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1. Introduction      

One of the biggest challenges of robotics is to create systems capable of operating efficiently 

and safely in natural, populated environments. This way, robots can evolve from tools 

performing well-defined tasks in structured industrial or laboratory settings, to integral 

parts of our everyday lives. However such systems require complex cognitive capabilities, 

to achieve higher levels of cooperation and interaction with humans, while coping with 

rapidly changing objectives and environments. 

 In order to address these challenges a robot capable of autonomously exploring densely 

populated urban environments, is created within the Autonomous City Explorer (ACE) 

project (Lidoris et al., 2007). To be truly autonomous such a system must be able to create a 

model of its unpredictable dynamic environment based on noisy sensor information and 

reason about it. More specifically, a robot is envisioned that is able to find its way in an 

urban area, without a city map or GPS. In order to find its target, the robot will approach 

pedestrians and ask for directions. 

Due to sensor limitations the robot can observe only a small part of its environment and 

these observations are corrupted by noise. By integrating successive observations a map can 

be created, but since also the motion of the robot is subject to error, the mapping problem 

comprises also a localization problem. This duality constitutes the Simultaneous 

Localization And Mapping (SLAM) problem. In dynamic environments the problem 

becomes more challenging since the presence of moving obstacles can complicate data 

association and lead to incorrect maps. Moving entities must be identified and their future 

position needs to be predicted over a finite time horizon. The autonomous sensory-motor 

system is finally called to make use of its self-acquired uncertain knowledge to decide about 

its actions. 

A Bayesian framework that enables recursive estimation of a dynamic environment model 

and action selection based on these uncertain estimates is introduced. This is presented in 

Section 2. In Section 3, it is shown how existing methods can be combined to produce a 

working implementation of the proposed framework. A Rao-Blackwellized particle filter 

(RBPF) is deployed to address the SLAM problem and combined with recursive conditional O
pe
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particle filters in order to track people in the vicinity of the robot. Conditional filters have 

been used in the literature for tracking given an a priori known map. In this paper they are 

modified to be utilized with incrementally constructed maps. This way a complete model of 

dynamic, populated environments can be provided. Estimations serve as the basis for all 

decisions and actions of robots acting in the real world. In Section 4 the behaviours of the 

robot are described. In Section 5 it is shown how these are selected so that uncertainty is 

kept under control and the likelihood of achieving the tasks of the system is increased. In 

highly dynamic environments decision making needs to be performed as soon as possible. 

However, optimal planning is either intractable or requires very long time to be completed 

and since the world is changing constantly, any plan becomes outdated quickly. Therefore 

the proposed behaviour selection scheme is based on greedy optimization algorithms. 
 

 

Fig. 1. The Autonomous City Explorer (ACE) robotic platform 

2. Bayesian framework for state estimation and behaviour selection 

The problem of action selection has been addressed by different researchers in various 

contexts. The reviews of (Tyrrell, 1993) and (Prescott et al., 1999) cover the domains of 

ethology and neuroscience. (Maes, 1989) addresses the problem in the context of artificial 
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agents.  In robotics, action selection is related to optimization. Actions are chosen so that the 

utility toward the goal of the robot is maximized. Several solutions have been proposed 

which can be distinguished in many dimensions. For example whether the action selection 

mechanism is competitive or cooperative (Arkin, 1998), or whether it is centralized or 

decentralized (Pirjanian, 1999). Furthermore, explicit action selection mechanisms can be 

incorporated as separate components into an agent architecture (Bryson, 2000). 

Reinforcement learning has been applied to selection between conflicting and 

heterogeneous goals (Humphrys, 1997). A distinction was made between selecting an action 

to accomplish a unique goal and choosing between conflicting goals.  

However, several challenges remain open. Real-world environments involve dynamical 

changes, uncertainty about the state of the robot and about the outcomes of its actions. It is 

not clear how uncertain environment and task knowledge can be effectively expressed and 

how it can be incorporated into an action selection mechanism. Another issue remains 

dealing with the combinatorial complexity of the problem. Agents acting in dynamic 

environments cannot consider every option available to them at every instant in time, since 

decisions need to be made in real-time. Consequently, approximations are required.  

