
Boston University
OpenBU http://open.bu.edu
Theses & Dissertations Boston University Theses & Dissertations

2021

An architectural approach for
mitigating next-generation denial
of service attacks

https://hdl.handle.net/2144/42216
Boston University

BOSTON UNIVERSITY

GRADUATE SCHOOL OF ARTS AND SCIENCES

Dissertation

AN ARCHITECTURAL APPROACH FOR MITIGATING

NEXT-GENERATION DENIAL OF SERVICE ATTACKS

by

CODY DOUCETTE

B.A., Boston University, 2014
M.S., Boston University, 2014

Submitted in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

2021

© Copyright by
CODY DOUCETTE
2021

Approved by

First Reader
John W. Byers, PhD
Professor, Computer Science
Associate Dean of the Faculty

Second Reader
Abraham Matta, PhD
Professor & Chair, Computer Science

Third Reader
Mark Crovella, PhD
Professor, Computer Science

To Erica

In loving memory of Allen C. Powell

iv

ACKNOWLEDGMENTS

There are so many people that have supported me and helped me to get to this

point. I would like to take a moment to thank each of them.

First, thank you to my wife and best friend, Erica. As if parenthood and a

pandemic were not challenging enough, she was also subjected to the trials and

tribulations of a husband finishing his dissertation. She rose to the occasion and

supported me every step of the way, and for that I will always be grateful.

Thank you to my advisor, John Byers, for guiding me each step of the way.

From the introductory class of his that I took ten years ago, to my time as an under-

graduate research assistant, all the way to my status now as a PhD, I have always

admired his knowledge, approach, and style in the academic arena. There is no

one that I strive to impress more than John, and I hope this dissertation makes him

proud of the work our research group has done.

I probably would not be here without the mentorship of Michel Machado.

Michel took me under his wing during my undergraduate years and helped me

grow to not just program better, but to think bigger. His visions for the poten-

tial of our research is inspiring, and I look forward to the years to come trying to

accomplish those dreams alongside him. Thanks, Michel.

Thank you as well to my closest partner along this winding path, Qiaobin Fu.

Qiaobin and I spent many, many hours building Gatekeeper from the ground up,

and we could not have reached this point without each other.

Thank you to Dave Sullivan, who propelled my interest in computer science,

taught me the value of sharing our knowledge with others, and gave me more

opportunities than I can count throughout the “decade of Cody.” Dave may have

started out as my first CS instructor before becoming one of my most influential

v

mentors, but what I’m most thankful for is his friendship.

Thanks to Osama Haq and Fahad Dogar at Tufts University, who helped me

learn the value of patience, persistence, and resilience in research endeavors. It

took longer than we thought to publish our work, but the end product was supe-

rior for it, and I’m grateful for your partnership at every step along the way.

Thank you to my colleagues at BBN, who not only allowed me the freedom

to finish my PhD while working full-time, but included me in engaging and chal-

lenging work and supported my new family and I throughout the past two years.

Thank you to all of the friends that have supported me, including Alexander

Breen, Eli Saracino, Kylie Moses, Benjamin Brown, Andrew Tarrh, Sana Nagar, and

a whole host of others that are too numerous to count, but which have made my

ten years at BU an absolute pleasure.

Last but not least, thank you to my family, who have never held back in ex-

pressing their joy for me and my accomplishments. I hope this one makes you

proud, too.

vi

AN ARCHITECTURAL APPROACH FOR MITIGATING

NEXT-GENERATION DENIAL OF SERVICE ATTACKS

CODY DOUCETTE

Boston University, Graduate School of Arts and Sciences, 2021

Major Professor: John W. Byers, Professor of Computer Science

ABSTRACT

It is well known that distributed denial of service attacks are a major threat to

the Internet today. Surveys of network operators repeatedly show that the Inter-

net’s stakeholders are concerned, and the reasons for this are clear: the frequency,

magnitude, and complexity of attacks are growing, and show no signs of slow-

ing down. With the emergence of the Internet of Things, fifth-generation mobile

networks, and IPv6, the Internet may soon be exposed to a new generation of so-

phisticated and powerful DDoS attacks.

But how did we get here? In one view, the potency of DDoS attacks is owed to

a set of underlying architectural issues at the heart of the Internet. Guiding prin-

ciples such as simplicity, openness, and autonomy have driven the Internet to be

tremendously successful, but have the side effects of making it difficult to verify

source addresses, classify unwanted packets, and forge cooperation between net-

works to stop traffic. These architectural issues make mitigating DDoS attacks a

costly, uphill battle for victims, who have been left without an adequate defense.

Such a circumstance requires a solution that is aware of, and addresses, the ar-

chitectural issues at play. Fueled by over 20 years worth of lessons learned from

the industry and academic literature, Gatekeeper is a mitigation system that neu-

vii

tralizes the issues that make DDoS attacks so powerful. It does so by enforcing

a connection-oriented network layer and by leveraging a global distribution of

upstream vantage points. Gatekeeper further distinguishes itself from previous

solutions because it circumvents the necessity of mutual deployment between net-

works, allowing deployers to reap the full benefits alone and on day one.

Gatekeeper is an open-source, production-quality DDoS mitigation system. It

is modular, scalable, and built using the latest advances in packet processing tech-

niques. It implements the operational features required by today’s network ad-

ministrators, including support for bonded network devices, VLAN tagging, and

control plane tools, and has been chosen for deployment by multiple networks.

However, an effective Gatekeeper deployment can only be achieved by writing

and enforcing fine-grained and accurate network policies. While the basic function

of such policies is to simply govern the sending ability of clients, Gatekeeper is ca-

pable of much more: multiple bandwidth limits, punishing flows for misbehavior,

attack detection via machine learning, and the flexibility to support new protocols.

Therefore, we provide a view into the richness and power of Gatekeeper policies

in the form of a policy toolkit for network operators.

Finally, we must look to the future, and prepare for a potential next generation

of powerful and costly DDoS attacks to grace our infrastructure. In particular, link

flooding attacks such as Crossfire (Kang et al., 2013) use massive, distributed sets

of bots with low-rate, legitimate-looking traffic to attack upstream links outside of

the victim’s control. A new generation of these attacks could soon be realized as

IoT devices, 5G networks, and IPv6 simultaneously enter the network landscape.

Gatekeeper is able to hinder the architectural advantages that fuel link flooding

attacks, bounding their effectiveness.

viii

CONTENTS

Acknowledgements v

Abstract vii

List of Tables xiii

List of Figures xiv

List of Symbols and Abbreviations xvi

1 Denial of Service in the Past, Present, and Future 1

1.1 Overview . 1

1.2 Mitigation Techniques . 4

1.2.1 Threat Model and Goals . 4

1.2.2 Commercial Solutions . 7

1.2.3 Academic Solutions . 8

1.3 Architectural Underpinnings . 16

1.4 The Next Generation . 19

1.5 Thesis Statement and Approach . 21

1.6 Contributions . 23

2 Gatekeeper 24

2.1 Overview . 24

2.1.1 Components . 24

2.1.2 Step-By-Step Example . 26

ix

2.2 Design . 28

2.2.1 Vantage Points . 28

2.2.2 Gatekeeper Servers . 34

2.2.3 Grantor Servers . 39

2.2.4 Request Channel . 41

2.2.5 Vulnerabilities . 45

2.2.6 Architectural Properties and Deployability 46

2.3 Implementation . 49

2.3.1 Packet Processing Framework 49

2.3.2 Functional Block Decomposition 51

2.3.3 Hardware Offloading . 56

2.3.4 Software Techniques . 58

2.3.5 Operational Features . 59

2.4 Evaluation . 61

2.4.1 Goals . 61

2.4.2 Testbeds . 61

2.4.3 Baseline Functionality . 65

2.4.4 Effect of Policies . 67

2.4.5 Performance Benchmarking . 69

2.4.6 Cost Analysis . 71

3 Policy Toolkit 75

3.1 Overview . 75

3.2 Policy Design . 77

3.2.1 Decision Types . 79

3.3 Writing Policies . 81

x

3.4 Basic Policy Techniques . 84

3.4.1 Host Lookups and Bogons . 84

3.4.2 Port Lookups . 87

3.4.3 Secondary and Negative Bandwidth 89

3.4.4 New Protocol Support: QUIC 93

3.5 Advanced Policy Techniques . 96

3.5.1 Flow Capture and Analysis . 96

3.5.2 Port Knocking . 100

3.5.3 Load Balancing and Path Control 102

4 Defending Against Next-Generation Attacks 104

4.1 Overview . 104

4.2 Crossfire Primer . 106

4.2.1 Attack Summary . 106

4.2.2 Architectural Advantages of Crossfire 109

4.2.3 Recorded Crossfire Attacks . 111

4.2.4 Previous Attempts at a Solution 112

4.3 The Perfect Storm . 114

4.4 Crossfire Defense with Gatekeeper . 117

4.4.1 Measurement Study Setup . 118

4.4.2 Link Map Disruption . 121

4.4.3 Diversity of Cloud Paths From Gatekeeper 124

4.4.4 Moving Target Defense . 132

5 Conclusions 135

5.1 Deployments . 135

xi

5.2 Closing Remarks . 135

Bibliography 139

Curriculum Vitae 150

xii

LIST OF TABLES

2.1 Gatekeeper priority assignment scheme 36

2.2 Instance types evaluated on AWS. 73

4.1 Summary of Crossfire construction . 108

xiii

LIST OF FIGURES

1.1 Peak DDoS attack magnitude by year 1

1.2 Network capabilities design . 10

1.3 Network filters design . 14

2.1 Components of the Gatekeeper architecture 25

2.2 State transition diagram for flows in Gatekeeper 37

2.3 Request channel priority queue . 44

2.4 Gatekeeper implementation block diagram 52

2.5 Grantor implementation block diagram 54

2.6 Amazon testbed topology . 63

2.7 Legitimate file transfer time with low-rate policies 66

2.8 Legitimate file transfer time under SYN attack with secondary band-

width . 67

2.9 Legitimate file transfer time with negative bandwidth policies 68

2.10 Gatekeeper server throughput under maximum flow table churn . . 70

2.11 Legitimate file transfer time with varying Gatekeeper instance types

and prices . 74

3.1 Example geographic overview of flows associated to VPs 98

4.1 An overview of the Crossfire attack . 107

4.2 Topological view of emulated bots and VPs 120

4.3 Handling of traceroute probes around Gatekeeper 122

4.4 Target links from measurement study 124

xiv

4.5 Degradation ratios by vantage point 126

4.6 Target links cut by flows from the various VPs (1 set of 20) 129

4.7 Target links cut by flows from the various VPs (3 sets of 10) 131

4.8 Heat map of persistent link overlap between VPs 133

xv

LIST OF SYMBOLS AND ABBREVIATIONS

5G Fifth generation mobile networks

AS Autonomous System

AWS Amazon Web Services

CDN Content Distribution Network

(D)DoS (Distributed) Denial of Service

DoC Denial of Capability

(e)BPF (Extended) Berkeley Packet Filter

EC2 Amazon Elastic Compute Cloud

ENA Amazon Elastic Network Adapter

IDS Intrusion Detection System

IoT Internet of Things

IXP Internet eXchange Point

LACP Link Aggregation Control Protocol

LFA Link flooding attack

PoP Point of Presence

RSS Receive-Side Scaling

VP Vantage Point

xvi

1

CHAPTER 1

Denial of Service in the Past, Present, and Future

1.1 OVERVIEW

It is hard to overstate the impact that distributed denial of service (DDoS) attacks

continue to have on the Internet. It is one of the top concerns of network oper-

ators (Akamai, 2019; Menscher, 2020), and by the numbers, it is easy to see why.

Figure 1.1 shows the largest recorded attacks by volume for each year since 2002.

Aside from a noticeable outlier in 2019, the trend is quite clear: peak attack magni-

tude is growing exponentially. Additionally, attacks are becoming more frequent

and sophisticated, pushing mitigation systems to their breaking points and driving

up the cost to defend against attacks.

Figure 1.1: Approximate peak attack magnitude by year (Arbor Net-
works, 2014; NETSCOUT, 2019; Neustar, 2020; AWS, 2020b).

But perhaps an even clearer indication of the runaway nature of the problem

is that the effects of DDoS attacks have entered the consciousness of the general

public. The financial and social impacts of DDoS attacks are cited in high-profile

2

incidents, including the DDoS attack used to disrupt communications between

protestors in Hong Kong (Marvin, 2019), as well as a 500% spike in DDoS attacks

during the COVID-19 pandemic, as millions are forced to work remotely via the

Internet (NexusGuard, 2020).

The economics of trying to defend against DDoS attacks is similarly grim. A

report by Arbor Networks indicated that the cost incurred to victims from a ma-

jor DDoS attack was over $220K (NETSCOUT, 2019). In contrast, attackers can

easily launch a 125 Gbps DDoS attack for only several dollars (Makrushin, 2017).

Additionally, the average cost of launching a DDoS attack will likely continue to

fall through 2023, since the attack surfaces and resources leveraged by attackers

are growing fast: the average broadband speed is more than doubling, and the

number of IoT devices is growing nearly 2.4-fold (Cisco, 2020).

