10 research outputs found

    Inferring BGP blackholing activity in the Internet

    Get PDF
    The Border Gateway Protocol (BGP) has been used for decades as the de facto protocol to exchange reachability information among networks in the Internet. However, little is known about how this protocol is used to restrict reachability to selected destinations, e.g., that are under attack. While such a feature, BGP blackholing, has been available for some time, we lack a systematic study of its Internet-wide adoption, practices, and network efficacy, as well as the profile of blackholed destinations. In this paper, we develop and evaluate a methodology to automatically detect BGP blackholing activity in the wild. We apply our method to both public and private BGP datasets. We find that hundreds of networks, including large transit providers, as well as about 50 Internet exchange points (IXPs) offer blackholing service to their customers, peers, and members. Between 2014-2017, the number of blackholed prefixes increased by a factor of 6, peaking at 5K concurrently blackholed prefixes by up to 400 Autonomous Systems. We assess the effect of blackholing on the data plane using both targeted active measurements as well as passive datasets, finding that blackholing is indeed highly effective in dropping traffic before it reaches its destination, though it also discards legitimate traffic. We augment our findings with an analysis of the target IP addresses of blackholing. Our tools and insights are relevant for operators considering offering or using BGP blackholing services as well as for researchers studying DDoS mitigation in the Internet

    DDoS Mitigation:A Measurement-Based Approach

    Get PDF
    Society heavily relies upon the Internet for global communications. Simultaneously, Internet stability and reliability are continuously subject to deliberate threats. These threats include (Distributed) Denial-of-Service (DDoS) attacks, which can potentially be devastating. As a result of DDoS, businesses lose hundreds of millions of dollars annually. Moreover, when it comes to vital infrastructure, national safety and even lives could be at stake. Effective defenses are therefore an absolute necessity. Prospective users of readily available mitigation solutions find themselves having many shapes and sizes to choose from, the right fit of which may, however, not always be apparent. In addition, the deployment and operation of mitigation solutions may come with hidden hazards that need to be better understood. Policy makers and governments also find themselves facing questions concerning what needs to be done to promote cybersafety on a national level. Developing an optimal course of action to deal with DDoS, therefore, also brings about societal challenges. Even though the DDoS problem is by no means new, the scale of the problem is still unclear. We do not know exactly what it is we are defending against and getting a better understanding of attacks is essential to addressing the problem head-on. To advance situational awareness, many technical and societal challenges need still to be tackled. Given the central importance of better understanding the DDoS problem to improve overall Internet security, the thesis that we summarize in this paper has three main contributions. First, we rigorously characterize attacks and attacked targets at scale. Second, we advance knowledge about the Internet-wide adoption, deployment and operational use of various mitigation solutions. Finally, we investigate hidden hazards that can render mitigation solutions altogether ineffective

    λBGP:Rethinking BGP programmability

    Get PDF
    BGP has long been the de-facto control plane protocol for inter-network connectivity. Although initially designed to provide best-effort routing between ASes, the evolution of Internet services has created a demand for more complex control functionalities using the protocol. At the heart of this challenge lies the static nature of configuration mechanisms and the limited programmability of existing BGP speakers. Meanwhile, the SDN paradigm has demonstrated that open and generic network control APIs can greatly improve network functionality and seamlessly enable greater flexibility in network management. In this paper, we argue that BGP speaking systems can and should provide an open and rich control and configuration mechanism, in order to address modern era network control requirements. Towards this goal, we present λbgp, a modular and extensible BGP framework written in Haskell. The framework offers an extensible integration model for reactive BGP control that remains backward compatible with existing BGP standards and allows network managers to define route processing policies using a high-level language and to dynamically inject information sources into the path selection logic. Using a high-performance BGP traffic generator, we demonstrate that λbgp offers performance comparable to production BGP speakers, while dynamic AS route processing policies can be written in just a few lines of code