The approach presented in this chapter addresses these challenges. The notion of behavior is 

used, which implies actions that are more complex than simple motor commands. Behaviors 

are predefined combinations of simpler actuator command patterns, that enable the system 

to complete more complex task objectives (Pirjanian, 1999). A Bayesian approach is taken, in 

order to deal with uncertain system state knowledge and uncertain sensory information, 

while selecting the behaviours of the system. The main inspiration is derived from the 

human cognition mechanisms. According to (Körding & Wolpert, 2006), action selection is a 

fundamental decision process for humans. It depends both on the state of body and the 

environment. Since signals in the human sensory and motor systems are corrupted by 

variability or noise, the nervous system needs to estimate these states. It has been shown 

that human behaviour is close to that predicted by Bayesian theory, while solving 

estimation and decision problems.  This theory defines optimal behaviour in a world 

characterized by uncertainty, and provides a coherent way of describing sensory-motor 

processes. 

Bayesian inference also offers several advantages over other methods like Partially 

Observable Markov Decision Processes (POMDPs)  (Littman et al., 1995), which are typically 

used for planning in partially observable uncertain environments. Domain specific 

knowledge can be easily encoded into the system by defining dependences between 

variables, priors over states or conditional probability tables. This knowledge can be 

acquired by learning from an expert or by quantifying the preferences of the system 

designer.  

A relationship is assigned between robot states and robot behaviours, weighted by the state 

estimation uncertainty. Behaviour selection is then performed based on greedy 

optimization. No policy learning is required. This is a major advantage in dynamic 

environments since learning policies can be computationally demanding and policies need 

to be re-learned every time the environment changes. In such domains the system needs to 

be able to decide as soon as possible. There is evidence (Emken et al., 2007) that also humans 

use greedy algorithms for motor adaptation in highly dynamic environments. However, the 
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optimality of this approach depends on the quality of the approximation of the true 

distributions. State of the art estimation techniques enable very effective and qualitative 

approximations of arbitrary distributions. In the remainder of this section the proposed 

Bayesian framework is going to be presented in more detail. 

2.1 Bayesian Inference 
In terms of probabilities the domain of the city explorer can be described by the joint 

probability distribution p(St, Bt, Ct, Zt | Ut). This consists of the state of the system and the 

model of the dynamic environment St, the set of behaviors available to the system Bt, a set of 

processed perceptual inputs that are associated with events in the environment and are used 

to trigger behaviors Ct, system observations Zt and control measurements Ut that describe 

the dynamics of the system. In the specific domain, observations are the range 

measurements acquired by the sensors and control measurements are the odometry 

measurements acquired from the mobile robot. The behavior triggering events depend on 

the perceived state of the system and its goals.  The state vector St is defined as 

 },...,,,,{ 21 M
ttttt YYYmXS =  (1) 

where Xt represents the trajectory of the robot, m is a map of the environment and Y1t, 

Y2t,...,YMt the positions of M moving objects present at time t. Capital letters are used 

throughout this chapter to denote the full time history of the quantities from time point 0 to 

time point t, whereas lowercase letters symbolize the quantity only at one time step. For 

example zt would symbolize the sensor measurements acquired only at time step t. 

The joint distribution can be decomposed to simpler distributions by making use of the 

conjunction rule. 

 ∏
=

−−=
t

j

jjjjjjjjjttttt SCBbpSzpUSsppUZCBSp

1

,110 )},|()|(),|({)|,,,(  (2) 

Initial conditions, p(s0, b0, c0, z0, u0), are expressed for simplicity by the term p0. The first term 

in the product represents the dynamic model of the system and it expresses our knowledge 

about how the state variables evolve over time. The second one expresses the likelihood of 

making an observation zt given knowledge of the current state. This is the sensor model or 

perceptual model. The third term constitutes the behaviour model. Behaviour probability 

depends on behaviours selected previously by the robot, on perceptions and the estimated 

state at the current time. 

The complexity of this equation is enormous, since dependence on the whole variable 
history is assumed. In order to simplify it, Bayes filters make use of the Markov assumption. 
Observations zt and control measurements ut are considered to be conditionally 
independent of past measurements and control readings given knowledge of the state st. 
This way the joint distribution is simplified to contain first order dependencies. 

 ∏
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As discussed previously, the goal of an autonomous system is to be able to choose its actions 

based only on its perceptions, so that the probability of achieving its goals is maximized. 

This requires the ability to recursively estimate all involved quantities. Using the joint 

distribution described above this is made possible. In the next subsection it will be analyzed 

how this information can be derived, by making use of Bayesian logic. 

