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Abstract 

 Atmospheric aerosols influence climate by scattering and absorbing radiation in clear air 

(direct effects) and by serving as cloud condensation nuclei, modifying the microphysical 

properties of clouds, influencing radiation and precipitation development (indirect effects).  

Much of present uncertainty in forcing of climate change is due to uncertainty in the relations 

between aerosol microphysical and optical properties and their radiative influences (direct 

effects) and between microphysical properties and their ability to serve as cloud condensation 

nuclei at given supersaturations (indirect effects).  This paper introduces a special section that 

reports on a field campaign conducted at the Department of Energy Atmospheric Radiation 

Measurement site in North Central Oklahoma in May, 2003, examining these relations using in 

situ airborne measurements and surface-, airborne-, and space-based remote sensing.   

 



 3 

1.0 Background and Motivation 

 

Two key requirements for testing understanding of the influence of radiative processes on 

climate are: 1) relating observations of radiative fluxes and radiances to the atmospheric 

composition and, 2) using these relations to develop and test parameterizations to accurately 

predict the atmospheric radiative properties.  These are the primary objectives of the 

Atmospheric Radiation Measurement (ARM) program supported by the Department of Energy 

[Ackerman and Stokes, 2003].  Among the key uncertainties influencing atmospheric radiation 

processes in the atmosphere are the influences of atmospheric aerosols.  Consequently, ARM has 

pursued measurement and modeling activities that examine aerosol impacts on atmospheric 

radiative transfer, both in cloud-free skies (direct effects) and through modification of the 

microphysical and radiative properties of clouds (indirect effects).   

This special issue presents papers reporting results from an intensive field campaign 

examining the properties and radiative influences of aerosols, the May 2003 Aerosol Intensive 

Operations Period (AIOP) conducted between May 5-31, 2003 over the ARM Southern Great 

Plains (SGP) Climate Research Facility (CRF) site (36.606 N, 97.50 W, 315 m).  The scientific 

hypotheses that were investigated during this IOP were posed as “closure experiments” in which 

an observable quantity is measured in two or more different ways, or is measured as well as 

calculated (modeled) using other measured quantities.  Closure is achieved if the several 

measures agree within their mutual uncertainties.   

The specific closure experiments carried out in this IOP are described below, followed by a 

brief summary of the measurements acquired during the IOP.  Table 1 provides a list of 

acronyms and symbols.  

 

1.1 To what extent can closure between measurements and models of diffuse radiation be 

achieved, especially under conditions of low aerosol optical thickness? 

 

In prior work using measurements acquired at the SGP CRF, Halthore and Schwartz [2000] 

reported that modeled diffuse downwelling irradiance exceeded measurements by an amount that 

could not be accounted for by uncertainties in measurements or aerosol-scattering properties that 
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are input into the radiative transfer models or by errors in multiple-scattering schemes.  Mlawer 

et al. [2000] achieved closure between ground-based measurements of direct and diffuse solar 

irradiance, as measured by the Rotating Shadowband Spectroradiometer (RSS) [Harrison et al., 

1999] at the SGP site.  That study used well-validated aerosol optical thickness (AOT) [Schmid 

et al., 1999] and water vapor measurements [Revercomb et al., 2003] as input.  However, in 

order to minimize the residuals between measurements and model, Mlawer et al. [2000] had to 

assume aerosol single scattering albedos ω0 which were “much lower than usually assumed in 

the aerosol community for this location, and [which] present an intriguing puzzle for this 

community to consider”.  For three cases in September/October 1997 Mlawer et al. [2000] found 

ω0 = 0.89, 0.90, and 0.67 (assumed spectrally-invariant). These values may be compared with 

measurements reported by Sheridan et al. [2001] based on a 4-year record (1996-2000) of 

ground-based aerosol measurements at the SGP site, for which the median value of ω0 was 0.95 

(λ=550 nm, ambient RH).  More specifically, although values of ω0 as low as 0.87 occurred on 

occasion in September/October 1997, such a value is much greater than the value 0.67 needed to 

achieve radiative closure in a single case by Mlawer et al. [2000].  This discrepancy has raised 

concerns regarding the accuracy of the ω0 measurements at the surface SGP site, and how well 

ω0 derived from the surface measurements represents the effective column value.  

