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Résumé

Avec les grands développements des technologies de communication sans fil, les réseaux de capteurs

sans fil (WSN) ont attiré beaucoup d’attention dans le monde entier au cours de la dernière décen-

nie. Les réseaux de capteurs sans fil sont maintenant utilisés pour a surveillance sanitaire, la gestion

des catastrophes, la défense, les télécommunications, etc. De tels réseaux sont utilisés dans de nom-

breuses applications industrielles et commerciales comme la surveillance des processus industriels

et de l’environnement, etc. Un réseau WSN est une collection de transducteurs spécialisés connus

sous le nom de nœuds de capteurs avec une liaison de communication distribuée de manière aléatoire

dans tous les emplacements pour surveiller les paramètres. Chaque nœud de capteur est équipé d’un

transducteur, d’un processeur de signal, d’une unité d’alimentation et d’un émetteur-récepteur. Les

WSN sont maintenant largement utilisés dans l’industrie minière souterraine pour surveiller certains

paramètres environnementaux, comme la quantité de gaz, d’eau, la température, l’humidité, le niveau

d’oxygène, de poussière, etc. Dans le cas de la surveillance de l’environnement, un WSN peut être

remplacé de manière équivalente par un réseau à relais à entrées et sorties multiples (MIMO). Les

réseaux de relais multisauts ont attiré un intérêt de recherche important ces derniers temps grâce à leur

capacité à augmenter la portée de la couverture. La liaison de communication réseau d’une source

vers une destination est mise en œuvre en utilisant un schéma d’amplification/transmission (AF) ou

de décodage/transfert (DF). Le relais AF reçoit des informations du relais précédent et amplifie sim-

plement le signal reçu, puis il le transmet au relais suivant. D’autre part, le relais DF décode d’abord

le signal reçu, puis il le transmet au relais suivant au deuxième étage s’il peut parfaitement décoder le

signal entrant. En raison de la simplicité analytique, dans cette thèse, nous considérons le schéma de

relais AF et les résultats de ce travail peuvent également être développés pour le relais DF.

La conception d’un émetteur/récepteur pour le relais MIMO multisauts est très difficile. Car à l’étape

de relais L, il y a 2L canaux possibles. Donc, pour un réseau à grande échelle, il n’est pas économique

d’envoyer un signal par tous les liens possibles. Au lieu de cela, nous pouvons trouver le meilleur

chemin de la source à la destination qui donne le rapport signal sur bruit (SNR) de bout en bout le

plus élevé. Nous pouvons minimiser la fonction objectif d’erreur quadratique moyenne (MSE) ou

de taux d’erreur binaire (BER) en envoyant le signal utilisant le chemin sélectionné. L’ensemble

de relais dans le chemin reste actif et le reste des relais s’éteint, ce qui permet d’économiser de

l’énergie afin d’améliorer la durée de vie du réseau. Le meilleur chemin de transmission de signal

a été étudié dans la littérature pour un relais MIMO à deux bonds mais est plus complexe pour un
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relais multiple. Dans la première partie de ce mémoire, nous proposons un algorithme de recherche

de meilleur chemin avec une parfaite connaissance de l’état de canal (CSI). Nous considérons un

système de relais AF multisauts MIMO avec un récepteur d’erreur quadratique moyenne minimale

(MMSE) utilisé au niveau du récepteur. Nous avons simplifié le réseau parallèle en liaison relais

MIMO multisauts en série équivalente en utilisant le meilleur relais.

La transmission de données d’un nœud vers les autres nœuds via une liaison sans fil dans les mines

souterraines peut être affectée par le bruit gaussien, la réflexion et les interférences. L’un des défis

du déploiement de WSN dans les mines souterraines est la faible consommation d’énergie requise,

car les nœuds de capteurs transportent une banque de puissance irremplaçable et limitée. Par consé-

quent, l’allocation de puissance optimale est la caractéristique de conception la plus importante pour

les réseaux de stockage dans l’environnement minier. Une fois que nous avons le réseau série, nous

proposons une stratégie pour concevoir conjointement le précodeur source, les filtres relais, et les ma-

trices de récepteurs linéaires en utilisant une technique d’optimisation convexe avec la connaissance

parfaite du CSI et une contrainte de puissance totale. En s’appuyant sur les analyses théoriques, nous

effectuerons des simulations Matlab pour vérifier l’investigation théorique.
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Abstract

With the great developments in wireless communication technologies, Wireless Sensor Networks

(WSNs) have gained attention worldwide in the past decade and are now being used in health mon-

itoring, disaster management, defense, telecommunications, etc. Such networks are used in many

industrial and consumer applications such as industrial process and environment monitoring, among

others. A WSN network is a collection of specialized transducers known as sensor nodes with a com-

munication link distributed randomly in any locations to monitor environmental parameters such as

water level, and temperature. Each sensor node is equipped with a transducer, a signal processor, a

power unit, and a transceiver. WSNs are now being widely used in the underground mining industry to

monitor environmental parameters, including the amount of gas, water, temperature, humidity, oxygen

level, dust, etc. The WSN for environment monitoring can be equivalently replaced by a multiple-input

multiple-output (MIMO) relay network. Multi-hop relay networks have attracted significant research

interest in recent years for their capability in increasing the coverage range. The network commu-

nication link from a source to a destination is implemented using the amplify-and-forward (AF) or

decode-and-forward (DF) schemes. The AF relay receives information from the previous relay and

simply amplifies the received signal and then forwards it to the next relay. On the other hand, the DF

relay first decodes the received signal and then forwards it to the next relay in the second stage if it

can perfectly decode the incoming signal. For analytical simplicity, in this thesis, we consider the AF

relaying scheme and the results of this work can also be developed for the DF relay.

The transceiver design for multi-hop MIMO relay is very challenging. This is because at the L-th

relay stage, there are 2L possible channels. So, for a large scale network, it is not economical to send

the signal through all possible links. Instead, we can find the best path from source-to-destination

that gives the highest end-to-end signal-to-noise ratio (SNR). We can minimize the mean square error

(MSE) or bit error rate (BER) objective function by sending the signal using the selected path. The

set of relay in the path remains active and the rest of the relays are turned off which can save power to

enhance network life-time. The best path signal transmission has been carried out in the literature for

2-hop MIMO relay and for multiple relaying it becomes very complex. In the first part of this thesis,

we propose an optimal best path finding algorithm at perfect channel state information (CSI). We

consider a parallel multi-hop multiple-input multiple-output (MIMO) AF relay system where a linear

minimum mean-squared error (MMSE) receiver is used at the destination. We simplify the parallel

network into equivalent series multi-hop MIMO relay link using best relaying, where the best relay
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selects the maximum possible gain path.

The data transmission from one node to the other nodes through a wireless link in underground

mines may be affected by Gaussian noise, reflections, and interferences, and this is due to multi-

path propagation. One of the challenges of WSN deployment in underground mines is the lower

power-consumption requirement as sensor nodes carry limited irreplaceable power banks. Therefore,

optimum power allocation is the most important design characteristics for WSNs in the mining envi-

ronment. Once we have the series network, we propose a strategy to jointly design the source precoder,

relay filters, and linear receiver matrices using convex optimization with perfect CSI knowledge with

total power constraint. Based on the theoretical analysis, we carry out Matlab simulations to verify

the theoretical investigations.
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Chapter 1

Introduction

With the advanced developments in wireless communication technologies, wireless sensor networks

(WSNs) have gained attention worldwide in the past decade and are now being used in health moni-

toring, disaster management, defense, telecommunications, etc. Such networks are also used in many

industrial and consumer applications such as industrial processes and environment monitoring, and so

on. The unprecedented success of WSN in those sectors has led to the emergence of this technology

in the mining industry. The limitations of WSN in mining implementations will be discussed in this

chapter.

1.1 Brief Introduction to WSNs

A WSN is a collection of specialized transducers known as sensor nodes with a communication link

distributed randomly in any locations to monitor parameters such as temperature, humidity, pressure,

chemical concentration, pollutant levels, etc. Each sensor node is equipped with a transducer, a signal

processor, a power unit, and a transceiver. The transducer converts the physical quantity into an elec-

trical signal, and after processing the electrical signal, the transceiver transmits data to the other nodes.

The power of each sensor node is supplied from an energy source, usually a battery, which defines the

life-time of the overall network. The components of a WSN enable wireless connectivity and refer

to a group of dedicated sensor nodes. A sensor node may vary in size from millimeter-size custom

silicon to large-size integrated units. The range of wireless connectivity depends on the environment

in which it is deployed, and it can be extended by adding relay nodes between a gateway and a leaf

node for a particular topology [1].

1.1.1 WSN Architecture

A WSN is a collection of sensor nodes that are grouped into clusters to exchange information among

the connected nodes. A node after sensing and processing any physical or environmental data, com-

municates it with other nodes in the cluster to exchange information. They can cooperatively pass
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Figure 1.1 – WSN architecture for environmental monitoring.

their data via self-configuration and a multi-hop routing network to a sink to further analyze using dif-

ferent tools. Here, the cooperative communication refers to the process where the transmitting node

sends not only its own data but also sends its neighbor nodes data. A base station acts as an inter-

face between user nodes and the network by communicating in many ways such as Internet, satellite,

and mobile communication networks. A typical WSN contains a large number of sensor nodes dis-

tributed randomly in a large area. A WSN node is equipped with sensing and computing devices, radio

transceivers and a power source. Nodes can communicate among themselves using radio signals. A

representation of a wireless sensor network is provided in Fig. 1.1 to monitor and measure data from

a remote location. In this system, a sensor node sends the measurements to the network (GPRS in this

case) via a base station. Nowadays, most of the research on WSNs is conducted on energy efficient

algorithms which gives better system performance with less power and transceiver design to extend

the life-time of the network.

1.2 WSNs in Underground Mines

Environmental monitoring in underground mine galleries, which are basically long and narrow (they

can be several kilometers in length), is a crucial task to ensure safe working conditions. WSNs are now

being widely used in the underground mining industry to monitor some environmental parameters, in-

cluding the amount of gas, water, temperature, humidity, oxigen level, dust, etc. The transmitted

2



signal through the channel is attenuated and distorted by the absorption and reflection is taken into

account in the medium due to rough surface structure through which the signal travels, and the trans-

mitted power decreases with the distance by an inverse power law, P0d−ν , where P0 is the transmitted

power and ν is the attenuation constant which depends on the material of the floor, ceiling, and walls

[2]. The mine areas can be divided into two major parts, a) the open areas that include rooms and

pillars, and b) the tunnels that include the passageways. When the signal travels through multi-paths,

the signal at any receiving node may be added constructively or destructively. The signals are added

constructively when their frequency and phase are similar and the signal are added destructively when

their frequency and phase are different. The random fluctuations of the electromagnetic (EM) waves

may disconnect the node-to-node link due to fading, and a transmitter will try to enhance the power

to continue the transmission over harsh fading channels [3]. The drawback of this method is the high

energy consumption which may alternatively diminish the life-time of the network.

WSN nodes are deployed in underground mines for continuous monitoring of critical phenomena by

employing multi-hop routing to provide more scalability for system construction. But the practical

implementation of this technology is not easy because the sensors need to self-organize which means

that they should be able to reconfigure themselves depending on the monitored environment [4]. The

self-organization algorithm allows the sensor node to distribute power in such a way that they converge

in a stable equilibrium state. We will discuss the self-organization technique in detail in the next

chapter. Sensor nodes measure local physical quantities and forward them to the fusion center (FC) via

a number of connected relay nodes. The data transmission from one node to the other nodes through a

wireless link in underground mines may be affected by Gaussian noise, reflections, and interferences

[5], [6]. The self-organizing algorithm enables multihop routing to provide higher quality of service

(QoS) and bandwidth efficiency [3], [7]. The consumption of excess energy may rapidly turn off the

battery power supply and it may decrease the network lifetime [8], so new life-time maximization

mechanisms and protocols are required for the development of WSNs in underground environments

[9]. In some other wireless network applications, extra energy can be inserted from external renewable

sources to overcome the shortage of energy [10], but external energy feeding is not feasible in the

underground environment.

1.3 General Overview and Objectives

1.3.1 Motivations

Multiple-input multiple-output (MIMO) relays are important techniques for WSN deployment in

highly fading environment that can be used to reduce the path loss, increase the power efficiency, and

network coverage. Due to the limited power supply, the optimization of the MIMO relay networks

has gained much attention in recent years. In MIMO relaying, the source signal is amplified and

forwarded to the destination through a number of relay nodes. Each relay terminal may be equipped
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with a single antenna for single node or multiple antennas for multiple nodes. This can be done

according to different protocols such as amplify-and-forward (AF), decode-and-forward (DF), and

compressed-and-forward (CF) [11]. The analog AF is the simplest and most used protocol in which

non-regenerative relays are used to linearly process the incoming signals. In non-regenerative relay,

the relay only amplifies and re-transmits the received signal to the destination or next relay. Among

the variety of AF relay structures, the simple two-hop one way model from source to destination using

single antenna relays has been targeted in the major research works. In a few researches, multiple

antenna multi-hop parallel relaying has been carried out in some special cases. The DF protocol

uses a decision based receiver (MMSE or zero-forcing (ZF) receiver) to construct the source symbol

before amplifying and forwarding. For the multiple relaying DF scheme in long source-destination

communication, a processing delay due to signal decode and reconstruction is introduced during the

decision action at each relay node for forwarding the exact input signal to the next node. The larger

data size in some applications consumes more energy for decoding and reconstruction of original data

in each relay stage. In this case, the CF protocol is used to forward compressed data to the destina-

tion. Depending on the relay strategy, some power allocation methods have been proposed for WSNs

to obtain the best possible quality of service (QoS) based on the assumption of perfect synchroniza-

tion and available channel state information (CSI). Sensor nodes are only able to communicate in a

short range due to the inherent limitations in the size, power, and cost [12]. Several works about the

power allocation in multi-hop transmission systems have been proposed to minimize total transmis-

sion power under a constraint on QoS at the destination. Usually, a QoS constraint is considered in the

optimization but in [13], an outage probability constraint is considered for the optimal power alloca-

tion schemes for both regenerative and non-regenerative systems to design power allocation algorithm

that minimizes system outage probability. In [14], a general multi-hop WSN power optimization is

considered using AF relaying based on MMSE and mean sum-rate (MSR) constraint subject to in-

dividual, local, and global power constraints. Our goal is to find the optimal solution for the power

assignment of parallel multiterminal multi-hop WSN relay with local and global power constraints.

The power allocation algorithm should be in such a way that the receiver reconstructs the input data

so that it can increase the input-output mutual information and decrease the mean-square-error (MSE)

of the signal. The input-output mutual information is an indicator of how much coded information

accurately passed to the receiver through the fading channel for the corresponding power solution.

The small size sensor node are only able to communicate in a short range due to the shortage of power

supply [12]; in the case of the mining environment, multihop communication can be recommended to

cover the large area [15]. Again, the obstacles between the source and destination further affect the

transmission and an alternative strategy is proposed to mitigate this effect to design multihop WSNs

employing AF relaying [16]. The power allocation problem of WSNs employing the distributed AF

protocol has been considered through noisy observation of a Gaussian random source based on the

minimum mean-squared error (MMSE) estimation rule [17].

Authors in [13] studied the problem of both regenerative and non-regenerative multi-hop systems.

For both systems, optimizing power allocation reduces outage probability. They concluded that a
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non-regenerative system with optimum power solution outperforms a regenerative system with no

optimization. A linear non-regenerative approach has been proposed in [18] for multiuser multi-hop

MIMO relay systems using an MMSE receiver at the destination node. The work addresses the issue

of multi access communication through non-regenerative AF relays, where terminals have multiple

antennas. They solve the optimization problem for source precoder matrices and relay amplifying

matrices with the assumption that MSE matrices at the destination can be decomposed into the sum of

the MSE matrices at all relay nodes. They used water-filling power allocation in each of sub-channel

so that the signal can be transmitted through the link with higher gain. It enables the power allocation

at each relay node in a distributed manner at a high signal-to-noise ratio (SNR) environment which

requires local CSI knowledge. In some other environments, where direct link between the source and

the destination is sufficiently strong, general optimization is not sufficient in the joint design process,

so extensive research efforts need to be devoted to solve the power optimization for such a problem.

Also, AF relaying becomes the effective means to improve performance and coverage of wireless sys-

tem when direct link is present along with the relay. In [19], a simple joint optimization algorithm has

been introduced which iteratively finds a local optimal solution for the precoder and relay matrices in

the presence of a direct link using AF relaying systems. The minimization of QoS objective function

based on the MMSE criteria for MIMO AF relaying system is non-convex due to non-linear matrix

operation, and thus finding the optimal solution is intractable. For a single stream transmission, the

problem is convex even if the direct link is available. The DF relay forwards noiseless data to the

destination, thus in contrast it provides better performance for reliable source-relay-destination link.