How have DDoS attacks become so damaging? Part of the issue is that there

are certain architectural underpinnings of the Internet that enable DDoS attacks

to be not just possible, but also potent. Both the academic networking commu-

nity and the industry have implemented solutions to combat these problems, and

although much progress has been made in identifying the salient issues and apply-

ing a patchwork of fixes, few have adequately addressed the holistic architectural

advantage that attackers enjoy, and none have seen actual deployment. A solu-

tion is needed that both (1) addresses the architectural issues that fuel the ability

of DDoS attacks to thrive in the Internet, and (2) that is able to be deployed with

full benefits to drive adoption.

However, before we talk about a solution, in this chapter we will retrace our

steps and think about DDoS attacks of the past, present, and future. To begin, we

will define the threat model and goals of a DDoS mitigation system, and provide

3

a short tour of the relevant work in the commercial and academic arenas that have

attempted to solve DDoS attacks. Next, we will explain the architectural properties

of the Internet that have helped DDoS attackers to flourish. We then demonstrate

the possibility for circumstances to worsen in the near future, and propose that

Gatekeeper, a DDoS mitigation system, addresses the salient architectural issues,

and can achieve the escape velocity needed to actually deploy elegant techniques

from the literature in the Internet to combat the DDoS attacks of today and tomor-

row.

4

1.2 MITIGATION TECHNIQUES

There have been many attempts at mitigating DDoS attacks, mostly split along

two lines: commercial solutions and academic solutions. Both sides have made

contributions to the state of the art in defensive systems, but there has been lit-

tle cross-pollination between them, and there remains a large gap in the solution

space. Elegant as they are, academic solutions have not been able to be deployed

into the network due to the financial and technical barriers to making significant

changes to the Internet architecture, which is often required for effective solutions.

On the other side, the DDoS defense market is a lucrative industry, but the space of

available products is quite limited and expensive, and the purveyors of these ser-

vices are mostly only those who can use their distributed, Internet-scale infrastruc-

ture and services to absorb attacks (Nygren et al., 2010; Akamai, 2020; Cloudflare,

2020a; Imperva, 2020).

To dig deeper into the space of mitigation techniques, we will first define the

threat model that mitigation systems are up against. Then, we highlight some

solutions in both the commercial and academic arenas. Finally, we explain why

there is still a need from the networking community for a cheap, comprehensive,

and deployable defense for DDoS attacks.

1.2.1 Threat Model and Goals

Threat model. For this thesis, we define the threat model as follows:

• Assumption 1. Attack locus. We assume that attackers launch infrastructure-

layer attacks, which are attacks that target the network and transport (L3 and

L4) layers and infrastructure to deny access to legitimate clients by over-

whelming the network bandwidth and processing capacity of victims. For

5

example: UDP fragment floods, DNS and NTP amplification attacks, TCP

SYN floods, etc. Note that some infrastructure layer attacks, such as am-

plification attacks (Paxson, 2001; Czyz et al., 2014b; Rossow, 2014), use ap-

plication layer vulnerabilities to trigger volumetric responses that ultimately

overwhelm the infrastructure layer. As of 2017, infrastructure-layer attacks

make up more than 99% of all DDoS traffic (Akamai, 2017). The remaining

1% consists of non-infrastructure, “low and slow” attacks, including:, but not

limited to: (1) those that target applications or application data, such as HTTP

GET, PUSH, and POST attacks; (2) Reduction of Quality (RoQ) attacks (Guirguis

et al., 2004), which do not target the availability of victims, but rather orches-

trate low-intensity requests that target system dynamics to destabilize the

system and reduce service quality. Although some of the methods presented

in this thesis may be applicable to these other non-infrastructure attacks, we

do not explicitly address them.

• Assumption 2. Attack type. We assume that there is a set of infrastructure-

layer attack types that is well-known to both the attacker and the mitigation

system. Although this may give the mitigation system hints about the pres-

ence of an attack, the mitigation system does not know the exact parameters

of these attacks, and cannot decide with absolute certainty whether a given

flow is participating in such an attack. Additionally, we assume that there

are novel infrastructure-layer attack types that the mitigation system does

not know about a priori, but that this can be typified.

• Assumption 3. Attack resources. We assume that attackers have a fixed pool of

resources (e.g., bots), and use those resources to launch attacks that are strong

enough to achieve denial of service to legitimate clients, but no stronger. At-

6

tackers spread out their resources, such as per-bot attack rate, as much as

possible to avoid detection.

• Assumption 4. Attack source. We assume that devices participating in an

attack are out of the administrative control of the mitigation system, and

that attackers (and their associated bots) hide their identities and try to place

blame for attack traffic on unwitting, innocent clients by using source address

spoofing.

A note on terminology: we will use the term distributed denial of service attack,

since in the current Internet ecosystem of readily-available clouds and botnets,

massively distributed attacks have become the norm. However, the principles out-

lined in this thesis are also applicable to non-distributed (“just” DoS) attacks.

Goals of mitigation. The basic goal of a DDoS defense system is to mitigate

attacks, or sufficiently reduce the amount of attack traffic in the network to allow

legitimate traffic access to services. To this end, the most effective DDoS mitigation

system will:

• Goal 1. Minimize the amount of (wasted) bandwidth, memory, and CPU

used in the hosts, routers, and other devices along the path from the attacker

to the target.

• Goal 2. Minimize the time from attack onset to attack mitigation.

• Goal 3. Maximize the proportion of attack traffic that is mitigated.

• Goal 4. Minimize the amount of collateral damage, i.e., the amount of legiti-

mate traffic that is reduced as a consequence of the system.

7

Note that these goals are not exhaustive, and it may not be possible to com-

pletely optimize (i.e., to absolute maximum or minimum) these goals. Because of

Assumptions 2 and 4, which say that a mitigation system cannot perfectly decide

whether a flow is participating in an attack and that the mitigation system has no

authoritative control over the source, it is not feasible to mitigate 100% of attack

traffic without any wasted resources or collateral damage.

Now that we have an understanding of the threat model and goals of mitiga-

tion, we will provide a brief survey of commercial and academic mitigation solu-

tions.

1.2.2 Commercial Solutions

Commercially available DDoS mitigation solutions often provide redirection-based

architectures as a paid service to their customers. For example, in the clean-pipe ap-

proach, a customer’s traffic is redirected through a scrubbing center, which uses

various analytic tools to identify malicious traffic and remove it from the data

stream. The only traffic that reaches the customer’s infrastructure is therefore

“clean.” Similarly, networks can contract the services of content distribution net-

works (CDNs) to gain access to their distributed and high-capacity infrastructure

to dilute and absorb large attacks (Gilad et al., 2016).

Providers of DDoS mitigation services use these techniques and others, such as

machine learning for traffic profiling, to perform attack detection and absorption.

The exact services and options vary from provider to provider. Popular products in

this space include Akamai Prolexic (Akamai, 2020), Cloudflare’s DDoS protection

tools (Cloudflare, 2020a), and Imperva Incapsula (Imperva, 2020).

Customers shopping for DDoS protection services have to consider multiple

8

issues when choosing a provider. First, they have to decide what forms of DDoS

mitigation they are interested in, as some providers offer only application layer

protections, while others offer transport, SSL, and infrastructure defenses as well.

There can also be restrictions regarding how the customer can use the service; for

example, infrastructure protection from Imperva Incapsula can only be applied for

a single IP address or an entire C class (/24) network (Imperva, 2020). Addition-

ally, customers who host latency-sensitive applications must be aware of the ef-

fects of the redirection through DDoS protection services on latency. Finally, most

DDoS protection services use proprietary attack detection algorithms, giving the

customers little control over how to analyze and prioritize traffic (Liu et al., 2016).

Cost is also a major factor. Although exact pricing is largely not publicly avail-

able, most enterprise-level tiers of protection are expensive1. Even the “free” tiers

of DDoS protection that are often rolled into Web hosting or CDN services at no

extra charge can have hidden fees, or have no service guarantees (Arazi, 2020). To

help lower the financial burden, many providers offer on demand service alterna-

tives (as opposed to always on), but this carries the risk of allowing an attack to

succeed while the mitigation system is configured and the redirection mechanism

is activated. Unfortunately, foregoing DDoS protection in today’s Internet is not

an option; according to an industry survey, each DDoS attack can cost the victim

organization up to $50k (Corero, 2019).

1.2.3 Academic Solutions

Alongside commercial efforts, there has been a long trajectory of academic work

to thwart DDoS attacks. While the threat of DDoS was known to the academic
1We provide more details about the cost of commercial DDoS protection services in Sec-

tion 2.4.6.1.

9

community in the 1990s, the February 2000 attack by MafiaBoy that famously took

down e-commerce sites such as Yahoo! and eBay (Moore et al., 2001) was a call-to-

arms for network operators and researchers. Since that point, the community has

taken a much broader interest in DDoS attacks and how to defend against them.

Denial of service is a multi-faceted problem. There is work in the realm of

(1) attack detection, or how to differentiate malicious attacks from network mis-

configurations, errors, and flash crowds, and to what extent such a differentiation

matters; (2) attack mitigation, or how to stop attacks from disrupting service to le-

gitimate users; and (3) attack accountability, or how to identify attackers and hold

them responsible, potentially with performance penalties or even legal action.

This thesis sits squarely in the realm of attack mitigation. There have been

many bodies of work in this field, including overlay-based architectures (Ander-

sen, 2003) and blackholing approaches (Giotsas et al., 2017), but we will briefly

highlight two of the largest swaths of academic work: network capabilities and

filters.

1.2.3.1 Network Capabilities

IPv4 and IPv6, the ubiquitous network layer protocols in the data plane, are con-

nectionless. Clients can transmit datagrams to servers without prior arrangement

or permission. This design decision was made in an effort to keep the network

layer communication open and simple, resulting in a best-effort service that has,

in many ways, withstood the test of time.

From the perspective of defending against infrastructure-layer DDoS attacks,

though, this is a vulnerability. Allowing network layer messages to reach the

server necessarily means that network layer access has been granted, in the sense

10

Figure 1.2: Transmission scenarios without (top) and with (bottom)
network capabilities. Packets without capabilities are dropped at
routers.

that the bits of the packet are being received, consuming some of the bandwidth of

the server. Simple flooding attacks from small botnets can easily exhaust a server’s

network resources. This is the problem that network capabilities tries to solve (An-

derson et al., 2004). In a network capability system, clients must explicitly receive

an authorization token (a capability) to be able to send traffic. By default, some or

all of the routers and hosts on the path from a source to a destination drop packets

without a valid capability (Figure 1.2).

Essentially, network capabilities represent a connection-oriented network layer.

But how could such an architecture work? Anderson et al. (2004) proposed that be-

fore being able to transmit normal traffic, senders must first request capability to-

kens from Request-To-Send servers. Once they obtain the token, they have explicit

permission to send privileged traffic. Routers along the client-server path would

act as capability verification points for such privileged traffic. Although this work

provided the foundation for network capabilities, it was only a strawman design

and was, to our knowledge, never implemented.

11

Other work then further developed capabilities as a new architectural tech-

nique. The Stateless Internet Flow Filter (SIFF) (Yaar et al., 2004) refined the net-

work capability design, including removing the requirement for per-flow state at

routers to validate capability tokens. The Traffic Validation Architecture (Yang

et al., 2005) further enriched the state of the art by providing the first implementa-

tion of a capability system and evaluating it against various types of attacks.

At this point, there still existed practical and theoretical issues with network

capabilities. On the practical side, there was still no workable solution for de-

ploying a network capability system, including the fact that capability verification

required upgrading routers along client-server paths. It seemed that the most re-

alistic scenario was for deploying networks to only deploy the verification at their

border routers, which still allowed attacks to consume resources up to the destina-

tion network. On the theoretical side, there was no feasible solution for protecting

the capability setup (or capability request) channel. The request channel is a cru-

cial part of the network capability architecture, since it represents the gateway for

senders to able to obtain permission to transmit data, but is vulnerable to floods of

requests from attackers that drown out legitimate requests. In fact, this flaw in the

design of network capabilities became such a weakness that it threatened to derail

the entire architecture.

Argyraki and Cheriton (Argyraki & Cheriton, 2005a) pointed out that this vul-

nerability, which they named the denial of capabilities (DoC) problem, presented a

fundamental contradiction: if a mechanism existed to protect the capability setup

channel, then the same mechanism could be used to protect the privileged traffic

channel, therefore removing the need for capabilities in the first place. It was not

until two years later that the Portcullis work showed that in fact, capability setup

12

traffic is different in nature than privileged traffic. Since only a single request

packet is needed to obtain a capability token, the mitigation system just needs

to provide a predictable and non-negligible probability that the sender’s request

packet reaches the receiver (Parno et al., 2007). By using computational puzzles to

force fair sharing of the request channel, Portcullis had solved the DoC problem.

