463 research outputs found

    Energy Efficient Clustering Protocols in Cognitive Network for Better CR Performances

    Full text link
    Volume 7 Issue 11 (November 201

    Joint transceiver design and power optimization for wireless sensor networks in underground mines

    Get PDF
    Avec les grands développements des technologies de communication sans fil, les réseaux de capteurs sans fil (WSN) ont attiré beaucoup d’attention dans le monde entier au cours de la dernière décennie. Les réseaux de capteurs sans fil sont maintenant utilisés pour a surveillance sanitaire, la gestion des catastrophes, la défense, les télécommunications, etc. De tels réseaux sont utilisés dans de nombreuses applications industrielles et commerciales comme la surveillance des processus industriels et de l’environnement, etc. Un réseau WSN est une collection de transducteurs spécialisés connus sous le nom de noeuds de capteurs avec une liaison de communication distribuée de manière aléatoire dans tous les emplacements pour surveiller les paramètres. Chaque noeud de capteur est équipé d’un transducteur, d’un processeur de signal, d’une unité d’alimentation et d’un émetteur-récepteur. Les WSN sont maintenant largement utilisés dans l’industrie minière souterraine pour surveiller certains paramètres environnementaux, comme la quantité de gaz, d’eau, la température, l’humidité, le niveau d’oxygène, de poussière, etc. Dans le cas de la surveillance de l’environnement, un WSN peut être remplacé de manière équivalente par un réseau à relais à entrées et sorties multiples (MIMO). Les réseaux de relais multisauts ont attiré un intérêt de recherche important ces derniers temps grâce à leur capacité à augmenter la portée de la couverture. La liaison de communication réseau d’une source vers une destination est mise en oeuvre en utilisant un schéma d’amplification/transmission (AF) ou de décodage/transfert (DF). Le relais AF reçoit des informations du relais précédent et amplifie simplement le signal reçu, puis il le transmet au relais suivant. D’autre part, le relais DF décode d’abord le signal reçu, puis il le transmet au relais suivant au deuxième étage s’il peut parfaitement décoder le signal entrant. En raison de la simplicité analytique, dans cette thèse, nous considérons le schéma de relais AF et les résultats de ce travail peuvent également être développés pour le relais DF. La conception d’un émetteur/récepteur pour le relais MIMO multisauts est très difficile. Car à l’étape de relais L, il y a 2L canaux possibles. Donc, pour un réseau à grande échelle, il n’est pas économique d’envoyer un signal par tous les liens possibles. Au lieu de cela, nous pouvons trouver le meilleur chemin de la source à la destination qui donne le rapport signal sur bruit (SNR) de bout en bout le plus élevé. Nous pouvons minimiser la fonction objectif d’erreur quadratique moyenne (MSE) ou de taux d’erreur binaire (BER) en envoyant le signal utilisant le chemin sélectionné. L’ensemble de relais dans le chemin reste actif et le reste des relais s’éteint, ce qui permet d’économiser de l’énergie afin d’améliorer la durée de vie du réseau. Le meilleur chemin de transmission de signal a été étudié dans la littérature pour un relais MIMO à deux bonds mais est plus complexe pour un ...With the great developments in wireless communication technologies, Wireless Sensor Networks (WSNs) have gained attention worldwide in the past decade and are now being used in health monitoring, disaster management, defense, telecommunications, etc. Such networks are used in many industrial and consumer applications such as industrial process and environment monitoring, among others. A WSN network is a collection of specialized transducers known as sensor nodes with a communication link distributed randomly in any locations to monitor environmental parameters such as water level, and temperature. Each sensor node is equipped with a transducer, a signal processor, a power unit, and a transceiver. WSNs are now being widely used in the underground mining industry to monitor environmental parameters, including the amount of gas, water, temperature, humidity, oxygen level, dust, etc. The WSN for environment monitoring can be equivalently replaced by a multiple-input multiple-output (MIMO) relay network. Multi-hop relay networks have attracted significant research interest in recent years for their capability in increasing the coverage range. The network communication link from a source to a destination is implemented using the amplify-and-forward (AF) or decode-and-forward (DF) schemes. The AF relay receives information from the previous relay and simply amplifies the received signal and then forwards it to the next relay. On the other hand, the DF relay first decodes the received signal and then forwards it to the next relay in the second stage if it can perfectly decode the incoming signal. For analytical simplicity, in this thesis, we consider the AF relaying scheme and the results of this work can also be developed for the DF relay. The transceiver design for multi-hop MIMO relay is very challenging. This is because at the L-th relay stage, there are 2L possible channels. So, for a large scale network, it is not economical to send the signal through all possible links. Instead, we can find the best path from source-to-destination that gives the highest end-to-end signal-to-noise ratio (SNR). We can minimize the mean square error (MSE) or bit error rate (BER) objective function by sending the signal using the selected path. The set of relay in the path remains active and the rest of the relays are turned off which can save power to enhance network life-time. The best path signal transmission has been carried out in the literature for 2-hop MIMO relay and for multiple relaying it becomes very complex. In the first part of this thesis, we propose an optimal best path finding algorithm at perfect channel state information (CSI). We consider a parallel multi-hop multiple-input multiple-output (MIMO) AF relay system where a linear minimum mean-squared error (MMSE) receiver is used at the destination. We simplify the parallel network into equivalent series multi-hop MIMO relay link using best relaying, where the best relay ..