Because of this uncertainty in the values of aerosol absorption coefficient and single 

scattering albedo ωo and the resulting difficulty in reconciling measurements and models of 

diffuse irradiance, a focus of the IOP was the determination aerosol absorption coefficient using 

multiple in situ and remote-sensing methods.  These techniques included conventional filter-

based measurements via the Particle Soot Absorption Photometer (PSAP) [Horvath, 1993; Bond 

et al., 1999; Virkkula et al., 2005; Strawa et al., 2005], the recently implemented photoacoustic 

method [Moosmüller et al., 1998; Arnott et al., 1999; Arnott et al. 2005], and a new method to 

measure the aerosol absorption coefficient as the difference between aerosol extinction and 

scattering coefficients measured using Continuous Wave Cavity Ring-Down (CW-CRD) 

technology [Strawa et al., 2003; Strawa et al., 2005].  As a prelude to this Aerosol IOP, the Reno 

Aerosol Optics Study (RAOS) [Sheridan et al., 2005] characterized, under controlled conditions, 

these and other in situ instruments used to measure aerosol light extinction, absorption, and 

scattering coefficients.  After the successful intercomparisons performed during the RAOS, the 
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Aerosol IOP represented the first successful demonstration of an airborne photoacoustic sensor 

to measure aerosol absorption coefficient and only the second time that an airborne CW-CRD 

was deployed to measure aerosol optical properties.   

In this special section, Arnott et al. [2005] and Strawa et al. [2005] describe the in situ 

measurements of aerosol absorption and extinction coefficients, and Andrews et al. [2005] 

describe how values for the Mie-equivalent aerosol asymmetry parameter (g) were derived using 

both in situ and remote sensing measurements.  Michalsky et al. [2005] describe comparisons of 

measured and modeled direct and diffuse irradiance and Ricchiazzi et al. [2005] describe the 

aerosol parameters derived from observations of sky radiance.  

 

1.2 What is the agreement among profiles of aerosol scattering and extinction coefficients 

determined from the ARM SGP Raman lidar, in situ, and remote-sensing measurements? 

 

Extinction closure studies can be viewed as addressing the extent to which in situ 

measurements of aerosol properties can account for the attenuation of direct normal solar 

irradiance by an aerosol layer or column. The closure experiment is thus the agreement between 

aerosol extinction optical thickness 

! 

"ep  at the surface and the vertical integral of the extinction 

coefficient 

! 

" ep(z)dz# . Aerosol optical thickness is derived at the ARM SGP CRF from routine 

measurements by several instruments at discrete wavelengths (Cimel Sun photometer, Multifilter 

Rotating Shadowband Radiometer (MFRSR), Normal Incidence Multifilter Radiometer 

(NIMFR), CRF Raman lidar (CARL)), and as a continuous function of wavelength using the 

Rotating Shadowband Radiometer (RSS).  Measurements of AOT by the Cimel and the MFRSR 

have been shown to agree closely, typically to 0.02 [Halthore et al., 1997; Schmid et al., 1999]. 

Although comparisons of aerosol optical thickness between the Raman lidar and Sun photometer 

have shown small (<5%) systematic biases, these same comparisons have shown rms differences 

of typically 20-30% [Turner et al., 2001].  The reasons for the 30% rms differences between the 

instruments are not known. Possible contributing factors are variations in aerosol 

extinction/backscatter ratio used for lidar retrievals below 800 meters, and uncertainty in the 

lidar overlap function correction.  
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To help address the representativeness of surface aerosol measurements, since March, 2000, 

ARM has been measuring in situ aerosol profiles (IAP) of aerosol scattering and absorption 

coefficients by performing systematic flights (typically twice weekly) with a light aircraft 

