540 research outputs found

    Aerosol optical depth, ozone and water vapor measurements over Gadanki, a tropical station in peninsular India

    Get PDF
    This paper reports the results of a study related to the optical and physical characteristics of columnar aerosols and variation in total column ozone (TCO) and precipitable water content (PWC) over Gadanki (13.45°N, 79.18°E), a tropical station in peninsular India, for the first time, using MICROTOPS-II (Microprocessor-based Total Ozone Portable Spectrometer), comprising of both sun photometer and ozonometer. Results show wavelength dependence of AOD, having mean value of �0.4 (± 0.09) at 500 nm optical channel. Daily mean aerosol size spectra shows, most of the time, power-law distribution. However, its diurnal variations show significant changes in aerosol size spectra modulated by a combination of both power-law and bi-modal distributions. To characterize AOD, the Angstrom parameters (i.e., a and β) were used. The day-to-day variations in TCO were found to be in fair agreement with that derived from TOMS satellite data for all the experimental days, having mean observed value of ~253 (± 8) DU over the station. Interestingly, an inverse relationship between TCO and AOD or PWC was observed over the station, on some times of the day, which could be attributed to the mixing of significant fraction of ozone with aerosol and water vapor-rich air mass. However, a significant positive correlation was observed between AOD and PWC

    Comparison of Scanning LiDAR with Other Remote Sensing Measurements and Transport Model Predictions for a Saharan Dust Case

    Get PDF
    The evolution and the properties of a Saharan dust plume were studied near the city of Karlsruhe in southwest Germany (8.4298°E, 49.0953°N) from 7 to 9 April 2018, combining a scanning LiDAR (90°, 30°), a vertically pointing LiDAR (90°), a sun photometer, and the transport model ICON-ART. Based on this Saharan dust case, we discuss the advantages of a scanning aerosol LiDAR and validate a method to determine LiDAR ratios independently. The LiDAR measurements at 355 nm showed that the dust particles had backscatter coefficients of 0.86 ± 0.14 Mm1^{-1} sr1^{-1}, extinction coefficients of 40 ± 0.8 Mm1^{-1}, a LiDAR ratio of 46 ± 5 sr, and a linear particle depolarisation ratio of 0.27 ± 0.023. These values are in good agreement with those obtained in previous studies of Saharan dust plumes in Western Europe. Compared to the remote sensing measurements, the transport model predicted the plume arrival time, its layer height, and its structure quite well. The comparison of dust plume backscatter values from the ICON-ART model and observations for two days showed a correlation with a slope of 0.9 ± 0.1 at 355 nm. This work will be useful for future studies to characterise aerosol particles employing scanning LiDARs

    Technical Note: Improved total atmospheric water vapour amount determination from near-infrared filter measurements with sun photometers

    No full text
    International audienceIn this work we explore the effect of the contribution of the solar spectrum to the recorded signal in wavelengths outside the typical 940-nm filter's bandwidth. We employ gaussian-shaped filters as well as actual filter transmission curves, mainly AERONET data, to study the implications imposed by the non-zero out-of-band contribution to the coefficients used to derive precipitable water from the measured water vapour band transmittance. Published parameterized transmittance functions are applied to the data to determine the filter coefficients. We also introduce an improved, three-parameter, fitting function that can describe the theoretical data accurately, with significantly less residual effects than with the existing functions. The moderate-resolution SMARTS radiative transfer code is used to predict the incident spectrum outside the filter bandpass for different atmospheres, solar geometries and aerosol optical depths. The high-resolution LBLRTM radiative transfer code is used to calculate the water vapour transmittance in the 940-nm band. The absolute level of the out-of-band transmittance has been chosen to range from 10?6 to 10?4, and typical response curves of commercially available silicon photodiodes are included into the calculations. It is shown that if the out-of-band transmittance effect is neglected, as is generally the case, then the derived columnar water vapour is mainly underestimated by a few percents. The actual error depends on the specific out-of-band transmittance, optical air mass of observation and water vapour amount. Further investigations will use experimental data from field campaigns to validate these findings

    Aerosol microphysical retrievals from precision filter radiometer direct solar radiation measurements and comparison with AERONET

    Get PDF
    Synchronized sun-photometric measurements from the AERONET-CIMEL (AErosol RObotic NETwork) and GAW-PFR (Global Atmospheric Watch–Precision Filter Radiometer) aerosol networks are used to compare retrievals of the aerosol optical depth (AOD), effective radius, and volume concentration during a high-temporal-resolution measurement campaign at the Athens site in the Mediterranean Basin from 14 to 22 July 2009. During this period, direct-sun AOD retrievals from both instruments exhibited small differences in the range 0.01–0.02. The AODs measured with CIMEL and PFR instruments were inverted to retrieve particle microphysical properties using the linear estimation (LE) technique. For low aerosol loads (AOD < 0.2), measurements of the effective radius by the PFR were found to be −20% to +30% different from CIMEL values for both direct-sun data and inversion data. At higher loads (AOD > 0.4), measurements of the effective radius by the PFR are consistently 20% lower than CIMEL for both direct sun and inversion data. Volume concentrations at low aerosol loads from the PFR are up to 80% higher than the CIMEL for direct-sun data but are up to 20% lower when derived from inversion data under these same conditions. At higher loads, the percentage difference in volume concentrations from the PFR and CIMEL is systematically negative, with inversion data predicting differences 30% lower than those obtained from direct-sun data. An assessment of the effect of errors in the AOD retrieval on the estimation of PFR bulk parameters was performed and demonstrates that it is possible to estimate the particle volume concentration and effective radius with an uncertainty < 65% when AOD < 0.2 and when input errors are as high as 10%

    Results of sun photometer-derived precipitable water content over a tropical Indian station

