria 𝑐[ , the values of criteria 𝑐>  in triangular fuzzy numbers that 

range in [1, 9] are higher, and the reciprocal values that range in [1, 1/9] are lower that 

values of criteria 𝑐[. In decision making based on expert judgements, the triangular 

fuzzy numbers are integers and their reciprocals derived from linguistic variables 

(Saaty 2008, Vahidnia, Alesheikh, and Alimohammadi 2009), but they are continuous 

real numbers within the above ranges in the model-based decision making in this study.  

The contributions of criteria 𝑐>(𝑖 = 1,… , 𝑞)  computed by models 𝐺 =

[𝑔+, … , 𝑔�] under alternatives 𝐴 = [𝑎+, … , 𝑎;] can be listed as a contribution vector: 

(𝐵>Ú)+×(;×�) = [𝛽++Ú , … , 𝛽+�Ú , 𝛽j+Ú … , 𝛽j�Ú , … , 𝛽;+Ú , … , 𝛽;�Ú ]+×(;×�)                (6-14) 

The contribution vector is normalized to [0, 1] and then transformed to [1, 9]. The 

transformed contribution vector is: 

(𝐵>)+×(;×�) = [𝛽++, … , 𝛽;�]	+×(;×�)                                   (6-15) 

where 𝛽[H(𝑗 = 1,… , 𝑝; 𝑘 = 1,… , 𝑣) is an element of the contribution vector 𝐵, and its 

value ranges in [1, 9]. The triangular fuzzy number of the element of contribution 

vector can be calculated by: 

𝑇 = 𝑙Û,𝑚Û, 𝑢Û =

(1,1,1) 𝛽 = 1
(1, 𝛽, 𝛽 + 1) 1 < 𝛽 ≤ 2

(𝛽 − 1, 𝛽, 𝛽 + 1) 2 < 𝛽 ≤ 8
(𝛽 − 1, 𝛽, 𝛽) 8 < 𝛽 ≤ 9

                           (6-16) 

where 𝑇 = (1,1,1) means that variables are of equal importance. With the increase of 

𝛽  from 1 to 9, the importance gradually varies from very low to very high. The 

corresponding reciprocal triangular fuzzy number is 𝑇*+ = 1/𝑙Û, 1/𝑚Û, 1/𝑢Û .  
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Further, the fuzzy extended operation for the 𝑖th criteria is computed by: 

𝑆> = 𝐷>[
Í
>3+ ⊗ 𝐷>[

Í
>3+

Í
[3+

*+
                                (6-17) 

In terms of the operation laws of equation (6-6) - (6-9), the fuzzy triangular number 𝑆> 

can be calculated as: 

𝑆> =
<`_

ß
`s'

8`_
ß
`s'

ß
_s'

, J`_
ß
`s'

J`_
ß
`s'

ß
_s'

, 8`_
ß
`s'

<`_
ß
`s'

ß
_s'

                             (6-18) 

The fuzzy triangular numbers calculated by this equation are critical and used 

twice in the MFSD approach in this study. First, they are the relative weights of criteria 

under different alternatives for computing the model-based relative importance of 

variables. Second, they are relative weights of alternatives under given criteria for 

decision making.   

In FAHP, criteria relative weights and weights of alternatives under each 

criterion are computed by pairwise comparisons of the degree of possibility of 

membership functions. The degree of possibility for 𝑀+ ≥ 𝑀j is calculated with the 

equation: 

𝑉 𝑀+ ≥ 𝑀j =
1 𝑚+ ≥ 𝑚j

ℎ𝑔𝑡 𝑀+ ∩ 𝑀j = <q*8'
J'*8' * Jq*<q

𝑚+ < 𝑚j
               (6-19) 

where ℎ𝑔𝑡 𝑀+ ∩ 𝑀j  is the highest interaction between two membership functions 

(Chang 1996). To compare two membership functions, both 𝑉 𝑀+ ≥ 𝑀j  and 

𝑉 𝑀j ≥ 𝑀+  should be calculated. Then, the degree of possibility for a convex fuzzy 

number that is larger than 𝑘 convex fuzzy numbers 𝑀>(𝑖 = 1,2, … , 𝑘) is: 

𝑉 𝑀 ≥ 𝑀+,𝑀j,… ,𝑀H = min 𝑉 𝑀 ≥ 𝑀>                                   (6-20) 

Thus, the weight of an element 𝑎>(𝑖 = 1,2, … , 𝑝) can be calculated as: 

𝑤Ú� 𝑎> = min 𝑆> ≥ 𝑆H ; 𝑘 = 1,2, … , 𝑝; 𝑘 ≠ 𝑖                                (6-21) 

and the weight vector of alternatives is: 

𝑤Úã = [𝑤Ú 𝑎+ , 𝑤Ú 𝑎j , … , 𝑤Ú 𝑎; ]Û                                      (6-22) 

Through the normalization process, the weight vector can be normalized as: 
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𝑤� = [𝑤 𝑎+ , 𝑤 𝑎j , … ,𝑤 𝑎; ]Û                                          (6-23) 

where 𝑤� is a non-fuzzy number.  