(Cessna C-172N) over the SGP site utilizing an aerosol instrument package similar to the one at 

the SGP ground site.  Factors that impact the ability to use IAP measurements to derive aerosol 

extinction and optical thickness are: the aircraft package measures the aerosol at a relative 

humidity of 40% rather than at ambient RH, the inlet allows particles to pass only if their 

aerodynamic diameter is less than1 µm, and the ceiling of the aircraft is limited (~3.5 km).  Even 

after applying (altitude-independent) corrections for all these limitations (using information from 

ground-based nephelometers and Raman lidar),  Andrews et al. [2004] showed that the aircraft 

measurements do not account for all of the aerosol extinction measured at the surface; 

specifically, the IAP-derived aerosol optical thicknesses were consistently less (0.05 or ~30%) 

than the aerosol optical thicknesses (AOT) measured on the ground by Sun photometers so that 

extinction closure was not achieved.  A similar discrepancy was found when comparing the IAP 

extinction with extinction from the ground-based Raman lidar at the SGP site for altitudes 

between 300 and 3500 m above ground level (i.e. IAP extinction 30% lower than Raman, 

Ferrare et al., [2002, 2003].  These differences may be due to uncertainties in the humidification 

factor (correcting the extinction coefficient as measured at low RH to the value appropriate for 

ambient RH), correction for extinction by supermicrometer particles, and the aerosol Ångström 

exponent used to scale the lidar measurements from 355 nm to 550 nm.    

During the aerosol IOP additional airborne measurements were used to better quantify the 

errors associated with the IAP measurements and to identify potential reasons for these 

differences.  The NASA Ames Airborne Tracking 14-channel Sunphotometer, AATS-14 

[Schmid et al, 2000] was used to measure profiles of aerosol optical thickness 

! 

"ep(z)  and aerosol 

extinction coefficient (determined as 

! 

d"ep(z) / dz ) as a function of wavelength at ambient 

conditions.  Papers in this special section compare these profiles to aerosol extinction profiles 

determined by Raman lidar, airborne in situ, and MicroPulse Lidar (MPL) measurements 

[Schmid et al., 2005; Ferrare et al., 2005], and report aerosol extinction coefficients as measured 

by the new Continuous Wave Cavity Ring-Down (CW-CRD) airborne in situ instrument [Strawa 

et al., 2005] and as derived as the sum of nephelometer measurements of humidified aerosol 
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scattering and PSAP measurements of aerosol absorption [Schmid et al., 2005; Ferrare et al., 

2005; Strawa et al., 2005].  Hallar et al. [2005]  compare aerosol scattering measured 

simultaneously by identical commercial nephelometers deployed on two separate aircraft flying 

in formation, and examine the impacts of coarse mode aerosols on measurements of aerosol 

scattering.    

  

1.3 To what extent does CCN number concentration (at several supersaturations in the 

range ~0.1 - 1%) agree with calculations based on aerosol size distribution, at the surface 

and at cloud base? How well are the cloud nucleating properties of particles just below 

cloud base represented using surface measurements of cloud nucleating properties of 

particles along with profiles of relative humidity and aerosol extinction?  

 

The effects of aerosols on cloud properties must be quantified in order to accurately describe 

the effects of clouds on atmospheric radiative fluxes and radiances.  These effects include both 

the increase in cloud reflectivity due to more and smaller cloud droplets forming on the aerosol, 

as well as the possible increase in the lifetime of clouds due to reduced precipitation in clouds 

with more and smaller droplets.  Few prior studies have acquired airborne measurements of 

cloud droplet size distribution and cloud liquid water content together with the CCN spectrum at 

cloud base. As most of the prior data sets were obtained in maritime areas with relatively low 

aerosol loadings, the ARM Aerosol IOP examined the aerosol indirect effect over a  continental 

area (i.e. Oklahoma).   

One study conducted during the Aerosol IOP examined the feasibility of retrieving the 

vertical profile of CCN concentration using surface measurements, under conditions of uniform 

aerosol composition and shape of the aerosol size distribution below cloud base [Ghan et al., 

2005]. A combination of aircraft, surface in situ, and surface remote-sensing measurements were 

used to evaluate the retrieval schemes. Airborne measurements were used to examine CCN 

concentrations calculated using assumed and inferred aerosol composition and mixing state, and 

measurements of the aerosol size distribution [Rissman et al., 2005].   