2.2 Prediction 
The first step is to update information about the past by using the dynamic model of the 

system, in order to obtain a predictive belief about the current state of the system. After 

applying the Bayes rule and marginalizing irrelevant variables, the following equation is 

acquired. 

 
1

1 1 1 1 1
( | , ) ( | , ) ( | , )

t

t t t t t t t t t
s

p s Z U p s s u p s Z U
−

− − − − −∝∑  (4) 

More details on the mathematical derivation can be found in (Lidoris et al., 2008). The first 

term of the sum is the system state transition model and the second one is the prior belief 

about the state of the system. Prediction results from a weighted sum over state variables 

that have been estimated at the previous time step. 

2.3 Correction step 
The next step of the estimation procedure is the correction step. Current observations are 

used to correct the predictive belief about the state of the system, resulting to the posterior 

belief p(st|Zt,Ut). During this step, all information available to the system is fused. 

 ∑
−

−∝

1

),|()|(),|( 1

ts

tttttttt UZspszpUZsp  (5) 

 

It can be seen from (5) that the sensor model is used to update the prediction with 

observations. The behaviour of the robot is assumed not to have an influence on the 

correction step. The effect of the decision the robot will take at the current time step about its 

behaviour, will be reflected in the control measurements that are going to be received at the 

next time step. Therefore the behaviour and behaviour trigger variables have been 

integrated out of (5). 

2.4 Estimation of behaviour probabilities 
Finally, the behaviour of the system needs to be selected by using the estimation about the 

state of the system and current observations. That includes calculating the probabilities over 

the whole set of behaviour variables, p(bt|St, Ct, Zt, Ut) for the current time step. The same 

inference rules can be used as before, resulting to the following equation 

 ∑ −−∝

ts

tttttttttttttt UZspscbbpszpUZCSbp ),|(),,|()|(),,|( 11  (6) 

By placing (5) in (6) an expression is acquired which contains the estimated posterior. 

www.intechopen.com



 Advances in Greedy Algorithms 

 

90 

 ∑ −∝

ts

tttttttttttt UZspscbbpUZCSbp ),|(),,|(),,|( 1  (7) 

As mentioned previously, system behaviours are triggered by processed perceptual events. 
These events naturally depend on the state of the system and its environment. Therefore the 
behaviour selection model p(bt|bt-1,ct,st) can be further analyzed to 

 )|(),|(),,|( 11 ttttttttt scpcbbpscbbp −− =  (8) 

and replacing equation (8) to (7) leads to  

 ∑ −∝

ts

ttttttttttttt UZspscpcbbpUZCSbp ),|()|(),|(),,|( 1  (9) 

The behaviour model is weighted by the estimated posterior distribution p(st| Zt, Ut) for all 

possible values of the state variables and the probability of the behaviour triggers. The term 

p(bt|bt-1,ct) expresses the degree of belief that given the current perceptual input the current 

behaviour will lead to the achievement of the system tasks. This probability can be pre-

specified by the system designer or can be acquired by learning. 

3. Uncertainty representation and estimation in unstructured dynamic 
environments 

In the previous section a general Bayesian framework for state estimation and decision 

making has been introduced. In order to be able to use it and create an autonomous robotic 

system, the related probability distributions need to be estimated. How this can be made 

possible, is discussed in this section. The structure of the proposed approach is presented in 

Fig. 2. Whenever new control (e.g. odometry readings) and sensor measurements (e.g. laser 

range measurements) become available to the robot, they are provided as input to a particle 

filter based SLAM algorithm. The result is an initial map of the environment and an estimate 

of the trajectory of the robot. This information is used by a tracking algorithm to obtain a 

model of the dynamic part of the environment. An estimate of the position and velocity of 

all moving entities in the environment is acquired, conditioned on the initial map and 

position of the robot. All this information constitutes the environment model and the 

estimated state vector st. A behaviour selection module makes use of these estimates to infer 

behaviour triggering events ct and select the behaviour bt of the robot. According to the 

selected behaviour, a set of actuator commands is generated which drives the robot toward 

the completion of its goals. In the following subsections each of the components and 

algorithms mentioned here are going to be further analyzed. 

