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Abstract. Business Intelligence requires the acquisition and aggrega-
tion of key pieces of knowledge from multiple sources in order to provide
valuable information to customers. The Web is the largest source of infor-
mation nowadays. Unfortunately, the information it provides is available
in semi-structured human-friendly formats, which makes it difficult to
be processed by automated business processes. Classical propositional
and ILP machine-learning techniques have been applied for this pur-
pose. However, the former have not enough expressive power, whereas
the latter are more expressive but intractable with large datasets. Propo-
sitionalisation was devised as a means to provide propositional techniques
with more expressive power, enabling them to exploit structural infor-
mation in a propositional way that allows them to be efficient. In this
paper, we present a proposal to extract information from semi-structured
web documents that uses this approach. It leverages a classical propo-
sitional machine learning technique and enhances it with the ability to
learn from an unbounded context, which helps increase its precision and
recall. Our experiments prove that our proposal outperforms other state-
of-art techniques in the literature.

1 Introduction

Business Intelligence can be defined as the process of finding, gathering, aggre-
gating, and analysing information for decision making [15]. The World Wide 
Web is an increasingly important data source for business decision making; how-
ever, extracting information from the Web remains one of the challenging issues 
related to Web business intelligence applications [6]. Web business intelligence 
is an emerging type of decision support software that “leverages the unprece-
dented content on the Web to extract actionable knowledge in an organizational 
setting” according to [20].

Web business intelligence applications should have access to structured data 
that could be easily extracted and incorporated into decision-making applica-
tions. However, the Web provides textual information in semi-structured for-
mats, but those formats are intended for human consumption, which makes 
them difficult to be processed automatically for business purposes. Web infor-
mation extractors are tools designed to extract the information of interest from 
such documents in a structured format.



We focus on supervised rule-based information extractors, which are general-
purpose algorithms that are configured by means of extraction rules that are
learnt from labelled examples that must be provided by a user. Such rules are
actually classifiers, since they get a piece of text or a DOM node as input and
predict a user-defined class for it.

Unfortunately, many existing proposals build on specific-purpose machine-
learning techniques that were specifically tailored to the problem of extract-
ing web information. This makes it difficult to adapt them as the Web evolves
because the features of the documents on which they rely and the techniques
used to analyse them are built into the proposals.

Machine-learning techniques that come from the field of concept learning
have proven to be the only approaches that can scale along a number of distinct
sources and can infer knowledge in a general way. There exists two approaches:
relational and propositional learning. The former attempts to learn first-order
rules that generalise a set of examples by using rich representations that allow to
exploit both attributive features of the examples and their relationships, whereas
the latter only use attributive features. Therefore, relational systems are prefer-
able since they allow to learn more expressive rules than their counterparts [9].
Unfortunately, a major drawback of relational systems is the expensive learning
process, which becomes intractable with large datasets [1].

Propositionalisation [11] is a different way to conduct relational learning effi-
ciently. It maps a relational representation onto features in propositional form,
that is, in an attribute-value representation that is amenable for conventional
data mining systems. Although propositionalisation has some inherent limita-
tions, such as the inability to learn recurrent definitions, there are several reasons
for using this process, the most important ones are: it deals with the combina-
torial explosion of the number of potential features; it can leverage the existing
knowledge regarding propositionalisation; and, finally, our results prove that our
approach is very competitive in terms of effectiveness and efficiency since it out-
performs the results obtained by classical and new proposals in the literature for
web information extraction.

To the best of our knowledge, no propositionalisation system has been devel-
oped in the field of web information extraction. In this paper, we present the
first such proposal in the literature. We have performed an extensive experimen-
tation that proves that it outperforms other state-of-the-art proposals, which
proves that it is very promising.

The intuitive idea behind our approach, named Yebra, is the following: it
relies on a training set that consists of a set of nodes to extract and a subset
of nodes that should not be extracted. Then, it learns the best possible rules
by using only the attributive features of the nodes in the training set. If the
rules thus learnt are perfect, the process finishes. Otherwise, Yebra tries to find
better rules by combining attributive features of the nodes in the training set
with attributive features of their neighbour nodes. Neighbour nodes are reached
by applying relational features such as next sibling or parent, amongst others.
At each step and whilst no perfect rules are found, the system continues com-
bining attributive features from the previous step with attributive features of
increasingly distant neighbour nodes.