6.3.6 Fuzzy technique for order preference by similarity of an ideal solution 

(FTOPSIS) 

In the MFSD-based decision-making process, alternatives are ranked through 

comparison studies using both FAHP and FTOPSIS. FTOPSIS is the integration of 

fuzzy logic methods with TOPSIS approach, which provides the coefficients of 

alternatives based on the relative closeness to the ideal solution. TOPSIS determines 

the optimal alternative with “the shortest distance from the ideal solution and the 

farthest distance from the negative-ideal solution” (Opricovic and Tzeng 2004, Hwang 

and Yoon 1981). The distance between 𝑀+ = (𝑙+,𝑚+, 𝑢+) and 𝑀j = (𝑙j,𝑚j, 𝑢j) is 

calculated using the vertex method with the equation: 

𝑑 𝑀+,𝑀j = +
ä
[(𝑙+ − 𝑙j)j + (𝑚+ − 𝑚j)j + (𝑢+ − 𝑢j)j]                    (6-24) 

In MFSD method, the weights of criteria in FTOPSIS stage are also derived 

from the model-based contributions of criteria, and the computation process is 

identical with that for FAHP with equations (5-14) - (5-16). Different from FAHP that 

the aggregated alternative fuzzy ranks and criteria fuzzy weights are computed using 

pair-wise comparison of triangular fuzzy numbers, FTOPSIS computes the values 

separately for the respective models. The alternative fuzzy rank 𝐴>(𝑖 = 1,… , 𝑝) under 

criterion 𝐶[(𝑗 = 1,… , 𝑞)  computed with model 𝐺H(𝑘 = 1,… , 𝑣)  is 𝐿>[H =

(𝑙>[H ,𝑚>[
H , 𝑢>[H ) , and the weight of criterion 𝐶[  is 𝑤[H = (𝑤[+H , 𝑤[jH , 𝑤[äH ) . Then, the 

aggregated fuzzy rating 𝐿>[ = (𝑙>[, 𝑚>[, 𝑢>[) of 𝑖 th alternative under 𝑗th criterion is 

calculated by: 

𝑙>[ = min
H
(𝑙>[H ) ,𝑚>[ =

+
�

𝑚>[
H�

H3+ , 𝑢>[ = max
H
(𝑢>[H )                        (6-25) 

The aggregated fuzzy weight 𝑤[å = (𝑤[+å , 𝑤[jå , 𝑤[äå ) for the criterion 𝐶[ is computed by: 

𝑤[+å = min
H
(𝑤[+H ) , 𝑤[jå =

+
�

𝑤[jH�
H3+ , 𝑤[äå = max

H
(𝑤[äH )                        (6-26) 

Through a linear scale transformation, the fuzzy decision matrix is normalized by: 
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(R);×Í = (𝑟>[);×Í; 𝑖 = 1,… , 𝑝; 𝑗 = 1,… , 𝑞                             (6-27) 

where  

for the benefit criteria: 
𝑟>[ = (<`_

8_
∗ ,
J`_

8_
∗ ,

8`_
8_
∗ )

𝑢[∗ = max
>
(𝑢>[)

                                 (6-28) 

or  

for the cost criteria: 
𝑟>[ = (

<_
�

8`_
,
<_
�

J`_
,
<_
�

<`_
)

𝑙[* = min
>
(𝑙>[)

                                  (6-29) 

The fuzzy decision matrix is weighted and normalized by: 

(H);×Í = [(𝑙>[é,𝑚>[
é , 𝑢>[é)];×Í = [ℎ>[];×Í = 𝑟>[×𝑤[                            (6-30) 

The fuzzy positive ideal solution (FPIS) and fuzzy negative ideal solution 

(FNIS) of the alternatives are calculated by: 

FPIS: 𝐴∗ = (ℎ+∗, ℎj∗ , … , ℎÍ∗ ), where ℎ[∗ = max
>
(𝑢>[é)                         (6-31) 

FNIS: 𝐴* = (ℎ+*, ℎj*, … , ℎÍ*), where ℎ[* = min
>
(𝑙>[é)                         (6-32) 

The distance between each weighted alternative and the FPIS or FNIS can be 

calculated by: 

Distance to FPIS: 𝑑>∗ = 𝑑é(ℎ>[, ℎ[∗)
Í
[3+                              (6-33) 

Distance to FNIS: 𝑑>* = 𝑑é(ℎ>[, ℎ[*)
Í
[3+                              (6-34) 

where 𝑑é(𝑀+,𝑀j) indicates the distance between 𝑀+ and 𝑀j.  

Finally, FTOPSIS utilizes a closeness coefficient 𝜃> to indicate the distances 

from alternatives to the FPIS 𝐴∗  and FNIS  𝐴* , simultaneously. The equation for 

calculating closeness coefficient is: 

𝜃> =
A`
�

A`
��A`

∗                                                       (6-35) 

The best alternative is determined with the highest closeness coefficient. FTOPSIS 

stage is run by R FuzzyMCDM package, which also can perform fuzzy VIKOR, Fuzzy 
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MMOORA and Fuzzy WASPAS approaches for fuzzy MCDM (Baležentis and 

Baležentis 2014, Martin 2016). 