For DF relaying without a direct link, the joint precoder designing problem at source and relay can be

easily obtained by singular value decomposition (SVD) by splitting the problem into two independent

sub-problems. In the case of DF relaying with a direct link, [20] developed a distributed precoder de-

signing method for source and relay with less computational complexity using SVD and water-filling.

The design of the precoder matrix at the source, and at all relays require proper CSI knowledge but

in practical communications, CSI is obtained through channel training/estimation. There is a CSI es-

timation error due to channel noise, quantization errors, and outdated channel estimates, which may

substantially degrades system performance [21]. A limited work has been carried out for optimal so-

lution for multi-hop relaying based on imperfect CSI information [21], [22]. We propose to design a

multi-hop parallel multiterminal MIMO AF relaying system based on a powerful convex optimization

technique with perfect CSI knowledge at all source, relay, and destination terminals. The channel in

underground mines is harsh and time-varying in nature [5].

1.3.2 Our Approach

The classical multi-terminal multi-relay or multiple source/destination systems have been investigated

in recent works. Parallel relay network, which is a special case of multiple relay network was first

introduced by Schein in [23]. Based on the work in [23], two-hop AF parallel relay networks have

been investigated in [24], [25] where each relay terminal is equipped with multiple antennas. In
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many applications, multi-hop parallel relay networks are being used. In regenerative DF relaying,

the relay decodes the incoming signal and after perfect reconstruction, transmits it to the destination.

[13] studies the non-regenerative and regenerative relay networks and shows that optimum power

allocation in regenerative relaying achieves the best QoS performance. To the best of our knowledge,

no work has been done in the literature to design and analyze multi-hop parallel relay networks, and

it is the main contribution of this thesis. In the case of parallel multi-hop relaying, each terminal can

be considered as a source for the next relay, and equivalently we can consider that each relay terminal

has more than one user. For multi-user MIMO systems, the major design problem is the elimination

of interference from other users in the same or other networks. At the present time, to handle this

problem, block diagonalization (BD) is used which divides the multi-user channel into several single

user channels without interference. To handle the error propagation problem, detection is used with

the BD scheme in [26] which attains single-symbol decodability. Authors in [27] proposed a selection

relaying scheme where the relay decodes the signal provided that the channel has higher signal-to-

noise ratio (SNR) or gain. The selection relaying based carrier-noncooperative scheme is less general

and provides worse performance in deep fading [28]. Our first approach to simplify the complex

parallel multi-hop relaying is to use the block diagonal property to reduce the interference from other

users in the selection relaying. Then, we design an optimum precoder for source and all relay terminals

to minimize the bit error rate (BER) at the detection terminal for a known receiver matrix by using

convex optimization solvers.

1.4 Contributions

Our contributions are the following:

1. Simplification of parallel multi-hop relay networks using block-diagonalization with the help

of selection relaying.

2. Optimum precoder design to solve the power optimization problem with AF relaying using stan-

dard convex solvers subject to local and global power constraints under perfect CSI knowledge.

1.5 Outline of the Thesis

In Chapter 2, a literature review of the problem of power allocation for cooperative sensor networks to

provide the maximum system performance with power constraint is presented. In particular, the water-

filling power allocation published in recent works is discussed to explain the fundamental technique

of power allocation. We present the model of a WSN network that can be used to measure some

environmental parameters in underground mines in Chapter 3. In this chapter, we will also present the

network simplification method. Then, we also provide the joint transceiver design of the simplified

network using a powerful convex optimization technique. In Chapter 4, we present the optimum

proposed precoder design for source, and relay terminals for the perfect CSI case. In this chapter,

6



we also present simulation results based on the theoretical investigations. Finally, in Chapter 5, we

present conclusions for this work.
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Chapter 2

Communications and Wireless Sensor
Networks

This chapter discusses the problem associated with the deployment of WSNs in fading environments

such as in underground mines. Our focus will be on the energy optimization of sensor networks

depending on the operational environment.

2.1 Communications

The energy efficient communication between the source and destination through the wireless medium

requires less interference from other sources. For this reason, the WSN transceiver must allow medium

access control (MAC) protocols that are developed for communicating with neighbor nodes via a

shared radio channel.

2.1.1 Space-Time Block Code (STBC) MIMO Technique

Exploiting multiple antennas at transmitter and receiver provides substantial benefits in both increas-

ing system capacity and immunity to deep fading in wireless channels by using space-time coding

[29]. On the other hand, space-time coding techniques are used in modern MIMO wireless commu-

nication to achieve antenna diversity gain. The concept of space-time coding is based on the idea that

the probability of multi-symbols through multiple statistically independent fading channels simulta-

neously experienced deep fading is low due to the use of a code matrix for each source. A space-time

coded MIMO system with M transmit antennas and N receive antennas is illustrated in Fig. 2.1 ac-

cording to [29], [30]. The binary bit stream is mapped into symbols {Si}L
i=1 by quadrature phase shift

keying (QPSK) modulation and then the symbol stream of size L is space-time encoded into
{

x(t)i

}M

i=1
M×T space-time code words, where i is the antenna index, and t ∈ [1, · · · ,T ] is the time index. Here,

the M symbols are transmitted by a codeword over T symbol periods with the symbol rate, R = M/T

(symbols/channel). Let h(t)j,i denotes a Rayleigh-distributed channel gain from the ith transmitting an-

8



00101

Binary 

input
M

o
d

u
la

ti
o

n

SLS2,S1

Modulated 

symbols

S
p

a
ce

 T
im

e 
E

n
co

d
er

)1(

1

)(

1 xx T 

)1(

2

)(

2 xx T 

)1()(

M

T

M xx 

)1(

1

)(

1 yy T 

)1(

2

)(

2 yy T 

)1()(

N

T

N yy  S
p

a
ce

 T
im

e 
D

ec
o

d
er

1
ˆˆ SSL

Recons-

tructed

symbols
H

Channel

Figure 2.1 – Space-time coded MIMO systems.

tenna to the jth receiving antenna over the tth symbol period. Then we can express the MIMO channel

as H(t) = [h(t)
1 , · · · ,h(t)

M ] ∈ CN×M, where, CN×M is the set of complex matrices of dimension N×M

and h(t)
i = [h(t)1i ,h

(t)
2i , · · · ,h

(t)
Ni ] ∈ CN×1. The input-output relationship for the flat fading MIMO channel

H can be expressed as:

y(t) = H(t)x(t)+ z(t) (2.1)

where H(t) is the M×N complex channel matrix and

y(t) = [y(t)1 , · · · ,y(t)N ] (2.2)

x(t) = [x(t)1 , · · · ,x(t)M ] (2.3)

z(t) = [z(t)1 , · · · ,z(t)N ] (2.4)

are complex row vectors of the received signal, transmitted signal, and noise, respectively at time

index t. If the channel H(t) does not change within a block, then (2.1) can be expressed as:

Y = HX+Z (2.5)

where X = [xT (1), · · · ,xT (T )], Y = [yT (1), · · · ,yT (T )], and Z = [zT (1), · · · ,zT (T )]. The space-

time encoder generates the M×T complex transmitted matrix X from the input symbol vector S =

[S1,S2, · · · ,SL] by the operation as

Gc(S) : CL×1 7−→ CM×T (2.6)

under the condition that the row vectors of matrix X are orthogonal to each other. The matrix operator

Gc(S) is called space-time block code (STBC) operator which was first introduced by Alamouti for 2

transmitting antennas and multiple receiving antennas [31]. If the channel matrix H is known at the

receiver then the decoding step uses a maximum likelihood (ML) coherent detector to find the input

symbols.
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2.1.2 Cooperative Diversity and Cluster Formation

The cooperation of multiple users using a collection of distributed antennas in a cell form a partnership

for transmitting not only their own information, but also the information of their neighbors. This form

of space diversity is known as cooperation diversity where terminals share their antenna and other

resources to create a virtual array. In this case, a user requires more power in order to send both its own

signal and the signal of its neighbors. The users in cooperation diversity estimate the realized SNR

between them to start a message exchange action through cooperative communication. A user simply

forwards the received signal after amplification subject to its power constraint known as AF relaying

protocol or fully decode, re-encode and re-transmit the message known as DF relaying protocol. Some

researchers suggest to employ a threshold test on the estimated SNR between cooperating radios for

the best expected performance, as measured in terms of outage probability for a given rate R. This

method provides better performance in terms of outage probability. For a large rate normalized SNR

(ρnorm), [32] summarized the high average SNR approximations to the outage probability for AF and

DF schemes as a function of the rate normalized SNR, ρnorm = 2ρ/(22R− 1). The repetition-based

cooperative diversity alternatively decreases the bandwidth efficiency with the number of relaying

terminals, because each relay requires full use of its own sub-channels for repeating transmission.

An alternative STBC cooperative diversity scheme has been proposed in [33] to improve bandwidth

efficiency of the repeating cooperation that allows all relays to transmit using the same sub-channel.

The STBC cooperation diversity provides an efficient way for relaying signal even in deep fade in

order to exploit full spatial diversity, and it may be readily deployed in WSN node cooperation in

highly fading environments. In STBC cooperation, the signal is transmitted in the form of a code
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matrix, the code matrix for 2×2 MIMO system can be represented as

X =

[
x1 −x2

x2 x1

]
When each terminal transmits a message from its distributing columns from the code matrix, other

terminals receive, and decode and transmit in the second phase using its distribution column from the

code matrix. This can be explained with the help of node to sink communication using intermediate

relays as in Fig. 2.2. The source node like to send source information X = [x1,x2]
T in the first time

slot to the two intermediate relay node 1 and node 2. The two intermediate relays receive the code

depending on the channel gain. The node having the highest channel gain decodes the code word and

forward it to the sink node using its own code matrix. The sink node reconstructs the source node

signal using the relay code matrix.

The MIMO communication in WSN requires sensor cooperation known as cooperative MIMO com-

munication. In cooperative MIMO communication, a group of sensors cooperate to transmit and

receive data based on the assumption of node cooperation where a set of low-end transmit nodes are

connected with receiving nodes through a wireless link. The communication is divided into two time

slot, intracluster slot (ITA) tε , and intercluster slot (ITE) 1− tε . The typical value of tε is very small,

in the range from 0.005 sec up to 0.03 sec. During the ITA slot, local communications are assumed at

the transmitter cluster using a time-division multiple-access (TDMA) scheme. In the ITA slot, each

node has data symbols from other nodes and performs STBC operations as if each active node acted

as a distinct antenna element in a centralized antenna array. Once STBC is done, during the ITE relay

period 1− tε , M nodes (number of active nodes in the transmit cluster) transmit through an M×N

MIMO channel or over N parallel MISO channels based on the Alamouti diversity approach [31].

Usually, virtual MIMO is formed by all active sensors in a cluster, and router nodes relay messages

to nearby clusters using the AF or DF protocols via cooperative transmission in conjunction with the

STBC scheme. The Low Energy Adaptive Clustering Hierarchy (LEACH) scheme designates poten-

tial sensor nodes as cluster heads. The cluster heads are selected from the nodes distributed in a region

through an iterative process. The cluster head can select other neighbor nodes to form a group within

a cooperative network. A dynamic cooperation clustering formation has been proposed in [34] where

the cluster head selects M nodes from any number Ntotal sensor nodes (M ≤ Ntotal). Any cluster with

M nodes may send information to the destination via another cluster by using repetitive cooperative

relay or STBC cooperative relay.

2.1.3 Medium-Access Control

As in many current wireless networks, terminals transmit on orthogonal channels, such as cellular

and wireless local area networks (LANs). In wireless networks, we divide the available bandwidth

into orthogonal channels and allocate these channels to the terminals which transmit on essentially

orthogonal channels. The channel orthogonality means that all sub-carrier signals in the channel have

a phase difference of 90 degrees. The designed algorithm needs to be flexible so that any new proto-
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cols can be readily integrated into the existing networks. In all cooperative protocols, the transmitting

terminals need to process their received signal to remove interferences from other sources. Severe

attenuation over the wireless channel, insufficient electrical isolation between the transmit and receive

circuitry, and current limitations in radio implementations preclude the terminals from full-duplex op-

eration. To ensure half-duplex operations, each channel is divided into othogonal subchannels, and

the synchronization between the terminals is required for effective cooperative diversity. In cooper-

ative diversity transmission, the medium-access control protocol manages orthogonal relaying at the

terminal with half-duplex constraint and do not transmit and receive simultaneously at the same time

in the same frequency band. [33] illustrates an example of channel and subchannel allocations for

repetition-based cooperative diversity, in which relays either amplify or fully decode and repeat the

received signals. The repetitions must occur on orthogonal subchannels for the destination to combine

these signals and achieve full diversity gains. For N terminals in noncooperative transmission, trans-

mission between source and destination uses a fraction 1/N of the total degrees of freedom because

each source-destination pair share the channel by 1/N times of the total available time period. Here,

for the STBC cooperative diversity, relays use a suitable space-time code during the relaying period

to transmit simultaneously on the same subchannel using half of the total degrees of freedom in the

channel because each terminal uses half of the total available time.

2.1.4 Cooperative Relaying

The cooperative diversity protocol uses a variety of protocols including fixed and selection relaying.

For fixed relaying, relays allow either amplification, or decoding, re-encoding and transmitting the sig-

nals to the next relay or destination with individual and total power constraints in both cases. Selection

relaying performs transmission between terminals through fixed relaying based on the measured in-

stantaneous SNR between the links. Let us consider a source transmitting a signal xs to the relay

terminal and the destination terminal at half of the time through channels hs,r and hs,d , respectively for

t = 1, · · · , T/2. For cooperative diversity, we have

yr[t] = hs,rxs[t]+ zr[t] (2.7)

yd [t] = hs,dxs[t]+ zd [t] (2.8)

for t = 1, · · · ,T/2, where yr[t] and yd [t] are the relay and direct destination received signals from

the source, respectively, and zi[t], i ∈ {r,d} is the noise effect. For the next half of the time, t =

T/2+1, · · · ,T , the source does not transmit. Only the relay is transmitting the received signal to the

destination through channel hr,d . Thus we have

yd [t] = hr,dxr[t]+ zd [t] (2.9)

where yd [t] is the destination signal from the relay terminal only.

12



Fixed Relaying

Amplify-and-Forward: The relay during t = T/2+1, · · · ,T processes yr[t] and forwards the received

signal by transmitting [35]

xr[t] = βyr[t−T/2] (2.10)

where the amplifying factor β is given by

β ≤

√
P

|hs,r|2P+N0
(2.11)

where N0 is the noise variance and P is the power constraint. The destination can estimate the in-

put signal from its received signal yd [t] by combining the two received signals using any suitable

combining technique.

Decode-and-Forward: The relay processes yr[t] during t = 1, · · · ,T/2 by decoding an estimate of the

source signal x̂s[t], and transmits the signal

xr[t] = x̂s[t−T/2] (2.12)

Decoding at the relay can be done by employing either ZF or an MMSE receiver matrix.

Selection Relaying

If the measured channel gain |hs,r| falls below a certain threshold, the source may discard the source-

relay link and continues the transmission through the source-destination direct link. On the other

hand, if the measured channel gain |hs,r| lies above the threshold, the relay forwards the received

signal to the destination using either AF or DF to achieve the diversity gain. If the relays have multi-

input signal from different sources, the relay forwards the signal having the highest channel gain

|hi,r|, i∈ [1, · · · ,M], where M is the number of incoming signals having gain |hi,r| greater than a certain

threshold.

2.1.5 Underground Channel Modeling

Signal propagation through underground tunnel depends mainly on three factors [36]: i) free space

path loss; as a result the signal to noise ratio (SNR) decreases with the node distance, ii) multi-path

fading; the EM waves reflected from the surfaces arrive with different time delays and produce fad-

ing; the impulse response of the channel represents the fading effect, and iii) noise; additive white

Gaussian noise (AWGN) due to the presence of power lines, internal sources (electronic equipment),

and electric motor, etc. The success of symbol transmission can be achieved by the proper selection

of signal power and node-to-node distance, and the distortion of symbols can be mitigated by the

estimation of the channel impulse response. The wireless channel in an underground mine can be

described using different statistical distribution functions, and authors in [37] have selected probabil-

ity distribution functions (pdf) for statistical characterization of the wireless channel to represent the
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information about the multipath behaviors of the channel. They used two types of pdf functions, i)

the Rayleigh fading distribution function that represents non-line of sight (NLOS), and ii) the Rician

fading distribution function in the case of line of sight (LOS) transmission. This is because the LOS

consists of both direct signal and reflected signals. To demonstrate the theory in underground mines,

Alouini and colleagues [38] provided the solution of power allocation for a WSN network by con-

sidering the propagation through NLOS transmission while considering a Rayleigh fading channel.

Here, they considered only the effects of all reflected signals from the obstacles and walls instead of

direct LOS communication.