Algorithm 1. Yebra’s main procedure.
1: procedure Yebra(dataSet, relations)
2: trainingSet ← createTrainingSet(dataSet)
3: testSet ← dataSet
4: resultRule ← learnRule(trainingSet, testSet)
5: resultBindings ← {(node, null, null)}
6: expansion ← resultRule
7: while ¬isPerfect(resultRule, testSet) and expansion �= null do
8: (expansion, resultBindings, trainingSet, testSet) ←

findExpansion(resultRule, resultBindings, trainingSet,
testSet, dataSet, relations)

9: if expansion �= null then
10: resultRule ← expansion
11: end if
12: end while
13: return (resultRule, resultBindings)
14: end procedure

The rest of the paper is organised as follows: Sect. 2 explains our proposal;
then the experimental results are detailed in Sect. 3; Sect. 4 presents the related
work; Sect. 5 concludes the paper.

2 Description of Our Proposal

In this section, we first describe our training and test sets, then report on Yebra’s
main algorithm, and then on the algorithms to learn a rule and to expand it.

2.1 The Training Set and the Test Set

The training set is a bag of vectors. Each vector refers to a node in the DOM
tree, for which it holds its set of attributive features (Aij) and its class (Ci). An
initial training set is created by the createTrainingSet function (Line 2), which
works as follows: first, it adds the positive examples to the training set. Positive
examples are those vectors whose class is not null. Then, it adds some negatives
examples (not all) to the training set. The negative examples are the ones whose
class is null. The negative examples added to the training set are computed
amongst the negative examples that are the nearest neighbours to the positive
examples that belong to the dataset. That is, for every positive example, Yebra
finds its k nearest neighbours and adds them to the training set. Note that this
process helps Yebra to better discover the frontier amongst positive and negative
examples. Experimentally, we have found out that setting k to three is a good
trade off between efficiency and effectiveness.

2.2 The Main Procedure

Algorithm 1 presents the main procedure in Yebra. The first step is to find the
best rule using attributive features only (Lines 2–4). Then, it iterates until the
rule being learnt is perfect or there are not any further expansions (Line 7). An
expansion is a new rule learnt by adding extra information to the training set.



The extra information is added as new components to the vectors of the training
set (and also the test set). The new components are the attributive features of
those nodes that are reachable by applying a relational feature or a combination
of relational features. Thus, the existence of an expansion means that Yebra has
found a rule that improves on the previous one. But it has to check if this new
rule can also be improved (that is, if a new, better classifier can be learnt by
adding more features of the neighbours to the training set). If the rule cannot
be improved, then there are no expansions, which means that Yebra has found
the best possible rule. Finally, note that in each iteration resultRule contains the
best rule found so far. If it is not perfect, but can be improved, Yebra continues
with the next iteration. If it is not perfect and cannot be improved, Yebra stops
and returns it.

2.3 Learning a Rule

Once the initial training and test sets are created, Yebra has to learn the best
possible rule using procedure learnRule (Algorithm 2). It works on a training
set and a test set and returns a rule. The intuitive idea behind this procedure
is the following: first, it learns a rule, if the rule is perfect, then the procedure
stops and returns that rule; otherwise, the training set is modified by adding
the misclassified examples, and the process is repeated until the rule is perfect
or the rule does not improve on the previous one. That is, the training set is
enriched iteratively with misclassified examples, which helps learn better rules.

The procedure starts by balancing the training set (Line 2). This step is
necessary because function learnClassifier (Line 3) uses a PART learner [21],
which does not have good results with unbalanced datasets. The balance function
computes the number of elements of the majority class, and it then replicates
as many examples of each class as needed to obtain a training set that has
approximately the same number of examples of every class.

After that, it learns a PART classifier from the balanced training set (Line 3).
Then, the set of misclassified examples is computed using this classifier and the
test set. Note that although the classifier has been learnt from the input training
set (which is a subset of the nodes in the original dataset), the misclassified
examples are computed from the test set (which includes all of the nodes in the
original dataset).

Then, the procedure iterates until the rule is perfect (the misclassified set is
empty) or the new rule does not improve on the old rule. In each iteration:

1. A new training set is computed. It is the union of the vectors included in
the previous training set and the vectors related to the nodes that have been
misclassified.

2. A new classifier is learnt from the new training set.
3. A new set of misclassified examples is computed for the new classifier.