Additionally, there are more recent examples of work in the space of network

capabilities. NetFence (Liu et al., 2010), allows receivers to use congestion polic-

ing feedback as capability tokens to suppress unwanted traffic, and also provides

a time-based mechanism for guaranteeing a predictable capability setup request

time, as opposed to the computational puzzles proposed by Portcullis. MiddlePo-

lice (Liu et al., 2016) marries the concepts of cloud-based DDoS protection services

with the destination-based control of network capability systems.

All in all, network capability systems would help mitigate DDoS attacks by

largely replacing the free ability of attackers to transmit data to a server with a

permission-based, connection-oriented network layer. However, none of the capa-

bility systems from the literature have been deployed, mostly due to the fact that

there are few benefits to only a single network deploying these solutions (i.e., they

all offer only incremental deployment benefits).

1.2.3.2 Filters

The filtering approach to DDoS mitigation is more in-line with the general prin-

ciples of a connectionless network layer. By allowing traffic to be freely transmit-

ted by default and only taking mitigating actions when issues are detected, filters

represent an optimistic approach to DDoS defense, and are the dual to network

capability systems.

13

The basic mechanism at play is a firewall: a set of filtering rules placed at one or

more routers along the path from the clients to the target server (Figure 1.3). Each

rule is typically specified in a declarative language that matches one or more fea-

tures of a packet, and either software or hardware can apply the rules to received

packets. Filters can drop or rate limit packets as the rule specifies. Challenges of

filter systems include the fact that there is no single authority to trust when mak-

ing filtering decisions upstream, the lack of source address verification to verify

where filters should be placed, and state management issues for filters installed

throughout the network.

In practice, firewalls and filters have been a part of production network soft-

ware since at least the mid-1990s. For example, the Linux administrative utility

for packet filtering, iptables, is capable of matching against any or all parts of an

IP packet’s five-tuple (protocol, source IP, destination IP, source port, destination

port), along with other header fields as well as stateful filtering. iptables can be

used to mitigate many network security events including some DDoS attacks, but

it is insufficient to combat the scale and sophistication of attacks today, since fil-

ters are most effective when they are installed as close to the source of the attack

as possible. Consider the bandwidth used by attack traffic at each hop between

a malicious client and the target. The bandwidth used at each hop is bandwidth

wasted, and the cycles used by routers on this path to process attack traffic is also

wasted.

This is where the academic approach to network filters saw traction during the

mid-to-late 2000s. How can filters be used as far upstream as possible to catch and

stop as much traffic as possible? Pushback (Mahajan et al., 2002) was among the

earliest efforts to capture the main challenges of filters, with a strawman design to

14

Figure 1.3: Transmission scenarios before (top) and after (bottom)
filters are applied.

15

fingerprint traffic and apply filters. Filters can be applied both at the local router

and up the path to the source by pushing back rules closer to the attack source. Argy-

raki & Cheriton (2005b) provided the Active Internet Traffic Filtering framework,

which limits the amount of filtering state used in upstream routers by identifying

the router closest to the attacking source that is willing to cooperate with filtering

requests. Neither of these first two filtering proposals provided full implemen-

tations, and therefore were not deployed. Liu et al. (2008) contributed StopIt, a

hardened filtering architecture that improved on previous work by adding mech-

anisms to resist (1) filter exhaustion attacks and (2) bandwidth flooding attacks

that prevent the installation of filters. It also provided the first implementation (as

opposed to simulation) of a filtering system, and offered a systematic comparison

between filters and network capabilities. However, due to its only incremental de-

ployment benefits, as well as its requirement for border routers to be upgraded to

perform source authentication, StopIt was never deployed.

There are also recent proposals to collaborate with source networks to perform

mitigating maneuvers with mechanisms other than filters, such as using rerout-

ing techniques (Lee et al., 2013). However, since collaborative techniques require

source networks to be incentivized to participate, which so far has not been shown

to be feasible in the current Internet, there are high deployment hurdles for filter-

ing architectures and none have been deployed in the wild.

16

1.3 ARCHITECTURAL UNDERPINNINGS

We now discuss the architectural underpinnings that not only enable infrastructure

layer DDoS attacks to take place, but have also allowed them to flourish and evade

mitigation for decades. First, a note on what we mean by the Internet architecture.

Definition. The Internet architecture is all of the complementary network layer

protocols, infrastructure, and principles that make network interconnection possi-

ble:

• Protocols: data plane protocols such as IPv4 and IPv6 and their associated

addressing schemes; control plane protocols such as IS-IS, BGP, RIP, etc.

• Infrastructure: the interconnected structure of hosts and routers which exist

in access networks, transit networks, content delivery networks, points of

presence (PoPs), peering links and Internet exchange points (IXPs), etc.

• Principles: the open Internet, a decentralized network of networks, the best-

effort network-layer delivery service, the end-to-end principle, etc.

DDoS is an inherently architectural problem. To show this, we will describe

four architectural issues that enable DDoS attacks, and explain why DDoS mitiga-

tion systems should address these issues to be most effective, referencing the goals

defined in Section 1.2.1. While it may not be necessary to address all of the issues,

each issue that is left unresolved limits the effectiveness of a mitigation system.

Architectural Issue 1. Victim networks have little or no recourse with source net-

works. Due to the decentralized design of the Internet – a network of autonomous

systems (AS) with no central authority – there is no built-in mechanism for forg-

ing cooperation between networks to request attack mitigation from the source

network.

17

The effect of Issue 1 is that it bounds the ability of a DDoS mitigation system to

minimize the amount of wasted resources on the attacker-target path (Goal 1). To

prevent the loss of network, memory, and CPU resources along the path, attacks

should be mitigated as close to the source as possible. At present, the best way of

doing this is with inter-AS cooperation between the victim and source networks.

Architectural Issue 2. There is no mechanism to stop unwanted traffic. Due to

the open and connectionless properties of the network layer, traffic is by default

permitted to transit the Internet and reach the destination network. Note that this

issue is about the mechanism to stop traffic, which is distinct from Issue 1, which

is about having the authority to stop traffic where it is most useful.

The effect of Issue 2 is that it guarantees that at least some attack traffic can

reach a targeted server before mitigating maneuvers can take place, so any attack

can be at least partially successful. This bounds the ability of a DDoS mitigation

system to minimize the time to attack mitigation (Goal 2), and similar to Issue 1,

limits its ability to minimize the amount of wasted resources (Goal 1).

Architectural Issue 3. Sender identity cannot be verified. Due to the lack of source

address verification in the architecture, even if unwanted traffic could be stopped

and mitigating maneuvers could be installed close to the source (Issues 1 and 2),

there is no mechanism at the network layer to guarantee the identity of the sender

of the traffic. Therefore, there is no guarantee that a mitigating maneuver itself

would not be denying service to an unwitting legitimate client.

The effect of Issue 3 is that it interferes with the mitigation system’s ability

to accurately differentiate between attackers and legitimate clients, bounding its

ability to maximize the proportion of attack traffic that is mitigated (Goal 3) and to

minimize the amount of collateral damage in terms of legitimate clients (Goal 4).

18

Architectural Issue 4. A victim network cannot compete with the capacity of Internet-

scale attacks. The Internet is a massive network of networks with billions of con-

nected devices. Therefore, the capacity of a DDoS mitigation system in a singular

victim network will almost always be exponentially smaller than the capacity of

an Internet-scale botnet. Indeed, we know from analysis of the Mirai attack that it

is possible to press devices into botnet service at the scale of the Internet (Anton-

akakis et al., 2017). The aggregate bandwidth consumed by a massive number of

low-intensity, legitimate-looking attacking flows at the scale of even a fraction of

the Internet will very likely be greater than the capacity of a defensive system.

The effect of Issue 4 is that it inhibits the ability of DDoS mitigation systems to

reach all four defined goals. If the DDoS mitigation system itself is overwhelmed,

perhaps by either bandwidth exhaustion or state exhaustion, there is not much that

a system can do.

A solution to DDoS should be aware of these issues and address as many of

them as possible to be most effective. Ideally, the solution should also be instantly

and fully deployable, i.e., a deploying network should be able to reap the full ben-

efits of the system alone and on day one. Otherwise, as has been seen with the

great majority of DDoS mitigation proposals, systems that offer mere incremental

deployment benefits will likely never see the light of day.

19

1.4 THE NEXT GENERATION

Taking the status quo of DDoS attacks and defensive systems into context, we now

consider how the threat landscape may soon be shifting, yielding a new era of

damaging attacks. Very large DDoS attacks can be quite scary for network op-

erators, as during these events, operators must quickly perform triage to salvage

services amid an avalanche of attack data, and with each second that passes and

each flow that gets dropped, revenue is potentially lost.

Now, imagine the same event, but with a twist: no attack traffic reaches the

victim servers and services. In fact, no traffic is reaching the victim at all. Opera-

tors have no visibility into what attack is happening or how to start to mitigate it.

Imagine that such an attack could be achieved solely by using low-intensity traffic,

so that even if an operator could peek at the traffic, there is no way to differentiate

it from normal traffic. And imagine that the only way to stop such an attack would

be to collaborate manually (e.g., over the phone) with other operators.

These are the properties of large-scale link attacks, specifically the Crossfire

attack (Kang et al., 2013). Crossfire uses a massive and distributed botnet to or-

chestrate legitimate-looking flows to overwhelm a set of targeted links, upstream

of the victim network and outside of the control of its operators. Crossfire has

been described as “the most devastating and stealthy attack to date" (Gillani et al.,

2015), and it is easy to see why: the operator does not know for sure that the attack

is happening, there is no way to discern from where the attack is coming, and the

operator cannot stop it without out-of-band help.

Such attacks are feasible in the Internet today, and similar attacks have already

appeared in the wild (Bright, 2013). But now, there is a confluence of factors emerg-

ing in the Internet that could lead to a next generation of such large-scale link at-

20

tacks. Consider the following advances in technology:

• The proliferation of the Internet of Things, bringing about a new generation of

“smart” Internet-connected devices.

• The rollout of fifth-generation (5G) cellular networks, giving mobile devices

greater network capacity than ever before.

• The migration of networks to IPv6, revealing new, incrementally deployed

infrastructure.

Client devices are becoming more plentiful and more powerful at the same time

that many networks are undergoing infrastructural change. Could such an envi-

ronment give rise to a new generation of stealthy and devastating attacks such as

Crossfire? In this thesis, we consider a potential solution to DDoS attacks, includ-

ing large scale link attacks: Gatekeeper.

21

1.5 THESIS STATEMENT AND APPROACH

The central thesis of this dissertation is that Gatekeeper is a deployable mitigation

system that neutralizes the architectural issues that make DDoS attacks potent, in

both the Internet of today and tomorrow. In order to formulate this finding, we

answer the following questions as we proceed through the chapters:

1. What are the architectural issues at stake that make DDoS attacks possible

and potent? In this chapter, we described the architectural underpinnings

that have enabled DDoS attacks to grow to a top operational concern, while

decades of work in DDoS defense have yielded few deployable results. Even

worse is the fact that there exists a confluence of factors that might signifi-

cantly amplify the damage of DDoS attacks in the near future. Such architec-

tural issues need to be addressed in order for a DDoS mitigation system to

be effective.

2. What would such a DDoS mitigation system look like? In Chapter 2, we de-

scribe the design, implementation, and evaluation of a DDoS defense system,

Gatekeeper, which neutralizes the defined architectural issues. In addition,

Gatekeeper is open source and deployable by a single network, meaning that

unlike many DDoS solutions in the literature, it can see the light of day as a

real-world deployment.

3. How is such a DDoS mitigation system managed? In Chapter 3, we ex-

plore the mechanism that governs the mitigation system: destination poli-

cies. Such policies control who is permitted access to the protected network’s

services, and how they do so, and ranges in scope from the ability to perform

22

simple lookups, to imposing punishments, supporting new protocols, and

utilizing machine learning techniques.

4. What is the outlook for the future? In Chapter 4, we look to tomorrow, and

theorize about whether Crossfire attacks are poised to take advantage of a

confluence of factors to unleash devastating DDoS attacks in the near future,

and what Gatekeeper can do in response.

To conclude, in Chapter 5, we discuss the ongoing deployments of Gatekeeper

and future research directions.

23

1.6 CONTRIBUTIONS

Woven into the five chapters of this dissertation is a set of core contributions, in-

cluding:

• An interpretation of the features of the Internet architecture that allow DDoS

attacks to not just be possible, but to flourish

• The design of a fully deployable DDoS mitigation system, Gatekeeper, that

leverages historical work in DDoS defense, and neutralizes the aforemen-

tioned architectural issues at play

• An open source implementation of Gatekeeper, built with performance and

operational considerations in mind

• An evaluation of the effectiveness and efficiency of Gatekeeper, as well as an

analysis of the cost of Gatekeeper compared to other mitigation systems

• A network operator toolkit for writing rich and expressive destination poli-

cies in Gatekeeper

• An analysis of the potential for a next generation of massive link attacks due

to the confluence of IoT, 5G, and IPv6 entering the network landscape

• Open source implementations of the link map construction and target link

selection algorithm described in Kang et al. (2013)

• A prescription for how Gatekeeper can respond to such next-generation at-

tacks using cloud paths with a real-world evaluation using Looking Glass

nodes.