6.3.7 MFSD-based indicator for mapping road maintenance burden 

To map the road maintenance burden, an overall indicator is computed with the 

assumption that the road performance is associated with the road characteristics, traffic 

vehicles and climate conditions, and it can be monitored by a series of road 

performance indicators. In this research, criteria have two hierarchies: the first-level 

criteria are road characteristics, traffic vehicle conditions and climate, and the sub-

criteria include 21 variables within the three first-level criteria. Thus, the indicator is 

computed by the two hierarchies respectively. The computation process of the MFSD-

based indicator is illustrated in Figure 5-6. The overall indicator equals the sum of the 

weighted criteria, and the criteria are derived from their respective sub-criteria 

variables and weights. The MFSD-based indicator computation process (purple 

rectangle in Figure 6-6) includes two steps: quantifying model-based contributions of 

criteria, and estimating weights of both sub-criteria and criteria using FAHP. First, 

contributions of a sub-criteria are calculated with multiple models, including 11 

models within three categories, and under four alternative indicators. Through the 

fuzzy logic transformation presented by equations (6-14) - (6-16) and fuzzy extended 

operations, the fuzzy numbers of sub-criteria are derived. Then, FAHP is applied to 

calculate weights of sub-criteria variables. Finally, the criteria values are computed by 

multiplying sub-criteria variables with the weights. The MFSD-based indicator 

computation process (purple rectangle) is performed repeatedly for each criterion and 

the overall indicator. 
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Figure 6-6. Calculation process of model-based fuzzy spatial multi-criteria 

decision-making (MFSD) based indicator of road maintenance burden 

6.3.8 MFSD-based decision making for ranking alternatives and sensitivity analysis 

To answer the question that which indicator can more accurately describe the 

burden of road maintenance, five indicators, including deflection, curvature, 

roughness, rutting and MFSD-based indicator, are compared using the MFSD 

approach. The hierarchy frame for the decision-making problem is presented in Figure 

6-7. In the MFSD approach, the five indicators are alternatives of the decision, the 

criteria include road characteristics, traffic vehicles and climate conditions, the sub-

criteria consist of 21 variables within three criteria categories, and the contribution 

computation models include 11 models within three model categories: statistical 

models, machine learning algorithms and spatial analysis models.  

To evaluate the robustness and reliability of MFSD approach, sensitivity of 

fuzzy MCDM methods is analysed and the burden indicators of road maintenance are 

evaluated by the comparison with real industrial practice. The sensitivity of fuzzy 
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MCDM methods are mainly sourced from the sub-criteria variables and the models 

used for computing contributions of criteria. Thus, each of the sub-criteria variables 

and the contribution computation models are removed respectively to investigate the 

variations of the final scores and ranks of alternatives due to the removal of sub-criteria 

and models. To evaluate the burden indicators of road maintenance, five indicators are 

compared with the estimated real maintenance cost in the study area in 2015.  

 

Figure 6-7. Hierarchy frame for model-based fuzzy spatial multi-criteria 

decision-making (MFSD) method. 

6.4 Results and Validation 

In this study, an MFSD approach is utilized to capture the burden of road 

maintenance across the whole road network, and investigate which indicator can more 

accurately describe the road maintenance burden. The results are presented from four 

primary parts: (1) model-based contributions to derive fuzzy weights of criteria; (2) an 

overall indicator for the comprehensive understanding of the burden of road 

maintenance; (3) fuzzy MCDM for ranking alternatives based on the relative scores; 

and (4) sensitivity analysis for decision making results and evaluation. Results from 

four parts are presented in the next four sub-sections respectively.  
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6.4.1 Model-based contributions and fuzzy weights of criteria 

Figure 6-8 shows the summary of model-based contributions of sub-criteria on 

alternatives. The contribution of a criterion varies with different models and 

alternatives. According to Figure 6-8, the sub-criteria with the largest mean 

contributions within three criteria are road density under roughness, total traffic 

volumes under rutting and soil deep drainage under roughness, respectively. By fuzzy 

extended operations for the fuzzy numbers of sub-criteria variables under different 

models and alternatives determined by model-based contributions, the fuzzy 

membership functions of sub-criteria are derived. Figure 6-9 demonstrates the fuzzy 

membership functions of sub-criteria of each criterion. The sub-criteria variables with 

the largest most possible values of fuzzy numbers are surfacing width, traffic speed 

and soil deep drainage for the three criteria, road, vehicles and climate, respectively. 

The three sub-criteria variables also have the largest weights within respective criteria 

(Figure 6-10). 

 

Figure 6-8. Summary of model-based contributions of sub-criteria on alternatives 
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Figure 6-9. Fuzzy membership functions of sub-criteria of each criterion. 

 

Figure 6-10. Weights of sub-criteria for MFSD-based indicator. 
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The above process for weighting sub-criteria is repeated for weighting criteria. 