Usually, all nodes in the designed network remain fixed, hence we can say that the wireless link is

stationary. In underground communications, the channel between two transceivers is relatively stable

with respect to time. As a result, channel randomness is due to the position of the nodes rather

than time. The received signal levels at different locations obeys a Rayleigh probability distribution

with respect to distance instead of time. Each path in the underground channel hi, j, i ∈ [1, · · · ,N], j ∈
[1, · · · ,M] is in fact circular symmetric CN (0,σ2

i, j) because each component hi, j is a complex circularly

symmetric Gaussian random variable with mean 0 and covariance σ2
i, j. The magnitude |hi, j| of the

channel response is a Rayleigh random variable with density [39]:

f (h) =
h

σ2 exp
{
− h2

2σ2

}
, h≥ 0 (2.13)

The channel coefficient hi, j from any transmitting antenna i to receiving antenna j is modeled as

follows [40]

hi, j =
√

d−νi, j
i, j h̄i, j (2.14)

where h̄i, j is a complex Gaussian random variable with zero-mean and variance σ2
i, j, νi, j is the path

loss exponent, and di, j is the distance.

2.1.6 Water-filling Technique

Water-filling is one of the techniques in wireless communication for the optimum power allocation

of sub-channels to obtain better system performance under individual power constraint or total power

constraint. To enhance the data rate while maintaining a constant power in a sensor network, the

traditional water-filling technique cannot be applied directly because the power allocation in WSN

applications is not independent with respect to equilibrium state.

Water-filling Concept

For multiple channels, a subset of channels can be allowed to allocate power based on channel gains

according to the water-filling algorithm. Basically, the process of water-filling is similar to pouring

water in a tank in which the level of water is filled periodically to perform a particular task. In an

ad-hoc network, the power of a channel is filled iteratively to maximize the total data rate through any

fading environment. The unshaded portion in Fig. 2.3 represents the noise level of the corresponding
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Figure 2.3 – Water-filling concept. The ratio between SNR gap (Γ) and channel gain gi, i = 1, · · · ,N
gives the relative noise level.

channel and the shaded portion represents the power level or water level (µ). The amount of water or

power allocated is proportional to the noise and interference in the channel. The allocated power (pi)

to the ith channel hi, i = [1, · · · ,N] can be expressed [41]

p∗i =
[

µ− 1
g2

i

]+
= max

[
µ− 1

g2
i
,0
]

(2.15)

where (x)+ = max(x,0), gi = |hi|2, the water level µ is chosen so that ∑
N
i=1 pi(µ) = P because the sum

of individual terminal powers is equal to P, P is the total power budget in the link, and N is the total

number of orthogonal channels. The ultimate goal of water-filling is to maximize the capacity C:

C =
1
2

N

∑
i=1

log2

(
1+

pi

Ni

)
(2.16)

where Ni is the noise variance. The optimal solution that maximizes throughput based on Shanon’s

capacity equation can be found by water-filling with the condition that the quality of the radio channel

is known at the transmitter. We perform water-filling through the following water-filling steps [42]:

step-1: Sort gk from largest to smallest, i.e., g1 > g2 > · · ·> gN

step-2: Find the constant K for Γ≤ 1 (where Γ≤ 1 is the SNR gap) using

K =
1
N

[
ε̄x +Γ

N

∑
k=1

1
gk

]
(2.17)
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step-3: Calculate another energy level, ε̄k

ε̄k = K− 1
gk

; k ∈ [1, · · · ,N] (2.18)

step-4: Omit the channel gk having ε̄k < 0, and allocate the energy ε̄k to the rest of the sub-channels,

gk = gk + ε̄k, where k ∈ [1, · · · ,N] with N = N − n, n is the number of iterations required to make

ε̄k > 0,∀k.

step-5: Continue step 1 to step 4 until all sub-channels have ε̄k > 0.

step-6: Calculate the bit rate of each sub-channel that satisfies ε̄k > 0, according to Rk =
1
2 log2(1+

ε̄kgk);∀k. The total sum-rate of the link can be written as:

R =
N−n

∑
k=1

Rk (2.19)

The challenge of deploying water-filling in WSNs is the convergence, especially in fading environ-

ments [43], and the convergence analysis will be carried out in the following sub-section.

Challenges of Implementation in WSNs

The water-filling technique transmits signal through the channel having a gain greater than a threshold

level and discards transmission on a given channel if the SNR is lower than a threshold value. In WSN

cluster networks, if one node assign more power over other neighbors, then its transmission may

cause interference to other neighbor users. So, the arbitrary power assignment technique cannot be

used directly in sensor networks due to the generation of interferences when clusters are formed. The

power increment of any node follows an equilibrium state in which any node is not able to enhance

the transmission power independently over a fading channel when the SNR is lower than a threshold

value, i.e., the sensor node operation is related to other neighbor nodes in the network. The network

designers are looking for how rapidly it converges to the equilibrium state that can be defined as the

phase in which a node cannot allocate power independently without concern about its neighbors, and

the water-filling parameters calculation by the Lagrangian becomes more complex. The noise-plus-

interference (NI) level from the receiver may be further corrupted by additional channel noise and

interferences which may misleads the water-filling technique to determine the channel status. Also,

the NI level plays an important role during power allocation in the convergence for finding the uniform

energy level of each node. If the NI level is corrupted by random channel noise, then it takes more

time to fill the noisy channel and more energy through the iterative process [43].

The goal of power allocation in each channel of the network is to enhance the life-time of the network.

This concept can be explained by considering a network in which cost functions Ji(ui,u−i) are contin-

uously differentiable and convex on agents action space ui, then there exists a local point u∗ under the

following condition [44]:

[OJ1(u∗)T , · · · ,OJNL(u
∗)T ]T = 0 (2.20)

where OJi(u∗), i ∈ [1, · · · ,NL] is the gradient of the local cost function Ji(u∗). In cooperative WSNs,

node equipped with a single antenna communicate with the receiver through a distributed MIMO
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channel [45], [46] where the transmission strategy of any node depends on the other nodes. The

cost function between node i and node j for a transmission between them corresponding to the local

decision variable ui refers only to the transmission power as: J(ui j) = f (ei j/Ei), where Ei is the

remaining energy at node i and ei j is the minimum required energy from node i to node j to make

a successful transmission over the fading channel. Let us consider that a node remains active if

its remaining energy satisfy Ei ≥ E0, where E0 is a minimum threshold level. The life-time of the

network is the time until the remaining energy Ei of any nodes in the network goes down to E0,

i.e., Ei < E0. A game theory approach for power allocation of sensor nodes in the equilibrium state

requires the CSI knowledge and the CSI of each link can be obtained via a feed-back channel from the

receiver. The availability of CSI at the transmitter achieves the highest capacity and it can be achieved

by adapting the signal power to the particular channel realization. With the CSI information, the

transmitter allocates power based on water-filling solutions corresponding to maximizing the channel

mutual information by transmitting at the maximum available power. In Game Theory based water-

filling solutions, each link tries to reach a high data rate without transmitting more power by shuting

off power from a link which cannot support a minimum data rate, and this operation saves energy by

discarding transmission through a fading channel having less data rate. Hence, the utility function of

the game needs to be well-designed to coordinate among sensor nodes to determine the strategy of

resource allocation.

2.1.7 Performance Evaluation

The network designer ultimate goal is to propose a good networking strategy that meets the required

upper and lower bounds in the capacity region by finding the cut-set upper bounds [47]. In water-

filling, power allocation maximizes the information capacity. The wireless link can be modeled as

a group of parallel Gaussian channels (for channel orthogonality) that can be partitioned into dis-

crete narrowband sub-channels with channel bandwidth of δ f Hz. In single carrier communications,

capacity calculation follows Shanon’s information capacity theorem, but in practical broadcast com-

munications, the SNR gap (Γ) is used to determine the efficiency [48]. The SNR gap is the ratio of

ideal SNR at which the system can transmit at most C bits/transmission to a practical SNR at which

the system can transmit R bits/transmission, and it compares the practical system with the ideal mod-

ulation system. The capacity of a single channel in bits/transmission is given by [41]

C =
m
2

log2(1+SNR) (2.21)

where m is the modulation order. The SNR gap (Γ), can be calculated by a similar expression for

the SNR of practical systems: Γ = SNR
22R/m−1 . For the STBC encoding scheme and modulation order

m = 2, the SNR gap is used to determine the data rate for the n-th sub-channel, hn, n = [1, · · · ,N], in

multi-carrier communications [48]

Rn = log2

(
1+
| hn |2 εn

2Γnσ2
n

)
= log2

(
1+

Gnεn

Γn

)
(2.22)

where, Gn =
|hn|2
2σ2

n
, σ2

n is the noise variance, and εn =
Γn
Gn
(2Rn−1).

17



As we will see in section 2.2, nodes in a wireless sensor network receive data from neighbor nodes

and forward it to the final destination through multi-hop relay communication, and in some cases the

signal is distorted in the medium due to long transmission distances. As a result, the network designers

used bit error rate (BER), minimum mean square error (MMSE), capacity, and outage probability as

performance measuring terms to explain how efficiently the network can transmit the signal through a

fading channel over long distances during the study of the efficiency of power allocation techniques.

2.2 Wireless Sensor Networks (WSNs)

In a typical WSN, information collected by multiple sensor nodes need to be transmitted to the fusion

center (FC) via relay nodes. Each node sends the measurements to the receiver node which acts as

a relay node to forward the messages from previous nodes to the FC. Depending on the transmission

distance and wireless channel characteristics, a local node sends measurements first to a connected

neighbor node (which forwards the data to another node as relay node), then the data will be transmit-

ted to the final destination through multihop-based routing. The multihop-based routing assumes that

each node is connected cooperatively with each other. One of the main objective of WSN protocols

is the maximization of the network life-time subject to efficient node to node or node to destination

data transmission at total power constraint. The efficient way of life-time enhancement is the energy

saving protocol design at the MAC layer.

2.2.1 WSN Communication Protocol

WSNs are a kind of ad hoc network consisting of thousands of sensor nodes that communicate with

each other using international standards such as ZigBee PRO, Wireless HART, and ISA100.11a. De-

tails of the discussion of the standards have been investigated in [49] for the energy efficient develop-

ments of WSN components. The rapid development of high-speed integrated electronic devices and

wireless technology enables sensors with characteristics of low power consumption, self-organizing,

multi-parameter sensing, higher life-time, and faster wireless communication ability to connect differ-

ent sensors to monitor multiple types of environmental parameters. Researchers are now concentrating

on the deployment of WSNs in the mining industry. Recently, strategies for the energy efficient de-

ployment of WSNs in underground coal mines have been presented in [50], [51]. The structure of

WSN systems [52] for coal mine monitoring is composed of a data processing and control module

(processor), a communication module, and a power supply module.

Sensor nodes are placed at a certain distance (from 50 m up to 500 m) randomly and forward data

to a sink node which works as a gateway or web server to connect the sensor network and an exter-

nal network. An air pollution monitoring system deployed in coal mines using a network of nodes

(Waspmotes) to obtain surroundings air quality is described in [53]. The data from Waspmotes nodes

are transmitted to a router or gateway (Meshlium) through a WSN. The communication architecture

between gateways is basically to form multi connected WSNs under the same environment or various
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Figure 2.4 – Structure of a WSN for environment monitoring.

environments. An integrated WSN architecture for environment monitoring system is presented in

Fig. 2.4 based on the work of [54]. In this architecture, the routing node act as a sink node which joins

the sensor nodes to a WSN cloud. The environmental informations are collected by the sensor nodes

and are sent to the routing node to forward the information to other routing nodes in the same environ-

ment or other environments to exchange data among all sensors. The sink node supports a number of

protocols and standards such as ZigBee, Bluetooth, and related IEEE-802.15.4 communication spec-

ifications to access the World Wide-Web (WWW) services. The sink node transmits information to

the Base Station (BS) via an optical fiber backbone network monitored by a remote manager. Due to

the harsh environment and complex conditions of wireless links in underground environments, energy

efficient reliable data transmission is the main concern of the design of the WSN topology.

2.2.2 Signal Analysis

For WSN cluster networks, the authors in [45] have considered that the theory of cooperative com-

munications in cluster formation is closely related to MIMO technology, and explored the use of

cooperative virtual MIMO (VMIMO) communications in WSNs. Alamouti diversity based MIMO

for WSNs is carried out in [46] where individual single antenna array nodes cooperate with each other

to form virtual MIMO systems. The authors in [55] considered a distributed detection system with

interference channels for MIMO communication in WSNs where multiple transmitting nodes com-

municates with multiple receiving nodes through a virtual MIMO channel. Again, the energy cost
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Figure 2.5 – Block diagram of MIMO interference channel, M transmitting nodes, and N receiving
nodes.

for intracluster and intercluster transmission is not the same [56], but we will emphasize the energy

consumption for transmission from one cluster to another cluster through a MIMO channel.

The distributed cooperative MIMO structure, we simply call it cooperative MIMO communication,

requires less transmission energy than the noncooperative approach [57], [58]. The cooperative trans-

mission among multiple nodes can be treated as multiple antenna MIMO, and the energy consumption

of the MIMO approach and the noncooperative approach is presented in [46] over the transmission

distance d where MIMO becomes more energy-efficient. In the same work, the Alamouti scheme for

more than two antennas based MIMO systems can achieve lower error probability over a single-input

single-output (SISO) system for Rayleigh fading channels under the same energy constraint. We can

represent a general cooperative WSN model by a MIMO interference channel system [59] with M

transmitting nodes and N receiving nodes equipped with a single antenna, as shown in Fig. 2.5. The

input signal vector x = [x1, · · · ,xM]T is transmitted to the FC through the MIMO channel H = CN×M

that can be modeled by the following baseband representation as:

y = HFx+ z (2.23)

where, y = [y1,y2, · · · ,yN ]
T are the received signals at the FC, F = diag{p1,p2, · · · ,pM} is a diagonal

matrix where the diagonal elements are the associated power of each transmitter nodes, and z =

[z1,z2, · · · ,zN ]
T is an additive Gaussian noise vector with zero mean and covariance matrix R. The

cooperative WSN in Fig. 1.1 can be treated as a MIMO multiple access communication system ([41],

ch. 9), where each sender wishes to communicate through the Gaussian vector multiple access channel

(GV-MAC). The Gaussian vector channel reduces to the Gaussian product channel when M = N, as

depicted in Fig. 2.6, and consists of a set of parallel Gaussian channels ([41], ch. 3)

y j = h j, jx j + z j; ∀ j ∈ [1 : N] (2.24)
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where hi, j = 0, i 6= j when the channel are orthogonal, and this is because there is no cross linkage

between sub-channels. The SVD transformation decomposes the MIMO channel into multiple paral-

lel sub-channels. The non-zero singular values of the diagonal matrix represent the number of sub-

channels formed by SVD. The concept of formation of orthogonal parallel independent sub-channels

has been discussed in [60]. The parallel product channel allows node j to communicate with only the

corresponding receiver node j at different frequency bands or time slots, i.e., the parallel channels rep-

resent orthogonal dimensions. The channel is not a broadcast channel, nor a multiple access channel

because each receiver is only interested in the corresponding transmitter. The authors in ([47], ch. 15)

defined the channel as a Gaussian interference channel where each channel interferes with the others

as shown by the dotted lines in Fig. 2.6. In this Gaussian interference channel (each interference

term can be represented by Gaussian random variable), the transmission from the other i 6= j nodes to

the jth node is treated as noise. For non-orthogonal channel (channel where there is a cross linkage

between sub-channels) with symmetric interference, the input-output relation can be expressed as:

y j = h j, jx j +
N

∑
i=1,i 6= j

hi, jxi + z j; ∀ j ∈ [1 : N] (2.25)

where the second part and last part in the right side of (2.25) represents the noise-plus-interference

(NI) level associated with link j.
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2.2.3 Receiver Design with Power Constraint

One of the main challenges for the energy solution of WSN receiver design in underground mines is

the dual optimization of capacity or sum-rate maximization, and how effectively it can estimate the

transmitted symbol which is defined by the MMSE estimation. We discuss the joint MMSE and MSR

constraint receiver by considering a single hop MIMO WSN channel with M transmit and N receive

antennas. A zero-mean uncorrelated transmit signal vector x ∈ CM×1 of unit variance is transmitted

through the MIMO H ∈ CN×M channels with E
{

xxT
}
= I, where E{·} is the mathematical expecta-

tion, and (·)T represents matrix transpose. The received signal vector z∈CN×1 can be expressed using

(2.23) without considering the precoder matrix F as z = Hx+v, where, x = [x1, · · · ,xM]T is the M×1

spatial transmitted vector, H is the N×M channel matrix of entries h j,i, j ∈ [1, · · · ,N], i ∈ [1, · · · ,M],

where the fading coefficients h j,i is a complex Gaussian random variable with zero-mean and unit

variance. The noise vector v = [v1, · · · ,vN ]
T is additive complex white Gaussian with zero-mean and

unit variance. In actual scenarios, any link k is corrupted by interference signals from the other M−1

links, and the received signal zk for link k is expressed according to the Gaussian interference channel

model in (2.25) as:

z j = h j, ja jx j +
M

∑
i=1,i 6= j

h j,iaixi + v j (2.26)

where h j, ja jx j is the desired signal for link j and ∑
M
i=1,i6= j h j,iaixi is the cochannel interference from

the other M− 1 links, and v j is the zero mean additive noise. The signal to interference-plus-noise

ratio (SINR) of link j, γ j, is given by

γ j =
| h j, ja j |2

| ∑M
i=1,i 6= j h j,iai |2 +v j

(2.27)

This model can be easily extended to multi-hop frequency selective channels according to [14]. The

amplifying factor, a j, captures the effect of path-loss, shadowing and frequency non-selective fading

of the jth link by using the AF or the DF cooperative protocol [61], [62]. The generalized feedback

allows the sources to act as relay when it forwards the signal from the previous sender. The fading

channel
{

h j,i
}

between relay nodes and FC are Rayleigh distributed with gain factors g j,i =| h j,i |2.