24

CHAPTER 2

Gatekeeper

2.1 OVERVIEW

This chapter presents Gatekeeper, a DDoS mitigation system that (1) is fully de-

ployable1 and (2) addresses the network-architectural issues at play, incorporating

many of the lessons learned by decades of DDoS mitigation research. Together,

these properties enable Gatekeeper to bridge the gap between the research com-

munity and the real world DDoS protection market, and provide an avenue for

a comprehensive DDoS mitigation system to be put into practice by a range of

deployers, balancing cost with scalability.

2.1.1 Components

At its heart, Gatekeeper is a network capability system (Section 1.2.3.1). Previous

proposals for capability-based systems failed to be deployed because in order to be

successful, the deploying AS needed to control both ends of the path (in order to do

capability management) or have trust arrangements with source networks. Gate-

keeper circumvents these issues by leveraging geographically-distributed vantage

points (VPs).

Between the VPs and the destination network, Gatekeeper provides a network-

layer connection mechanism, which requires an authoritative entity in the desti-

nation network to explicitly grant access to client traffic before it can reach the

intended destination server. This permission, or capability, takes the form of a

special value in the IP header of packets sent along the path from the VP to the

1Such that the deploying entity can reap the full benefits of the system alone and on day one.

25

destination server.

Figure 2.1 depicts the general topology and highlights the two main compo-

nents of Gatekeeper: Gatekeeper servers located in each contracted vantage point,

and a Grantor server located in the data center of the defended AS. For simplicity,

we assume that the AS deploys all its services in a single data center.

Figure 2.1: Components of the Gatekeeper architecture.

Each time a client tries to send traffic to a server in the destination network, the

client’s traffic gets forwarded to the closest VP. There, the VP performs network

capability admission control. If a capability decision for the flow has not already

been made, the first packet of a flow is marked as a request and is forwarded to

the Grantor server, which will decide to either grant or decline the flow based on a

defined policy. If the flow has already been previously granted, then rate-limiting

state is updated, and if the flow has enough credits then the packet is sent along

26

the path to the destination AS, where it is decapsulated by Grantor and sent to the

ultimate destination.

In other words, at a high level, Grantor provides the ability to perform central-

ized policy decisions, and Gatekeeper provides the upstream policy enforcement.

Both ends of the this process – decision and enforcement – can be performed using

programs instead of static, declarative rules.

2.1.2 Step-By-Step Example

To demonstrate how the components of Gatekeeper work together, we now de-

scribe an end-to-end example of a client initiating a TCP connection. Since Gate-

keeper supports TCP/IP clients without modification, the client first sends a TCP

SYN as normal. The SYN packet is forwarded to the closest VP, since all contracted

VPs announce routes to the destination AS. Once received by the VP, the packet is

transferred to the router of the destination AS, which in turn hands the packet to

one of the Gatekeeper servers.

The Gatekeeper server checks whether there is state associated with the flow of

the packet, and if there is, decides what to do based on that state. In Gatekeeper,

flows are defined as the pair (source IP, destination IP).

In this example, we assume there is no state associated with the flow. In other

words, a capability decision has not yet been made. The Gatekeeper server first

allocates flow state that contains the arrival time of the SYN packet. Then, Gate-

keeper encapsulates the packet using the IP-in-IP protocol, and fills the new IP

header as follows: (a) the source IP address is the IP address of the server, (b) the

destination IP address is the address of a Grantor server, and (c) the DSCP field is a

value in the range 3−63 as determined by a priority assignment algorithm. Higher

27

priority requests receive preferential service along the Gatekeeper to Grantor path

during attacks.

The encapsulated SYN packet is then forwarded to the destination AS using

a previously established tunnel. At the destination, the packet is delivered to the

Grantor server, which then decides whether to accept the packet based on a policy

defined by the deploying AS.

If the decision is to reject the connection, the Grantor server could do nothing,

or send its decision back to the Gatekeeper server to avoid another query for a

given period of time. If the decision is to accept, Grantor sends its decision back to

the Gatekeeper server, which includes the maximum rate at which the sender can

transmit (e.g., 1 Mbps) and a time limit for how long the decision is valid. Grantor

then transmits the SYN packet to the target server.

After processing the SYN packet, the destination server replies with a SYN

ACK that is sent directly to the source. The decision of the Grantor server arrives

at the Gatekeeper server and the SYN ACK packet arrives at the source. The source

will continue to send packets through the Gatekeeper server to the destination as

the Gatekeeper server enforces the assigned rate.

28

2.2 DESIGN

We now present further details with regards to the four main components of Gate-

keeper: vantage points, Gatekeeper servers, Grantor servers, and the request chan-

nel.

2.2.1 Vantage Points

Vantage points are a central piece of Gatekeeper’s design. The term vantage point is

commonly used in the network tomography community to refer to strategic points

of the network from which to conduct measurements, or from which especially

rich, diverse, or representative measurements can be made. However, in Gate-

keeper, vantage points (VPs) are strategic locations in the network where a Gate-

keeper server deployment is hosted. Common examples are Internet exchange

points (IXPs), cloud data centers, and carrier hotels that host private interconnec-

tions. In this work, we will mostly use IXPs as exemplars for VPs, since the struc-

ture and characteristics of IXPs are well-documented due to their more public and

transparent nature compared to clouds and private interconnects. Still, all such en-

tities are considered vantages because they offer four benefits for DDoS mitigation

systems, which are described next.

2.2.1.1 Benefits of VPs

First, VPs are often well-provisioned. For example, the switching fabric of clouds

and IXPs are typically highly-redundant and composed of multiple aggregation

levels across distributed colocation sites (Chatzis et al., 2013). This provides for

high levels of resiliency and bisection bandwidth; some IXPs are already capable

of processing traffic at peak speeds of more than 10 Tbps (IX.br, 2020). High peak

29

capacity is key to being able to mitigate tail DDoS attacks while minimizing collat-

eral damage to clients.

The second advantage is that VPs are often available topologically close to

source networks. According to various measurement studies (Gill et al., 2008;

Dhamdhere & Dovrolis, 2010), the topology of the Internet is flattening, meaning

that the Internet is shifting away from hierarchical routing through tiers of ISPs

and transit providers and toward a mesh-like routing structure due to peering

agreements between networks. Cloud providers participate too: Microsoft and

Amazon peer at IXPs (AWS, 2020d; Yeganeh et al., 2019). Although transit net-

works still play a key role for reachability, the effect of this flattening is that VPs

can act as insertion points for DDoS mitigation much closer to the source network

than if hierarchical routing through transit providers was used. This is key to be-

ing able to fulfill the goal of minimizing the amount of wasted resources along an

attacker’s path to the target.

Third, VPs are globally distributed. By recent counts, there are over 800 IXPs

distributed across over 130 countries in every continent except Antarctica (Peer-

ingDB, 2020; Packet Clearing House, 2020). On the cloud side, Amazon’s data cen-

ters are distributed across more than 20 geographically distinct regions, with 220

points of presence (PoPs) that span more than 40 countries across all continents ex-

cept Antarctica AWS (2020c). The global distribution of VPs is key to Gatekeeper

being able to handle Internet-scale attacks.

The fourth advantage is that leveraging existing infrastructure reduces the cap-

ital expenses for network operators, lowering the barrier to deploy services. Data

centers in clouds and IXPs typically pay the rent and provide the power, cooling,

and basic network connectivity for members. Participants just need to bring a

30

router to peer along with whatever network gear, compute, and storage is needed.

Although members are charged fees for their participation, these much smaller

operating expenses pale in comparison to the investment that would otherwise be

needed to deploy vantage points in private facilities.

2.2.1.2 Placement of VPs

A key issue in designing a distributed Gatekeeper deployment is how to select

the set of VPs across the Internet wherein Gatekeeper is deployed. Although the

formulation and solution to such a deployment problem is outside the scope of

this thesis, we will provide some preliminary thoughts about how to address it.

The VP selection problem is similar to the cache deployment optimization prob-

lem (Hasan et al., 2014), an offline economic and planning problem across rela-

tively long (months or years) time scales, where CDN operators choose the set of

networks in which to deploy CDN caches. This is in contrast to the older cache

location problem (Krishnan et al., 2000), which focuses the cache placement issue

from the perspective of a single network. The main constraints and trade-offs for

such a problem are deployment cost for the CDN, balanced against the perfor-

mance requirements of end-users. The VP selection problem is concerned with the

following properties.

Multiple time scales. Similar to cache deployment optimization, the VP selec-

tion problem is long-term planning issue, since deploying network hardware to a

VP requires investment and permanent maintenance. However, the elasticity of

the cloud enables semi-permanent VP deployments that could be bootstrapped as

a response to an attack or for other short time scales.

From-scratch vs. iterative. The VP selection problem is relevant for both first-

31

time and existing Gatekeeper deployers. Constructing an initial set of deploying

VPs would be useful for first-time deployers, whereas an iterative version of the

solution to calculate the marginal benefit of adding VP n + 1 would be beneficial

for existing deployers.

Cost. An important input to the VP selection problem is the cost that a deployer

would pay for a deployment in a given VP with a given level of resources. If cost

were no objective, then the naive solution would be to simply deploy Gatekeeper

at all candidate VPs. However, for each VP that is selected, the operator must pay

for network gear (switches and servers), participation fees, and maintenance in

the case of IXPs, and virtual compute, storage, and bandwidth charges in the case

of clouds. Network operators are therefore interested in minimizing the manage-

ment and operational costs that scale with the number of VPs, while maximizing

the aggregate capacity of Gatekeeper, and also maximizing the spread of potential

end-users (read: potential attackers) across VPs.

End-user and traffic spread. Typical metrics for cache placement problems are

concerned with minimizing the total amount of traffic in the system and minimiz-

ing the delay experienced by end-users. For VP selection, end-user delay is a con-

cern, but the main metric should be related to the potential peak traffic capacity, in

hopes of spreading the potential amount of users and traffic to VPs proportionally

based on their capacity. A traffic throughput history for each candidate VP would

be a desirable input, but a proxy metric could be the number of IP addresses in the

networks that would be anycast-served by the candidate VP. This could approxi-

mate the number of connected devices that would be served by the VP, but because

of private address spaces and NAT, could also considerably undercount the actual

figure. Ideally, the metric should also capture the potential attack traffic that is di-

32

rected through the VP, for which databases that describe network reputation could

be used.

2.2.1.3 Requirements of VPs

In general, VPs have four requirements for basic operation: (1) computing capacity,

(2) cheap ingress bandwidth, (3) BGP peering, and (4) private links to the protected

network.

Computing capacity. A VP must be an insertion point for mitigation software

to run. Nodes without general computing capacity, such as dedicated routers or

other middleboxes, are insufficient to run Gatekeeper.

Cheap ingress bandwidth. A VP must support a pricing model where ingress

bandwidth is either free or cheap. For example, implicit in the peering model of

private interconnects and IXPs is that traffic is exchanged between participants for

free. Similarly, many cloud providers use a pricing model where ingress traffic

is free and users are charged for egress traffic only. This requirement is in place

because of the nature of a DDoS mitigation system – in order to protect legitimate

traffic at all times, the system is always on, so at a minimum legitimate traffic

is always passing through the system. Charging for this traffic would be costly

and impractical. At peak, during attacks, charging for ingress traffic would give

attackers a direct lever on the price that victim networks pay.

BGP peering. VPs must support the ability to redirect traffic ultimately des-

tined for the protected network through the vantage point first. In the current

Internet, this is achieved through eBGP prefix announcements. Instead of an-

nouncing routes to a protected network’s prefixes at traditional border routers,

Gatekeeper servers announce the prefixes that they are configured to protect. In a

33

global deployment, this creates an anycast network, where client traffic is always

forwarded to the nearest VP instead of directly to the protected network. Note that

some network locations that would otherwise be good candidates for a VP, such as

some cloud providers, do not allow customers to partipcate in BGP sessions, and

therefore cannot be VPs.

Private links. VPs must be connected to the protected network by a private

path that does not expose routable addresses to the open Internet. Otherwise,

routers along the path would be susceptible to DDoS attacks themselves. To get

the most protection along the path, physical links could be used (e.g., dark fiber),

but that may be prohibitively expensive for some deployers. Instead, virtual links

via tunneling (e.g., MPLS) using shared infrastructure would also be sufficient.

However, using shared infrastructure raises the possibility of attacks on the links

and routers on the path, even if the deployer’s share of the resources is not directly

reachable.