    Get PDF
    A compact, hand-held multiband sun photometer (ozone monitor) has been used to measure total precipitable water content (PWC) at the low-latitude tropical station in Pune, India (18°32′N, 73°51′E). Data collected in the daytime (0730–1800 LT) during the period from May 1998 to September 2001 have been used here. The daytime average PWC value at this station is 1.13 cm, and the average for only the clear-sky days is 0.75 cm. PWC values between 0.75 and 1.0 cm have the maximum frequency of occurrence. There is a large day-to-day variability due to varied sky and meteorological conditions. Mainly two types of diurnal variations in PWC are observed. The one occurs in the premonsoon summer months of April and May and shows that forenoon values are smaller than afternoon values. The other type occurs in November and December and shows a minimum around noontime. There is a diurnal asymmetry in PWC in which, on the majority of the days, the mean afternoon value is greater than the forenoon value. This asymmetry is more pronounced in the summer and southwest monsoon months (i.e., March–June). Monthly mean PWC is highest in September and lowest in December. The increase in PWC from the winter (December–February) to summer (March–May) seasons is about 50% and from the summer to southwest monsoon seasons (June–September) is almost 98%. Sun photometer–derived PWC shows a fairly good relationship with surface relative humidity and radiosonde-derived PWC, with a correlation coefficient as high as 0.8

    Analysis of the application of the optical method to the measurements of the water vapor content in the atmosphere - Part 1: Basic concepts of the measurement technique

    Get PDF
    We retrieved the total content of the atmospheric water vapor (or Integrated Water Vapor, IWV) from extensive sets of photometric data obtained since 1995 at Lindenberg Meteorological Observatory with star and sun photometers. Different methods of determination of the empirical parameters that are necessary for the retrieval are discussed. The instruments were independently calibrated using laboratory measurements made at Pulkovo Observatory with the VKM-100 multi-pass vacuum cell. The empirical parameters were also calculated by the simulation of the atmospheric absorption by water vapor, using the MODRAN-4 program package for different model atmospheres. The results are compared to those presented in the literature, obtained with different instruments and methods of the retrieval. The reliability of the empirical parameters, used for the power approximation that links the water vapor content with the observed absorption, is analyzed. Currently, the total (from measurements, calibration, and calculations) errors yield the standard uncertainty of about 10% in the total column water vapor. We discuss the possibilities for improving the accuracy of calibration to ~1% as indispensable condition in order to make it possible to use data obtained by optical photometry as an independent reference for other methods (GPS, MW-radiometers, lidar, etc).Comment: 28 pages, 8 figures, 3 tables. In submitting to Atmospheric Measurement Technique

    Wildfire Smoke Particle Properties and Evolution, from Space-Based Multi-Angle Imaging

    Get PDF
    Emitted smoke composition is determined by properties of the biomass burning source and ambient ecosystem. However, conditions that mediate the partitioning of black carbon (BC) and brown carbon (BrC) formation, as well as the spatial and temporal factors that drive particle evolution, are not understood adequately for many climate and air-quality related modeling applications. In situ observations provide considerable detail about aerosol microphysical and chemical properties, although sampling is extremely limited. Satellites offer the frequent global coverage that would allow for statistical characterization of emitted and evolved smoke, but generally lack microphysical detail. However, once properly validated, data from the National Aeronautics and Space Administration (NASA) Earth Observing Systems Multi-Angle Imaging Spectroradiometer (MISR) instrument can create at least a partial picture of smoke particle properties and plume evolution. We use in situ data from the Department of Energys Biomass Burning Observation Project (BBOP) field campaign to assess the strengths and limitations of smoke particle retrieval results from the MISR Research Aerosol (RA) retrieval algorithm. We then use MISR to characterize wildfire smoke particle properties and to identify the relevant aging factors in several cases, to the extent possible. The RA successfully maps qualitative changes in effective particle size, light absorption, and its spectral dependence, when compared to in situ observations. By observing the entire plume uniformly, the satellite data can be interpreted in terms of smoke plume evolution, including size-selective deposition, new-particle formation, and locations within the plume where BC or BrC dominates

    Column water vapor determination in night period with a lunar photometer prototype

    Get PDF
    In this paper we present the preliminary results of atmospheric column-integrated precipitable water vapor (PWV) obtained with a new Lunar Cimel photometer (LC) at the high mountain Izaña Observatory in the period July–August 2011. We have compared quasi-simultaneous nocturnal PWV from LC with PWV from a Global Positioning System (GPS) receiver and nighttime radiosondes (RS92). LC data have been calibrated using the Lunar Langley method (LLM). We complemented this comparative study using quasi-simultaneous daytime PWV from Cimel AERONET (CA), GPS and RS92.The AERONET sun photometer at Izana has been calibrated within AERONET- ˜ EUROPE TNA supported by the European Community – Research Infrastructure Action under the FP7 “Capacities” specific program for Integrating Activities, ACTRIS grant agreement no. 262254

    The Atmospheric Radiation Measurement Program May 2003 Intensive Operations Period Examining Aerosol Properties and Radiative Influences: Preface to Special Section

    Get PDF
    Atmospheric aerosols influence climate by scattering and absorbing radiation in clear air (direct effects) and by serving as cloud condensation nuclei, modifying the microphysical properties of clouds, influencing radiation and precipitation development (indirect effects). Much of present uncertainty in forcing of climate change is due to uncertainty in the relations between aerosol microphysical and optical properties and their radiative influences (direct effects) and between microphysical properties and their ability to serve as cloud condensation nuclei at given supersaturations (indirect effects). This paper introduces a special section that reports on a field campaign conducted at the Department of Energy Atmospheric Radiation Measurement site in North Central Oklahoma in May, 2003, examining these relations using in situ airborne measurements and surface-, airborne-, and space-based remote sensing
    corecore