Figure 6-11 presents the contributions of criteria to the final objective, the fuzzy 

membership functions of three criteria and the relative weights. Results show that the 

road performance indicators roughness and rutting can provide more information for 

the final objective than deflection and curvature. The most possible values of fuzzy 

numbers and weights of criteria both demonstrate that there is no large difference 

among the importance of three criteria, where the importance of climate conditions is 

relatively higher.   

 

Figure 6-11. Contributions (a), fuzzy membership functions (b) and weights (c) 

of criteria road, vehicles and climate sectors. 

6.4.2 MFSD-based indicator of road maintenance burden 

At this stage, MFSD approach is utilized to calculate an overall indicator for 

describing the road maintenance burden. Figure 6-12 presents results and analysis of 

the MFSD-based overall indicator of road maintenance burden, including the spatial 

distributions of MFSD-based indicators, the summary of MFSD-based indicators in 

local government areas, the map of burden of road maintenance and the value ranges 

of the maintenance burden. The burden of road maintenance is divided into five levels 

using natural breaks for the MFSD-based indicator from very high to very low. The 

roads with very high burden of road maintenance are primarily distributed on the Great 

Northern Highway, Great Eastern Highway and Albany Highway. The burden of road 

maintenance across the whole road network is summarized in Table 6-3. About 16.2% 
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of road segments and 19.2% of the lengths of roads show very high burden of road 

maintenance.  

 

Figure 6-12. Spatial distributions of MFSD-based indicator and the burden of 

road maintenance. (a) MFSD-based indicator, (b) summary of MFSD-based 

indicator in local government areas (GLAs), (c) map of burden of road 

maintenance and (d) value ranges of burdens.   

Table 6-3. Summary of burden of road maintenance 

Burden of road 
maintenance MFSD indicator 

Percentage 
of number 

Percentage 
of length 

Percentage 
of area 

Very high 0.482 - 0.573 16.16% 19.23% 22.33% 
High 0.441 - 0.482 34.68% 41.48% 40.99% 
Medium 0.397 - 0.441 31.99% 31.39% 29.01% 
Low 0.329 - 0.397 13.47% 5.49% 5.10% 
Very low 0.269 - 0.329 3.70% 2.42% 2.57% 

6.4.3 Fuzzy MCDM for ranking alternatives 

To answer the question that which indicator can more accurately and 

reasonably describe the burden of road infrastructure performance, this study utilizes 

both FAHP and FTOPSIS to rank the alternatives of road performance indicators: 
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deflection, curvature, roughness, rutting and MFSD-based indicator. Table 6-4 - Table 

6-9 list the pairwise comparison fuzzy evaluation matrix under alternatives of each 

sub-criterion and the pairwise comparison fuzzy evaluation matrix of sub-criteria of 

each criterion. Table 6-10 lists pairwise comparison fuzzy evaluation matrix of 

alternatives under each criterion, and Table 6-11 lists pairwise comparison fuzzy 

evaluation matrix of criteria. Figure 6-13 shows inputs of FMCDM, including fuzzy 

decision matrix that is the matrix of fuzzy weights of alternatives under criteria, and 

fuzzy weights of criteria. Figure 6-14 demonstrates the relative scores and ranks of 

alternatives under different criteria sectors and all criteria. Both FAHP and FTOPSIS 

methods indicate that the MFSD-based indicator has relatively higher scores than other 

the four monitored indicators. Among the four monitored indicators, the indicator 

roughness has highest scores. Thus, based on this result, the MFSD-based indicator is 

the recommended indicator for describing the burden of road maintenance.  

Table 6-4. Pairwise comparison fuzzy evaluation matrix of alternatives under 

each sub-criteria of road. 
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Table 6-5. Pairwise comparison fuzzy evaluation matrix of sub-criteria of road. 

 

Table 6-6. Pairwise comparison fuzzy evaluation matrix of alternatives under 

each sub-criteria of vehicles. 
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Table 6-7. Pairwise comparison fuzzy evaluation matrix of sub-criteria of vehicles. 

 

Table 6-8. Pairwise comparison fuzzy evaluation matrix of alternatives under 

each sub-criteria of climate. 
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Table 6-9. Pairwise comparison fuzzy evaluation matrix of sub-criteria of climate. 

 

Table 6-10. Pairwise comparison fuzzy evaluation matrix of alternatives under 

each criterion. 

 

Table 6-11. Pairwise comparison fuzzy evaluation matrix of criteria. 

  Road Vehicles Climate 

Road (1,1,1) (0.794,1.166,1.811) (0.751,1.059,1.694) 

Vehicles (0.662,0.924,1.458) (1,1,1) (0.581,0.915,1.249) 

Climate (0.722,1.063,1.615) (0.909,1.161,1.955) (1,1,1) 
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Figure 6-13. The input of fuzzy multi-criteria decision making: (a) fuzzy decision 

matrix (the matrix of fuzzy weights of alternatives under criteria) and (b) fuzzy 

weights of criteria. 