2.2.1.4 Relationship to Edge Computing

From a high level, Gatekeeper vantage points are in the domain of edge computing,

a distributed computing paradigm in which the compute and storage power of the

network edge is leveraged to mainly reduce application response time, but also to

provide better scalability and reliability as well as offload computation from user

devices when necessary (Satyanarayanan, 2017). There are two main ways of inter-

preting the “edge.” One is as a separate, logical layer between access networks and

the cloud, composed of one-hop-away devices such as fog computing nodes (e.g.,

routers and switches), mobile edge nodes (e.g., base stations), or cloudlets (ded-

icated “data centers in a box”) (Bonomi et al., 2012; Satyanarayanan, 2017). The

34

second definition refers to distributed infrastructure further than one hop away,

such as PoPs, IXPs, and private data centers where content caching, authentica-

tion, TCP termination, load balancing, DDoS mitigation, and other services can

be inserted (Yap et al., 2017; Majkowski, 2017; Shirokov & Dasineni, 2018; Wragg,

2020). Gatekeeper fits squarely into this second definition, and is, to our knowl-

edge, the first open source DDoS mitigation software for the edge.

Vantage points provide the infrastructure for Gatekeeper to effectively address

the architectural barriers to combating DDoS. Next, we explore what role Gate-

keeper servers play in that process.

2.2.2 Gatekeeper Servers

Gatekeeper servers are the main components deployed in VPs, and have the data

plane responsibilities of (1) bookkeeping flow state and policy decisions, (2) en-

forcing policy decisions over flows, and (3) encapsulating traffic to be sent to the

destination (protected) network.

2.2.2.1 Flow State and Processing

When traffic is redirected through the VP as a consequence of BGP announce-

ments, ingress flows are load balanced between a set of one or more Gatekeeper

servers located in the VP. Since Gatekeeper handles any IPv4 or IPv6 traffic, flows

are defined as the (Source IP, Destination IP) pair, as opposed to common flow

definitions that also include TCP or UDP port numbers. Gatekeeper maintains

a flow table that maps incoming flows to flow entries, which can be one of four

types:

1. Request. No policy decision for the flow has yet been made by Grantor, or a

35

previous policy decision for the flow has expired.

2. Granted. The flow is permitted to send traffic, and Gatekeeper will forward

its traffic at a prescribed rate. Any packets from this flow beyond that rate

will be dropped.

3. Declined. The flow is not permitted to send traffic. All packets from this flow

will be dropped.

4. BPF. The flow is to be processed by a policy enforcement program installed

at Gatekeeper. The program itself is (extended) Berkeley Packet Filter (eBPF)

bytecode, which will forward or drop packets according to the specifics of

the program.

If the flow does not have a corresponding entry in the table at all, a new entry

of type Request is added to the table for the flow, and the packet is forwarded as a

request to Grantor.

The original design of Gatekeeper only included the Request, Granted, and De-

clined flow states, which are sufficient for a network capabilities system. Later,

the BPF flow state was added, which adds greater flexibility for operators to in-

stall arbitrary policy enforcement programs written in BPF to decide whether and

how packets should be forwarded. For example, programs may use multiple band-

width limits for different types of traffic within the same flow, which is not possible

with the Granted state.

2.2.2.2 Flow Encapsulation and Channels

Request and granted packets are encapsulated so that they can be transmitted to

a Grantor server in the destination network. There are two reasons for the encap-

36

Priority Value Traffic Type
0 Legacy
1 Granted
2 Granted, renewing capability

3-63 Request

Table 2.1: Gatekeeper priority assignment scheme.

sulation. For request packets, a policy decision first needs to be made by Grantor

before the original data packet is forwarded along to the destination server (or not,

if the decision is Declined). Second, the encapsulation forces granted packets to be

processed by Grantor, which allows a central point for measurement and enables

the network operator to build policies around a global view of traffic. Optionally,

the encapsulation of granted packets could be disabled, allowing for direct deliv-

ery of packets to their destinations, with the added benefit of reduced bandwidth

consumption due to the lack of space taken up by encapsulation.

Although both request and granted packets are encapsulated and sent along

the same path, they are processed in different logical channels according to a prior-

ity value assigned to each packet. Granted packets are high priority, and are given

a vast majority of the path’s available bandwidth, e.g., 95%. Request packets are

given only a small fraction (e.g., 5%) of the available bandwidth and are scheduled

using a special priority queue based on the packets’ assigned priorities. Requests

with higher priorities are serviced first. Further details about the request channel

are in Section 2.2.4.

In theory, the priority assignment scheme could be designed in a number of

ways, but in practice the inflexibility of the network layer forces us to work the

priority scheme into the IPv4 and IPv6 protocols. Both of these protocols support

a Differentiated Services (DS) field in the packet header that can accommodate a 6-

37

bit value. With six bits to work with, Gatekeeper uses priority assignment scheme

shown in Table 2.1. Further details about how request priorities are assigned is

described in Section 2.2.4. Central to Gatekeeper’s design is the maintenance of

flow states.

2.2.2.3 Flow States

When Gatekeeper receives a policy decision for a flow from Grantor, it updates

the flow table entry. All policy decisions contain an expiration time as part of the

response. Before a Granted or BPF flow’s capability expires, Gatekeeper encapsu-

lates a packet from the granted flow with a priority value reserved for granted

flows whose capability is about to expire. This special priority value triggers a

capability renewal from Grantor, avoiding delays or dropped packets that could

happen as a result of a granted decision expiring and needing to be renewed from

scratch. Otherwise, on expiry of a flow decision, flows go back to the Request state.

A state transition diagram for flows in Gatekeeper is shown in Figure 2.2.

Figure 2.2: State transition diagram for flows in Gatekeeper.

38

To summarize, the flow processing algorithm is shown in Algorithm 1. For

simplicity, the assignment of priorities to encapsulated packets is not shown.

Algorithm 1: Gatekeeper flow processing loop.

while True do

pkt = rx_packet();

flow = (pkt.srcIP, pkt.dstIP);

flow_entry = flow_tbl_lookup(flow);

if flow_entry != NULL then

// Process flow according to flow state.

if flow_entry.type == Request then

tx_request_to_grantor(encapsulate(pkt));

else if flow_entry.type == Granted then

if flow_entry.avail_credits >= pkt.size then

tx_granted_to_grantor(encapsulate(pkt));

else

drop_packet(pkt);

else if flow_entry.type == Declined then

drop_packet(pkt);

else if flow_entry.type == BPF then

send = flow_entry.enforcement_program(pkt);

if send == True then

tx_granted_to_grantor(encapsulate(pkt));

else

drop_packet(pkt);

else

// Process flow as a request.

tx_request_to_grantor(encapsulate(pkt));

end

end

39

2.2.2.4 Scalability

To maintain its effectiveness in the face of Internet-scale attacks, the design of Gate-

keeper enables scaling along four axes:

1. Increasing the number of VPs. There are hundreds, if not thousands, of can-

didate locations for VPs across the globe. The more VPs a network utilizes,

the more spread out ingress traffic will be, potentially diluting attacks.

2. Increasing the number of Gatekeeper servers in a VP. Multiple Gatekeeper

instances can be deployed in a single VP with flows load balanced between

them, enabling horizontal scaling.

3. Increasing the number of network ports used by each Gatekeeper server.

Each Gatekeeper instance should be able to accommodate bonded network

devices, allowing the network capacity of a single server to be scaled up

without additional nodes.

4. Increasing the multithreading level of Gatekeeper servers. This allows Gate-

keeper to scale-up the software processing power without additional hard-

ware investment.

2.2.3 Grantor Servers

To complement Gatekeeper servers, Grantor servers are deployed in the protected

AS to make the policy decisions that are enforced in the VPs. The responsibilities

of Grantor servers include (1) decapsulating granted packets and sending them to

their ultimate destination, and (2) running a policy decision program on request

packets and informing Gatekeeper of such policy decisions. The details of the

40

policy program and decision-making are discussed in Chapter 3. While these re-

sponsibilities may seem like mundane technical details, they actually reflect three

broader important roles that Grantor servers play.

2.2.3.1 Roles

Capability granting. Grantor is a trusted entity for capability granting and ad-

ministers the capabilities for all protected hosts. Alternatively, capability granting

could be performed by the individual destination servers themselves. However,

using a separate authority to grant capabilities allows destination servers to re-

main unmodified, which is key for deployment and different from many previous

network capability systems.

Centralized control. Grantor has centralized authority over the operation of

the data plane, making it architecturally similar in spirit to Software-Defined Net-

working (SDN) (Casado et al., 2007; Yap et al., 2017), especially in the context of

wide area networks (Yang et al., 2019). Using an SDN-like architecture simplifies

network management for Gatekeeper, since operators only need to configure one

(or a small set of) Grantor server(s) with the desired policy that is then enforced

at the vantage points. In this view, Grantor servers are analogous to SDN con-

trollers and Gatekeeper servers are analogous to SDN switches. Grantor servers

install policy decisions on Gatekeeper servers using a protocol that is analogous to

OpenFlow (McKeown et al., 2008). Additionally, the policy enforcement (BPF) pro-

grams that run at Gatekeeper servers are analogous to virtualized network func-

tions (Han et al., 2015), as well as P4 data plane programs that can be run on SDN

switches (Bosshart et al., 2014). The key difference between Gatekeeper and SDN

is that Gatekeeper is scoped more narrowly to the issues and needs of DDoS miti-

41

gation, and therefore does not require the complexity and level of protocol support

of OpenFlow and SDN switches and controllers.

Global traffic view. Since all request and granted traffic (not declined traffic)

is sent through Grantor, it can act as a centralized location for measurement. This

allows network operators to iteratively improve their network policies based on a

global view of the traffic. If this service is not desired, Gatekeeper can optionally

transmit all granted traffic directly to the destination servers, skipping the Grantor.

2.2.3.2 Scalability

Similar to Gatekeeper servers, Grantor servers provide scalability in several ways.

Grantor servers can scale horizontally within a destination network, with flows

load balanced between them. Grantor servers also have the same network and

CPU scaling abilities as Gatekeeper servers, since they can bond network devices

and utilize multiprocessing and multithreading.

2.2.4 Request Channel

The last major component of the Gatekeeper architecture is the request channel.

The request channel is a key aspect of network capability systems, but is particu-

larly prone to attacks, as described in Section 1.2.3.1. To summarize, care should be

taken to ensure that the mechanism to request a capability token is not susceptible

to DDoS attacks itself.

Gatekeeper takes three steps to protect the request channel: (1) allocating only

a small fraction of the path’s available bandwidth to the request channel, (2) as-

signing priorities to requests based on the time between successive packets in the

same flow, and (3) dropping the lowest priority packets when the request channel

42

is overwhelmed. We now present details about each of these properties.

2.2.4.1 Request Channel Bandwidth Allocation

Separating low-priority request traffic from the high-priority privileged traffic has

its origins in the earliest network capabilities proposals (Anderson et al., 2004). The

reason for bifurcation is simple: the entity that performs connection management

to protect destinations from unwanted traffic has no connection protection itself,

so it is always possible for attackers to flood the connection setup mechanism.

Gatekeeper combats this issue dividing the available capacity of the path from

Gatekeeper to the destination network as approximately 95% granted traffic and

5% request traffic.

2.2.4.2 Request Priority Assignment

As previewed in Section 2.2.2.2, request packets are assigned a priority between 3-

63, with higher priorities representing higher priority request traffic. The request

priority assignment scheme stems from the results found in Portcullis (Parno et al.,

2007). There, it is shown that a legitimate user (using Portcullis) can always suc-

cessfully transmit a request packet in time bounded by the amount of attacker

computation, since all clients must compute increasingly difficult proof-of-work

puzzles to obtain increasingly high priority for their traffic.

However, since Gatekeeper is designed to be deployed by a single AS and Gate-

keeper servers are therefore trusted entities, the priority assigned does not need to

be cryptographically secure as it does in Portcullis. Therefore, Gatekeeper sim-

plifies the proof-of-work mechanism to instead use waiting time as the metric to

determine the priority assigned to packets.

43

The priority assigned to a request packet is log2(delta_time). Therefore, flows

that wait longer between successive packets are assigned higher priorities. This

mechanism encourages exponential backoff, and is similar to the legitimate sender

strategy outlined in Portcullis, in which legitimate senders will double the diffi-

culty of the puzzles that they solve for every failed attempt. However, this is still

not enough to mitigate the DoC problem: what if an attacker simply spams the

request channel with low priority requests?

2.2.4.3 Priority Queuing Scheme

To prevent attackers from simply overwhelming the request channel with low-

priority requests, nodes along the Gatekeeper-Grantor path (the Gatekeeper server

and routers) must drop low-priority packets when their queues are full. To this

end, Gatekeeper uses a priority queue that is implemented as a length-limited

linked list of requests, sorted by priority (Figure 2.3). Additionally, Gatekeeper

uses a constant-sized auxiliary array of references to the last (most recently added)

request of each priority in the list, as well as references to the front of the list and

back of the list. The priority queue supports the following operations, all of which

run in time O(1) relative to the size of the priority queue:

• Dequeue highest priority packet: the reference to the highest priority packet

represents the next packet to be serviced by the packet scheduler, so the de-

queuing operation simply removes the packet from the front of the queue. If

there are multiple packets of the same such priority, the packet that has been

in the queue the longest is scheduled.