The optimal estimator seeks to estimate source signals, x̂ =∑
N
i=1 wizi =wT z, where w = [w1, · · · ,wN ]

T

represents the weighting vector of the estimator filter with equal number of transmitting and receiving

antennas, i.e., M = N. The input x and output z are related by the Gaussian conditional probability

density [63]

Pz|x;γ(z|x;γ) = (2π)−N/2exp
[
− 1

2
‖ z− γHx ‖2

]
(2.28)

where ‖ · ‖ represents the Euclidean norm, and γ is the channel SNR. The conditional probability

expresses the reconstruction of input x through the output observation z in the presence of fading

channel H, and the accuracy of the reconstruction is expressed by the estimation error that can be

calculated by solving ‖ z− γHx ‖2. The estimation error based on the observation z is defined by the

MMSE which is a function of γ [64]

MMSE(γ) = E[(x−E{x|z(γ)})2] (2.29)
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We would like to estimate x by a function f (z(γ)) = wT z using the following minimization

min
f (·)

E[(x− f (z(γ)))2] (2.30)

subject to: f (z(γ)) = wT z

The input-output mutual information of channel and MMSE are functions of γ , denoted by I(γ) and

MMSE(γ), respectively, and satisfying the following relationships [64]

d
dγ

I(γ) =
1
2

MMSE(γ) (2.31)

I(γ) =
1
2

∫
γ

0
MMSE(γ)dγ (2.32)

The mutual information between two random variables x and z can be expressed as

I(x;z) = E

[
log2

Pz;γ|x(z;γ|x)
Pz;γ(z;γ)

]
(2.33)

where Pz;γ(z;γ) is the marginal pdf of z. Combining (2.32) and (2.33), we have the joint equivalent

representation of I(γ)−MMSE(γ) [64]

E

[
log2

dPz;γ|x

dPz;γ

]
=

1
2
E

[∫
γ

0
(x− f (z;γ))2dγ

]
(2.34)

The joint formula in (2.34) connects the input-output mutual information and MMSE by estimating the

input as a function of γ . We are looking for the γk value of link k such that it always satisfies γk > γβ ,

where γβ is the minimum threshold value, otherwise the link k will be shutdown from transmission due

to excess noise and interference. This can be confirmed by an optimal water-filling power allocation

to all nodes such that the interference from the other N−1 links is minimized. The goal of the power

allocation is to solve the following optimization problem for joint I-MMSE

min
γ

E[(x− f (z;γ))2] (2.35)

and max
γ

I(x;z,γ) (2.36)

subject to: NaaT = P

γ ≥ γβ

If the CSI is unknown, then the MIMO channel H can be estimated [65] as

H̄ = H+He (2.37)

where H̄ and He denote the mean estimation and estimation error of H. The detection procedure

assumes that H̄ is a perfect estimation corresponding to the true channel, and in closed-loop feedback

solution the channel estimation H̄ is available in both transmitter and receiver which makes perfect

power allocation via water-filling. Here, we use the estimation mean H̄ instead of the real channel H
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in further analysis. The estimation error and mutual information have the following form considering

the quantized feedback channel H̄ [64], [65]

E[‖ (x− x̂) ‖2] = tr[(Σ−1 + γH̄H̄T
)−1H̄] (2.38)

I(x;z) =
1
2

log2det
(

IN + ĴĴT
(FW )−1

)
(2.39)

Using the SVD transform, we have H̄ = UΣVT , where Σ is a square matrix, whose diagonal elements

are composed of non-negative real eigenvalues λi,i, i = 1, · · · ,N, Ĵ = H̄VZ, FW = IN +EJe [JeJT
e |Ĵ],

Je = HeVZ, and the elements of diagonal matrix Z = diag{p1, · · · , pNt} are given by

pi =

(
ω− 1

λ 2
i,i

)+

(2.40)

subject to:
Nt

∑
i=1

pi = P

2.2.4 Single-hop Transceiver Design

We present here the precoder design for a single hop transmission through a MIMO system employing

M transmitters and N receivers for simplicity, and extend the analysis for multi-hop transmission in

the next chapter. The input-output relationship can be expressed as

rd = Hs+n (2.41)

where s ∈ CM×1 is the complex transmit vector, H ∈ CN×M is the complex channel between the source

and destination, r ∈ CN×1 is received signal vector, and n ∈ CN×1 is the independent and identically

distributed (i.i.d.) zero-mean complex Gaussian random vector with variance σ2
n . The point-to-point

communication through the MIMO channel in (2.41) can be modeled as a Gaussian vector channel

[41], and the channel reduces to the Gaussian product channel consisting of a set of parallel Gaussian
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single-input single-output (SISO) channels. The formation and convex optimization of the Gaussian

product channel has been analyzed in Chapter 3 of [41] by considering the product channel as different

frequency bands, or time slots, forming an orthogonal signal dimension.

The Geometric Mean Decomposition (GMD)-based linear transform is used to decompose the MIMO

channel into parallel SISO sub-channels. GMD is basically another form of SVD where the gain of

each sub-channels can be expressed by the geometric mean of channel gains obtained by SVD. For

the channel matrix H, the linear transform of H by SVD is given as H = UΛVH , where U and V are

unitary matrix and Λ is a diagonal matrix with singular values λH,1 ≥ λH,2 ≥ ·· · ≥ λH,K , K = rank(H)

or K = min{M, N}. For GMD, there exists an upper triangular matrix R ∈ RK×K having identical

diagonal elements derived from the SVD by

rii =

( K

∏
k=1

λH,k

)1/K

; 1≤ i≤ K (2.42)

The non-zero singular values formed by the SVD represent the unequal SNRs of the parallel sub-

channels while the GMD gives uniform SNRs on all sub-channels due to the equal gains of all the

sub-channels. In this section, we will present an SVD technique to design a precoder at the transmitter

and an equalizer at the receiver for the formation of independent parallel SISO sub-channels over the

MIMO channel. In most cases, the theory and analysis of the MIMO channel decomposition in the

literature is carried out according to the fundamental work of [66] on SVD or on the GMD-based

MMSE-VBLAST design scheme.

With the precoder scheme in Fig. 2.7, the baseband signal in (2.41) can be written as

rd = HFs+n = Hx+n (2.43)

where F ∈ CM×M is the source precoder matrix, x ∈ CM×1 = Fs is the transmit signal vector after

precoding, and other symbols having the usual meaning of (2.41). The solution of the precoder is

given by SVD as F = VΦ
1/2 where Φ ∈RK×K denotes a diagonal matrix as Φ = diag{φ1,φ2, · · · ,φK}

whose element φi determines the assigned power to the i-th sub-channels, 1 ≤ i ≤ K, and φi is found

via the water-filling process

φi(µ) =

(
µ− α

λ 2
H,i

)+

, 1≤ i≤ K (2.44)

where µ is the water-level, and is chosen such that ∑
K
i=1 φi(µ) = ρα , a+ = max(a,0). We define

α =σ2
n /σ2

x , where ρ = tr
{

FFH}/α is the SNR, E[xxH ] =σ2
x I, I is the identity matrix with dimension

K, and tr
{

FFH} ≤ P, P is the total power constraint. For the nulling matrix of MMSE-VBLAST,

consider the following augmented matrix

Ha =

[
H
√

αIK

]
(K+K)×K

Now, the nulling vector of the i-th layer (Lemma III.2, [66]) is

wi = r−1
Ha,iiqHa,i; i = 1,2, · · · ,K (2.45)
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where
{

qHa,i
}K

i=1 denote the columns of Qu
Ha

and {rHa,ii}
K
i=1 the diagonal elements of matrix RHa . We

obtain Qu
Ha

and RHa through the QR-decomposition of Ha.

2.2.5 Multi-hop WSN Algorithm

WSNs are usually composed of a large number of sensing devices deployed randomly in a certain

areas that can transmit their data to the destination through multi-hop intermediate relays. In tradi-

tional wireless networks such as cellular systems, the system design aims to provide high QoS and

bandwidth efficiency. The power constraint for all the electronic devices in such a network is an issue

but they have easy access to a power supply and exhausted batteries in the handset can be replace or

recharge. On the other hand, power conservation in WSNs is an important issue because the recharg-

ing or replacing of batteries is not a convenient process, especially when WSNs carry non-replaceable

power source and are placed in some remote locations like underground mines. So, the designer

needs to focus on this most important of constraints for WSNs which is the low power consumption

requirements.

The group of nodes in a cluster sends information to the group of sensors in the next cluster like a

multi-hop MIMO relay using repetitive cooperative diversity or STBC cooperative diversity. Nodes in

each cluster relay signals to each other using a MIMO channel either with the AF or DF relay protocol.

A joint linear receiver design and power allocation of a general multi-hop WSN MIMO AF relaying

scheme has been employed in [14] to obtain the best possible QoS at the destination. The proposed

strategy is to jointly design the receivers and power allocation parameters that contain the optimal

complex amplification coefficients for each relay node via an alternating optimization approach. By
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appropriately adjusting the power levels at each terminal between the source, the relays, and the

destinations, significant performance gains can be obtained. Most of the power allocation techniques

for WSN in research is based on the assumption that perfect CSI is available at each terminals. But a

limited research has been carried out recently based on imperfect CSI knowledge due to high channel

fading. The optimum design can improve the system efficiency (i.e., BER or outage probability) at

full CSI information. In the work, two kinds of linear receivers are designed, namely, the MMSE

receiver and the maximum sum-rate (MSR) receiver at individual, local, and global power constraints.

A general L-hop WSN with multiple relay nodes is shown in Fig. 2.8, based on [14]. The WSN

consists of Mt source nodes, Mr destination nodes, and Nl relay nodes, l ∈ [1, · · · ,L]. The source first

broadcasts the Mt × 1 signal vector s to the first N1 relay node, and the first relay node forwards the

received signal to the second relay node N2 using the AF protocol. Each group of relay nodes receives

the noisy signals, and after amplification broadcasts them to the next relay terminal. The source signal

s, after amplification in each relay, reaches the fusion center. The fusion center estimates the source

signal ŝd and it also calculates the amplification coefficient of each relaying stage. The proposed

design is formulated for the following MMSE optimization problem with global power constraint

U(Wd ,a1, · · · ,aL), arg min
Wd ,(al)

L
l=1

E[||s− ŝd ||2] (2.46)

Ps +
L

∑
i=1

Pi ≤ P

where (.)H denotes the complex-conjugate transpose, Ps and Pi are the source and i-th node transmitted

powers, P is the total power constraint, ai is the optimal amplification coefficients of the i-th relay

node, and Wd is the optimum receiver matrix at destination.

2.2.6 Self-organizing Method

Self-organization is used to determine the shortest routing path to minimize processing time and en-

ergy consumption. During the operational period of a network, if any resource changes its action

pattern, then self-organization reallocates resources (such as power, frequency, etc.,) according to

the requirements. Self-organization in wireless sensor networks is a protocol that provides a vari-

ety of functions: sharing processing and communication capacity, forming and maintaining structure,

conserving power, etc., and it may re-configure its function to cope with the environmental changes

without human intervention [67]. The self-organization technique assigns different frequency bands

to each node to avoid interference, and different time-slots for message transmission between nodes

to prevent collision of data packets in the medium of transmission. In the self-organizing protocol,

a node will re-transmit the same message if it has not heard the acknowledgment message from the

receiver. The self-organizing protocol must be designed to provide the solution of the requirements for

a given hardware and software limitations, robust algorithm mechanism and energy-efficient commu-

nication techniques. At the equilibrium state, any node rejects a forwarding rate beyond its maximum

rate or the network shuts down a node if the node forwards more packets than the global maximum
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in the same time. In the forwarding routing scheme, self-organization maintains uniform probability

of transmission among all nodes. In equilibrium power assignment, no user can attain a higher rate

by changing its power allocation strategy and the communication rates do not depend on initial power

allocation [68]. Hence, the resource allocation in any node by the self-organizing protocol should

follow the Nash equilibrium.

The channel characteristics in underground mines is harsh and the transmission is not the same as in

free space propagation. The self-organizing method allows the transmitter to be active when com-

munication is needed and turned off in case of deep fading to make the WSN as energy efficient

as possible [69]. Communication is possible if the signal-to-noise (SNR) ratio of the corresponding

channel is higher than a threshold SNR, i.e., SNR jk ≥ SNRβ , else the channel is turned off and no

symbol transmission takes place through the channel. The self-organizing technique increases trans-

mission power by n1∆p0 to make the channel active by satisfying SNR jk ≥ SNRβ , where ∆p0 is the

step of power increment and n1 is the number of iterated enhancement. The transmitted power en-

hancement by a factor n1∆p0 consumes more energy stored in batteries of the WSN, and this decreases

the life-time of the WSN.

2.2.7 Functional Implementation

When two or more nodes transmit data through the same channel, some part of their signals may over-

lap which can increase the probability of collisions, and decrease the reliability of data transmission.

Therefore, the transmitter must resend the same message until it securely reaches the receiver. This

may increase the power budget and time consumption. The radio transmission from other nodes in

another sub-group or other radio technology that use the same frequency band may cause interfer-

ences, and the signal may be lost. The transmitted signal can be lost in the medium due to fading

which prevents a transmitted packet to reach a receiver or the signal may be reflected from a close

object which causes interferences. As a result, no message is transmitted from a transmitter node to a

receiver node. The echo of the signal from any close obstacle causes distortion of the received signal.

The multipath fading on the sensor network signal transmission greatly depends on the position and

the nature of the objects in the operational environment [70]. So, in terms of noise and interference,

one of the challenges of sensor network deployment is the choice of the location of nodes such that

nodes are less affected by noise and interferences.

On the other hand, the operational environmental characteristics vary in time, known as time-varying

channel, and after adjusting the transmission parameters, the sensor nodes may also lose data symbols

at any time due to the time-varying nature of the channel. As a result, the sensor network requires

a large amount of power to make a successful data transmission. Therefore, the self-organization

technique needs to adapt to the instantaneous change of fading characteristics to continue the packet

transmission over a time-varying channel. Hardware failure is one of the other challenges, because if

a node fails to forward a message from the other nodes, then the topology of the network is required to

change, which may cause a delay in operation and signal processing consumes extra energy. Hence,
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the challenge of the self-organization protocol is to implement and design the self-configuration topol-

ogy mechanism to change the routing algorithm of the network. Sensor networks need to maintain

adequate quality of service (QoS) which is another challenging issue for the deployment of sensor

nodes in fading environment due to resource constraints such as data processing, channel assignment,

and power allocation in the channel. Frequency selection is an important factor for the QoS enhance-

ment to protect the transmitter node from any form of interferences [71]. From the above discussion,

the operation of a sensor network requires consumption of energy, but the energy source of the sensor

node is limited, and the minimization of the power consumption is the main concern in all recent

researches.

2.2.8 Routing Issue

A WSN consumes energy for local measurements and a major part of the energy is consumed for the

reliable transmission through a number of relay nodes in multihop communication. WSN designers

have to address the issue for suitable energy efficient routing techniques. Also, there is a constraint of

the routing which is the capability of changing the topology during communication link failures. WSN

designers have to face various routing challenges such as energy efficient routing, topology changing

capability with the environment, and processing capability for each routing path. The routing problem

in WSNs is represented by a graph G = (V, E), where V is the set of all nodes, and E is the set of uni-

directional or bi-directional communication channels connecting the nodes in the graph [72]. Here,

the challenge in the routing problem is finding the minimum cost path from the starting source vertex

to all destination vertices. The minimum cost function can be found by using optimization for the

available graph edges which is actually a spanning tree T = (V, E) that includes the source (i.e., a root

node) and destinations (i.e., leaf nodes). The traditional energy optimized routing is shown in Fig.