3.1 Simultaneous localization and mapping 
The problem of simultaneous localization and mapping is one of the fundamental problems 

in robotics and has been studied extensively over the last years. It is a complex problem 

because the robot needs a reliable map for localizing itself and for acquiring this map it 

requires an accurate estimate of its location. The most popular approach (Dissanayake et al., 

2002) is based on the Extended Kalman Filter (EKF). This approach is relatively effective 
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Fig. 2. Proposed approach for modelling dynamic environments and behaviour selection. 

 since the resulting estimated posterior is fully correlated about landmark maps and robot 
poses. Its disadvantage is that motion model and sensor noise are assumed Gaussian and it 
does not scale well to large maps, since the full correlation matrix is maintained. Another 
well known approach (Thrun et al., 2004) corrects poses based on the inverse of the 
covariance matrix, which is called information matrix and is sparse. Therefore predictions 
and updates can be made in constant time. Particle filters have been applied to solve many 
real world estimation and tracking problems (Doucet et al. 2000), (Murphy, 1999) since they 
provide the means to estimate the posterior over unobservable state variables, from sensor 
measurements. This framework has been extended, in order to approach the SLAM problem 
with landmark maps in (Montemerlo et al., 2002). In (Grisetti et al., 2005) a technique is 
introduced to improve grid-based Rao-Blackwellized SLAM. The approach described here is 
similar to this technique, with the difference that scan-matching is not performed in a per-
particle basis but only before new odometry measurements are used by the filter. 
This approach allows the approximation of arbitrary probability distributions, making it 

more robust to unpredicted events such as small collisions which often occur in challenging 

environments and cannot be modelled. Furthermore it does not rely on predefined feature 

extractors, which would assume that some structures in the environment are known. This 

allows more accurate mapping of unstructured outdoor environments. The only drawback 

is that the approximation quality depends on the number of particles used by the filter. 

More particles result to increased required computational costs. However if the appropriate 

proposal distribution is chosen, the approximation can be kept very accurate even with a 

small number of particles. In the remainder of this section the approach is briefly 

highlighted. 

The idea of Rao-Blackwellization is that it is possible to evaluate (Doucet et al.,2000) some of 
the filtering equations analytically and some others by Monte Carlo sampling. This results in 
estimators with less variance than those obtained by pure Monte Carlo sampling. 
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In the context of SLAM the posterior distribution p(Xt, m | Zt, Ut) needs to be estimated. 
Namely the map m and the trajectory Xt of the robot need to be calculated based on the 
observations Zt and the odometry measurements Ut, which are obtained by the robot and its 
sensors. 
The use of the Rao-Blackwellization technique, allows the factorization of the posterior. 

 ),|(),|(),|,( tttttttt ZXmpUZXpUZmXp =  (10) 

The posterior distribution p(Xt|Zt,Ut) can be estimated by sampling, where each particle 

represents a potential trajectory. This is the localization step. Next, the posterior p(m|Xt, Zt) 

over the map can be computed analytically as described in (Moravec, 1989) since the history 

of poses Xt is known. 

An algorithm similar to (Grisetti et al., 2005) is used to estimate the SLAM posterior. Only 
the main differences are highlighted here. Each particle i is weighted according to the 
recursive formula 
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The term p(xit|xit-1,ut-1) is an odometry-based motion model. The motion of the robot in the 

interval (t-1,t] is approximated by a rotation δrot1, a translation δtrans and a second rotation 

δrot2. All rotations and translations are corrupted by noise. An arbitrary error distribution can 

be used to model odometric noise, since particle filters do not require specific assumptions 

about the noise distribution. 

The likelihood of an observation given a global map and a position estimate is denoted as 
p(zt|mt-1,xit). It can be evaluated for each particle by using the particle map constructed so 
far and map correlation. More specifically a local map, milocal(xit, zt) is created for each 
particle i. The correlation to the most actual particle map, mit-1, is evaluated as follows: 
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Where im  is the average map value at the overlap between the two maps. The observation 

likelihood is proportional to the correlation value. 
An important issue for the performance and the effectiveness of the algorithm is the choice 
of the proposal distribution. Typically the motion model is used, because it is easy to 
compute. In this work, the basis for the proposal distribution is provided by the odometry 
motion model, but is combined with a scan alignment that integrates the newest sensor 
measurements and improves the likelihood of the sampled particles. More specifically, new 
odometry measurements are corrected based on the current laser data and the global map, 
before being used by the motion model, through scan matching. This way information from 
the more accurate range sensors is incorporated. It must be noted here, that this is not 
performed on a per particle basis like in other approaches (Grisetti et al. 2005), since no great 
improvement in the accuracy of the estimator has been observed, compared with the higher 
computational costs involved. 
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3.2 Conditional particle filters for tracking 
The methods mentioned above focus on the aspects of state estimation, belief representation 

and belief update in static environments. More specifically, an estimate of the most likely 

trajectory Xt of the robot, relative to an estimated static map, mt, is provided. To estimate the 

full state of the environment as defined by (1), the position of moving objects needs also to 

be estimated. 