    Game Theoretical Approach for Joint Relay Selection and Resource Allocation in Mobile Device Networks

    Get PDF
    With the improvement of hardware, more and more multimedia applications are allowed to run in the mobile device. However, due to the limited radio bandwidth, wireless network performance becomes a critical issue. Common mobile solutions are based on the centralized structure, which require an access point to handle all the communication requirement in the work area. The transmission performance of centralized framework relies on the density of access points. But increasing the number of access points will cost lot of money and the interference between access point will reduce the transmission quality. Thanks to the wireless sensor network implementations, the distributed wireless network solution has been well studied. Now, many mobile network studies introduce the device to device idea which is a distributed structure of mobile network. Unlike wireless sensor networks, mobile networks have more movability and higher transmission speed requirement. In order to be used in mobile networks, a distributed network management algorithm needs to perform faster and more accurate. In this thesis, a new pairing algorithm is proposed to provide a better transmission quality for multimedia data. In the proposed approach, the multimedia data is quantized by distortion reduction. Then, the source-relay pairing solution is optimized by a history tracing system using game theory to improve the expected overall distortion reduction of the entire network. Several parameters are introduced in the proposed solution, so the optimization would fit for different situations. Simulation results show that the proposed algorithm achieves higher overall distortion reduction by avoiding the competition between nodes. Simulation results also show the parameters would affect the system performance, such as optimization speed, system stability and system overall transmit speed

    Cooperative Detection and Network Coding in Wireless Networks

    Get PDF
    In cooperative communication systems, multiple terminals in wireless networks share their antennas and resources for information exchange and processing. Recently, cooperative communications have been shown to achieve significant performance improvements in terms of transmission reliability, coverage area extension, and network throughput, with respect to existing classical communication systems. This dissertation is focused on two important applications of cooperative communications, namely: (i) cooperative distributed detection in wireless sensor networks, and (ii) many-to-many communications via cooperative space-time network coding. The first application of cooperative communications presented in this dissertation is concerned with the analysis and modeling of the deployment of cooperative relay nodes in wireless sensor networks. Particularly, in dense wireless sensor networks, sensor nodes continuously observe and collect measurements of a physical phenomenon. Such observations can be highly correlated, depending on the spatial separation between the sensor nodes as well as how the physical properties of the phenomenon are evolving over time. This unique characteristic of wireless sensor networks can be effectively exploited with cooperative communications and relays deployment such that the distributed detection performance is significantly improved as well as the energy efficiency. In particular, this dissertation studies the Amplify-and-Forward (AF) relays deployment as a function of the correlation of the observations and analyzes the achievable spatial diversity gains as compared with the classical wireless sensor networks. Moreover, it is demonstrated that the gains of cooperation can be further leveraged to alleviate bandwidth utilization inefficiencies in current sensor networks. Specifically, the deployment of cognitive AF cooperative relays to exploit empty/under-utilized time-slots and the resulting energy savings are studied, quantified and compared. The multiple terminal communication and information exchange form the second application of cooperative communications in this dissertation. Specifically, the novel concept of Space-Time-Network Coding (STNC) that is concerned with formulation of the many-to-many cooperative communications over Decode-and-Forward (DF) nodes is studied and analyzed. Moreover, the exact theoretical analysis as well as upper-bounds on the network symbol error rate performance are derived. In addition, the tradeoff between the number of communicating nodes and the timing synchronization errors is analyzed and provided as a network design guideline. With STNC, it is illustrated that cooperative diversity gains are fully exploited per node and significant performance improvements are achieved. It is concluded that the STNC scheme serves as a potential many-to-many cooperative communications scheme and that its scope goes much further beyond the generic source-relay-destination communications

    Cooperative Communications: Network Design and Incremental Relaying

    Get PDF
    • …
    corecore