• Enqueue new packet, with available room: if there is room available in the pri-

ority queue for another packet, then the packet’s priority is looked up in the

44

priority reference table. If there are already packets of that priority in the

queue, then the new packet is inserted at the end of the chain of those pack-

ets. If there are no packets of the priority in the queue, then the priority

references are scanned to find the next lowest priority that is present in the

queue. The new packet is then inserted after all packets of that next lowest

priority.

• Enqueue new packet, without available room: if the queue is full, then the priority

of the new packet is compared to the priority of the lowest packet in the

queue. The packet with the lower priority between the two is dropped. If

they have the same priority, the new packet is dropped.

Figure 2.3: Request channel priority queue.

The three properties above – (1) limiting request channel bandwidth, (2) assign-

ing request priorities based on waiting time, and (3) scheduling according to the

priority queue scheme – are sufficient to guarantee the successful operation of the

request channel according to the theorems proved by Portcullis. In particular, if a

network policy cannot identify attackers, then a legitimate sender will wait, in the

worst case, a time proportional to the number of attackers to have a policy decision

installed at the corresponding Gatekeeper server, and that this result is optimal.

45

2.2.5 Vulnerabilities

In addition to the denial of capabilities problem, Gatekeeper must also be aware of

and address potential vulnerabilities against itself.

Packet priority integrity. If a man-in-the-middle attacker were able to compro-

mise a node on the path from the Gatekeeper server to the Grantor server, then

that attacker could change the bits of the DS field of the outer header of Gate-

keeper packets to change the priority from request to granted. This would allow

the attacker’s traffic to bypass some of the request channel throttling. However,

this attack is limited in its effectiveness, since the request channel algorithm is also

implemented at the Gatekeeper server, meaning that the 5% bandwidth limit and

priority queueing scheme will at least be enforced at that point. Moreover, the ef-

fectiveness of the attack is bounded by the number of routers in the remaining part

of the path after the priority is altered, since those are the only routers that would

be processing the packet as granted. Finally, this attack does not permanently affect

the state of the flow, which will remain in the request state, requiring the attacker

to alter every packet’s priority (and recompute every packet’s checksum) in order

to have an effect.

Spoofing policy decisions. A man-in-the-middle attacker could also compro-

mise packets going in the other direction, by changing policy decisions sent from

Grantor to Gatekeeper. Attackers are motivated to grant capabilities to their at-

tacking flows, and to do so at high rates, to avoid the mitigation of attack traffic

at Gatekeeper. This vulnerability can be solved by requiring digital signatures on

policy decision packets, which guarantees the integrity of the decision, and by re-

quiring signing entities (i.e., Grantor) to present a digital certificate, guaranteeing

the identity of the signer.

46

State exhaustion. To calculate request packet priorities, Gatekeeper must keep

track of the inter-request time for each flow. This means that Gatekeeper will keep

per-flow state even during an attack, in which many packets with spoofed source

IP addresses may be crafted to try to overwhelm the Gatekeeper flow table with

many flow entries in the Request state. Gatekeeper handles this state exhaustion

attack against the flow table with horizontal scaling and multithreading, where

each thread in each Gatekeeper server is given a unique set of flows to be kept in its

own flow table, which is not shared between threads or servers. Gatekeeper is also

capable of using large flow tables, at least of size 225 for each thread (Section 2.4.5).

Also, old request entries are regularly pruned from the flow table, and even if

there is not enough room in the flow table to hold a request entry, the request is

still transmitted to Grantor to try to elicit a policy decision and at least allow the

flow to make progress, even if under the bandwidth limit of the request channel.

Attacks against a VP. Attackers may target the links or other resources of the

VP itself. VPs such as IXes and cloud data centers are generally well-provisioned

due to the amount of traffic that they serve on a typical basis, but a motivated at-

tacker with substantial resources could try to prevent packets from reaching Gate-

keeper at all. However, the impact of these attacks is limited in Gatekeeper deploy-

ments that leverage multiple VPs, since routes would eventually be announced to

direct traffic away from any affected VP. As a last resort, Gatekeeper can blackhole

traffic at a VP to geographically bound the impact.

2.2.6 Architectural Properties and Deployability

Recall that Section 1.3 describes how an ideal mitigation system will address at

least four core architectural issues to achieve a set of desirable goals for DDoS

47

defense, and do so in a deployable way. The design of Gatekeeper addresses all of

these issues as follows:

Victim networks have little or no recourse with source networks. Communi-

cating across trust domains at the level of trying to convince other ASes to take mit-

igating actions is an extremely difficult problem to solve. Gatekeeper circumvents

this issue by using a geographic deployment that approximates the topological

position of source networks with VPs. Therefore, Gatekeeper foregoes the require-

ment to collaborate with other networks to stop DDoS attacks while still achieving

the goal of minimizing the amount of wasted resources on the attacker-target path.

There is no mechanism to stop unwanted traffic. By realizing a connection-

oriented network layer with capabilities, Gatekeeper provides the missing shutoff

mechanism to stop unwanted traffic. By being able to completely cut off any flow

from reaching the network, rate limiting questionable flows immediately, and re-

voking capabilities, Gatekeeper minimizes the time to mitigate attacks.

Sender identity cannot be verified. Gatekeeper does not provide sender iden-

tity verification per se. However, it does provide extra topological information by

virtue of the flow’s entry into the protected network at a particular VP. This infor-

mation can be used to detect flows with spoofed source addresses (Section 3.5.1.2).

Additionally, Gatekeeper can enforce certain lightweight authorization mechanisms

such as port knocking (Section 3.5.2). Policy techniques such as these allow Gate-

keeper to differentiate between attacking flows and legitimate flows, maximizes

the proportion of attack traffic that is mitigated and minimizes the amount of col-

lateral damage to legitimate clients.

A victim network cannot compete with the capacity of Internet-scale attacks.

Although Gatekeeper protects only a single network in current deployment mod-

48

els, it can achieve an Internet-scale deployment through its usage of distributed

vantage points. It is still true that with enough money and bots, an attacker can

overwhelm any DDoS mitigation system, Gatekeeper included. However, Gate-

keeper’s ability to scale along four axes (more: VPs, Gatekeeper servers, network

devices, lcores) makes global deployments of Gatekeeper suitable for protection

at the scale of multiple Tbps. This capacity at least matches the magnitude of the

largest known attacks.

Deployability. Previous solutions were hampered by deployability issues, such

as requiring extra-architectural mechanisms or non-incentivized collaboration be-

tween networks. However, Gatekeeper operates completely within the current In-

ternet architecture by leveraging the existing infrastructure of globally distributed

vantage points. Such vantage points also enable Gatekeeper to circumvent the ne-

cessity of mutual deployment with other networks, since it gives the deploying

network a presence close to traffic sources to enforce network capabilities.

49

2.3 IMPLEMENTATION

Gatekeeper was designed to be deployable, and its implementation reflects that.

It was built with performance, scalability, and operational requirements in mind.

More than just a research prototype, the Gatekeeper software product combines

advances in packet processing technology together with hardware offloading and

a suite of desirable features for network operators. We now present an overview

of the implementation details of Gatekeeper, and reflect on the implementation of

the design decisions that drive Gatekeeper to be deployable.

2.3.1 Packet Processing Framework

A key concern for Gatekeeper is its dependence on, and its choice of, a packet

processing framework. Typical operating system network stacks are well-suited

for generality and are acceptable for a wide range of applications. However, they

are too slow to keep pace with high-speed networks, and are not ideal for the

packet and bandwidth processing needs of a DDoS mitigation system. Several

packet processing frameworks such as netmap (Rizzo, 2012), Intel DPDK (DPDK,

2020), Fastclick (Barbette et al., 2015), PF_RING (PF_RING, 2020), and PacketShader

I/O (Han et al., 2010) have been proposed to enable network applications to skip

the overhead of the OS network stacks and provide line-rate network I/O. For

Gatekeeper, Intel’s Data Plane Development Kit, or DPDK, was the best choice.

DPDK provides excellent performance in terms of throughput and packet process-

ing latency (Gallenmüller et al., 2015), and its development is stable and driven by

many industry collaborators.

At its core, DPDK is a set of libraries that accelerates packet processing work-

loads running on a wide variety of CPU architectures. DPDK enables link layer

50

frames to bypass the kernel networking stack and be delivered directly to appli-

cations. The main advantage of kernel bypass techniques like this is speed: tra-

ditional kernel networking stacks are comparatively bloated to provide generality

of processing across a variety of link layer, network layer, and transport layer pro-

tocols. In DPDK, applications are essentially handed a simple buffer of bytes for

each frame, and any protocol-specific processing must be implemented by the ap-

plication developer. For example, there is no TCP implementation in DPDK, so

DPDK cannot easily be used to manage connections as a TCP endpoint. However,

a DPDK application could easily and efficiently sample TCP packets for measure-

ment purposes, or perform transport layer load balancing. For a DDoS mitigation

system like Gatekeeper, the speed advantage far outweighs the loss of generality

disadvantage.

Gatekeeper heavily relies on three key features in DPDK: (1) NUMA-aware

memory management, which can reduce the memory access latency by allowing

CPU cores to access local memory instead of remote memory; (2) burst packet I/O,

which allows Gatekeeper to receive and send packets in batches, reducing the per-

packet cost of accessing and updating queues; (3) lockless rings, which provide an

efficient concurrency control mechanism packet buffer allocation and inter-thread

communication. More details about the software and hardware techniques used

by Gatekeeper are given in Section 2.3.4 and Section 2.3.3, respectively.

An important piece of terminology in DPDK parlance is lcore, which DPDK de-

fines as a logical execution unit of the processor, also known as a hardware thread.

The Gatekeeper software is decomposed into specialized blocks, each of which is

mapped to (at least one) lcore. We now describe each of these components and

their role in the system.

51

2.3.2 Functional Block Decomposition

Gatekeeper and Grantor servers are implemented as a single piece of software,

composed of functional blocks that represent the core components and services of

the system. Configuration settings determine whether the executable runs as Gate-

keeper or Grantor. There were three factors influencing the decision to decompose

the systems into functional blocks in a single executable. First, having a single

piece of software simplifies the engineering, configuration, and administration of

the system. Second, it provides for separation of concerns and modularity, which

allows the re-use of blocks that are common to both Gatekeeper and Grantor. Fi-

nally, it allows fine-tuning of system performance; each block is given one or more

DPDK lcores, so operators can easily scale-up the blocks that implement data plane

operations without wasting resources on low-bandwidth control plane operations.

Figures 2.4 and 2.5 present block-level views of the implementations of Gate-

keeper and Grantor. Notice that the model of a Gatekeeper server has two physical

NICs. One interface is connected to the VP router or switch, which we denote as

the front interface of Gatekeeper, and one interface connected to the private link(s)

to the AS deploying Gatekeeper, which we call back interface of Gatekeeper. Gate-

keeper requires separate interfaces because otherwise, if there was only a single

network interface, a Gatekeeper server under attack may not receive policy deci-

sions coming from Grantor servers due to the saturation of the interface. In con-

trast, Grantor servers each have a single interface and connect to the network seg-

ment of the destination network’s servers.

Each rounded-edge block in the diagram represents an lcore. The GK, GT, and

SOL blocks are able to be mapped to multiple lcores, so they are shown as stacks

of rounded-edge blocks. All other functional blocks are assigned at most one lcore.

52

Each arrow leaving or arriving at a network interface represents an RX (receive) or

TX (transmit) queue on the interface, respectively. Notable hardware and software

features are labeled, which include (1) RSS, receive-side scaling, which allows re-

ceived packets to be spread among multiple queues on the same NIC for load bal-

ancing purposes; (2) lockless rings for message passing between blocks; (3) filters,

or declarative traffic rules, which enable Gatekeeper to map certain protocols to

functional blocks; (4) the KNI, or kernel-NIC interface, a way for DPDK to interface

with the Linux kernel through a network device; and (5) a Unix socket, which pro-

vides the means for Gatekeeper to communicate with a client program for runtime

configuration. More information about these components are presented alongside

their associated functional blocks, which are described next.

Figure 2.4: Gatekeeper block diagram.

2.3.2.1 GK block

The Gatekeeper (GK) block is the main component of Gatekeeper servers, as its

task is to accept incoming packets, perform lookups that map flows to policy de-

cisions, and queue requests and granted packets for transmission to Grantor. It

is in the data plane and can scale across multiple GK instances, each with a ded-

icated lcore. Gatekeeper utilizes RSS to distribute incoming packets among the

53

GK instances. Each instance processes a queue whose packets have unique pairs

of source and destination addresses. RSS provides the guarantee that packets be-

longing to the same flow will be directed to the same RX queue, and therefore the

same GK instance, in the order that they arrive at Gatekeeper. Therefore, each GK

instance maintains its own lockless flow hash table whose keys are these (source,

destination) pairs. Because of its position on the front lines of the data plane, mean-

ing it will bear the brunt of attacks, the GK block uses prefetching, batching, and

other memory optimization techniques to maintain performance (Fu, 2020).