Until now, no complete Bayesian framework exists for the dynamic environment mapping 

problem. One of the first attempts was introduced in (Wang et al., 2003). However it is based 

on the restrictive assumption of independence between static and dynamic elements in the 

environment. In (Haehnel et al., 2003) scan registration techniques are used to match raw 

measurement data to estimated occupancy grids in order to solve the data association 

problem and the Expectation-Maximization algorithm is used to create a map of the 

environment. A drawback is that the number of dynamic objects must be known in advance. 

Particle filters have been used to track the state of moving objects in (Montemerlo et al., 

2002). However the static environment is assumed known. Particle filters have also been 

used in (Miller & Campbell, 2007) to solve the data association problem for mapping but 

without considering robot localization. 

A similar approach as in (Montemerlo et al., 2002) is used here, extended to handle 

unknown static maps. The full state vector can then be estimated by conditioning the 

positions of moving objects on the robot trajectory estimate provided by tackling the 

SLAM problem. 

 
1

( | , ) ( , | , ) ( | , , )
M

m

t t t t t t t t t t t
m

p S Z U p X m Z U p Y X Z U
=

= ∏  (13) 

 

Each conditional distribution p(Ytm|Xt,Zt,Ut) is also represented by a set of particles. The 

particles are sampled from the motion model of the moving object. Several dynamics 

models exist, including constant velocity, constant acceleration and more complicated 

switching ones (Wang et al., 2003). Since people move with relatively low speeds and their 

motion can become very unpredictable, a Brownian motion model is an acceptable 

approximation. 

Every particle of each particle filter, ym,it, is weighted according to the measurement 

likelihood. 

 ),|( ,, im
ttt

im
t yxzpw =  (14) 

In order to calculate the likelihood, each sensor reading needs to be associated to a specific 

moving object. However, measurements can be erroneous, objects might be occluded and 

the environment model might not be accurate, therefore leading to false associations. 

Persons are modelled as cylindrical structures during data association of the 2D laser data. 

The radius of the cylinder has been chosen experimentally. A laser measurement is 

associated with a person if its distance from a person position estimate is smaller than a 

maximum gating distance. In this case it is additionally weighted according to its distance 

from the position estimate. Therefore if the gating regions of two persons overlap, the 

person closest to a laser point is associated with it. 
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4. Robot behaviour description 

In this section the application of the proposed general Bayesian framework to the 

Autonomous City Explorer (ACE) robot is going to be presented. The set of available 

behaviours consists of Explore, Approach, Reach Goal and Loop Closing. A detailed description 

of each one of them follows. 

4.1 Explore 
The ability to explore its environment in order to find people to interact with and increase 
its map knowledge, is fundamental for the robot. The robot performs greedy optimization in 
order to choose its next goal so that a trade-off is achieved between maximizing its 
information gain and minimizing traveling costs. Given an occupancy grid map, frontier 
regions between known and unknown areas are identified, as described in (Yamauchi, 
1998). The subset of cells of the grid m that belong to a frontier region f, are denoted by mf. 
The expected information gain I(mf,xt) acquired by reaching a frontier region from the 
current robot position xt can be calculated as in (Stachniss et al., 2005).. The traveling costs 
associated with reaching a frontier region, cost(mf,xt), are proportional to the path length to 
it. In order to achieve the aforementioned trade-off, the autonomous explorer chooses its 
next goal, on the frontier region that maximizes the following objective function 

 )},(cos),({maxarg*
tftfmf xmtxmIm

f
α−= . (15) 

The parameter α is used to define how much the path cost should influence the exploration 
process and it can be chosen experimentally. 

4.2 Approach 
In order to interact with a person the robot needs first to approach her. This behaviour 
generates a target within a safety distance to a person. The person nearest to the robot is 
chosen in case more than one person is present simultaneously.  Estimated positions from 
the tracker are used. 

