2,276 research outputs found

    Algorithms and implementation of functional dependency discovery in XML : a thesis presented in partial fulfilment of the requirements for the degree of Master of Information Sciences in Information Systems at Massey University

    Get PDF
    1.1 Background Following the advent of the web, there has been a great demand for data interchange between applications using internet infrastructure. XML (extensible Markup Language) provides a structured representation of data empowered by broad adoption and easy deployment. As a subset of SGML (Standard Generalized Markup Language), XML has been standardized by the World Wide Web Consortium (W3C) [Bray et al., 2004], XML is becoming the prevalent data exchange format on the World Wide Web and increasingly significant in storing semi-structured data. After its initial release in 1996, it has evolved and been applied extensively in all fields where the exchange of structured documents in electronic form is required. As with the growing popularity of XML, the issue of functional dependency in XML has recently received well deserved attention. The driving force for the study of dependencies in XML is it is as crucial to XML schema design, as to relational database(RDB) design [Abiteboul et al., 1995]

    Schema-Guided Induction of Monadic Queries

    Get PDF
    International audienceThe induction of monadic node selecting queries from partially annotated XML-trees is a key task in Web information extraction. We show how to integrate schema guidance into an RPNI-based learning algorithm, in which monadic queries are represented by pruning node selecting tree transducers. We present experimental results on schema guidance by the DTD of HTML

    Learning n-ary Node Selecting Tree Transducers from Completely Annotated Examples

    Get PDF
    International audienceWe present the first algorithm for learning n-ary node selection queries in trees from completely annotated examples by methods of grammatical inference. We propose to represent n-ary queries by deterministic n-ary node selecting tree transducers (NSTTs), that are known to capture the class of MSO-definable n-ary queries. Despite of this highly expressive, we show that n-aryy queries, selecting a polynomially bounded number of tuples per tree, represented by deterministic NSTTs can be learned from polynomial time and data while allowing for efficient enumeration of query answers. An application to wrapper induction in Web information extraction yields encouraging results

    Web Data Extraction, Applications and Techniques: A Survey

    Full text link
    Web Data Extraction is an important problem that has been studied by means of different scientific tools and in a broad range of applications. Many approaches to extracting data from the Web have been designed to solve specific problems and operate in ad-hoc domains. Other approaches, instead, heavily reuse techniques and algorithms developed in the field of Information Extraction. This survey aims at providing a structured and comprehensive overview of the literature in the field of Web Data Extraction. We provided a simple classification framework in which existing Web Data Extraction applications are grouped into two main classes, namely applications at the Enterprise level and at the Social Web level. At the Enterprise level, Web Data Extraction techniques emerge as a key tool to perform data analysis in Business and Competitive Intelligence systems as well as for business process re-engineering. At the Social Web level, Web Data Extraction techniques allow to gather a large amount of structured data continuously generated and disseminated by Web 2.0, Social Media and Online Social Network users and this offers unprecedented opportunities to analyze human behavior at a very large scale. We discuss also the potential of cross-fertilization, i.e., on the possibility of re-using Web Data Extraction techniques originally designed to work in a given domain, in other domains.Comment: Knowledge-based System

    A Novel Approach to Web Information Extraction

    Get PDF
    Business Intelligence requires the acquisition and aggrega tion of key pieces of knowledge from multiple sources in order to provide valuable information to customers. The Web is the largest source of infor mation nowadays. Unfortunately, the information it provides is available in semi-structured human-friendly formats, which makes it difficult to be processed by automated business processes. Classical propositional and ILP machine-learning techniques have been applied for this pur pose. However, the former have not enough expressive power, whereas the latter are more expressive but intractable with large datasets. Propo sitionalisation was devised as a means to provide propositional techniques with more expressive power, enabling them to exploit structural infor mation in a propositional way that allows them to be efficient. In this paper, we present a proposal to extract information from semi-structured web documents that uses this approach. It leverages a classical propo sitional machine learning technique and enhances it with the ability to learn from an unbounded context, which helps increase its precision and recall. Our experiments prove that our proposal outperforms other state of-art techniques in the literature.Ministerio de Educación y Ciencia TIN2007-64119Junta de Andalucía P07-TIC-2602Junta de Andalucía P08-TIC-4100Ministerio de Ciencia e Innovación TIN2008-04718-EMinisterio de Ciencia e Innovación TIN2010-21744Ministerio de Economía, Industria y Competitividad TIN2010-09809-EMinisterio de Ciencia e Innovación TIN2010-10811-EMinisterio de Ciencia e Innovación TIN2010-09988-EMinisterio de Economía y Competitividad TIN2011-15497-EMinisterio de Economía y Competitividad TIN2013-40848-
    corecore