 

Figure 6-14. Relative scores and ranks of alternatives under different criteria 

sectors: (a) road, (b) vehicles, (c) climate and (d) all criteria.  
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6.4.4 Sensitivity analysis and evaluation 

6.4.4.1 Impacts of sub-criteria on sensitivity of MFSD results 

The impacts of sub-criteria on the sensitivity of decision making using MFSD 

method are analysed from three aspects. First, the impacts of sub-criteria on the criteria 

weights in decision making are calculated (Figure 6-15). Both the distributions of 

criteria weights and percentages of criteria weight changes compared with the full 

model are not significantly changed due to the removal of sub-criteria. Most of the 

percentages of weight changes of criteria due to the removal of sub-criteria are lower 

than 5%. Second, Figure 6-16 shows impacts of sub-criteria on alternative final scores. 

This result shows that removal of sub-criteria variables does not change the relative 

scores and ranks of final decision-making results for all three respective criteria sectors 

and the overall scores of alternatives of both FAHP and FTOPSIS. Finally, Figure 6-

17 shows the impacts of each sub-criteria on the overall score and ranking changes of 

alternatives compared with the full decision-making model. Both FAHP and FTOPSIS 

indicate that most of the score changes due to removal of sub-criteria variables are 

lower than 0.02, which is much lower than the scores of alternatives. Nearly all the 

ranks of alternatives are not changed by removal of sub-criteria variables, except the 

ranks of roughness and rutting reversed due to removal of soil deep drainage. The 

above sensitivity analysis indicates that the MFSD method is reliable for decision 

making and the sub-criteria impacts on final decisions are tiny.   
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Figure 6-15. Sensitivity analysis of criteria: impacts of sub-criteria on the criteria 

weights in decision making. (a) Distributions of weights of criteria and (b) 

percentages of weight changes of criteria compared with full model.  

 

Figure 6-16. Sensitivity analysis of criteria: impacts of sub-criteria on the scores 

from the sectors of road, vehicles and climate, and the overall scores of 

alternatives. 
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Figure 6-17. Sensitivity analysis of criteria: impacts of sub-criteria on the overall 

score and rank changes of alternatives compared with the full model. 

6.4.4.2 Impacts of contribution computation models on sensitivity of MFSD results 

Similar to the sensitivity analysis process of sub-criteria variables, the 

sensitivity of the impacts of contribution computation models is also analysed through 

three steps. First, impacts of contribution models on criteria weights and percentages 

of criteria weight changes compared with the full model are assessed (Figure 6-18). 

Results show that the changes of criteria weights due to the models are very small. 

Most of the percentages of weight changes of criteria are lower than 2%, and all of 

them are lower than 4%. Next, Figure 6-19 presents the impacts of contribution models 

on the decision scores from the sectors of road, vehicles and climate, and the overall 

scores of alternatives. FAHP and FTOPSIS both reveal that the relative scores and 
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ranks of alternatives are not significantly varied due to the contribution models. 

Finally, Figure 6-20 shows the impacts of contribution models on the overall score and 

rank changes of alternatives compared with the full model. All of the score changes of 

alternatives are lower than 0.008, which is much lower than the scores of alternatives, 

and all the ranks of alternatives are not changed. Results demonstrate that final 

decision making is almost unaffected by the contribution computation models. In 

addition, FAHP is more capable of differentiating the relative importance of 

alternatives than FTOPSIS, since FAHP involves pair-wise comparison of the fuzzy 

membership functions of criteria. 

 

Figure 6-18. Sensitivity analysis of contribution models: (a) impacts of 

contribution models on the weights of criteria and (b) the percentages of weight 

changes of criteria compared with the full model. 
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Figure 6-19. Sensitivity analysis of contribution models: impacts of contribution 

models on the scores from the sectors of road, vehicles and climate, and the 

overall scores of alternatives. 
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Figure 6-20. Sensitivity analysis of contribution models: impacts of contribution 

models on the overall score and rank changes of alternatives compared with the 

full model. 

6.4.4.3 Compare indicators with road maintenance cost 

To assess the usability of indicators, they are compared with the estimated road 

maintenance cost in the study area in 2015. The road maintenance cost is estimated by 

the sum of multiplying the standard cost of different types of road defects with the 

total areas of defects along the road network. Then, the estimated road maintenance 

cost is summarized with the spatial unit of road segment. Table 6-12 shows the 

comparisons between the estimated road maintenance cost and the indicators of road 

maintenance burden, including deflection, curvature, roughness, rutting and MFSD-

based indicator. Due to the bias distribution of real road maintenance cost data, the 

log-transformed real road maintenance cost is used for correlation analysis. The 

correlation analysis reveals the correlation coefficient of MFSD-based indicator is 

much higher than other indicators. Meanwhile, the MFSD-based indicator and 

roughness are the only two indicators where their significance levels of correlations 

are lower than 0.01. Therefore, the MFSD-based indicator is the best choice and 

roughness is the preferred choice among four monitored indicators of road 

performance.  