The main algorithm of the GK block is to read a batch of packets from the front

interface and perform flow lookups over the batch. Packets whose flows have

entries in the table are handled according to the flow entry – drop, forward, or

apply a BPF program. Packets whose flows are not in the flow table are looked

up in an LPM table that defines the forwarding action. Most flows are forwarded

to Grantor (first as a request), but GK blocks also support Gatekeeper bypass for

incremental deployment and peering traffic. For these flows, the GK block simply

forwards the packets to the opposite interface.

Additionally, Gatekeeper implements the full-functionality option of maintain-

ing the ECN bits for IP-in-IP packets (Floyd et al., 2001), which maintains any

congestion management occurring between the source and destination.

2.3.2.2 GT block

The Grantor (GT) block is the main component of Grantor servers, as its task is

to accept incoming packets from Gatekeeper servers, issue policy decisions for

requests, and forward granted packets to their ultimate destination. It is in the

data plane and can scale across multiple lcores. Chapter 3 provides a thorough

54

overview of the role of the policies that the GT block manages.

Figure 2.5: Grantor block diagram.

2.3.2.3 Solicitor (SOL) block

The SOL block is responsible for rate limiting and sending request packets. Re-

quests are sorted by priority and only permitted a fraction of the link capacity

between Gatekeeper and Grantor, and the SOL block enforces these limits. The pri-

ority queue (fully described in Section 2.2.4.3) is implemented as a length-limited

linked list of request packets, indexed by an array whose elements are references

to the portion of the linked list that holds packets of each priority, providing con-

stant time insertion, dequeuing of the highest priority request, and deletion of the

lowest priority request when the queue is full. The SOL block only runs when the

Gatekeeper program is being run as a Gatekeeper server. Multiple SOL instances

are used to spread the load from multiple GK instances.

2.3.2.4 GT-GK Unit (GGU) block

The GT-GK unit (GGU) processes all policy decisions that Grantor servers send to

a Gatekeeper server. Each packet coming from a Grantor server carries a set of

55

decisions. The GGU block demultiplexes each decision to the GK instance that is

responsible for the flow in question, according to its RSS hash. Note that GGU

only operates on the “back” interface of Gatekeeper (the interface that leads to the

protected AS).

The GGU loads a set of GT-GK packets from the back NIC. For each packet

in this set, it loops over each policy decision on the packet, and for each decision

does the following: (1) identify which GK block is responsible for the pair (source,

destination) addresses in the decision; (2) obtain the mailbox of that GK block; (3)

send the policy decision to the GK block via the mailbox.

2.3.2.5 Control plane support (CPS) block

Gatekeeper servers must be able to use routing daemons to peer in IXPs. Similar

to Google’s Espresso (Yap et al., 2017), we implemented this peering functional-

ity in Gatekeeper servers. Instead of adding support for a multitude of common

control plane protocols (e.g., BGP, OSPF, and IS-IS) in Gatekeeper directly, we en-

able network operators to use existing routing daemons and management tools by

leveraging the DPDK kernel-NIC interface (KNI) library. In our deployment, the

CPS block uses the popular BGP speaker BIRD (BIRD, 2020).

2.3.2.6 Link layer support (LLS) block

The LLS block has the responsibility of handling all link layer protocols and ad-

dress resolution services, such as ARP, Neighbor Discovery, and Link Aggregation

Control Protocol (LACP). Instead of resolving IP addresses to MAC addresses on

demand, other functional blocks must register the IP addresses that they are inter-

ested in, and the LLS block keeps IP address-to-link layer address maps updated.

56

To guarantee that other blocks are not kept waiting for resolution requests, the

components that query the LLS block will drop packets directly instead of waiting

for a resolution if the map is not current.

2.3.2.7 Dynamic configuration block

Both Gatekeeper and Grantor have two types of configurations: static and dynamic

configurations. When Gatekeeper boots, it configures the network and individual

functional blocks using the static Lua configuration files. Several features, such

as jumbo frames, MTU, IP/UDP header checksum offloading and VLAN headers,

can also be configured for operational demands.

The dynamic configuration block allows operators to change the parameters

of Gatekeeper and Grantor servers and to diagnose runtime issues. For example,

operators can update the IP ranges handled by GK blocks, list the ARP and ND

tables for network diagnosis, update the enforced policy on Grantor servers, and

flush all policy decisions cached at Gatekeeper servers associated with a given

destination IP.

2.3.3 Hardware Offloading

DPDK applications are most efficient when they can leverage packet processing

optimizations via hardware features on specialized NICs. Gatekeeper uses several

of these hardware features, including RSS and multiqueues, filters, and checksum

offloading.

RSS and multi-queues. To fully utilize the potential of the modern multi-

/manycore CPUs, Gatekeeper uses NICs with multi-queue and receive-side scaling

(RSS) support. The multi-queue support allows different lcores to access different

57

queues on the NIC without contending with each other. RSS is used to distribute

incoming packets to the different queues, each of which is serviced by a different

lcore. RSS ensures that packets belonging to the same flow will be processed by

the same lcore in the same order as they arrive at Gatekeeper server, thus avoid-

ing out-of-order packet delivery. A NIC that is RSS-enabled uses a hash function

to compute a hash value over a defined area in packet headers. The defined area

can be non-contiguous, but Gatekeeper hashes over the IP source and destination

addresses. A number of least significant bits of the hash value are used to index an

indirection table. The values in the indirection table are used to assign the received

data to a queue/lcore. In order to calculate the RSS hash value, the hash function

uses a secret key of the RSS hash as input. To mitigate vulnerabilities that target

the RSS hash, Gatekeeper randomizes the secret key on startup.

Filters. For best performance, Gatekeeper leverages NICs that support Ether-

Type and ntuple filters. EtherType filters allow packets to be steered on the basis of

the EtherType field of the Ethernet header. This allows, for example, ARP packets

to be steered to the LLS block without touching the data plane of the Gatekeeper

or Grantor servers. Ntuple filters allow packets to be steered to queues on the ba-

sis of L3 and L4 headers. This allows, for example, BGP packets to be directed to

the CPS block. Without EtherType or ntuple filters, all packets are received by the

GK block and are distributed to the other blocks using ACLs to find the correct

functional block, and Gatekeeper mailboxes to transfer the packets.

Checksums. Since all packets that Gatekeeper decides to forward are encapsu-

lated, the outer IP header requires checksum computation. To minimize the encap-

sulation effort, IP header checksum computatoin is offloaded to hardware when

supported by the NICs, saving CPU cycles. Similarly, packets sent from Grantor to

58

Gatekeeper (policy decisions) are sent using UDP, and therefore L4 checksum of-

floading is also enabled when supported by hardware. When checksum offloading

is not supported, Gatekeeper calculates the checksums in software.

2.3.4 Software Techniques

In addition to hardware features, Gatekeeper leverages several optimizations in

software to speed up packet processing, including batching, prefetching, lockless

rings, and access control lists. A more thorough overview of the techniques we

used is described in Fu (2020).

Batching. To reduce system call overhead, Gatekeeper utilizes batching as of-

ten as possible. Reads and writes to the network interfaces, transfers of packets to

different blocks via mailboxes, access control list lookups, flow lookups, and LPM

table lookups are all performed in batches.

Prefetching. Since data plane performance is critical to Gatekeeper, we added

prefetching instructions where needed to allow Gatekeeper to fetch data for the

L1 cache ahead of demand, hiding memory latency by removing load instructions

from the critical path.

Lockless rings. Often, data plane packets or Gatekeeper metadata needs to be

passed between functional blocks. For example, request packets are sent to the

Solicitor block from the GK block for priority queueing. To efficiently perform this

handoff, Gatekeeper uses the lockless consumer/producer ring library of DPDK.

Access control lists. Gatekeeper depends on the ability to steer certain types

of control plane packets to the CPS, LLS, and GGU functional blocks. When the

available hardware does not support EtherType filters or ntuple filters, or when

certain types of packets cannot be adequately matched using those filters, Gate-

59

keeper uses DPDK’s highly performant access control list library to match packets

and transmit them to different blocks.

2.3.5 Operational Features

Gatekeeper provides several features that are key for real world deployments.

These operational features include bonded devices and LACP, VLAN configura-

tion, routing daemon support, fragmentation handling, and operational logging.

Bonded devices and LACP. To meet operational demands, Gatekeeper enables

the Link Aggregation Control Protocol (LACP) to automatically bond physical

ports to a single logical channel, which is required by some Internet exchanges.

VLAN. It is common practice for IXPs to assign VLAN IDs to each member,

and require each frame to carry a VLAN tag. Gatekeeper supports variable-length

Ethernet headers so that VLAN tags may be inserted or removed as desired. Gate-

keeper also supports separate VLAN tags for IPv4 traffic and IPv6 traffic.

Control plane using KNI and BIRD. Since Gatekeeper forces its attached net-

work interfaces to use DPDK and forego the Linux kernel networking stack, other

standard network tools cannot run on Gatekeeper interfaces. To reduce barriers to

deployment, Gatekeeper provides the ability for existing control plane tools (such

as routing daemons) to be used as-is alongside Gatekeeper by using the DPDK

kernel-NIC interface. This creates a virtual network interface that a routing dae-

mon can run on, while being able to make route announcements and adjust the

routing tables of Gatekeeper. We created a patch (Doucette, 2020) of the control

plane tool BIRD (BIRD, 2020) to be able to deliver routing table updates directly to

Gatekeeper instead of the Linux kernel.

Fragmentation. At Gatekeeper servers, fragmented packets (which often indi-

60

cate abuse) can be given secondary bandwidth or dropped using policy enforce-

ment programs. Grantor servers may need to reassemble fragmented packets be-

fore making policy decisions. To do so, they utilize the DPDK IP fragmentation

and reassembly library. Additionally, to avoid attackers overflowing the request

channel with fragments that never complete, flows associated with fragments that

have to be discarded before being fully assembled are punished.

Log rate-limiting. Gatekeeper provides configurable logging for every func-

tional block and library. Importantly, in a DDoS mitigation system, the logging

subsystem may become a target of attack by malicious actors hoping to exhaust

Gatekeeper’s storage or waste CPU cycles on I/O. Therefore, each functional block

defines a parameter to rate limit the number of logs per unit time.

61

2.4 EVALUATION

2.4.1 Goals

In this section, Gatekeeper is evaluated along several axes:

• Basic functionality and accuracy. It should accurately reflect the policies it is

given to enforce and sufficiently mitigate infrastructure layer attacks to allow

legitimate clients to maintain service. Since the request channel is a critical

component of network capability systems, it should also mitigate attacks on

the request channel itself. Simply put: does Gatekeeper work as advertised?

• The effect of different policies. Policy enforcement programs are more than

just simple token bucket algorithms, and have the ability to inspect transport

layer headers for the purposes of secondary bandwidth limits, apply nega-

tive bandwidth, etc. How does policy richness affect the mitigation attacks?

• Performance benchmarking. The peak attack capacity is of particular inter-

est for DDoS mitigation systems. How far can Gatekeeper be pushed against

various workloads and load testing parameters?

• Cost analysis. Given the cost asymmetry between attackers and defenders

in the DDoS game, deployment cost is an important metric in evaluating

a mitigation system. We consider both capital and operating expenses in

asking: how costly is Gatekeeper?

2.4.2 Testbeds

The Gatekeeper evaluation is performed across two testing environments: (1) a

Dell PowerEdge R640 server, which is used for performance benchmarking a Gate-

62

keeper server; (2) Amazon Web Services Elastic Compute Cloud (AWS EC2), which

is used for end-to-end evaluations that include clients, Gatekeeper servers, Grantor

servers, and destination servers.

2.4.2.1 PowerEdge Server Specifications

To benchmark a Gatekeeper server in a realistic production environment, we use

a Dell PowerEdge R640 rack server. The server has 768 GB of memory along with

two Intel Xeon Silver 4214R 2.4 GHz processors, each equipped with 16.5 MB of

cache space and 12 cores with 24 threads. For networking, the server has two Intel

X550 10 Gbps adapters.

2.4.2.2 AWS EC2

The Amazon testbed provides an environment where Gatekeeper can be tested

end-to-end, to measure the effect the system has on legitimate clients during an at-

tack. The testbed is composed of an attacking client instance, which runs a packet

generator to launch floods from 16k virtual attackers (source IPs) to a destination

Web server in an attempt to overwhelm the destination’s available bandwidth. The

testbed also has a legitimate client, which uses curl to repeatedly upload a 20 KB

file to the destination server. For each experiment, the legitimate client uploads

the file 50 times, and the average file transfer time is computed across all trans-

fers. For experiments where Gatekeeper is used, packets are redirected from the

attacking client and the legitimate client to Gatekeeper using encapsulation. Gate-

keeper transmits some subset of these packets (according to the policy for a given

experiment) to Grantor, and packets sent along the Gatekeeper-Grantor path are

processed by a Linux router instance that enforces the Gatekeeper queueing algo-

63

rithm. The topology of the testbed is shown in Figure 2.6.

Figure 2.6: Amazon testbed topology.

However, there are some limitations with the Amazon testbed:

• Instance type. Amazon provides a range of virtual machine instance types

for different use cases and applications. Not all instance types use NICs that

DPDK supports. Gatekeeper and Grantor must be run on instance types that

use the Elastic Network Adapter (ENA) (Barr, 2016), which is supported by

DPDK.