2.9(a) where the spanning tree routing exchanges the same information through all connected nodes

[73]. In this case, information from node A is transmitted to the destination through two branches. As

a result, it takes more energy to forward a message to the destination. The total cost of the routing

is associated with the cost of individual routing nodes. On the other hand, machine learning based

routing in Fig. 2.9(b) requires only neighboring nodes information that is used to predict the full path

quality of service [74]. This optimization is based on the fact that each node independently performs

optimal routing with lower computational complexity. Let us consider a WSN having M nodes, the

searched path j∗ having lowest energy cost J(i) with weight vector w(t), is defined as [74]:

j∗ = argmin
j
| x j(t)−w j(t) |2, j ∈ [1, · · · ,M] (2.47)

where x(t) is the input signal. The neighbor nodes updating weight vector to find their optimized path

is given by

w j(t +1) = w j(t)+g(t)(x j(t)−w j(t)) (2.48)
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Figure 2.9 – Routing algorithm; a) Traditional routing, b) Optimum routing using single-hop commu-
nication.

where w j(t) is the value of the weight vector of the jth node at time index t, and g(t) is a Gaussian

neighborhood function of the form

g(t) =
1√

2πσ
exp
(
− || j

∗− j||2

2σ2(t)

)
(2.49)

The network searching algorithm saves energy by reducing network traffic. In the case of dense

geographical areas where each node sends messages to the neighbor nodes with the highest probability

of success, the network first sends a local signal to all connected neighbor relay nodes and estimate the

shortest energy path. If the shortest path is affected by large additive Gaussian noise or interferences,

then the protocol searches for the alternative path having less noise or interferences. In contrast

to point to point communication, sensor networks need to forward the received data from multiple

neighbor nodes along with its own sensed signal to the central processor and for this, they require

careful resource management in terms of energy, processing, and storage capacities. Before the design

of the routing protocol, one must overcome many challenging factors such as node deployment, energy

consumption, scalability, and network dynamics. Hierarchical or cluster-based routing are used to

perform energy-efficient routing for WSNs in which higher energy nodes can be used to process

information by clustering geographical areas. This routing is basically a two-layer routing where first

a single layer is used to select clusterheads and the other is used for routing, information processing,

and channel allocating. A self-organizing protocol can be used to support heterogeneous sensors to

forward the data through a set of nodes that also act as routers for the communication backbone.
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This protocol also uses multiple path capabilities to enhance the network performance by assigning

alternative available channels. The protocol periodically sends a message to the receiver to predict

the best path for calculating the link that gives the highest signal strength. The switching from one

path to the highest energy one is selected according to an algorithm that allows the primary path until

its energy falls below a prescribed level. In traditional mobile network communication systems, the

transmitter sends a test message to the receiver through different paths, and examine the route having

lowest energy cost. In [75], a multipath routing algorithm is used to increase the network capability

for delivering data through unreliable environments.

The optimal path in best routing algorithm are chosen by finding a path requiring less energy to send a

message from source to destination compared to other available paths. In cluster based routing where

nodes are grouped under a cluster, routing is implemented by defining a cost function between any

two users in terms of energy consumption, delay optimization, and other related parameters.

2.2.9 Energy Conserving Technique

A WSN node has to perform three main tasks: sensing, data processing, and communication. Among

them, communication consumes the major portion of the total energy, and it may also depend on

the type of sensing. The recharging of the battery may be impossible in some cases because nodes

are deployed usually in a hostile or remote location. So, the life-time of the network is directly

associated with the energy consumption of the network nodes. In some cases, energy is added from

the external sources by using solar cells but external sources may exhibit discontinuous behavior

which can affect the system performance. Energy consumption is taken into account by using efficient

protocols during network activities based on the concept of switching off the components that are not

needed in transmission [76]. A power management software is used to disconnect inactive components

from the network when they are in sleeping mode. A node wakes up only when another node sends

a network connection request; an alternative solution is that each node may remain active for a short

time interval to accept connection requests from the neighbor nodes.

Collision avoidance schemes have been used recently to implement energy efficient transmission for

Medium Access Control (MAC) protocols. MAC is an important technique that has been developed

for wireless voice and data communication to enable the successful operation of the network. In the

MAC protocol, the transmitter repeats the same message until it receive an acknowledgment (ACK)

message from the receiver. The repetition of the same message consumes more energy in the network.

The MAC protocol avoids collisions by allocating different time slot for each transmitter so that they

can transmit at different time known as time division multiple access (TDMA) or it may assign dif-

ferent orthogonal codes to each source signals known as code division multiple access (CDMA).

Alternatively, interference and additive Gaussian noise in the channel may corrupt the message, and

the transmitter needs to resend the same signal until receiving an ACK confirmation from the receiver.

In recent researches, MAC protocols are designed to reduce energy consumption by supporting scal-

ability and collision avoidance. For example, the authors in [76] have developed a MAC protocol for
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Figure 2.10 – Sensor node spectrum sharing configuration in two modes of operation.

energy reduction by using three novel techniques depending on the free space energy cost calculation

given in [56], [57], [58] for sending information between nodes based on the instantaneous channel

gain.

2.3 Power Control Policy

The water-filling energy minimization problem of wireless transmission is addressed in this section for

a single transmitter and multiple receiver sensor network in a fading environment under total transmit

power constraint.

2.3.1 Single Sensor Node Transmission

In this section, we discuss the optimum power calculation procedure of each transmitting node by

considering a simplified network that consists of one primary link and one secondary link as shown

in Fig. 2.10(a). The secondary link transmitter (SU-TX) communicates with the secondary link

receiver (SU-RX) with interferences only to the primary link receiver (PU-RX). The channel power

gains for the primary link, secondary link, and the link from SU-TX to PU-RX are denoted by hp,p,

hs,s, and hs,p, respectively. We denote SU-TX to PU-RX and SU-TX to SU-RX channel gains as

γp =| hs,p |2 and γs =| hs,s |2, respectively. All the channel gains are assumed to be independent and

identically distributed (i.i.d.) random variables (RVs) with probability density functions (pdf) denoted

by f (γp) and f (γs). The additive noise at each receiver is assumed to be a Gaussian RV with zero

mean and variance N0. We consider that each secondary and primary link gains follow a Rayleigh

distribution, i.e., f (γs) = e−γs or f (γp) = e−γp , for γp,γs ≥ 0 according to [III-B, [38]]. Our goal is

to limit the transmission power P by an average power constraint E[P(γs)] ≤ Pavg or a peak power

constraint P(γs) ≤ Ppeak, where Pavg and Ppeak are the average power and peak power budget. The
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optimization of the power solution with channel gain γs is denoted with interference limit Pavg at the

primary receiver as follows [38]:

min
P(γs)

E

[
P(γs)

]
≤ Pavg (2.50)

subject to: R(γs)≥ Rmin

where Rmin is the minimum transmission rate requirement for the fading gain γs. The transmission

rate for the allocated power P(γs) over the channel with gain γs, can expressed by [77]

R(γs) = log2

(
1+P(γs)γs

)
bps/Hz (2.51)

The minimum power requirement for the instantaneous transmission rate, R(γs) is given by [77]

P(γs) =
1
γs

[
e1+W ( γsPc−1

e )−1
]

(2.52)

where W (.) is the main branch of the Lambert W function over the [−1/e,∞] region. The Lambert

W function W (x) is the solution of the equation x =W (x)eW (x) [78]. Equation (2.52) is a function of

the channel gain γs, and we assume that all the instantaneous channel gains in the primary link and

secondary link are known to the receiver. The Lagrangian solution of (2.50) is obtained by defining

[79]

L(P(γs),λ ,µ) = E{log2(1+ γsP(γs))}−λ (E{P(γs)}−Pavg)+µPout (2.53)

where Pout is the tolerable transmission outage probability of the fading channel, λ is the Lagrange

multiplier, and µ is the water level. The outage probability is the probability that the instantaneous

rate R(γs) is less than a given rate R, i.e., Pout = Pr {R(γs)< R}, and we have the following outage

probability for the secondary fading channel [80]

Pout(R,γs) = Pr
{

log2(1+P(γs) | hs,s |2)< R
}

(2.54)

The outage probability defines the outage event when a missed detection has happened in the presence

of the target, and in this case none of the message can be detected at the FC with the total allocated

power P(γs) [81]. Hence, the power allocation solution should be formulated for minimizing both

outage probability and sum power requirement while satisfying R(γs)≥ Rmin. The closed-form outage

probability solution is difficult for the MIMO case, so we show the system design for the single-input

multiple-output (SIMO) case. The sub-problem in (2.53) has the following solution for a particular

fading state

min
P(γs)≥0

log2(1+ γsP(γs))−λP(γs) (2.55)

The solution of (2.55) is a concave function, and it can be expressed by the following definition as

f (P(γs)) = log2(1+ γsP(γs))−λP(γs) (2.56)
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The concave function f (P(γs)) attains its maximum value when the solution has a global minimum.

Now, differentiating the Lagrangian with respect to P(γs) to obtain the solution for P(γs) [77]

P(γs) =

[
1

λ ln2
− 1

γs

]+
=

λ́ − 1
γs
, if λ́ > 1

γs

0, otherwise
(2.57)

where λ́ = 1
λ ln2 . It is shown that transmission occurs through a channel only when 1

λ
> 1

γs
, which is

known as the water-filling solution. We can write the closed-form solution by considering µ = 1
λ ln2 ,

and (2.57) having the form

P(γs) =

[
1

G−1(Rmin)
− 1

γs

]+
(2.58)

where, G(x) = E1(x) =
∫

∞

1
e−xt

t dt is a first order monotonic exponential decreasing function. The

secondary link transmitter SU-TX produces interference for the primary receiver PU-RX and the

interference constraint is given by [79] Pr
{

P(γs)γp ≥ Qpeak
}
≤ ε , if P(γs)≤ P(γp), where Qpeak is the

interference limit and P(γp) =
Qpeak

F−1
γp (1−ε)

and F−1
γp

is the inverse of the cumulative distribution function

of γp. Our goal is for the secondary power P(γs)≤ P(γp) with Rmin > G(P(γp))
−1 and in this case the

optimization power profile can be expressed in the following form

P(γs) = max
([

1
G−1(Rmin)

− 1
γs

]+
, P(γp)

)
(2.59)

2.3.2 Multiple Receiver Power Allocation

We consider a secondary transmitter, SU-TX, communicating with multiple secondary receivers SU-

RX (SU-RX1, · · · ,SU-RXN) by broadcasting a message through channel h = [hs,1, · · · ,hs,N ]
T , as in

Fig. 2.10(b). It is also assumed that the transmitter SU-TX is aware of the NI (I = [Is,1, · · · , Is,N ])

level of each SU-RXN terminal that is caused by the interference from neighbor SU-TX transmitters.

The self-organizing method assigns a frequency to each receiver node to mitigate the interference

caused by the nearby transmitter. In a time-varying fading environment, each channel is corrupted by

noise and interferences, and in this case γs,i = 0 if SNRi ≤ βi; i ∈ [1, · · · ,N], where βi is the threshold

level of the ith channel. The signal received by each secondary receiver (SU-RX) from the secondary

transmitter (SU-TX) is given by ys,i = hs,ix+ zs,i where x is the input signal to channel hs,i, and zs,i is

the zero-mean additive white Gaussian noise with spectral density N0. The goal of the solution is to

minimize the power P(γs,i) = Pavg,∀i ∈ {1, · · · ,N} ,γs,i ∈ {γs,1, · · · ,γs,N}, where γs,i =| hs,i |2, by the

following optimization

min
P(γs)

E

[
P(γs,i)

]
≤ Pavg (2.60)

subject to:
N

∑
i=1

log2(1+ γs,iP(γs,i))≥ Rmin
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N

∑
i=1

P(γs,i)≤ PT

where P(γs,i)> P(γp) and Rmin > G(P(γp))
−1. The optimized solution for reallocating power to each

channel i ∈ {1, · · · ,N} can be solved by the following Lagrangian [38]

P(γs,i) = max
i∈{1,··· , N}

([
1

G−1(Rmin)
− 1

γs,i

]+
,P(γp)

)
(2.61)

where P(γp) = Qpeak/F−1
γp

(1− ε) over the (−∞,x) region.

2.3.3 Performance Comparison

We consider the 1×N SIMO sensor network as in Fig. 2.10. The outage probability Pout, i of the ith

message from the SU-TX node through the channel hs,i is given by [81]

Pout, i = 1− exp
(
− 1

PiGi

)
(2.62)

Pout, total =
N

∏
i=1

Pout,i (2.63)

where Gi =
gi

2Ri−1 , gi =| hs,i |2 and Pout, total is the system-level outage event. The goal of the power

allocation Pi ≤ P is to minimize the outage probability (Pout, i) for the ith link through the following

optimization

min
Pi

N

∑
i=1
F(Pout, i) (2.64)

subject to :
N

∑
i=1

Pi ≤ P

F(Pout, i) = ln
[

1− exp
(
− 1

PiGi

)]

Pi =

PT
Gi

∑
k0
j=1

1
G j

, 1≤ j ≤ k0

where k0 ∈ {1, · · · ,N} is the number of non-zero power channels, i.e., Pi = A, for 1 ≤ i ≤ k0, and

Pi = 0 for k0 ≤ i ≤ N. The optimization for the minimum outage probability in (2.62) can be solved

by the following Lagrangian

L(λ ,P1, · · · ,Pk0) = ∑
i∈k0

ln
[

1− exp
(
− 1

PiGi

)]
+λ

(
∑
i∈k0

Pi−Pt

)
(2.65)

Differentiating the Lagrangian with respect to Pk gives the power solution as

P∗i =

(
1

λG2
i

)1/3

(2.66)
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where, P∗i is the power-allocation for ith channel by water-filling with the minimization of the out-

age probability (Pout, total) for all link. Similarly, for the target outage probability, we formulate the

following power budget

min
Pi

N

∑
i=1

Pi ≤ P (2.67)

subject to : ln(Pout, total) =
N

∑
i=1

ln(Pout, i)
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Chapter 3

Power Optimization Techniques for
WSNs in Underground Mines

Authors in [36] considered that the transmission loss should take into account the EM wave penetration

through soil and rock, but in this work we focus on the loss calculations based on fading in the

wireless medium. Power conservation is one of the main design objective of WSN implementation

to increase the network life-time which can be achieved by designing power-efficient devices and

communication protocols. Attenuation is proportional to the distance of transmission and more power

is required to transmit higher data rates over long distances. On the other hand, extreme path-loss,

reflection/refraction, multi-path fading, and noise are the main factors for the EM propagation in the

underground environment. Comprehensive energy efficient communication protocols are required

for data transmission among sensor nodes with minimum transmission rate and energy constraint.

We will focus on the cost optimization based on the free space model [56], [57], [58] where the

optimization solution is found under the assumption of finding a path that will be affected by less

noise and interferences, and we like to find the path using the best relaying scheme. Based on the

analytical problem investigated in Chapter 2, we will develop convex mathematical tools to achieve

the solutions for the MMSE receiver design.

3.1 System Model

As shown in Figure 3.1 based on [54], the architecture of a WSN for monitoring the environment

in underground mines consists of three type of nodes: sensor nodes, routing nodes, and sink nodes.

The multiple sensor nodes (Waspmotes) communicate with the routing node or gateway (Meshlium)

through a WSN network platform mainly to gather and forward data among different sensor nodes

[53]. The sink node is deployed usually near the earth surface and is connected with multiple routing

nodes to transmit data to a BS through an optical fiber backbone network. The sensor node uses the

short range XBee-802.15.4 communication standard to communicate between other sensor nodes and

the router depending on the transmit power and distance. In this figure, sensor node S1 is connected
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Figure 3.1 – Multi-WSN connection architecture for underground mines.

with router 1 through sensor node S2, and router 1 transmits the information of S1 to the monitoring

center (MC) through the BS. If the noise of the wireless link between nodes S1 and S2 becomes high

and the EM link is disconnected, then S1 may establish an EM connection with the other sensor nodes

using router 1 or it may connect with router 2. Router 2 may transmit the data of node S1 directly to a

nearby BS or via router 1 or router 3 depending on the distance and noise level of the EM link. In this

way, every sensor nodes can communicate with multiple sensor nodes directly or via another routing

node. If any primary link (i.e., link with nearest neighbors) is broken, communication can still go on

by switching to another sensor node or routing node to ensure robustness of WSN communication.

The sensor nodes are grouped into a cluster [82], where each node consists of a single antenna, and

each cluster is connected with a particular data gathering node (DGN) equipped with multiple anten-

nas. The routing node (DGN in this case) consists of Mr DGN receiving antennas. We start with the

equivalent representation of Fig. 3.1 by an L-user cluster set, where each cluster consists of Mt data

collecting nodes (DCN) equipped with a single antenna.

Each cluster sends data to the FC through DGN nodes equipped with Mr antenna, where each cluster

is connected with each DGN terminal through virtual MIMO links. For long distances between cluster

and FC, multi-cluster relays can be implemented. The DGN relays signal using either wire connected

link (i.e., optical fiber) or using M-quadrature amplitude modulation (M-QAM) to the FC via time-

division multiple access (TDMA). The high-end DGN node is less energy constraint in this work.