Table 6-12. Comparisons between the real road maintenance cost and the 

indicators of road maintenance burden  

Indicator of road 

maintenance burden 
Correlation coefficient Significance 

Deflection 0.123 p < 0.05 

Curvature 0.112 p = 0.054 

Roughness 0.151 p < 0.01 

Rutting 0.112 p = 0.053 

MFSD-based indicator 0.197 p < 0.01 
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6.5 Discussion 

This research utilizes a geospatial decision-making method for more accurate 

description of the road performance and burden of road maintenance. The MFSD 

method is built through the integration of data-driven model-based contribution 

computation, fuzzy set theory, geospatial analysis and decision making and multi-

criteria decision making. The MFSD approach supports deriving an overall indicator 

for describing the burden of road maintenance and the decision making for determining 

a relatively preferred indicator for accurate and flexible road asset management. The 

MFSD approach has the following advantages in decision making: 

• Both criteria and alternatives data are spatial data that not only reflect the 

values of variables, but also present the spatial relationships; 

• Model-based contribution computation for criteria is a data-driven method, 

which can avoid the uncertainty, potential biases and subjectivity of expert 

judgements and decision makers’ opinions that may have impacts on the final 

decisions (Kritikos and Davies 2011); 

• In the model-based contribution computation process, multiple models from 

different perspectives, including statistics, machine learning and spatial 

analysis, are utilized to calculate the contributions of criteria with various 

aspects and improve the accuracy of decision making; 

• Fuzzy set theory is utilized to involve criteria contributions computed by 

models under alternatives in the overall indicator calculation and decision 

making;  

• FAHP and FTOPSIS are comparatively utilized to make decisions for 

determining the best indicator for assessing the burden of road maintenance, 

which can evaluate the advantages and disadvantages of different fuzzy 

MCDM approaches for more reliable and reasonable decisions. 

In addition, for the implementation of the methodology and outcomes of the 

study, the burden of road maintenance is analysed at the local government area (LGA) 

level. Figure 6-21 shows the comparison between average MFSD-based indicator and 

the road maintenance cost in LGAs. The result indicates that the MFSD-based 

indicator and the road maintenance cost are significantly correlated at the LGA level. 

The LGAs are divided into six groups in terms of their relative locations along the six 
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primary roads. The LGAs along Brand Highway have the lowest burden of road 

maintenance. For other LGAs, the burden of road maintenance varies due to their 

location in the road network. 

 

Figure 6-21. Comparison between average MFSD-based indicator and the road 

maintenance cost in local government areas (LGAs). 

 

6.6 Conclusion 

This study proposes an MFSD approach for the geographically local, more 

accurate and flexible decision making of road maintenance and management. MFSD 

method can provide more accurate decision-making strategies due to the integration of 

data-driven model-based contribution computation and fuzzy set theory. It is also a 
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flexible approach where the components and parameters, such as the contribution 

computation models and FMCDM methods, can be varied based on certain scientific 

and practical issues. The results in this study can provide informative knowledge and 

quantitative evidence for the practical decision making of traffic environment 

assessment, road performance monitoring evaluation and design, road management 

and maintenance. In addition to traffic and road problems, MFSD method also has 

wide and great potential in addressing geospatial decision-making issues in other 

fields, such as environment and public health.   
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Chapter 7 Conclusions and Recommendations 

7.1 Introduction 

This thesis systematically studies the impacts of heavy vehicle freight 

transportation on the traffic and road environment using geospatial analysis methods. 

To comprehensive investigate the road infrastructure performance and factors of 

pavement performance for more accurate, geographically local, flexible and reliable 

decision making, this study develops a series of new geospatial methods and brings 

new theories and technologies together for road and traffic data analysis.  

From the perspective of geospatial analysis, this thesis has significant 

contributions on the line segment based spatial data analysis. First of all, line segment 

based spatial data is defined for the traffic and road attributes that are spatially 

distributed along roads. Segment-based spatial data is totally different from traditional 

point-based spatial data from the perspectives of spatial morphology, heterogeneity 

and associations. To address the issues for segment-based spatial data, including 

spatial prediction, factors exploration and decision making, a series of segment-based 

spatial analysis methods are proposed in this study. Therefore, this thesis enriches the 

types of spatial data and provides proper solutions to deal with and to deeply 

understand the data and the scientific problems. 

In this chapter, the thesis is concluded from three aspects. First, research 

objectives presented in Chapter 1 are revised to summarise the proposed methods, 

research findings and academic contributions for satisfying objectives in this study. 

Next, in terms of the methodologies, outcomes and limitations, future research is 

recommended from integrating multidisciplinary knowledge and techniques for traffic 

and road environment management and improving data analysis methods. Finally, 

future industrial practices the can be improved based on this research are 

recommended.  
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7.2 Revisiting the research objectives 

7.2.1 Road infrastructure performance and factors: Review from a GIS perspective 

The first research objective is to critically understand road infrastructure 

performance and potential factors that have influence on pavement from a 

geographical information systems (GIS) perspective.  

This objective has been satisfied in this research by conducting a thorough and 

systematic literature review, which provides background and basis of this study. The 

review includes the following four parts.  

(1) To understand impacts of heavy vehicle freight transportation on the road 

damage and the burden of road maintenance, the association between traffic 

behaviours and road damage, and methods of evaluating the burden of road 

maintenance are reviewed. The review indicates that the total masses of vehicles on 

the road network play a significant role in the cumulative burden of road maintenance. 