    DDoS Never Dies? An IXP Perspective on DDoS Amplification Attacks

    Full text link
    DDoS attacks remain a major security threat to the continuous operation of Internet edge infrastructures, web services, and cloud platforms. While a large body of research focuses on DDoS detection and protection, to date we ultimately failed to eradicate DDoS altogether. Yet, the landscape of DDoS attack mechanisms is even evolving, demanding an updated perspective on DDoS attacks in the wild. In this paper, we identify up to 2608 DDoS amplification attacks at a single day by analyzing multiple Tbps of traffic flows at a major IXP with a rich ecosystem of different networks. We observe the prevalence of well-known amplification attack protocols (e.g., NTP, CLDAP), which should no longer exist given the established mitigation strategies. Nevertheless, they pose the largest fraction on DDoS amplification attacks within our observation and we witness the emergence of DDoS attacks using recently discovered amplification protocols (e.g., OpenVPN, ARMS, Ubiquity Discovery Protocol). By analyzing the impact of DDoS on core Internet infrastructure, we show that DDoS can overload backbone-capacity and that filtering approaches in prior work omit 97% of the attack traffic.Comment: To appear at PAM 202

    Anycast Agility: Adaptive Routing to Manage DDoS

    Get PDF
    IP Anycast is used for services such as DNS and Content Delivery Networks to provide the capacity to handle Distributed Denial-of-Service (DDoS) attacks. During a DDoS attack service operators may wish to redistribute traffic between anycast sites to take advantage of sites with unused or greater capacity. Depending on site traffic and attack size, operators may instead choose to concentrate attackers in a few sites to preserve operation in others. Previously service operators have taken these actions during attacks, but how to do so has not been described publicly. This paper meets that need, describing methods to use BGP to shift traffic when under DDoS that can build a "response playbook". Operators can use this playbook, with our new method to estimate attack size, to respond to attacks. We also explore constraints on responses seen in an anycast deployment.Comment: 18 pages, 15 figure

    From the edge to the core : towards informed vantage point selection for internet measurement studies

    Get PDF
    Since the early days of the Internet, measurement scientists are trying to keep up with the fast-paced development of the Internet. As the Internet grew organically over time and without build-in measurability, this process requires many workarounds and due diligence. As a result, every measurement study is only as good as the data it relies on. Moreover, data quality is relative to the research question—a data set suitable to analyze one problem may be insufficient for another. This is entirely expected as the Internet is decentralized, i.e., there is no single observation point from which we can assess the complete state of the Internet. Because of that, every measurement study needs specifically selected vantage points, which fit the research question. In this thesis, we present three different vantage points across the Internet topology— from the edge to the Internet core. We discuss their specific features, suitability for different kinds of research questions, and how to work with the corresponding data. The data sets obtained at the presented vantage points allow us to conduct three different measurement studies and shed light on the following aspects: (a) The prevalence of IP source address spoofing at a large European Internet Exchange Point (IXP), (b) the propagation distance of BGP communities, an optional transitive BGP attribute used for traffic engineering, and (c) the impact of the global COVID-19 pandemic on Internet usage behavior at a large Internet Service Provider (ISP) and three IXPs.Seit den frühen Tagen des Internets versuchen Forscher im Bereich Internet Measu- rement, mit der rasanten Entwicklung des des Internets Schritt zu halten. Da das Internet im Laufe der Zeit organisch gewachsen ist und nicht mit Blick auf Messbar- keit entwickelt wurde, erfordert dieser Prozess eine Meg Workarounds und Sorgfalt. Jede Measurement Studie ist nur so gut wie die Daten, auf die sie sich stützt. Und Datenqualität ist relativ zur Forschungsfrage - ein Datensatz, der für die Analyse eines Problems geeiget ist, kann für ein anderes unzureichend sein. Dies ist durchaus zu erwarten, da das Internet dezentralisiert ist, d. h. es gibt keinen einzigen Be- obachtungspunkt, von dem aus wir den gesamten Zustand des Internets beurteilen können. Aus diesem Grund benötigt jede Measurement Studie gezielt ausgewählte Beobachtungspunkte, die zur Forschungsfrage passen. In dieser Arbeit stellen wir drei verschiedene Beobachtungspunkte vor, die sich über die gsamte Internet-Topologie erstrecken— vom Rand bis zum Kern des Internets. Wir diskutieren ihre spezifischen Eigenschaften, ihre Eignung für verschiedene Klas- sen von Forschungsfragen und den Umgang mit den entsprechenden Daten. Die an den vorgestellten Beobachtungspunkten gewonnenen Datensätze ermöglichen uns die Durchführung von drei verschiedenen Measurement Studien und damit die folgenden Aspekte zu beleuchten: (a) Die Prävalenz von IP Source Address Spoofing bei einem großen europäischen Internet Exchange Point (IXP), (b) die Ausbreitungsdistanz von BGP-Communities, ein optionales transitives BGP-Attribut, das Anwendung im Bereich Traffic-Enigneering findet sowie (c) die Auswirkungen der globalen COVID- 19-Pandemie auf das Internet-Nutzungsverhalten an einem großen Internet Service Provider (ISP) und drei IXPs