Each node in any cluster first broadcast its information to all other local nodes at different time slots,

and they encode all the symbols received from other nodes according to an Alamouti diversity code

so that they will transmit sequences in an Alamouti MIMO system [83]. Every cluster-to-cluster link
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Figure 3.2 – Multi-hop cooperative WSN communication architecture, each node in any relay operated
cooperatively under a router to form cluster based cooperative network.

is defined as a cooperative distributed MIMO channel. Transmit diversity is exploited within every

cluster-to-cluster hop through a time-division, decode-and-forward, relaying scheme based on two

consecutive time slots: the first time slot is known as intracluster slot and is used for data sharing

among local cluster nodes, and the second slot is known as the intercluster slot, and is used for data

transmission between clusters through a MIMO channel. A TDMA based MAC is used for a group

of nodes in a particular cluster by a DGN receiver to connect with it, and the gateway (DGN in this

case) will treat the signal from the cluster (remains active) as the desired signal and the signals from

other inactive clusters as interference [73]. According to [39], most of the communication takes place

through the air, and we consider all the channels in the above network as Rayleigh fading channels.

3.2 Signal Analysis and Problem Statement

We start with the equivalent representation of Fig. 3.1 by considering L relays as in Fig. 3.2 with

two parallel terminals each equipped (for notational simplicity) with Nl, l ∈ [1, · · · ,L] sensor nodes

having a single antenna in each. Similarly, the source and destination have Mt and Mr nodes, re-

spectively, each with a single antenna. We consider the non-regenerative AF relay protocol in which

the received signal is received and then forwarded to the next relay terminal or final destination. Let

us assume that all channel matrices are independent and identically distributed complex Gaussian,

i.e., Hs, j ∼ CN (0,σ2
s I), j ∈ [1,2] denote the N1×Mt channel matrices between the source nodes and

j-th terminal in the first relay nodes and CN (0,1) denotes the complex Gaussian distribution with

mean 0 and variance 1, Hl, j,i ∼ CN (0,σ2
l I), i ∈ [1,2] denote the Nl ×Nl−1 channel matrices between

the j-th terminal in the l-th relay and the i-th terminal of the previous (l− 1)-th relay nodes, and

Hd, j ∼ CN (0,σ2
d I) denote the Mr×NL channel matrices between the destination nodes and the j-th
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terminal of L-th relay as given by

Hs, j =


hs, j,1

...

hs, j,N1

 , Hl, j,i =


hl, j,1

...

hl, j,Nl

 , Hd, j =


hd, j,1

...

hd, j,Mr


where hs, j,r = [hs, j,1, · · · , hs, j,Mt ], r ∈ [1, · · · , N1], hd, j,r = [hd, j,1, · · · , hd, j,NL ], r ∈ [1, · · · , Mr], and

hl, j,r = [hl, j,1, · · · , hl, j,Nl−1 ], r ∈ [1, · · · ,Nl].

Let us consider that the signal from the source nodes to the destination nodes are transmitted through

the following phases using AF relaying as:

Phase 1: Received signal at j-th terminal of 1st relay, j ∈ [1,2]

r j,1 = Hs, jFss+ns, j (3.1)

Phase l: {l = 2,3,4, · · · ,L}

r j,l = Hl, j,1F1,l−1r1,l−1 +Hl, j,2F2,l−1r2,l−1 +n j,l (3.2)

Finally, at the destination, the received signal is given with l = L by

rd = Hd,1F1,Lr1,L +Hd,2F2,Lr2,L +nd (3.3)

where ns, j, n j,l , and nd are zero-mean complex additive white Gaussian noise (AWGN) vectors of the

corresponding links, Fs ∈ CMt×Nb is the precoder matrix at the source nodes, and F j,l−1 ∈ CNl−1×Nb

is the precoder matrix at the j-th terminal of the (l − 1)-th relay nodes. The precoder matrix Fs

generates the transmitted signal x by the multiplication x = Fss where s ∈ CNb×1 is the source signal

vector. At the destination nodes, the equalizer matrix estimates the desire signal s by the matrix vector

multiplication ŝd = Wdrd where rd is the received signal at the destination nodes from the L-th relay

nodes and Wd ∈ CNb×Mr is the MMSE receiver matrix. Each node in any relay terminal has access to

its local measurement and received signal from its immediate neighbors. The optimization problem

of the above system can be given subject to local and global power constraints under perfect channel

knowledge as

U(Wd ,Fs,Fi,l), arg min
Wd ,(Fs,(Fi,l)

L
l=1)

E[||s− ŝd ||2] (3.4)

subject to: tr
{

FsFH
s
}
≤ Ps

tr
{

Fi,lFH
i,l(Hl, j,iFi,l−1FH

i,l−1HH
l, j,i + INl )

}
≤ Pi,l

Ps +∑
i,l

Pi,l ≤ P

where Ps is the source power constraint, Pi,l is the limited power constraint in the i-th terminal of the

l-th relay, and P is the total power constraint. The cost function at the destination node depends on
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Figure 3.3 – Block diagram of single-way parallel multi-hop MIMO with selection relaying, a) best
relaying path; b) equivalent signal transmission.

the joint strategy of the precoder matrices, i.e., Fs and Fi,l , and the receiver detection matrix Wd that

can be expressed as

E[‖ s−WH
d rd ‖2] = E[‖ s− ŝd ‖2],U(Wd ,Fs,Fi,l) (3.5)

The receiver design problem in (3.4) is non-convex in the joint optimization perspective but convex

with respect to each Fi,l and Wi,l of individual relays, and is difficult to solve [84]. A non-convex

optimization problem is any problem where the objective or any of the constraints are non-convex,

and a convex optimization problem is a problem where all of the constraints are convex functions.

Unfortunately, due to the non-convex MSE problem formulation for the matrix value of the optimum

precoder and the MMSE receiver solution, it is hard to carry out this solution in our case. Channel

diagonalizing [28] simplifies the MIMO receiver to a simple scalar form, and thereafter the design

problem can be formulated for the optimum solution by using powerful convex optimization tools. In

this work, we will represent the nonconvex problem in a convex form with scalar variables that can be

solved optimally using powerful nonconvex to convex transformation using majorization theory (see

[28] for a complete reference on majorization theory), and then solved it by using the water-filling

algorithm.

3.3 Optimization and Design Algorithms: Perfect CSI Case

The multiantenna parallel relay network as in Fig. 3.2 consists of Mt source nodes and Mr destination

nodes equipped with a single antenna, and L parallel half-duplex relays equipped with Nl, l ∈ [1, · · · ,L]
relay nodes, each having a single antenna. We assume that due to the high path-loss, signals from the

source node are transmitted to the destination through L relay nodes, i.e., no direct link between

transmitter and receiver. The MMSE detector matrix at the receiver leads to minimizing the MSE
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between the actually transmitted symbol and the output of its detector [85]. For half-duplex AF

relaying, all relays attempt to receive the incoming signal in phase 1 and forwards to next relay in

phase 2. Since AF relaying retransmits the signal in each relay phase, reliable communication should

be guaranteed with QoS requirements as discussed in [20]. For perfect regeneration of the source

symbol s at the destination terminal, there should be Mt ≤ min{N1, · · · ,NL} antennas which is also

true for classical multi-hop MIMO channels [18]. The noise and fading of each stage propagate to the

destination but it can be made small using filtering in each stage so that it is negligible in the outage

calculation. The input-output relationship at each stage of source-relay-destination is presented in

(3.1) to (3.3) using the non-regenerative AF protocol. We use selection relaying that forwards only

the signal from the path having the highest channel gain or instantaneous SNR.

3.3.1 Simplification Technique by Best Relaying

The minimization of the objective function in (3.4) now depends mainly on all the relay precoder

matrices at the power constraint, and a centralized processing is required to compute the water-filling

power allocation in each relay which may lead to high computational complexity. To overcome this

difficulty, we use the decomposition of the MSE matrix at the destination node into a sum of MSE

matrices at all relay nodes, similar to [18] in which the relay precoder matrix and MMSE matrix

optimization is carried out locally. The solution of such a complex problem can be found by diagonal

relaying as in Fig. 3.3. The first attempt at the source node involves sending source signal s to both

terminals in the first relay. In the second stage, each terminal sends the estimated signal ŝ j,1 to the

next relay according to the AF protocol. In this way, in the last stage, the destination estimates the

target signal ŝd by solving (3.3). Each relay terminal decode the received signal in the first time slot

and after regeneration, it is reencoded and forwarded in the second time slot. We represent the block

diagonal precoder matrix timing for the l-th relay as:

t1 t2 t3 t4
F(1)

l,1 0 0 0
0 F(2)

l,1 0 0
0 0 F(1)

l,2 0
0 0 0 F(2)

l,2


At time t1, the 1-st terminal of the (l + 1)-th relay receives a signal only from the 1-st terminal of

the l-th relay, and at time t2, the 2-nd terminal of the (l + 1)-th relay receives a signal from the 1-st

terminal of the l-th relay. Similarly, at times t3 and t4, the first and second terminals of the (l +1)-th

relay receive information from the second terminal of the l-th relay. The received signal for the l+1-th

relay can be written as
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r(1)1,l+1

r(1)2,l+1

r(2)1,l+1

r(2)2,l+1

=


Hl+1,1,1 0 0 0

0 Hl+1,2,1 0 0
0 0 Hl+1,1,2 0
0 0 0 Hl+1,2,2




F(1)
l,1 0 0 0
0 F(2)

l,1 0 0
0 0 F(1)

l,2 0
0 0 0 F(2)

l,2




r1,l

r1,l

r2,l

r2,l



+


n(1)

1,l+1

n(2)
1,l+1

n(1)
2,l+1

n(2)
2,l+1


(3.6)

where F(i)
l, j, i ∈ [1,2] is the relay amplifiter and its optimal design will be given in the next section. We

use the best-relay selection scheme [27], so that the relay terminal forwards the signal corresponding

to the channel having higher channel gain compared to the rest of the channels. The selection relaying

makes decision to find the best path having the highest SNR compared to other possible link between

the source-relay and relay-destination link pairs. The relay in the best path is known as best relay

which can perfectly forward the decoded messages to the destination [86]. The works in [87], [88]

provided details on optimal selection relay power implementations and showed that it improved the

system performance. But the procedure for finding the set of optimum relay in our case becomes

very complex for a large number of relay terminals. Using best-relaying, the j-th terminal of relay

l + 1 selects r(1)j,l+1, i.e., r j,l+1 = r(1)j,l+1 if ||Hl+1, j,1||F ≥ ||Hl+1, j,2||F else r j,l+1 = r(2)j,l+1, where ||.||F
is the Frobenious norm. We will simplify the parallel multi-relay network by invoking the technique

described in [86]. Let path l = 1 represents the source to first relay terminal, and l = 2, · · · ,L represent

the relay-to-relay links, and l = L + 1 represent the last relay to destination link. The best relay

maximizes the mutual information at each relay terminal by finding the best channel from the two

previous relay terminals. For example, at the destination node in Fig. 3.3(a), path d will be selected

when ||Hd,1||F ≥ ||Hd,2||F . Similarly, in one case, we identify the link a− b− c− d as the best path

for the equivalent link. We use reactive relaying [86], where the set of relay in the best path is referred

as active and the set of other relays is referred as inactive. The inactive relays may remain switched

off for the power saving mode.

Our main idea is to decompose the error optimization problem in (3.4) in a joint nested minimization

as [89]

min
F1,(Fl)

L+1
l=2

[
min
Rbest

Ud

(
F1,(Fl)

L+1
l=2 ,Rbest

)]
(3.7)

subject to: Rbest > 0

tr
{

F1FH
1
}
≤ P1

tr
{

Fl(HlFl−1FH
l−1HH

l )F
H
l
}
≤ Pl, l = 2, · · · ,L+1

P1 +∑
l

Pl ≤ PT
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where Pt = P/2. We will solve (3.7) for the parallel relay network in two steps. In the first step, we

will find the best path Rbest that gives the best SNR at the destination which alternatively minimizes

the sum of MSE errors. In the second step, we jointly design the non-iterative source precoder, the

relay precoders and the destination MMSE filter for the equivalent series source-relay-destination link

at local and global power constraint with perfect channel knowledge at all nodes. In this work, we

will find the set of optimum relays by searching the best path, Rbest, which corresponds to the path that

gives the maximum value of the square root of the mean of the gain of all possible pairs of channel

links. We will find the best path from all the possible hidden combinations by a recursive search

method.

The received signal at the l-th relay for the equivalent representation in Fig. 3.3(b) using (3.6) is given

by

r2 = H1F1s+n1, rl = Hl−1Fl−1rl−1 + n̄l, l = 3, · · · , L+1 (3.8)

where n̄l is the Nl×1 noise vector respectively, given by for l = 3, · · · , L+1

n̄l =
l−1

∑
j=2

( j⊗
i=l−1

(HiFi)n j−1

)
+nl−1 (3.9)

with n̄1 = n1, where
⊗1

l=L+1 Xl denotes XL+1×·· ·×X1. The received signal at the l-th relay can be

broadly expressed as

rl = Al−1s+ n̄l, l = 3, · · · ,L+1 (3.10)

where Al is the Nl+1×Nb equivalent channel matrix given by

Al = HlFl · · ·H1F1 =
1⊗

i=l

HiFi, l = 2, · · · ,L (3.11)

The covariance matrix of n̄l , Cl = E[n̄ln̄H
l ], l = 2, · · · ,L+1 is given by using (3.9)

C1 = IN2

Cl =
l

∑
j=2

( j⊗
i=l

(HiFi)
l⊗

i= j

(FH
i HH

i )

)
+ INl+1 , l = 2, · · · ,L+1 (3.12)

with INL+2 = IMr . If the MSE matrix at the destination node is equal to the sum of MSE matrices at all

relay nodes, then we can write the MSE matrix Ed for the MMSE receiver matrix Wd as [18]

Ed {Fl}L+1
l=1 =

[
INb +AH

L+1C−1
L+1AL+1

]−1

(3.13)

Using (3.11) and (3.12) in (3.13), we have

Ed {Fl}L+1
l=1 =

[
INb +

L+1⊗
i=1

(FH
i HH

i )

(L+1

∑
j=2

(
j⊗

i=L+1

(HiFi)
L+1⊗
i= j

(FH
i HH

i ))+ INl

)−1 1⊗
i=L+1

(HiFi)

]−1

(3.14)
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where AL+1 is the global channel at destination and can be obtained from (3.11), and CL+1 is the

covariance matrix of n̄L+1 defined as

CL+1 =
L+1

∑
j=2

( j⊗
i=L+1

(HiFi)
L+1⊗
i= j

(FH
i HH

i )

)
+ IMr (3.15)

By introducing Nb×Nl matrices Wl and Nl×Nb matrices Bl , we express the optimal relay amplifying

filter as [90]

F1 = B1,Fl = BlWl, l = 2, · · · ,L+1 (3.16)

where Wl and Bl stand for the l-th relay receiver and precoder filters. The error matrix in (3.14) can

be decomposed into L+1 individual matrices as

Ed {BL+1}=
(

INb +H1B1BH
1 HH

1

)−1

+
L+1

∑
l=2

(
R−1

l−1 +HlBlBH
l HH

l

)−1

(3.17)

Proof: See Appendix B

We will optimize the first term of (3.17) in the first step corresponding to the source precoder using

the general precoder design as described in [66], and we will minimize the sum of the MSE terms in

the second term through designing the relay precoder Bl for the rest of the relay terminals.

Each of the possible MIMO links from source to destination of the network in Fig. 3.1 provides an

individual MSE error matrix as given in (3.17). The goal of the simplification is to find the opti-

mum path that gives the minimum MSE error compared to all other possible paths. We will start by

considering any random multi-hop MIMO link.

Taking eigenvalue decomposition (EVD) of HlHH
l as Hl = UlΣlUH

l , where Ul ∈ CNl×Nl represents

a unitary matrix and Σl is a K × K diagonal matrix of elements λl,1 ≥ , · · · , ≥ λl,K , K = Nb =

min{Nl,Nl−1}. Then, in the same manner as in [19], we can write the optimal structure of B1 and Bl

for the Schor-convex optimization as

B1 = U1,1Λ1U0, Bl = Ul,1ΛlVH
l,1, l = 2, · · · ,L+1 (3.18)

where U0 is an Nb×Nb unitary rotation matrix and Ul,1 contains the first Nb columns of Ul . The matrix

Vl,1 ∈ CNl×Nb contains the first Nb columns of Vl, l = 2, · · · ,L+1, where Vl is a unitary matrix taken

from the EVD of WlHlBl−1 = VlΛw,lVH
l . For white noise n̄L+1, the k,k = 1, · · · ,Nb-th diagonal ele-

ment of matrix Ed {Fl}L+1
l=1 can be expressed with unique power allocation of Bl = diag{σ , · · · ,σ} ,∀l

by substituting (3.18) back into (3.17)[
Ed {Λl}L+1

l=1

]
k,k

=
1

1+λ 2
1,kσ2 +

1
1+λ 2

2,kσ2 + · · ·+
1

1+λ 2
L+1,kσ2 , k = 1, · · · , Nb (3.19)

We are also interested by the average MSE at destination that can be expressed as

Ēd {Λl}L+1
l=1 =

1
Nb

Nb

∑
k=1

L+1

∑
l=1

1
1+λ 2

l,kσ2 (3.20)
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Figure 3.4 – Recursive determination of best path.

