2,448 research outputs found

    GenePath: a System for Automated Construction of Genetic Networks from Mutant Data

    Get PDF
    Motivation: Genetic pathways are often used in the analysis of biological phenomena. In classical genetics, they are constructed manually from experimental data on mutants. The field lacks formalism to guide such analysis, and accounting for all the data becomes complicated when large amounts of data are considered. Results: We have developed GenePath, an intelligent assistant that mimics expert geneticists in the analysis of genetic data. GenePath employs expert-defined patterns to uncover gene relations from the data, and uses these relations as constraints that guide the search for a plausible genetic network. GenePath provides formalism to genetic data analysis, facilitates the consideration of all the available data in a consistent and systematic manner, and aids in the examination of the large number of possible consequences of a planned experiment. It also provides an explanation mechanism that traces back every finding to the pertinent data. GenePath was successfully tested on several genetic problems. Availability: GenePath can be accessed at http://genepath.org. Supplementary information: Supplementary material is available at http://genepath.org/bi-supp

    Spectral analysis of gene expression profiles using gene networks

    Full text link
    Microarrays have become extremely useful for analysing genetic phenomena, but establishing a relation between microarray analysis results (typically a list of genes) and their biological significance is often difficult. Currently, the standard approach is to map a posteriori the results onto gene networks to elucidate the functions perturbed at the level of pathways. However, integrating a priori knowledge of the gene networks could help in the statistical analysis of gene expression data and in their biological interpretation. Here we propose a method to integrate a priori the knowledge of a gene network in the analysis of gene expression data. The approach is based on the spectral decomposition of gene expression profiles with respect to the eigenfunctions of the graph, resulting in an attenuation of the high-frequency components of the expression profiles with respect to the topology of the graph. We show how to derive unsupervised and supervised classification algorithms of expression profiles, resulting in classifiers with biological relevance. We applied the method to the analysis of a set of expression profiles from irradiated and non-irradiated yeast strains. It performed at least as well as the usual classification but provides much more biologically relevant results and allows a direct biological interpretation

    Modeling formalisms in systems biology

    Get PDF
    Systems Biology has taken advantage of computational tools and high-throughput experimental data to model several biological processes. These include signaling, gene regulatory, and metabolic networks. However, most of these models are specific to each kind of network. Their interconnection demands a whole-cell modeling framework for a complete understanding of cellular systems. We describe the features required by an integrated framework for modeling, analyzing and simulating biological processes, and review several modeling formalisms that have been used in Systems Biology including Boolean networks, Bayesian networks, Petri nets, process algebras, constraint-based models, differential equations, rule-based models, interacting state machines, cellular automata, and agent-based models. We compare the features provided by different formalisms, and discuss recent approaches in the integration of these formalisms, as well as possible directions for the future.Research supported by grants SFRH/BD/35215/2007 and SFRH/BD/25506/2005 from the Fundacao para a Ciencia e a Tecnologia (FCT) and the MIT-Portugal Program through the project "Bridging Systems and Synthetic Biology for the development of improved microbial cell factories" (MIT-Pt/BS-BB/0082/2008)

    Inference of Cancer-specific Gene Regulatory Networks Using Soft Computing Rules

    Get PDF
    Perturbations of gene regulatory networks are essentially responsible for oncogenesis. Therefore, inferring the gene regulatory networks is a key step to overcoming cancer. In this work, we propose a method for inferring directed gene regulatory networks based on soft computing rules, which can identify important cause-effect regulatory relations of gene expression. First, we identify important genes associated with a specific cancer (colon cancer) using a supervised learning approach. Next, we reconstruct the gene regulatory networks by inferring the regulatory relations among the identified genes, and their regulated relations by other genes within the genome. We obtain two meaningful findings. One is that upregulated genes are regulated by more genes than downregulated ones, while downregulated genes regulate more genes than upregulated ones. The other one is that tumor suppressors suppress tumor activators and activate other tumor suppressors strongly, while tumor activators activate other tumor activators and suppress tumor suppressors weakly, indicating the robustness of biological systems. These findings provide valuable insights into the pathogenesis of cancer

    Phenotypic landscape inference reveals multiple evolutionary paths to C4_4 photosynthesis

    Get PDF
    C4_4 photosynthesis has independently evolved from the ancestral C3_3 pathway in at least 60 plant lineages, but, as with other complex traits, how it evolved is unclear. Here we show that the polyphyletic appearance of C4_4 photosynthesis is associated with diverse and flexible evolutionary paths that group into four major trajectories. We conducted a meta-analysis of 18 lineages containing species that use C3_3, C4_4, or intermediate C3_3-C4_4 forms of photosynthesis to parameterise a 16-dimensional phenotypic landscape. We then developed and experimentally verified a novel Bayesian approach based on a hidden Markov model that predicts how the C4_4 phenotype evolved. The alternative evolutionary histories underlying the appearance of C4_4 photosynthesis were determined by ancestral lineage and initial phenotypic alterations unrelated to photosynthesis. We conclude that the order of C4_4 trait acquisition is flexible and driven by non-photosynthetic drivers. This flexibility will have facilitated the convergent evolution of this complex trait
    • …
    corecore