Additional investigations were conducted using surface CCN measurements to investigate 

the diurnal and day-to-day variability of CCN concentrations, the representativeness of the SGP 
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site of continental conditions [Gasparini et al., 2005a], as well as the extent to which the aerosol 

could be modeled as a population of multi-component particles, each consisting of organic 

carbon, elemental carbon, mineral dust, ammonium sulfate, and water, or some subset of these 

components [Gasparini et al., 2005b].  

 

1.4 To what extent are remotely sensed parameters adequate for quantifying the aerosol  

indirect effect?  

 

The Aerosol IOP also examined the ability of ground-based remote sensors to quantify the 

first aerosol indirect effect at SGP.  The premise is that cloud response to relative changes in 

aerosol extinction, under conditions of equivalent water path, can be quantified using surface-

based measurements that simultaneously address aerosol and cloud parameters in a column of air 

above the site [Feingold et al., 2003].  Cloud response is represented by changes in cloud-drop 

effective radius and the amount of  aerosol loading is represented by aerosol extinction at a 

prescribed distance beneath cloud base. This approach avoids assumptions that (a) the surface 

aerosol is representative of the aerosol affecting the cloud [Ramanathan et al., 2001; Menon et 

al., 2002], or that (b) the column integrated extinction coefficient (i.e., optical thickness) in 

cloud-free areas is representative of the aerosol affecting the cloud [e.g., Kaufman and Nakajima, 

1993; Han et al., 1998; Bréon et al., 2002].  The approach does, however, raise the question of 

representativeness of extinction coefficient as a proxy for CCN [Feingold 2003]. 

A key measure of aerosol influences on cloud microphysical properties, the cloud-drop 

effective radius reff, was determined by several remote-sensing techniques including the 

radar/microwave radiometer combination, MultiFilter Rotating Shadowband Radiometer 

(MFRSR)/microwave radiometer combination, both of which used surface-based measurements, 

airborne measurements from the Solar Spectral Flux Radiometer (SSFR), and space-based 

measurements from the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument.  

Using measurements acquired during the Aerosol IOP, Feingold et al. [2005] developed a 

methodology for representing the best-estimate of reff  based on these various retrievals, each with 

their distinct sampling volumes and vertical weighting. An Aerosol IOP investigation also 

examined the consistency between retrievals of the aerosol hygroscopic growth factor 
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determined using ground based lidar measurements and derived from airborne in situ 

measurements of aerosol scattering as function of RH [Pahlow et al., 2005].  Gasparini et al. 

[2005b] used surface DMA/TDMA measurements of aerosol hygroscopic growth factors, in 

conjunction with backtrajectory clustering, to infer aerosol composition and to gain insight into 

the processes responsible for evolution. 

 

2.0  Measurement Summary 

 

During the mission, an extensive suite of instruments were deployed on board the Center for 

Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS) Twin Otter aircraft [Bluth et al., 

1996; Bane et al., 2004].  There were a total of 16 science flights, for a total of 60.6 flight hours, 

conducted by the CIRPAS Twin Otter aircraft on 15 days during this period.  Most of the flights 

were conducted under clear or partly cloudy skies to assess aerosol impacts on solar radiation. 

Additional flights were used to target mostly cloudy skies to assess aerosol/cloud interactions, 

test our understanding and model representation of aerosol activation, and to test how well 

surface remote sensing of the indirect effect works. 

A wide range of aerosol and water vapor conditions were observed over the ARM SGP site 

during the IOP.  Figure 1 shows the water vapor mixing ratio and the aerosol extinction 

coefficient derived from the Raman lidar measurements during this period as well as AOT 

(340 nm) and aerosol Ångström exponent (340-870 nm).  AOT was derived using measurements 

from a Cimel Sun photometer deployed as part of the AERONET project [Holben et al., 1998] at 

the SGP site.  Ångström exponents were derived using Cimel AOT measurements at 340, 380, 

440, 500, 670, and 870 nm.  Note the large variations in the water vapor and aerosol extinction 

and the correlation of water vapor with aerosol extinction.  Such correlation might be attributed 

to RH-dependent increase of AOT and/or to the two quantities being similarly influenced by 

atmospheric transport and precipitation removal. High AOT was observed during both early 

(May 8-9) and late (May 28-29) in the IOP. Low values of the Ångström exponent observed 

during early May suggests that aerosol extinction was due to large, coarse mode aerosols (e.g. 

dust), whereas higher values of the Angstrom exponent measured during the latter part of May 

suggest that these were smaller, accumulation-mode particles. 
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Several times during the IOP, elevated aerosol layers were observed over the ARM SGP site. 