4.3 Reach goal 
If the robot has been instructed a target through interaction, it needs to navigate safely to the 

specified target. An A* based planner is utilized that takes into account the motions of 

moving objects. A more detailed description is given in (Rohrmuller et al., 2007). 

4.4 Loop closing 
As the robot moves, the uncertainty about its position and its map grows constantly, 
therefore increasing the risk of failure. It is necessary for the robot to find opportunities to 
close a loop, therefore correcting its estimates. A way to acquire an estimate for the pose 
uncertainty H(p(Xt|Zt,Ut)) of the robot, is to average over the uncertainty of the different 
poses along the path as in (Stachniss et al., 2005). 
Since the distribution of the particle set can be arbitrary, it is not possible to efficiently 

calculate its entropy. A Gaussian approximation N(μt, Σt) can be computed based on the 

weighted samples with covariance Σt. The entropy can then be calculated only as a function 

of the covariance matrix. Such an approximation is rather conservative but absolutely 
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eligible, since a Gaussian probability distribution has higher entropy than any other 

distribution with the same variance. 

In order to detect and close a loop, an approach similar to the one described in (Stachniss et 
al., 2004) is chosen. Together with the occupancy grid map a topological map is 
simultaneously created. This topological map consists of nodes, which represent positions 
visited by the robot. Each of these nodes contains visibility information between itself and 
all other nodes, derived from the associated occupancy grid. For each node the uncertainty 
of the robot Hinit(p(xt | zt, ut)) when it entered the node for the first time is also saved. To 
determine whether or not the robot should activate the loop-closing behaviour the system 
monitors the uncertainty H(p(xt | zt, ut)) about the pose of the robot at the current time step. 
The necessary condition for starting the loop-closing process is that the geometric distance 
of the robot and a node in the map is small, while the graph distance in the topological map 
is large. If such a situation is detected the node is called entry point. Then the robot checks 
the difference between its initial uncertainty at the entry point and its current uncertainty, 
H(p(xt | zt, ut) )- Hinit(p(xt | zt, ut)). If this difference exceeds a threshold then the loop is 
closed. This is done by driving the robot to the nearest neighbour nodes of the entry point in 
the topological map. During this process the pose uncertainty of the vehicle typically 
decreases, because the robot is able to localize itself in the map built so far and unlikely 
particles vanish. 

5. Behaviour selection 

As seen in the previous section, each of the behaviours available to the system has an 

objective which contributes to the achievement of the overall system goal. The robot needs 

to efficiently combine these behaviours by deciding when to activate which one and for how 

long. The proposed behaviour selection scheme is based on (9). This equation can be further 

analyzed by using the results of the state estimation process as summarized in (13). 
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It must be noted that the summation is done only over the state of the robot, xt, since both 
the states of the moving objects and the map are conditioned on it. Particle filters have been 
used to approximate the posterior distributions p(xt,mt|Zt ,Ut) and p(ytm|xt,Zt,Ut). Therefore 
they can be approximated according to their particle weights (Arulampalam et al., 2002), 
given in (11) and (14), leading to the following equation: 
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δ is the Dirac delta function, N is the number of particles used by the Rao-Blackwellized 
SLAM algorithm, M is the number of persons tracked by the robot and K is the number of 
particles of each conditional particle filter. After the probability of each behaviour is 
calculated, the behaviour with the maximum posterior probability is chosen. 
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Greedy optimization of task completion probability is performed. The order of calculation 
for this equation is O(NMK), which is significantly lower than the complexity of existing 
methods for action selection under uncertainty, like POMDPs, that typically have 
complexity exponential to the number of states. This allows the system to take decisions 
more often, in order to cope with fast changes and the occurrence of unpredictable events in 
the environment. The behaviour selection scheme is described in the next section in more 
detail. 