    On the latency and routing impacts of remote peering to the Internet

    Get PDF
    Remote peering (RP) has crucially altered the Internet topology and its economics. In creasingly popular thanks to its lower costs and simplicity, RP has shifted the member base of Internet eXchange Points (IXPs) from strictly local to include ASes located any where in the world. While the popularity of RP is well understood, its implications on Internet routing and performance are not. In this thesis, we perform a comprehensive measurement study of RP in the wild, based on a representative set of IXPs (including some of the largest ones in the world, covering the five continents). We first identify the challenges of inferring remote peering and the limitations of the existing methodologies. Next, we perform active measurements to identify the deployment of remote IXP inter faces and announced prefixes in these IXPs, including a longitudinal analysis to observe RP growth over one and a half years. We use the RP inferences on IXPs to investigate whether RP routes announced at IXPs tend to be preferred over local ones and what are their latency and latency variability impacts when using different interconnection meth ods (remote peering, local peering, and transit) to deliver traffic. Next, we asses the RP latency impact when using a remote connection to international IXPs and reaching prefix destinations announced by their members. We perform measurements leveraging the in frastructure of a large Latin American RP reseller and compare the latency to reach IXP prefixes via RP and four Transit providers. Finally, we glimpse some of the RP impli cations on Internet routing. We evaluate how RP can considerably affect IXP members’ connection stability, potentially introduce routing detours caused by prefix announcement mispractices and be the target of traffic engineering by ASes using BGP communities

    An architectural approach for mitigating next-generation denial of service attacks

    Get PDF
    It is well known that distributed denial of service attacks are a major threat to the Internet today. Surveys of network operators repeatedly show that the Internet's stakeholders are concerned, and the reasons for this are clear: the frequency, magnitude, and complexity of attacks are growing, and show no signs of slowing down. With the emergence of the Internet of Things, fifth-generation mobile networks, and IPv6, the Internet may soon be exposed to a new generation of sophisticated and powerful DDoS attacks. But how did we get here? In one view, the potency of DDoS attacks is owed to a set of underlying architectural issues at the heart of the Internet. Guiding principles such as simplicity, openness, and autonomy have driven the Internet to be tremendously successful, but have the side effects of making it difficult to verify source addresses, classify unwanted packets, and forge cooperation between networks to stop traffic. These architectural issues make mitigating DDoS attacks a costly, uphill battle for victims, who have been left without an adequate defense. Such a circumstance requires a solution that is aware of, and addresses, the architectural issues at play. Fueled by over 20 years worth of lessons learned from the industry and academic literature, Gatekeeper is a mitigation system that neutralizes the issues that make DDoS attacks so powerful. It does so by enforcing a connection-oriented network layer and by leveraging a global distribution of upstream vantage points. Gatekeeper further distinguishes itself from previous solutions because it circumvents the necessity of mutual deployment between networks, allowing deployers to reap the full benefits alone and on day one. Gatekeeper is an open-source, production-quality DDoS mitigation system. It is modular, scalable, and built using the latest advances in packet processing techniques. It implements the operational features required by today's network administrators, including support for bonded network devices, VLAN tagging, and control plane tools, and has been chosen for deployment by multiple networks. However, an effective Gatekeeper deployment can only be achieved by writing and enforcing fine-grained and accurate network policies. While the basic function of such policies is to simply govern the sending ability of clients, Gatekeeper is capable of much more: multiple bandwidth limits, punishing flows for misbehavior, attack detection via machine learning, and the flexibility to support new protocols. Therefore, we provide a view into the richness and power of Gatekeeper policies in the form of a policy toolkit for network operators. Finally, we must look to the future, and prepare for a potential next generation of powerful and costly DDoS attacks to grace our infrastructure. In particular, link flooding attacks such as Crossfire use massive, distributed sets of bots with low-rate, legitimate-looking traffic to attack upstream links outside of the victim's control. A new generation of these attacks could soon be realized as IoT devices, 5G networks, and IPv6 simultaneously enter the network landscape. Gatekeeper is able to hinder the architectural advantages that fuel link flooding attacks, bounding their effectiveness
    corecore