These layers, which were present 2-5 km above the surface, are often the result of the transport 

of smoke, dust, or pollution from distant sources. Observations of these layers during the IOP 

indicate that such layers may be more common than originally thought, and can have a 

substantial impact on the atmospheric radiation budget. As an example, satellite imagery and 

back trajectory analyses indicate that the elevated aerosol layers observed by the ground based 

lidars and the airborne remote-sensing and in situ instruments between May 25-27 were smoke 

layers produced by Siberian forest fires [Damoah et al., 2004; Jaffe et al., 2004].   

The field deployment phase of the Aerosol IOP was successful in several ways.  The 

instruments deployed on the aircraft and on the surface generally worked very well and acquired 

the data required to address the IOP objectives. These instruments included both well established 

and newly developed airborne instruments to measure aerosol optical properties (scattering, 

absorption, and extinction coefficients), aerosol size distribution, and cloud condensation nucleus 

(CCN) concentrations, as well as surface based instruments to measure aerosol composition, 

aerosol optical properties, and cloud condensation nucleus concentrations and spectra. Additional 

airborne and surface instruments acquired the desired measurements of solar direct and diffuse 

irradiance.   

This special issue reports on some of the research conducted during this Aerosol IOP.  These 

several papers present in detail the ground-based and airborne instrumentation, the 

measurements, as well as the associated analyses. 
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Figure Caption 

 

Figure 1. (a) water vapor mixing ratio derived from Raman lidar measurements during the May 

2003 Aerosol IOP. (b) same as (a) except for aerosol extinction cofficient (355 nm).  (c) Aerosol 

optical thickness (AOT) derived from ground based Cimel Sun photometer measurements at the 

SGP site.  (d) Aerosol Ångström exponent values (340-870 nm) derived from the Cimel AOT 

measurements. The white vertical bands in the lidar images represent periods when the Raman 

lidar did not operate because of malfunctions of the air conditioner system in the lidar enclosure 

(May 15, 16, 23) and laser cooling system (May 27).  
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Table 1. Frequently used acronyms and symbols 

AATS-14 Ames Airborne Tracking 14-channel Sun photometer 
AERONET AErosol RObotic NETwork 
ARM Atmospheric Radiation Measurement 
AIOP Aerosol Intensive Operations Period 
AOT Aerosol Optical Thickness 
CARL CRF Raman Lidar 
CCN Cloud Condensation Nuclei 
CIRPAS Center for Interdisciplinary Remotely-Piloted Aircraft Studies 
CRD Cavity Ring-Down 
CRF Climate Research Facility 
IAP In situ Aerosol Profiles 
IOP Intensive Operations Period 
MFRSR Multifilter Rotating Shadowband Radiometer 
MODIS Moderate Resolution Imaging Spectroradiometer 
MPL Micro Pulse Lidar 
NIMFR Normal Incidence Multi-Filter Radiometer 
PSAP Particle/Soot Absorption Photometer 
RAOS Reno Aerosol Optics Study 
RH Relative Humidity 
RSS Rotating Shadowband Spectroradiometer 
SGP Southern Great Plains 
SSFR Solar Spectral Flux Radiometer 
g Aerosol asymmetry parameter 
reff Cloud-drop effective radius 
τep Aerosol extinction optical thickness 
ω0 Aerosol single scatterng albedo 
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Figure 1. (a) water vapor mixing ratio derived from Raman lidar measurements during the 
May 2003 Aerosol IOP. (b) same as (a) except for aerosol extinction cofficient (355 nm).  (c) 
Aerosol optical thickness (AOT) derived from ground based Cimel Sun photometer 
measurements at the SGP site.  (d) Aerosol Ångström exponent values (340-870 nm) derived 
from the Cimel AOT measurements. The white vertical bands in the lidar images represent 
periods when the Raman lidar did not operate due to malfunctions of the air conditioner 
system in the lidar enclosure (May 15, 16, 23) and laser cooling system (May 27).  