5.1 Behaviour selection model 
The term p(bt|bt-1,ct)p(ct|xt) in equation (18) is the behaviour model and it plays a crucial role 
in the optimality of the  behaviour selection. It depends on the previous behaviour of the 
robot, the perceptual events that activate system behaviours and the estimated system state. 
This model supplies an expert opinion on the applicability of each behaviour at the present 
situation, indicating if it is completely forbidden, rather unwise, or recommended. This is 
done according to the information available to the system. 
The results of state estimation are used to evaluate if behaviour triggering events have 
occurred and how certain their existence is. During this step the term p(ct|xt) in (16) is 
calculated. Triggers and behaviours can have high, medium, low probability or be inactive. 
These values are predefined in this implementation and encode the goals of the system. 
They can also be acquired by letting a human operator decide about which behaviour the 
robot should choose, according to the situation. These decisions are then modelled to 
probability distributions. Bayesian decision theory and decision modelling provide the 
theoretical background to achieve that. Interesting works in this direction are (Ahmed & 
Campbell, 2008) and (Hy et al., 2004). 
Three triggers exist that are used to calculate the probabilities of the behaviour model. These 
are: 

• The existence of a person in the vicinity of the robot denoted by person. If a person has 
been detected then this trigger is activated. Its probability, p(person|xt), increases as the 
robot comes closer to a person. 

• The existence of a goal for the robot to reach, which is given through interaction with 
people, denoted by goal. The probability p(goal|xt) increases as the distance of the given 
target from the current most likely, estimated robot position decreases. 

• The existence of a loop closing opportunity, loop. It depends as explained in Section 4.4 
on the existence of an entry point for loop closing and the difference between current 
position uncertainty and the initial position uncertainty at the entry point. The 
probability p(loop|st) increases as the difference in uncertainty from the current position 
to the initial uncertainty at the entry point position becomes larger. 

It remains now to explain how p(bt|bt-1,ct) is constructed. At each time step the robot knows its 
previous behaviour bt-1 and the triggers that are active. Using Table 1, behaviours are proposed 
as recommended and are assigned high probability. The rest of the behaviours that are 
possible receive lower recommendations and some are prohibited (denoted by "-" in the table). 
For example, if the previous behaviour of the robot, bt-1, was Loop Closing, the trigger loop has 
probability low and the robot has no goal assigned, then the most recommended behaviour for 
the current time step, bt, will be Explore. No other behaviour is possible. 
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bt-1 

bt 

Explore Loop 

Closing 

Approach Reach 

Goal 

Explore ¬person p(loop|xt)<medium 

& ¬goal 

¬person || 

p(person|xt)<medium

p(goal|xt)<medium 

Loop Closing p(loop|xt)>medium p(loop|xt)>low - p(loop|xt)>medium 

Approach person - p(person|xt)<high ¬goal & person 

Reach Goal - p(loop|xt)<medium 

& goal 

Goal Goal 

Table I. Behaviour Selection Model 

A recommended behaviour is assigned high probability value and all other possible 
behaviours a low value. Finally values are normalized. If only one behaviour is possible as in 
the example given, then it receives a probability of 1. This way, p(bt|bt-1,ct,st) is acquired and 
is used to calculate the behaviour that maximizes (15).  

6. Results 

In order to evaluate the performance of the proposed behaviour selection mechanism, 
experiments were carried out. The robot was called to find its way to a given room of the 
third floor of our institute, without any prior knowledge of the environment. The floor plan 
as well as the starting position of the robot and the given target room is shown in Fig. 3. The 
robot must interact with people in order to ask for directions.  
 

 

Fig. 3. Ground truth map of the third floor of the Institute of Automatic Control 
Engineering, Munich is illustrated. The robot starts without map knowledge and is required 
to reach the depicted final target location, which is acquired by interaction with humans. 

All algorithms described in this paper have been implemented in C++ and have been tested 
on-line on the robot, using an AMD Athlon Dual Core 3800+ processor and 4GB of RAM. 
For the Rao-Blackwellized particle filter 200 particles were used and the conditional particle 
filters for people tracking used 30 particles each. Behaviour selection was performed at 1Hz. 
The SLAM and tracking module was running at 2Hz and the path planner at 1Hz. It has 
been found experimentally that at this frequency the tracker can track up to 15 moving 
objects. 
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In Fig. 4 the decisions taken by the robot in different situations during the experiment are 
illustrated. At first the robot decides to explore in order to acquire information about where 
the target room is. Two persons are detected and the robot decides to approach the one 
nearest to it in order to interact with. A goal position is acquired in the form of a waypoint 
"10m in the x direction and 3m in the y direction". The robot decides to reach this goal. After 
the intermediate goal is reached, a decision is made to explore in order to acquire new 
direction instructions. Another person is approached and new instructions are given which 
this time will lead to the final goal. As the robot moves its uncertainty grows. At some point 
an opportunity to close a loop is recognized. Therefore the robot decides to change its 
behaviour to Loop Closing, in order to reduce its uncertainty. After the loop is closed, the 
robot reaches its final goal. 
 