If the new classifier is perfect, the procedure ends and returns the new classifier.
If the new classifier is not perfect and does not improve on the old classifier, the



Algorithm 2. Procedure learnRule

1: procedure learnRule(trainingSet, testSet)
2: oldTrainingSet ← balance(trainingSet)
3: oldRule ← learnClassifier(oldTrainingSet)
4: oldMisclassified ← findMisclassified(oldRule, testSet)
5: isPerfect ← oldMisclassified = ∅
6: improves ← true
7: while ¬isPerfect and improves do
8: newTrainingSet ← balance(oldTrainingSet ∪ oldMisclassified)
9: newRule ← learnClassifier(newTrainingSet)

10: newMisclassified ← findMisclassified(newRule, testSet)
11: isPerfect ← oldMisclassified = ∅
12: improves ←| newMisclassified |<| oldMisclassified |
13: if isPerfect or improves then
14: oldTrainingSet ← newTrainingSet
15: oldRule ← newRule
16: oldMisclassified ← newMisclassified
17: end if
18: end while
19: result ← oldRule
20: return result
21: end procedure

procedure ends and returns the old classifier. Finally, if the new classifier is not
perfect but improves on the old one, the process is repeated to see if the new
classifier can be improved. (Rule R1 improves on rule R2 if R1 misclassifies less
examples than R2.)

2.4 Expanding a Rule

Once Yebra has learnt the best rule using only attributive features, it tries to
improve it by adding extra information to the training set. The extra information
is obtained by navigating trough the DOM tree by means of relational features,
in such a way that if Ni is a vector belonging to the training set with components
(Ai1, Ai2,...,Ain,Ci), and Nj is a vector belonging to the dataset with components
(Aj1, Aj2,...,Ajn,Cj), and Rp is a relational feature such that Nj = Rp(Ni), then
an expansion of Ni using Rp is the vector (Ai1, Ai2,...,Ain,Aj1, Aj2,...,Ajn,Ci).

To deal with expansions Yebra relies on so-called bindings. A binding is a
triplet (target, relation, source) in which target and source are variable names,
and relation refers to a relational feature. We can think of a binding as an
expression similar to target ← relation(source), that is, a binding maps a source
node onto a target node using a relational feature.

The procedure responsible for expanding the rule, and as a consequence, the
training and test sets, is findExpansion (Algorithm 3).

findExpansion works on a rule, a set of bindings, the training set, the test
set, the original dataset, and a set of relational features. If findExpansion



Algorithm 3. Procedure findExpansion
1: procedure findExpansion(rule, bindings, trainingSet, testSet, dataSet, relations)
2: resultRule ← null
3: resultBindings ← null
4: resultTrainingSet ← null
5: resultTestSet ← null
6: for all binding b in bindings while ¬isPerfect(resultRule, testSet) do
7: for all relation r in relations while ¬isPerfect(resultRule, testSet) do
8: newBinding ← (freshV ariable(), r, target(b))
9: newTrainingSet ← expand(trainingSet, newBinding, dataset, relations)
10: newTestSet ← expand(testSet, newBinding, dataset, relations)
11: newRule ← learnRule(newTrainingSet, newTestSet)
12: if gain(rule, testSet, newRule, newTestSet) >

gain(rule, testSet, resultRule, resultTestSet) then
13: resultRule ← newRule
14: resultBindings ← bindings ∪ {newBinding}
15: resultTrainingSet ← newTrainingSet
16: resultTestSet ← newTestSet
17: end if
18: end for
19: end for
20: return (resultRule, resultBindings, resultTrainingSet, resultTestSet)
21: end procedure

cannot find an expansion that improves on the input rule, it returns a null
expansion; otherwise, it expands the training and test sets, the bindings, and
returns the new, improved, rule.

Yebra starts with the initial binding (node, null, null) (Algorithm 1, Line 5),
that is, the algorithm starts with a variable named node, and no relation involved.
So the first time findExpasion is executed, the set of bindings has only one
element, the initial binding.

First, findExpansion initialises with null values the variables resultRule,
resultBindings, resultTrainingSet, and resultTestSet. Note that if no expan-
sions can be found, resultRule remains with a null value. Then it iterates on
the Cartesian product of bindings and relations. For each pair:

1. It creates a new binding. The new binding is the result of applying the rela-
tional feature to that binding.

2. It expands the training set. This implies the expansion of every vector in the
training set, by applying the relation specified by the new binding.

3. It expands the test set. This implies the expansion of every vector in the test
set, by applying the relation defined in the new binding.

4. It learns a new rule with the expanded training and test sets. Note that we
are learning the best possible rule for the expanded training set.

5. It checks whether the new rule improves on the previous one. In that case, it
stores the new rule, the expanded training and test set, and the new binding.

To evaluate if the rule learnt by means of an expansion is better than the rule
obtained using another different expansion, Yebra relies on the information gain
function [14].



Thus, when the findExpansion procedure is called, the best rule obtained
by expanding the training set is computed (if there is one). After that, Yebra
calls findExpansion again to check further expansions can improve on the cur-
rent rule.