Due to various types and volumes of vehicles, masses of vehicles are distinct on 

different road segments. Thus, accurate predictions of traffic volumes for different 

types of vehicles and on various road segments across the road network are required 

to quantify the burden of road maintenance.  

(2) To comprehensively investigate factors associated with the road 

infrastructure performance, both methods and findings of potential factors that have 

influence on road damage in previous research are reviewed. In the review, the 

commonly used multi-source factors of road infrastructure performance are 

summarised into four categories: vehicles, climate and environmental conditions, road 

and pavement information, and local socio-economic conditions.  

(3) To understand the advantages and potential of decision making in traffic

environmental impacts of heavy vehicle freight transportation, the review in this part 

includes two parts. First, the issue about how to characterise infrastructure 

performance is addressed.  Measures of road infrastructure performance are reviewed 

and discussed, since they are commonly used to quantify the quality of service to road 

users. In addition, geospatial decision-making approaches for road infrastructure 

management are reviewed. The MCDM and its developments are effective approaches 

for dealing with complex decision-making problems. They can integrate the 



149 

 

performance of decision alternatives across multiple criteria from various sources to 

derive a compromise solution of road infrastructure management.   

(4) To better satisfy users’ requirements in practical road and vehicle 

management, BIM-GIS integration is reviewed and analysed from the aspect of spatio-

temporal statistics. The trends and opportunities of implementing BIM-GIS integration 

are investigated for road construction and management and the broad architecture, 

engineering and construction industry. BIM-GIS integration can make full use of the 

strong parts of BIM and GIS. In this thesis, three hypotheses are proposed for the future 

research and applications of BIM-GIS integration from a spatiotemporal perspective. 

The further development of the deeper integration of spatio-temporal statistics and 

4D/nD BIM can potentially provide more accurate analysis results, and new sense and 

knowledge for decision making to satisfy the user requirements of AEC industry across 

the lifecycle. 

7.2.2 Heavy vehicle impacts on the burden of road maintenance 

The second research objective is to accurately assess impacts of heavy vehicle 

freight transportation on the burden of road maintenance. The line segment-based 

spatial prediction models need to be developed and the road maintenance burden 

caused by different types of vehicles need to be evaluated. 

This objective has been satisfied in this research by predicting different types 

of traffic volumes and estimating vehicle masses at a road segment level across the 

whole road network. To assess heavy vehicle impacts on the burden of road 

maintenance, two segment-based spatial prediction models, segment-based ordinary 

kriging (SOK) and segment-based regression kriging (SRK), are proposed for the 

spatial prediction of traffic volumes and masses of different types of vehicles. The 

segment-based spatial prediction models can provide new insights into the spatial 

characteristics and spatial homogeneity of a road segment during prediction. Results 

show that they can more accurately predict traffic conditions compared with traditional 

methods that deal with point-based observations by involving the spatial geometry 

information of segments. Segment-based spatial prediction methods are useful 

approaches for the management of heavy and light vehicles, and can inform wise 

decision making for road maintenance strategies. An R “SK” package is developed for 

performing the segment-based spatial prediction methods. 
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The analysis also reveals that impacts of heavy vehicle freight transportation 

are greatly varied across the road network. In the Wheatbelt region in Western 

Australia, the impact of heavy vehicles on road maintenance is much larger than that 

of light vehicles and it varies across space, and the total impacts of heavy vehicles 

account for more than 82% of the road maintenance burden even though its volume 

only accounts for 21% of traffic. 

7.2.3 Comprehensive impacts of vehicles and climate on road infrastructure 

performance 

The third research objective is to understand comprehensive impacts of multi-

source variables on pavement infrastructure performance. The accurate and 

geographically local impacts of vehicles, climate and environmental conditions, 

properties of road and socioeconomic conditions on road infrastructure performance 

need be investigated.  

This objective has been satisfied in this research by proposing segment-based 

spatial stratified heterogeneity analysis methods and applying the segment-based 

spatial analysis methods in exploring the relationships between pavement performance 

and factors. Assessing the performance of pavement infrastructure requires 

sophisticated analysis and is affected by numerous factors and varies greatly across 

different roads. In addition to the vehicles that are a primary factor of road conditions 

discussed above, various other variables also have significant influence on the roads, 

where their impacts vary greatly on different roads. The segment-based spatial 

stratified heterogeneity analysis can provide both the impacts of single variables and 

their interactions. An R “GD” package is developed for applying this approach. The 

approach provides new ideas for spatial analysis for segmented geographical data and 

objectively reveals the contributions of explanatory variables on road performance. 

The segment-based spatial heterogeneity analysis in the Wheatbelt region in 

Western Australia reveals that all vehicles and heavy vehicles in particular, and climate 

and environmental variables are two major categories of factors associated with road 

damage. Vehicle masses and percentage of heavy vehicle mass have greater 

contributions to pavement condition than traffic volumes, a commonly used indicator 

of traffic conditions. Meanwhile, the impacts from soil deep drainage, soil type and 

precipitation are 6.24, 4.76 and 4.48 times of the impacts of mean temperature on 
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pavement damage, but these factors are rarely considered and temperature is a 

common indicator of climate. The interactions between the vehicles, and climate and 

environment variables have much more influence than the independent variables, and 

they can explain more than half of the road damage. 