From the numerical computation we found that the k-th diagonal element of the error matrix
[

Ed {Λl}L+1
l=1

]
k,k

in (3.19) decreases with the increasing value of the channel gain λ 2
l,k,∀l. Hence, we can minimize

(3.19) by maximizing the sum term ∑
L+1
l=1 λ 2

l,k,∀l, and this path gives the maximum SNR gain of the

corresponding sub-channel at destination. We can apply (3.19) to find the optimum sub-channel that

gives the highest SNR among a set of possible sub-channels from source to destination or the average

MSE minimization in (3.20) can be used to find the optimum MIMO channel that gives the highest

channel gain at destination over all possible MIMO links. This concept is used in the well known

Viterbi algorithm for finding the most likely sequence of hidden states [91]. For example, in Fig. 3.4,

we assume channel gains for a 4-relay network where source-relay, relay-relay, and relay-destination

links are considered as SISO links. For both terminals of the first relay, we have the square value of

the corresponding channel gains. Each terminal of the 2nd relay considers only the maximum of the

sum of the square of the corresponding pair of channel gains from source to first relay and first relay

to second relay, respectively. The highest sum values can be used to find the optimum path for each

terminal of the 3rd relay, and continuing this process, we can find the optimum path for each terminal

of the 4-th relay. From the destination, we will find the sum of the square of its channel gain with the

gain of the associated terminal in the last relay. With the given typical channel gain values, we find

the path a−b− c−d− e that gives the maximum sum value of 56 is the best path Rbest.

Now, we attempt to apply the above approximation to find the best path Rbest from source to desti-

nation of our proposed system as in Fig. 3.3(a). Let us define SVD of Hs, j = Us, jΣs, jVH
s, j, Hl, j,i =

Ul, j,iΣl, j,iVH
l, j,i, and Hd, j = Ud, jΣd, jVH

d, j. The diagonal elements of Σs, j = diag
{

λs, j,1, · · · , λs, j,K
}

,

Σl, j,i = diag
{

λl, j,i,1, · · · , λl, j,i,K
}

, and Σd, j = diag
{

λd, j,1, · · · , λd, j,K
}

are in decreasing order, where

K = min{Mt ,Nl, Mr} , ∀l. Usually, the last diagonal element of Σs, j, Σl, j,i, and Σd, j shows a very small

gain, and it has a very high error probability. To account for this effect, we will take the square root of

the mean of the square of the diagonal elements of each matrix to represent the overall channel status.

We find the best path Rbest for the network through the following optimization

Rbest = arg max
j∈[1,2]

γd, j (3.21)

where γd, j is the mean of the sum of the square of the j-th channel gain at destination. The optimum

set of equivalent channel matrices that solves (3.21) can be found by applying the algorithm shown in

Algorithm 1.
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Algorithm 1 Step for finding best path

1: set γ1, j =
√

1
K (∑

K
k=1 λ 2

s, j,k), j ∈ [1,2]
2: for l = 2 : L do
3:

γl, j, j∈ [1,2] =


√

1
K (∑

K
k=1 λ 2

l, j,1,k)+ γl−1,1, if (
√

1
K (∑

K
k=1 λ 2

l, j,1,k)+ γl−1,1)≥ (
√

1
K (∑

K
k=1 λ 2

l, j,2,k)+ γl−1,2)√
1
K (∑

K
k=1 λ 2

l, j,2,k)+ γl−1,2, otherwise

4: end for
5: set γd, j =

√
1
K (∑

K
k=1 λ 2

d, j,k)+ γL, j, j ∈ [1,2]
6: set

HL+1 = Hd, j,where j =

{
1, if (

√
1
K (∑

K
k=1 λ 2

d,1,k)+ γL,1)≥ (
√

1
K (∑

K
k=1 λ 2

d,2,k)+ γL,2)

2, otherwise

7: set l = L
8: while l ≥ 2 do
9:

Hl = Hl, j,i,where i =

{
1, if (

√
1
K (∑

K
k=1 λ 2

l, j,1,k)+ γl−1,1)≥ (
√

1
K (∑

K
k=1 λ 2

l, j,2,k)+ γl−1,2)

2, otherwise

10: l = l−1
11: j = i
12: end while
13:

H1 = Hs, j

In proactive relaying, the set of relay terminals gives the optimal path, which is termed the active

set, and the set of inactive terminals will be disconnected from the network. The active source-relay-

destination series link can be represented by the set of channel matrices Hl, l = 1, · · · , L as shown in

Fig. 3.3(b) using proactive relaying.

3.3.2 Optimum Precoder Design

We can compute the l-th relay local receiver matrix Wl for l = 2, · · · ,L+1 as [18]

Wl = (HH
l−1FH

l−1Hl−1Fl−1 +Cl−1)
−1Hl−1Fl−1 (3.22)

The desired signal from the source can be estimated more accurately using a Wiener filter, so we con-

sider a Wiener filter in each relay stage. We employ the Wiener filter Wd ∈ CMr×NL at the destination

Wd = (HH
L+1FH

L+1HL+1FL+1 +CL+1)
−1HL+1FL+1 (3.23)

We will consider three approaches. In the first approach, we count the propagation of fading and noise

effect from all previous nodes by defining the matrix Rl . In the second approach, we consider that the

47



matrix Rl approaches the identity matrix INb . In the final approach, we will transmit the input signal

through a pair of strong sub-channels and the weak sub-channels will be fed zero power.

Approach 1

The matrix Rl = AH
l D−1

l Al where Dl = AlAH
l +Cl , requires the solution of the relay filter Fl of all

previous steps. The relay filter Fl is the joint expression of two matrices Bl and Wl , i.e., Fl = BlWl .

We will find the solution for Bl,∀l in this section. We can compute Wl for a given source precoder F1

and previous relay precoders Fl−1 which requires the recursive operation as given in Algorithm 2. The

Algorithm 2 Step for finding Wl

1: solve W2 for a given F1 using (3.22)
2: for l = 2 : L do
3: compute Bl
4: find Wl+1 for a given Wl and Bl
5: end for

transmission power consumed by the l-th relay node is tr(E[r̄l r̄H
l ]), l = 2, · · · , L+1, where r̄l = Blrl ,

and using (3.8) we have

tr(E[r̄l r̄H
l ]) = tr(BlDlBH

l ) (3.24)

Our design is based on (3.17) where the MSE at destination is the sum of MSEs of individual nodes

and the error optimization problem can be summarized as

min
{Bl}L+1

l=1

tr
(

Ed {Bl}
)

(3.25)

subject to: tr(F1FH
1 )≤ P1

tr(BlDlBH
l )≤ Pl, l = 2, · · · ,L+1

P1 +
L+1

∑
l=2

Pl ≤ P

Using lemma 2 and lemma 4 as given in appendix A, we can express Rl as

Rl = [INb +G−1
l ]−1 = Gl−Gl(INb +Gl)

−1Gl (3.26)

where Gl = AH
l C−1

l Al . Now, we write the EVD in the right side of (3.26) as Rl = UlΞlUH
l where

Ul ∈ CNb×Nb is a unitary matrix, and Ξl = diag{ξl,1, · · · ,ξl,K}. Substituting the EVD of Hl , Bl , and Rl

into (3.25), we have

min
{σl,i}L+1

l=1

Nb

∑
i=1

1
ξ
−1
l,i +λ 2

l,iσ
2
l,i

(3.27)

subject to:
L+1

∑
l=1

Nb

∑
i=1
|σl,i|2 = P (3.28)
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The problem (3.27)-(3.28) has a water-filling solution given by

σ
2
l,i =

1
λ 2

l,i

(√√√√ λ 2
l,i

µlξ
2
l,i
− 1

ξ 2
l,i

)+

, l = 2, · · · ,L+1 (3.29)

where the µl’s are the waterlevels.

Proof: See Appendix C

We can find σ2
1,i for B1 by putting ξ1,i = 1 in (3.29). The procedure of optimizing source and relay

precoding matrices is described in Algorithm 3. A similar transceiver design has been implemented in

Algorithm 3 Procedure for optimizing the source and relay precoder matrices
1: solve the best relay selection problem in Algorithm 1 to obtain series optimum MIMO channel

matrices H1,H2, · · · ,HL+1.
2: design source precoder F1 = B1 using (3.18) with ξ1,i = 1 in (3.29)
3: for l = 2 : L+1 do
4: find the EVD of Rl using (3.26)
5: find matrices Bl from (3.18) using (3.29)
6: compute matrices Wl for a given Fl−1 using Algorithm 2
7: find Fl = BlWl
8: end for

[18] for multi-hop MIMO AF relaying but it requires the EVD computation of the AH
l D−1

l Al matrix

which is very difficult. On the other hand, our design algorithm consists of the EVD computation of

AH
l C−1

l Al in (3.26) which is very simple to implement.

Approach 2

We consider the high SNR region where Rl approaches the identity matrix INb . In this case, each relay

precoder matrix Bl can be determined independently of all previous hops [18], [90].

min
Wd ,{Fl}L+1

l=1

tr
(

Ed {Fl}
)

(3.30)

subject to: tr(B1BH
1 )≤ P1

tr
{

Bl(HlBl−1BH
l−1HH

l )B
H
l
}
≤ Pl, l = 2, · · · ,L+1

L+1

∑
l=1

Pl ≤ P

where P1 and Pl denote the power available at the source node and l-th relay node for transmission. The

design attempts only to Schur-convex Ed , i.e., the objective functions are increasing in each argument.

In this case, the error optimization problem can be expressed using (3.25) as

min
{Fl}L+1

l=1

tr
(
[INb +HH

l BH
l BlHl]

−1
)

(3.31)
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subject to: tr(B1BH
1 )≤ P1

tr
{

Bl(HlBl−1BH
l−1HH

l )B
H
l
}
≤ Pl, l = 2, · · · ,L+1

L+1

∑
l=1

Pl ≤ P

Substituting (3.18) into (3.31), the matrix variable optimization problem is converted to the convex

form with system scalar variables. Our goal is to find the solution of Bl by putting the diagonal

elements of Λl = diag{σl,1, · · · ,σl,K} ,∀l in (3.18). We can write similar to (3.29)

min
{σl,i}L+1

l=1

Nb

∑
i=1

1
1+λ 2

l,iσ
2
l,i

(3.32)

subject to:
L+1

∑
l=1

Nb

∑
i=1
|σl,i|2 = P (3.33)

The problem (3.32)-(3.33) has a water-filling solution similar to (3.29)

σ
2
l,i =

1
λ 2

l,i

(√
λ 2

l,i

µl
−1
)+

, l = 1, · · · ,L+1 (3.34)

Compared to the problem for approach 1, the precoder design in (3.34) is very simple due to scalar

variables and has a smaller computational complexity because it does not need to compute the EVD

of Rl . We can further simplify the computation for both approaches by considering Ul = VH
l = INb .

The transceiver design for this approach can be obtained using Algorithm 3 with Rl = INb .

Approach 3

Note that in order to achieve the optimal performance in terms of mutual information, the strong

subchannels λl,i of all hops are paired according to their actual gain magnitude, i.e., the source signal

is transmitted over the strong m-th subchannel in the first hop are forwarded by the m-th subchannel

of all relays if λl,m ≥ λth, where λth is the threshold level while the weak subchannels λl,m ≤ λth in

all hops should be paired together [92]. For the Schur-convex objective function, we will transmit

the source signal through the N substreams λl,m,m = 1, · · · ,N associated to strong nonzero channel

eigenvalues, i.e., λl,m ≥ λth whereas the remainder N0 = Nb−N subchannels are assigned zero power

σ2
l,n = 0,n = 1, · · · ,N0 [93] and the strong sub-channels satisfy ∑

L+1
l=1 ∑

N
i=1 |σl,i|2 = P. In this case, the

source symbol s ∈ CN×1 is received perfectly at the receiver if N ≤min{Mt ,N1, · · · ,NL,Mr}.
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Chapter 4

Performance Results

4.1 Introduction

We will consider the following transceiver design algorithms:

— Relay diversity ordering selection (RDS): The algorithm of traditional selection relaying works

with the aid of a local decision making technique where the incoming signals in any relay (or

local receiving node) from the previous two relays are selected using the selection diversity

scheme to forward the maximum instantaneous SNR signal to the next terminal. The protocol

for best relay selection in this case is based on the instantaneous channel conditions [94], spe-

cially used in slow fading environment, or based on relay ordering [95]. With the traditional

selection relaying scheme, each relay terminal of the l-th relay (Fig. 3.3(a)) forwards the signal

from either the 1st or the 2nd terminal of the previous (l− 1)-th relay based on the local gain

of the corresponding channel i.e., the j-th terminal of the l-th relay accepts the signal from the

Hl−1, j,1 channel if ||Hl−1, j,1||2F ≥ ||Hl−1, j,2||2F else from the Hl−1, j,2 channel. Each terminal

in all relays forwards the signal based on the local decision instead of looking for the overall

global channel condition. The final decision is also taken based on the SNR of the last relay

node, i.e., the destination selects Hd,1 if ||Hd,1||F ≥ ||Hd,2||F where ||.||F is the Frobenius norm.

This scheme only works on the basis of local channel information. As a result the solution is

not optimal but it is very simple to implement.

— Best relay selection (BRS): This design is developed according to the simplification in Algo-

rithm 1, where each relay terminal decides the best path based on global channel knowledge. In

this scheme, any terminal will select the channel having the maximum value of the gain. Com-

munication is performed only by the set of nodes having the best SNR gain in the simplified

form as shown in Fig. 3.3(b). The rest of the nodes will remain inactive. Using this solution,

we can save power from the inactive relay as it works depending on proactive relaying.
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Figure 4.1 – MSE versus SNR with equal number of source-relay-destination antennas.

4.2 Error Performance with Fixed Number of Relays

4.2.1 Equal number of antennas

We demonstrate the error performance of the proposed solutions in the case of perfect CSI knowl-

edge of each channel at each transmitter and receiver. In all simulations, we use the actual channel

parameters based on [5] where measurements have been performed in the CANMET mine, Val-d’Or,

Québec, Canada, in order to produce accurate study of channel propagation. The results show the

path-loss exponent ν in the range between 1.4 and 1.8 for the mine gallery at the 70 m level. We ob-

serve the MSE and BER performances for all simulations with 4 nodes for all source-relay-destination

terminals, i.e., Mt = Mr = 4, Nl = 4,∀l, and simulation results are averaged for 105 independent re-

alizations of channel matrices Hs, j, Hl, j,i, and Hd, j, where the elements of the channel matrices are

given by (2.14) and the channels are constant within a frame. Simulations are done by transmitting

frames consisting of 45 packets, and each packet contains 4 symbols. We use 16-QAM modulation

to transmit 180 symbols in the frame from source to destination using a 5 relay AF MIMO system.

We have carried out Matlab simulations to evaluate MSE and BER performances based on channel

measurements in [5] in the millimeter-wave (mmW) carrier frequency of f = 60 GHz with a 2.1 GHz

bandwidth for source to destination distance set to d = 30 m and width of the gallery set to w = 2.5

m.
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Figure 4.2 – BER performance comparison with equal number of source-relay-destination antennas.

For the multi-hop topology, the MSE optimization problem is much more challenging than the exist-

ing works with a simpler network architecture, and is a complicated function of the source, relay, and

receiver matrices. The QoS performance of a digital communication system is given usually in BER,

but the above optimization theory has been driven in terms of MSE. We can easily give the optimiza-

tion in terms of BER by designing a linear receiver such that it minimizes each MSE, maximizes each

subchannel SNR, and alternatively minimizes each BER [93], i.e.,

BER≈ aQ(
√

bSNR)/k;k = log2(M) (4.1)

where a and b are constant depending on the constellation size, M, Q is the Q-function given by

Q(x) = (1/
√

2π)
∫

∞

x e−y2/2dy, and the i-th signal-to-interference-plus-noise ratio (SINR) is related to

the i-th MSE by SINRi = (1/MSEi)−1. Here, (4.2) relates the BER of the channel for the signal SNR

and we can use it to compute the theoretical BER of the channel. Therefore, the MSE optimization is

the equivalent of the optimization in terms of BER. The simulated and theoretical MSE performance

for the above design cases with path-loss exponent ν = 1.5 to 1.8 and a 5 relay system with source

to destination distance d = 30 m are plotted in Fig. 4.1 with individual node power constraint of 10

W. The theoretical MSE is calculated using (3.17). The distance for each direct path of Fig. 3.2 is d1

and for each diagonal path is
√

d2
1 +w2, where d1 = d/(L+1) and w is the width of the gallery. The

simulated and theoretical BERs obtained by all algorithms for the above system are illustrated in Fig.