3 Experimental Analysis

To prove that our proposal is worth from a practical point of view, we have
performed a series of experiments in which we have collected the usual effec-
tiveness measures, namely: precision (P ), recall (R), and the F1 measure (F1).
We have developed a Java 1.7 implementation of Yebra and we have run it on a
four-threaded Intel Core i7 computer that ran at 2.93 GHz, had 4 GiB of RAM,
Windows 7 Pro 64-bit, Oracle’s Java Development Kit 1.7.0 02, and Weka 3.6.8.
We used a collection of 23 datasets that provides 850 web documents regarding
books, movies, conferences, cars, doctors, sports, restaurants, and so on.

The empirical comparison was performed with two classical proposals (Soft-
Mealy [7] and WIEN [12]) and three recent proposals (RoadRunner [4], FiVaT-
ech [10], and Trinity [18]). Regarding Yebra, we selected six documents from
each site to learn an extraction rule, and then validated the result using the
remaining documents; in average, we used 22.78 ± 9.87% of the datasets for
training purposes and the rest for validation purposes.

Table 1 summarises our results. A dash in a cell means that the corresponding
proposal was not able to learn a rule for a given dataset, be it because it failed to
find it, because it ran out of memory, or a bug that raised an exception. It is not
surprising at all that the recent proposals outperform the classical ones regard-
ing every effectiveness measure. Amongst the recent proposals, Trinity seems
to be the one that achieves the best effectiveness. Note, however, that Yebra
outperforms them all since it is able to induce rules that are more precise and
have better recall in general; furthermore, the standard deviation of precision
and recall is smaller, which means that our learning approach is more gener-
ally stable than the others, that is, it does not generally produce rules whose
effectiveness largely deviates from the average. These results prove that Yebra
is quite an effective approach to web information extraction.

4 Related Work

The majority of supervised techniques in the literature build on ad-hoc machine
learning algorithms that were specifically tailored to the problem of learning
extraction rules [3,16]. Most of them try to learn token or XPath patterns
that are based on token lexemes, their lexical classes, or HTML tags and their
attributes: [12] presented a pioneering technique to learn two patterns of tokens
that characterise the left and the right context of the information to extract. Hsu
and Dung [7] devised an approach that first models the structure of the informa-
tion in a set of web documents using finite automata and then learns transition
conditions. Soderland [19] presented a proposal that starts with an overly-general



Table 1. Experimental results

rule and then specialises it with patterns that match token sequences. Muslea
et al. [13] presented a proposal that builds on a hierarchical schema that models
the information in a web document; for every positive example, it attempts to
learn an automata that can recognise the sequence of tokens from the starting
of the parent example until its initial token, and an automata that recognises
the sequence of tokens from the final token until the final token of the parent
example. Sleiman and Corchuelo [17] presented the most recent proposal in this
field; they use finite automata to represent the structure of the information to
be extracted and then use neural networks to learn transition conditions.

None of the previous techniques have explored the idea of tackling informa-
tion extraction using features of the tokens or the DOM trees themselves, e.g.,
their length, their colour, their depth, the ratio of letters, and the like; neither
have they explored using features of the nodes in the neighbourhood. The only
proposals that have explored this idea rely on first-order learning procedures,
namely: SRV [5], which works on the textual view of the documents; it starts
with the most general rule and then specialises it by adding conditions so that
the rule matches as many positive examples as possible and reduces the number
of negative ones matched. Irmak and Suel [8] presented a proposal that works
on the DOM-tree view of the documents and their rules are sets of conditions
that work on XPaths; their proposal creates several sets of extraction rules that
generalise the user-annotated examples in different ways; next, the user has to



select the set of records that best suits his or her interests, and the learning
process is executed again to correct mistakes. Bădică et al. [2] presented a pro-
posal that also works on the DOM-tree view of the input documents; their rules
basically attempt to classify positive examples by means of their tags and the
tags of their neighbouring nodes; their algorithm relies on the FOIL system [14]
to learn a set of Horn clauses from a logic representation of the DOM-tree nodes
and their features.

Our contribution to the state of the art is twofold: on the one hand, we
use a propositional approach that relies on a extensive catalogue of features; on
the other hand, our propositional approach has the ability to exploit relational
features that explore an unbounded context in the neighbourhood of the DOM
tree nodes to extract. None of these approaches has been explored so far in the
literature regarding web information extraction, but our results prove that they
are very promising.

5 Conclusions

In this paper, we have presented a new approach to information extraction;
contrarily to the majority of proposals in the literature, which provide ad-hoc
algorithms, our proposal maps the problem of information extraction onto the
problem of learning from a set of vectors that represent the features computed
on a DOM tree plus a number of relations amongst them. Our empirical results
prove that our approach is very promising since it achieves better effectiveness
than other state-of-the-art proposals.
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