7.2.4 Data and model-driven geospatial multi-criteria decision making 

The final research objective is to more comprehensively describe the overall 

performance of road infrastructure and to select a more accurate performance indicator. 

Geospatial decision-making approaches are required for transportation authorities for 

flexible, accurate and geographically regionalised decisions of road and vehicle 

management, such as road performance assessment and road maintenance.  

This objective has been satisfied in this research by proposing a model-driven 

fuzzy spatial multi-criteria decision making (MFSD) approach for comparing different 

monitoring indicators and computing an overall indicator. The MFSD method can both 

generate an indicator and support decision making by integrating data-driven model-

based decision making, fuzzy set theory, GIS and multi-criteria decision making 

(MCDM). Results show that MFSD-based indicators can more accurately describe the 

spatial distribution of road maintenance burden compared with monitored indicators. 

MFSD results can provide informative knowledge and quantitative evidence for the 

decision making of traffic environment assessment, road performance monitoring 

design and evaluation, and road maintenance and management. MFSD also has wide 

and great potential in addressing geospatial decision-making issues in other fields. 

The data and model-drive decision making reveals that the MFSD-based 

indicator can better and more accurately reflect road infrastructure performance than 

the monitored indicators, including deflection, curvature, roughness and rutting in this 

study. The road infrastructure performance is associated with the criteria of road 

characteristics, traffic vehicles, and climate and environmental conditions. In addition 

to the MFSD-based indicator, roughness is the best indicator of road infrastructure 

performance among the four monitored indicators. 
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7.3 Recommendations for future research 

In terms of the methodologies, outcomes and limitations, future research is 

recommended from the following three aspects. 

First, traffic and road environment assessment and management are 

multidisciplinary problems. The knowledge, theories, techniques and management 

from multiple fields should be combined to address a certain problem to satisfy users’ 

requirements. In this study, transportation, road construction, geospatial analysis, 

decision making and BIM are used in the traffic and road analysis and evaluation. To 

further study the impacts of vehicles and climate on road infrastructure performance, 

theories and methods about global climate change, green supply chain and logistics, 

population accessibility to roads and facilities are recommended to be used and 

developed.  

Second, geospatial analysis theories about segment-based spatial data and 

methods can be developed. This thesis defines the concept of segment-based spatial 

data. A series of segment-based spatial methods are proposed to characterize the 

spatial geometry, heterogeneity and associations. However, there are still theoretical 

and methodological problems to solve to deal with segment-based spatial data. For 

instance, spatial weights and spatial autocorrelation are basic concepts for exploring 

spatial data, but they have not been investigated. Meanwhile, geographical and spatial 

regressions that are based on spatial weights and spatial autocorrelation need to be 

addressed.  

Finally, more effective and sophisticated spatial and spatiotemporal statistical 

analysis methods should be integrated in future BIM-GIS integration to significantly 

improve overall performance and satisfy users requirements in the AEC industry. 

Geospatial analysis can be applied in more issues for satisfying users requirements in 

quality, progress and time, cost, contract, health, safety and environment (HSE), and 

information management, and the coordination of various sectors. Thus, the 

comprehensive data-driven spatio-temporal modelling of AEC projects can provide 

more accurate and dynamic solutions for quantitative analysis, management and 

decision making in future applications. 
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7.4 Recommendations for industrial practices 

Based on this research, future industrial practices can be improved from the 

following aspects.  

First, data and model-based quantitative studies should be involved in 

predictive road infrastructure maintenance and road asset management. In predictive 

road infrastructure maintenance, more accurate and reliable potential risks and future 

scenarios with higher spatial and temporal resolutions are increasingly required in 

practical construction management. Data and model-based analysis provides 

quantitative, accurate, reliable and flexible evidence for decision making in practical 

road infrastructure maintenance and management. 

Second, it is necessary to integrate geospatial information, spatial statistical 

analysis and geographically local assessment in the life cycle of road infrastructure 

management. Geospatial information brings geographically local data of both road 

infrastructure itself and the surrounding climate, environment and socio-economic 

conditions. Spatial statistical analysis provides wider and deeper understandings of the 

associations between road infrastructure performance and the surrounding local 

climate, environment and socio-economic conditions. The associations can be varied 

across the whole road network and in different time frames.  

Finally, the concepts can be improved and new technologies can be further 

integrated in construction management due to the engagement of spatiotemporal 

statistical analysis in BIM-GIS integration for the AEC industry. BIM-GIS integration 

with the support of spatiotemporal statistical analysis brings great potential and 

opportunities for the further application of new data monitoring and collection 

technologies. The technologies can better satisfy users’ requirements in the AEC 

industry from management methods to coordination mechanisms, including quality 

management, progress management and time reduction, cost reduction and control, 

improvement of health, safety and environment (HSE) performance, information 

management and the coordination of various sectors. 
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