4.2 versus SNR. The theoretical BER is calculated using (3.17) and (4.2). We use approach 1 for RDS
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Figure 4.3 – MSE versus SNR with unequal number of source-relay-destination antennas.

and it provides worst MSE and BER performances than for the BRS. The BRS with approach 1 is the

best solution while the BRS with approach 2 is sub-optimal. It is also observed that the BRS with

approach 1 approaches the BRS with approach 2 in the MSE and BER performance curves at high

SNRs and this is because in this region, the noise covariance matrix Rl is approximated by the identity

matrix INb [18], [90]. Moreover, the BRS with approach 3 for threshold λth = 1.2, λth = 1.4, and

λth = 1.6 shows both MSE and BER performance improvements. It can be noted that by increasing

the threshold value λth, the transceiver uses only the strong sub-channels and bypasses the weak

sub-channel, i.e., less sub-channels are used. Therefore, the data rate of approach 3 decreases with

increasing value of the threshold λth.

4.2.2 Unequal number of antennas

In this example, a 5 relay system is simulated with Mt = 4, N1 = 3, N2 = 4, N3 = 5, N4 = 3, N5 = 4,

and Mr = 4 for individual source and relay terminal transmission power constraint P1 = 2.5Mt W,

and Pl = 2.5Nl W for l = 1, · · · , 5 with source-destination distance d = 30 m. The simulated and

theoretical MSE and BER comparisons of the four algorithms are plotted in Fig. 4.3 and Fig. 4.4,

respectively. Unlike in Fig. 4.1 and Fig. 4.2, it can be seen in Fig. 4.3 and Fig. 4.4 that there are

MSE and BER performances improvements over the equal number of antennas relay system. It is

also observed that the gap of the performance curve between BRS with approach 1 and approach 2 is

higher.
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Figure 4.4 – BER versus SNR with unequal number of source-relay-destination antennas.

Table 4.1 – MSE, BER, and data rate comparison of approach 3 for equal number of antennas.

λth MSE BER Data rate (Gb/s)
1.2 0.0035 0.0206 14
1.4 0.0026 0.0105 6.8
1.6 0.0015 0.0043 2.6

4.3 Error Performance and Data Rate

The data rate with the above two design cases for the system are plotted in Fig. 4.5 where the data

rate is calculated by

Data rate =
k×Nb

Ts
b/s (4.2)

where Ts is the symbol duration. It can be shown from the curve that the unequal number of antennas

system provides less transmission rate than the first example. The reason is that the system in the

second example has Nb = 3 which is less than Nb = 4 of the first example, i.e., the second example

uses less sub-channels for transmission than the first example. The BRS with approach 1 and approach

2 have a constant transmission rate with the threshold value for both equal and unequal numbers of

antennas. Similarly, like the first example, the BRS with approach 3 for threshold λth = 2.2, λth = 2.5,

and λth = 2.8 shows both MSE and BER performance improvements. On the other hand, the BRS with

approach 3 decreases the data rate with the increasing value of the threshold λth. In both examples,

we notice that in approach 3, the increasing value of threshold λth increases the error performance but
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Figure 4.5 – Data rate for BRS with approach 1, approach 2, and approach 3 with equal number and
unequal number of source-relay-destination antennas.

decreases the data rate. For example, in Fig. 4.5, a threshold value λth beyond 2 and 3.5 for equal

number of antennas and unequal number of antennas provide zero data rate. We summarized the MSE

and BER performances of approach 3 against the date rate for the first example at SNR = 8 dB in

Table 4.1. From the table, we can see that increasing the value of threshold λth increases the MSE and

BER performances but decreases the data rate and we find a similar result for the second example.

So, there is a tradeoff between the error performance improvement and the transmission rate of the

system.

4.4 Error Performance with Varying Number of Relays

Equation (3.17) states that the error performance decreases with the increasing number of relaying

terminals. We verified this by evaluating the theoretical and simulated MSE and BER of the above

system for different number of relay terminals with 4 antennas at the source, all relays and destination
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Figure 4.6 – MSE versus different number of relays at SNR = 15 dB.

Table 4.2 – Number of operations required to execute EVD of Rl for Mt = Mr = N = 4, and L = 5.

Approach 1 Approach 2
Computational complexity L(10N3 +1) = 3205 L(3N3) = 960
Processing time (ms) 8.1 3.2

have the same total distance, and the results are plotted in Fig. 4.6 and Fig. 4.7, respectively. In this

case, we used threshold values λth = 2.2, λth = 2.4, and λth = 2.6 for the BRS with approach 3. It

can be noted that a higher number of relays (for example, number of relays beyond 9) provides both

MSE and BER performances similar to approach 2. This is because, in this region, all sub-channels

are strong and participate in the transmission. In all the simulation results, it is shown that approach

3 provides the best MSE and BER performances while approach 1 outperforms approach 2. From the

last two simulations, it can be recommended that designers should try to use as small a number of

relays as possible, which basically depends on the operational range of each sensor node.

4.5 Complexity Analysis

The EVD computation of the noise covariance matrix Rl in (3.26) in each relaying stage of approach

1 includes extra mathematical manipulations which increases the computational complexity in the

water-filling solution. The number of computations and the processing time of water-filling calcu-

lations for approach 1 and approach 2 with equal number of antennas for 5 relays is summarized in
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Figure 4.7 – BER versus different number of relays at SNR = 15 dB.

Table 4.2, and the processing time is evaluated on a processor running at 1.8 GHz. We can see that

the extra cost function in approach 1 may decrease the transmission rate. Similarly, this approach

includes extra computational cost for any number of antennas systems.
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Chapter 5

Conclusion

In this chapter, we summarize the main contributions of the thesis and point out some possible future

research areas. This thesis attempted to exploit the hidden complexity for the design of relay amplifier

matrices for parallel multi-hop AF relay and then find the optimization formulation. The design

contained two steps. In the first step, we simplified the parallel relay network into a series multi-

hop networks as discussed in the BRS approach in Chapter 4, and in the second step, we considered

the optimal power allocation under an equality power constraint of each relay terminal as discussed

in approach 1, approach 2, and approach 3 in Chapter 4. A comparative analysis of the optimum

power allocations for equal numbers of transmitter and receiver antennas MIMO systems has been

presented using the known channel statistics at both transmitter and receiver. We used only the SVD

decomposition for the optimum solution of the power allocation problem. In an actual case, a WSN

contains hundreds or thousands of sensor nodes distributed randomly in a large area. From one time

instant to the next, the number of active nodes and inactive nodes may vary. For this reason, we

also carried out network simulations using a varying number of antennas at each relay terminal. In

all simulations, we have considered each relay terminal having a transmission power of 10 W and a

source-to-destination distance of 30 m. This algorithm will be a very efficient technique to deploy

WSNs in highly fading environments like underground mines. Here, the solution is provided with AF

relaying and it is the simplified technique now being used in the majority of works in the literature.

In a virtual antenna array, a set of cooperative relays forwards the received information toward the

next relay or the destination using the selection distributed algorithm. The algorithm selects the most

probable path having the highest SNR to forward the information toward the destination. The tradi-

tional relay selection is based on instantaneous channel gains. For wireless communication with a

small number of hops, the algorithm can be easily applied, but for a large number of hops, it is really

difficult to select the best channel gain path. In this work, we have established a recursive search algo-

rithm to find the best path from source-to-destination. Simulation results show that this path provides

the highest MSE and BER performances in comparison to the traditional best path selection method.

By exploiting the best path between the source and destination, we have proposed the design of source

and relay amplifying matrices for a parallel multi-hop AF MIMO relay system with known CSI at all
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nodes. The proposed algorithm provides the optimum solution for finding the equivalent path, and we

prove the theoretical analysis by simulations. Although we model two parallel relays, this analysis

can be extended to any number of parallel layers. One of the interesting results from the simulation

analysis is that the optimum best path searching method (BRS) in multihop parallel relaying provides

excellent performance over conventional selection relaying (RDS). We can use BRS in a proactive

mode to save power of all inactive relay that will increase the overall network lifetime.

The power allocation problem for cooperative systems is carried out depending on the objective func-

tion at individual node power constraint or total power constraint or with both individual and total

power constraints. The objective function drive the way of optimum power allocation assuming indi-

vidual or total power constraints. In this work, we considered the MSE minimization at the destination

subject to only the total power constraint for known CSI. We considered that the MSE at the destina-

tion is the sum of individual node MSEs. The optimization considered that the Fusion Center (FC)

has the knowledge of forward and backward CSI information. The FC controls the power allocation

of each relay node using a feedback channel. The algorithm of power optimization can also be done

using an individual node power constraint only for analytical simplicity. We designed the source pre-

coder and relay amplifier matrices using three techniques. In approach 1, the actual noise covariance

matrix Rl has been used to provide the optimal solution. A sub-optimal power allocation has been

implemented based on the assumption that the noise covariance matrix Rl approaches an identity ma-

trix for design simplicity. We compared the computational complexity and required execution time

of the two algorithms. It can be concluded that approach 1 gives the best solution but requires more

mathematical computations. In approach 3, we sent a signal only through the strong sub-channels.

As a result, both MSE and BER performances are increased but the data rate decreases. Finally, we

recommended to choose the power allocation solution depending on the channel condition where the

relay will be deployed.

We have carried out the analysis for perfect CSI knowledge at all possible links. For a large scale

complex network, it is really difficult to send the exact CSI to the FC. On the other hand, the envi-

ronment introduces time-varying fading characteristics. Under these conditions, we need to model all

possible links with imperfect CSI. For the imperfect CSI case, the optimal path finding can be done

with a statistical average. The power allocation algorithm for the precoder can be implemented using

a robust transceiver designing scheme. So, a difficulty arises for the design in the case of imperfect

CSI knowledge at all terminals. In the future, the design can be carried out in the case of imperfect

CSI at all terminals.
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Appendix A

Convex optimization

Convex optimization methods are ubiquitous and have been widely used in the design and analysis

of many problems in communication and signal processing applications. Here, we provide convex

mathematical tools useful to analyze some challenging resource allocation problems of WSNs in

multi-hop communication networks.

In mathematics, optimization is the selection of a best element from a set of available alternatives. An

optimization problem with arbitrary equality and inequality constraints is given by [41]

min
x

f0(x) (A.1)

subject to: fi(x)≤ 0, i ∈ [1 : m]

Ax = b

where x ∈ Rn are convex if the functions fi are convex, f0 is the cost or objective function, and

f1, · · · , fm are m inequality constraint functions. The set of the following points in the problem can be

denoted by

D = {x : fi(x)≤ 0, i ∈ [1 : m],Ax = b}

and is feasible if D 6= /0, where /0 represents an empty set, and infeasible otherwise [41]. The optimal

value or minimal value of the problem is denoted by p∗ = inf{ f0(x) : x ∈ D}, and is achieved at an

optimal solution x∗, i.e., p∗ = f0(x∗). The main way to reformulate a problem in convex form is to

devise a convex problem equivalent to the original nonconvex one by changing a series of variables

[89]. Taking the Lagrangian of (A.1), we have

L(x,λ ,ν) = f0(x)+
m

∑
i=1

λi fi(x)+ν
T (Ax−b)

The optimization variable x is called the primal variable and Lagrange multipliers λ and ν are called

the dual variables. The dual objective φ(λ ,ν) is defined as the minimum value of the Lagrangian over

x which leads to the dual problem

φ(λ ,ν) = min
x

L(x,λ ,ν)
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The solution of the primal optimal point x∗ and the dual optimal point (λ ∗,ν∗) are linked together

through the following Karush-Kuhn-Tucker (KKT) condition

Ox f0(x∗)+
m

∑
i=1

λ
∗
i Ox fi(x∗)+(ν∗)TOx(Ax∗−b) = 0 (A.2)

The KKT condition in (A.2) is sufficient for the solution of both primal and dual problems.
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Appendix B

Proof of (3.17)

We will carry out the work for multi-hop MIMO relaying by invoking the following useful matrix

inversion lemma [96]. For matrices A, B, C, and D with appropriate dimensions, the following identity

holds.

Lemma 1: (I+AB)−1 = I−A(I+BA)−1B
Lemma 2: (A+BCD)−1 = A−1−A−1B(DA−1B+C−1)−1DA−1

Lemma 3: (I+AHBA)−1 = I−AH(AAH +B−1)−1A, using lemma 2

Lemma 4: (A−1 +B)−1 = A−A(A+B−1)−1A, using lemma 2

The MSE matrix in (3.13) can be organized using lemma 3

Ed = INb−AH
L+1(AL+1AH

L+1 +CL+1)
−1AL+1 (B.1)

Using (3.11) and (3.15), the second term of (B.1) can be written as

AL+1AH
L+1 +CL+1 =

1⊗
i=L+1

(HiFi)
L+1⊗
i=1

(FH
i HH

i )+
L+1

∑
j=2

( j⊗
i=L+1

(HiFi)
L+1⊗
i= j

(FH
i HH

i )

)
+ IMr

=
L+1

∑
j=1

( j⊗
i=L+1

(HiFi)
L+1⊗
i= j

(FH
i HH

i )

)
+ IMr

= HL+1FL+1(ALAH
L +CL)FH

L+1HH
L+1 + IMr

= HL+1FL+1DLFH
L+1HH

L+1 + IMr

where DL = (ALAH
L +CL). We assume Fl = BlWl = Bl(AH

l−1Al−1+Cl−1)
−1Al−1 = BlD−1

l−1Al−1, l =

2, · · · , L+1, and putting it in the second term of (B.1) with AL+1 = ALHL+1FL+1

Ed = INb−AH
L BH

L+1D−1
L AH

L HH
L+1(HL+1BL+1ALD−1

L BH
L+1HH

L+1AH
L + INb)

−1HL+1BL+1D−1
L ALAL

(B.2)

63



Using lemma AH(ABAH + I)A = B−1− (BAHAB+B)−1 [18] in (B.2)

Ed = INb−AH
L D−1

L AL +AH
L D−1

L

(
D−1

L BH
L+1HH

L+1AH
L HL+1BL+1ALD−1

L +D−1
L

)−1

D−1
L AL

= INb−AH
L (A

H
L AL +CL)

−1AL +AH
L

(
BH

L+1HH
L+1AH

L D−1
L HL+1BL+1AL + INb

)−1

D−1
L AL

= (INb +AH
L C−1

L AL)
−1 +AH

L D−1
L AL

(
AH

L D−1
L ALBH

L+1HH
L+1HL+1BL+1 + INb

)−1

,using lemma 3

= (INb +AH
L C−1

L AL)
−1 +AH

L D−1
L AL−AH

L D−1
L AL(HL+1BL+1BH

L+1HH
L+1)(

AH
L D−1

L AL(HL+1BL+1BH
L+1HH

L+1)+ INb

)−1

AH
L D−1

L AL,using lemma 1

= (INb +AH
L C−1

L AL)
−1 +[(AH

L D−1
L AL)

−1 +HL+1BL+1BH
L+1HH

L+1]
−1,using lemma 4

(B.3)

It is worth noting that RL = AH
L D−1

L AL stands for the covariance matrix of the (L+1)-th relay signal,

and in the high SNR region, it rapidly approaches the identity matrix INb [90]. Now, from (B.3), we

have

Ed = (INb +AH
L C−1

L AL)
−1 +

[
HL+1BL+1BH

L+1HH
L+1 +R−1

L

]−1

= EL +[R−1
L +HL+1BL+1BH

L+1HH
L+1]

−1

(B.4)

From (B.4), we can express EL

EL = EL−1 +[R−1
L−1 +HLBLBH

L HH
L ]
−1 (B.5)

Again, E1 = (INb +AH
1 C−1

1 A1)
−1 = (INb +H1B1BH

1 HH
1 )
−1. We have, finally

Ed = E1 +
L+1

∑
l=2

El = (INb +H1B1BH
1 HH

1 )
−1 +

L+1

∑
l=2

(R−1
l−1 +HlBlBH

l HH
l )
−1 (B.6)
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Appendix C

Proof of (3.27)

Taking the Lagrangian function of (3.27)

L(µl,{σl,i}Nb
i=1) =

Nb

∑
i=1

1
ξ
−2
l,i +λ 2

l,iσ
2
l,i

+µl

( Nb

∑
i=1

σ
2
l,i−P

)
(C.1)

Taking the Karush-Kuhn-Tucker (KKT) condition of (C.1) with respect to σl,i gives

|σ2
l,i|=

1
ξ 2

l,iλ
2
l,i

[(
ξ 4

l,iλ
2
l,i

µl

)1/2

−1
]
=

1
λ 2

l,i

(√
λ 2

l,i

µl
− 1

ξ 2
l,i

)+

(C.2)
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