435 research outputs found

    AUV SLAM and experiments using a mechanical scanning forward-looking sonar

    Get PDF
    Navigation technology is one of the most important challenges in the applications of autonomous underwater vehicles (AUVs) which navigate in the complex undersea environment. The ability of localizing a robot and accurately mapping its surroundings simultaneously, namely the simultaneous localization and mapping (SLAM) problem, is a key prerequisite of truly autonomous robots. In this paper, a modified-FastSLAM algorithm is proposed and used in the navigation for our C-Ranger research platform, an open-frame AUV. A mechanical scanning imaging sonar is chosen as the active sensor for the AUV. The modified-FastSLAM implements the update relying on the on-board sensors of C-Ranger. On the other hand, the algorithm employs the data association which combines the single particle maximum likelihood method with modified negative evidence method, and uses the rank-based resampling to overcome the particle depletion problem. In order to verify the feasibility of the proposed methods, both simulation experiments and sea trials for C-Ranger are conducted. The experimental results show the modified-FastSLAM employed for the navigation of the C-Ranger AUV is much more effective and accurate compared with the traditional methods

    A particle filtering approach for joint detection/estimation of multipath effects on GPS measurements

    Get PDF
    Multipath propagation causes major impairments to Global Positioning System (GPS) based navigation. Multipath results in biased GPS measurements, hence inaccurate position estimates. In this work, multipath effects are considered as abrupt changes affecting the navigation system. A multiple model formulation is proposed whereby the changes are represented by a discrete valued process. The detection of the errors induced by multipath is handled by a Rao-Blackwellized particle filter (RBPF). The RBPF estimates the indicator process jointly with the navigation states and multipath biases. The interest of this approach is its ability to integrate a priori constraints about the propagation environment. The detection is improved by using information from near future GPS measurements at the particle filter (PF) sampling step. A computationally modest delayed sampling is developed, which is based on a minimal duration assumption for multipath effects. Finally, the standard PF resampling stage is modified to include an hypothesis test based decision step

    Mutual information-based exploration on continuous occupancy maps

    Full text link
    © 2015 IEEE. The problem of active perception with an autonomous robot is studied in this paper. It is proposed that the exploratory behavior of the robot be controlled using mutual information (MI) surfaces between the current map and a one-step look ahead measurements. MI surfaces highlight informative areas for exploration. A novel method for computing these surfaces is described. An approach that exploits structural dependencies of the environment and handles sparse sensor measurements to build a continuous model of the environment, that can then be used to generate MI surfaces is also proposed. A gradient field of occupancy probability distribution is regressed from sensor data as a Gaussian Process and provide frontier boundaries for further exploration. The continuous global frontier surface completely describes unexplored regions and, inherently, provides an automatic termination criterion for a desired sensitivity. The results from publicly available datasets confirm an average improvement of the proposed methodology over comparable standard and state-of-the-art exploratory methods available in the literature by more than 20% and 13% in travel distance and map entropy reduction rate, respectively

    Convergence of adaptive mixtures of importance sampling schemes

    Full text link
    In the design of efficient simulation algorithms, one is often beset with a poor choice of proposal distributions. Although the performance of a given simulation kernel can clarify a posteriori how adequate this kernel is for the problem at hand, a permanent on-line modification of kernels causes concerns about the validity of the resulting algorithm. While the issue is most often intractable for MCMC algorithms, the equivalent version for importance sampling algorithms can be validated quite precisely. We derive sufficient convergence conditions for adaptive mixtures of population Monte Carlo algorithms and show that Rao--Blackwellized versions asymptotically achieve an optimum in terms of a Kullback divergence criterion, while more rudimentary versions do not benefit from repeated updating.Comment: Published at http://dx.doi.org/10.1214/009053606000001154 in the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Active Mapping and Robot Exploration: A Survey

    Get PDF
    Simultaneous localization and mapping responds to the problem of building a map of the environment without any prior information and based on the data obtained from one or more sensors. In most situations, the robot is driven by a human operator, but some systems are capable of navigating autonomously while mapping, which is called native simultaneous localization and mapping. This strategy focuses on actively calculating the trajectories to explore the environment while building a map with a minimum error. In this paper, a comprehensive review of the research work developed in this field is provided, targeting the most relevant contributions in indoor mobile robotics.This research was funded by the ELKARTEK project ELKARBOT KK-2020/00092 of the Basque Government
    corecore