 

Fig. 4. The robot is called to find its way to a given goal, without prior map knowledge. All 
information is extracted by interaction. The decisions of the behaviour selection scheme are 
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shown in different situations. (a) The robot starts without any prior map information and 
decides to explore in order to find persons to interact with. (b) Two persons are found and 
the robot chooses the one closest to it in order to interact. (c) A goal was given to the robot 
by the first interaction and was reached by the robot. Now it chooses to explore in order to 
find a person to acquire a new target. (d) The robot has a target but its position uncertainty 
is high. It detects an opportunity to close a loop and decides to do so. (e) The robot reaches 
its final goal. 

By taking uncertainty into account in action selection, the robot can anticipate unforeseen 

situations and increase the likelihood of achieving its goal. In Fig. 5 the overall uncertainty 

of the robot during this experiment is illustrated by the red line. The uncertainty of the robot 

trajectory when it reaches the target directly, without being controlled by the proposed 

scheme, is illustrated by the blue dashed line. It can be seen that at the early phases of the 

experiment the uncertainty of the system is larger with the proposed scheme, since the robot 

drives more complex trajectories in order to approach people, but it is not critical. At some 

point it decides to close the loop and its uncertainty is reduced notably. When it reaches its 

final goal the overall system uncertainty is much lower than without behaviour selection. 

Lower uncertainty is equivalent to safer navigation and increased task completion 

likelihood. 

The presented system is capable of deciding when it should pursuit its given target, in 

which situation interaction with humans is needed in order to acquire new target 

information and finally when its overall uncertainty has reached a critical point. In this last 

case it tries to reduce it by taking actions that improve its state estimates. 

 
 

 
 

Fig. 5. Trajectory uncertainty as it evolves with the time. With red the uncertainty of the 
robot is illustrated, while it is controlled with the proposed behaviour selection scheme. The 
uncertainty of the robot trajectory when it reaches the target directly, without being 
controlled by the proposed scheme, is illustrated with blue dashed line. 
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7. Conclusion 

In this Chapter a probabilistic framework has been introduced, that enables recursive 
estimation of a dynamic environment model and action selection based on these uncertain 
estimates. The proposed approach addresses two of the main open challenges of action 
selection. Uncertain knowledge is expressed by probability distributions and is utilized as a 
basis for all decisions taken from the system. At the same time the complexity of the 
proposed action selection mechanism is kept lower than of most state-of-the-art algorithms.  
The probability distributions of all associated uncertain quantities are approximated 
effectively and no restrictive assumptions are made regarding their form. More specifically, 
a Rao-Blackwellized particle filter (RBPF) has been deployed to address the SLAM problem 
and conditional particle filters have been modified to be utilized with incrementally 
constructed maps for tracking people in the vicinity of the robot. This way a complete model 
of dynamic, populated environments is provided. The computational costs depend only on 
the required approximation accuracy and can be defined according to the requirements of 
the application domain.  
The estimated uncertain quantities are used for coordinating the behaviours of the robot so 
that uncertainty is kept under control and the likelihood of achieving its goals is increased. 
A greedy optimization algorithm is used for behaviour selection, which is computationally 
inexpensive. Therefore the robot can decide quickly in order to cope with its rapidly 
changing environment. The decisions taken may not be optimal in the sense of POMDP 
policies, but are always responding to the current state of the environment and are goal 
oriented. The goals of the system are expressed by the behaviour selection model. 
Results from the implementation of all proposed algorithms on the ACE robotic platform 
demonstrate the efficiency of the approach. The robot can decide when to pursue its given 
goal or when to interact with people in order to get more target information. If its 
uncertainty becomes large, it takes actions that improve its state estimates. It is shown that 
overall system uncertainty is kept low even if the robot is called to complete complex tasks.  
Human decision making capabilities are remarkable. Therefore, future work will focus on 
learning the behaviour selection model from data provided by a human expert. This way the 
quality of the decisions taken by the system can be improved. Formal evaluation criteria for 
action selection mechanisms need to be developed. This is challenging since such criteria 
must consider many conflicting requirements and since in almost every study different 
physical robots are used in variable experimental conditions. Finally, more experiments are 
going to be conducted in unstructured, outdoor, dynamic environments. 
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