• Lack of support for some RSS features. Although the Amazon ENA nomi-

nally supports RSS to spread flows to multiple instances of the GK block, we

found that in practice its support for various RSS features was lacking, and

64

therefore could not fully be used with Gatekeeper. Without RSS, the GK and

GT blocks cannot scale up to use more lcores, and therefore Gatekeeper’s

and Grantor’s processing power is limited to a single lcore for data plane

processing.

• Lack of hardware offloading. The ENA does not support some hardware

features that Gatekeeper would otherwise leverage, including EtherType fil-

ters and ntuple filters. This means that protocols like ARP and BGP, which

would otherwise have been directed to the LLS and CPS blocks automati-

cally, take up CPU cycles to be received by the GK block and sent via mail-

boxes to their appropriate blocks.

• Low packet throughput. Users on EC2 can be rate-limited by the policies of

the Amazon virtual network. During testing, it was found that with mini-

mum sized packets, 64 bytes, the Amazon virtual network would cap trans-

fer limits at 300 Mbps across instances, even if more instances were added.

• Inconsistent byte throughput. Some instances on EC2 are given a variable

amount of network capacity, e.g., “up to 5 Gbps,” which in practice may only

result in 2-3 Gbps on average with a peak performance of 5 Gbps.

• Bandwidth limits are imposed per-instance. Bandwidth limitations are ap-

plied per-instance, not per-interface. For example, a Gatekeeper server (with

both a front and back interface) running on an instance with a 10 Gbps capac-

ity must split that capacity between receiving packets on the front interface

and sending them on the back interface.

• Fair queueing. From our experiments, we speculate that there may be some

type of per-flow fair queueing imposed by the Amazon virtual network.

65

When the attacks are split between a relatively small number of attacking

flows (1K-2K), the legitimate client is always able to immediately connect,

regardless of overall attack strength. However, significantly increasing the

number of flows (16k) seems to nullify this effect, causing the legitimate

client to wait proportionally longer as the attack strength increases.

The effect of these limitations is that Gatekeeper cannot be consistently tested

at the scale of tens of Gbps with minimum packet size, which is a realistic and

desirable evaluation scenario, since clients cannot consistently achieve rates that

high, and Gatekeepers, Grantors, and destination servers can not consistently re-

ceive and transmit at rates that high. Moreover, because of the limitations of RSS

and other hardware features, Gatekeeper and Grantor are limited in their packet

processing capacity.

Therefore, the EC2 instance type for the destination server is chosen to have

fairly low capacity, around 1 Gbps, and the system is evaluated using only up to

around 10 Gbps of attack traffic composed of large (1024 byte) packets. Unless

otherwise noted, the attacks use floods of TCP traffic, i.e., TCP packets carrying

application data, without SYNs. We use a static set of 16,000 attacking flows re-

gardless of the attack strength. Unless otherwise noted, Gatekeeper servers use

the m5.8xlarge instance type.

2.4.3 Baseline Functionality

To evaluate Gatekeeper at its most basic functionality, we measured its effect on

the file transfer time of a legitimate client during a flooding attack. To do so, we

used the Amazon EC2 testbed to flood a destination server with up to 10 Gbps of

traffic from 16,000 flows. The traffic was first directed through Gatekeeper, which

66

granted all flows using the baseline granted BPF program (no secondary or nega-

tive bandwidth) at rates of 16 Kbps, 32 Kbps, and 64 Kbps.

During the attack, we used a legitimate client to upload a 20 KB file to the

destination server using the curl application. The results are shown in Figure 2.7.

Figure 2.7: The time to transfer a 20 KB file during an attack while
varying the policy’s granted rate limit.

The result is that the rate limit of the granted flows has much more of an impact

on the legitimate client’s file transfer time than the attack does. In fact, the attack

does not seem to have an effect, except at around 10 Gbps, which is the capacity of

the Gatekeeper server. At very low rates, such as 16 Kbps, it takes about 20 seconds

(20 token bucket refill periods) for the legitimate client to be able to transfer the file.

As the rate limit increases to 32 Kbps and then 64 Kbps, the legitimate client is able

to transfer the file more quickly while the attack itself is still mitigated.

For reference, we also included trials of the legitimate client trying to connect

when no Gatekeeper or Grantor servers are running. The file transfer time in-

creases exponentially up through trials with 5 Gbps of attack traffic. Beyond that

67

point, the legitimate client times out when trying to perform the transfer.

2.4.4 Effect of Policies

We now further explore the effect that policies can have by introducing the sec-

ondary bandwidth and negative bandwidth mechanisms. More information and

example policies can be found in Section 3.4.

2.4.4.1 Secondary Bandwidth Limit

A secondary bandwidth limit (described further in Section 3.4.3.1) allows Gate-

keeper to impose a second, lower limit for certain types of traffic within flows,

such as ICMP, UDP, or TCP SYN packets. In this evaluation, we change the traffic

flood to be composed of TCP SYN packets, and change the policy decision to apply

a secondary bandwidth to TCP SYNs. The primary bandwidth limit is 256 Kbps,

and the secondary bandwidth is set to be 1.6 Kbps (5% of the primary limit). The

results are shown in Figure 2.8.

Figure 2.8: The time to transfer a 20 KB file during a SYN flood attack
with no defense and with a Gatekeeper policy that bins TCP SYNs
into a secondary bandwidth limit.

68

The result is that the TCP SYN flood is instantly mitigated by Gatekeeper. Up

through around 1.25 Mpps, Gatekeeper sufficiently rate limits the TCP SYNs so

that the legitimate client is able to connect and transfer the file in a single rate

limiting period.

2.4.4.2 Negative Bandwidth

Policy enforcement programs that use negative bandwidth (described further in

Section 3.4.3.2) can punish flows that transmit beyond their allotted limit. We eval-

uate the effect of negative bandwidth by building off of the basic policy evaluation,

increasing the rate limit for each flow to be 128 Kbps and then 256 Kbps during at-

tacks of increasing strength. We then performed trials with the same rate limits,

but applied a policy that enforced negative bandwidth when flows exceeded those

limits. For all trials, we measured the average file transfer time of a legitimate

client. The results are shown in Figure 2.9. tically

Figure 2.9: The time to transfer a 20 KB file during an attack with a
policy that applies negative bandwidth.

The result is that negative bandwidth policies can have a major impact on al-

69

lowing legitimate clients to maintain service. Between 1 Gbps and 2 Gbps, attack-

ing flows that are allotted 128 Kbps need to send above that limit to keep up the

attack strength. By 2 Gbps, it takes 10s for the file to be transferred, although Gate-

keeper limits the attack traffic sufficiently all the way up to 10 Gbps to keep the

file transfer time at 10s. On the other hand, the 128 Kbps policy with the negative

bandwidth (“w/negative”) forces the attackers to push their bandwidth allotment

increasingly negative as the attack strength increases. By 2 Gbps, the legitimate

client is able to transfer the file as if there were no attack at all.

The same outcome is observed for the 256 Kbps trials. Although the higher

limit allows the attack to be successful at higher rates, driving the file transfer time

to be 50s by 3 Gbps, soon after that the bandwidth allotment is overwhelmed and

the legitimate client is able to quickly transfer the file.

2.4.5 Performance Benchmarking

We also measured the performance of a single Gatekeeper server when under

stress by evaluating it against an attack with high source address churn on the

PowerEdge server. We fully randomized the source address of the attacking flows,

creating an indefinite stream of new flows, aiming to exhaust the flow table state

in GK blocks. We also used attack traffic composed of just 64 byte packets. On

handling packets, Gatekeeper performed the simplest possible action: a drop. We

measured the capacity of Gatekeeper to process this traffic by varying the flow ta-

ble size2 and the number of GK instances (lcores/threads). The results are shown

in Figure 2.10.

2Measured in flow table entries, each of which is 128 bytes.

70

Figure 2.10: The throughput of Gatekeeper during an attack with
maximum flow table churn and minimum packet size.

The result is that even under extreme conditions – minimum sized packets,

a full flow table, and new flows constantly arriving – Gatekeeper can process at

least 8 Mpps (up to the packet generator’s maximum limit) under certain flow

table and GK instance configurations. For context, being able to process 10 Mpps

is considered highly performant (Majkowski, 2018). Additionally, 8 Mpps is the

equivalent of 5 Gbps when using minimum-sized packets.

There is a significant benefit in increasing the number of GK block instances/l-

cores from one to two, as the throughput nearly doubles. Beyond two GK in-

stances, the benefit may appear insignificant, but this is likely because Gatekeeper

is already processing packets as fast as the generator is sending them. Therefore,

measuring the effect of more GK instances may require separating the packet gen-

erator onto its own hardware.

71

2.4.6 Cost Analysis

One of the motivating factors that drove the design of Gatekeeper was to keep it

affordable and within reach of smaller ISPs, enterprises, institutions, etc. In this

section, we provide a back-of-the-envelope evaluation of the cost of Gatekeeper,

as well as an evaluation regarding the effectiveness of Gatekeeper deployments in

Amazon, using instances at different prices.

2.4.6.1 Deployment Cost

We now present rough estimates of the operational cost of two Gatekeeper deploy-

ment scenarios: (1) a deployment of 2.3 Tbps of bandwidth protection, which rep-

resents one of the largest reported DDoS attacks by volume (AWS, 2020a), as well

as (2) a deployment that balances peak capacity and cost. We contrast our cost

estimates with defense costs that were made public during the headline-grabbing

DDoS attack against KrebsOnSecurity, a popular Internet security blog (Krebs, 2016).

To shield a single AS with 2.3 Tbps of bandwidth protection, our modeled de-

ployment would use 23 VPs, each with 100 Gbps of incoming traffic capacity. Con-

servatively estimating the cost of operating at each VP at $5K per month3, the

operational cost of this deployment would be $1.38M per year. This estimate in-

cludes the quoted price to contract a link in an IXP, and then is rounded up to

guesstimate additional operational costs, such as those to contract layer 2 connec-

tivity to the deploying network. While $1.38M per year is out of reach for many

deploying ASes, it is favorable compared to the cost of “millions of dollars” that

Akamai estimated (Bray, 2016) was needed to protect KrebsOnSecurity.

3We could not identify public data to back this estimate, but our industry partners have verified
that this value covers their market price estimate to deploy Gatekeeper at an IXP.

72

While rather large DDoS attacks do grab headlines, according to Arbor Net-

works, 99% of the DDoS attacks in 2016 peaked at less than 20 Gbps (Anstee et al.,

2017, Figure AT3). Thus, an AS willing to endure downtime when a 1% tail DDoS

attack hits would have a much cheaper deployment: $12K per year, using the same

assumptions as the first estimate. Not only is this operational cost in reach of small

and medium sized potential deployers, but it also stands favorably against a cheap

20 Gbps-protection contract against infrastructure-layer attacks offered by an es-

tablished security company4: $24K per year.

Due to the fact that small and medium sized deployers may lack the adminis-

trative resources to manage a deployment, they may not be able to deploy Gate-

keeper on their own. But, for the cost of $12K per year, 150 such ASes could afford

the 2.3 Tbps protection described above, and would still have $420K per year to

share professional management of the system. According to the AWS Shield pric-

ing (AWS, 2020a), the yearly fee alone for 150 companies would be $5.4M. Taking

the calculation one step further, a provider like AWS likely has more than 1,000

client members, pushing the total cost to approximately $36M per year. With this

sum, Gatekeeper could be operated at 7,200 VPs.

The estimated costs of the Gatekeeper deployments above show that Gate-

keeper is cheaper and scales better than the current solutions in the market, po-

tentially reducing cost by more than 3X. Finally, note that this cost analysis is con-

servative, since all deployment scenarios are based on IXPs. Deployments that

use cloud providers may further lower the operational cost, since cloud providers

enable ASes to quickly scale up and down the number of VPs and computing ca-

pacity without infrastructure investment.

4We are not at liberty to publicly state which company.

73

2.4.6.2 Amazon Instance Variation

We also evaluated how changing the instance type (and therefore price) of the

Gatekeeper server in the Amazon testbed affects the results of some of the previous

experiments. For all of the previous Amazon experiments, our baseline instance

type for the Gatekeeper server was the m5.8xlarge. This is a fairly expensive in-

stance type, and there are cheaper instances in the same family that could be used,

trading off CPU and memory for cost. We compared three instance types in the

same family in the US East (Ohio) region, as shown in Table 2.2. For this region,

the savings between the instance types scales linearly. The cost savings per hour,

compared to using the m5.8xlarge instance, is also shown.

Instance vCPUs Mem (GiB) B/W Price/Hr Savings/Hr
m5.8xlarge 32 128 10 Gbps $1.536 N/A
m5.4xlarge 16 64 Up to 10 Gbps $0.768 $0.768
m5.2xlarge 8 32 Up to 10 Gbps $0.384 $1.152

Table 2.2: Different types of instances evaluated for a Gatekeeper
server in AWS EC2.

Since Gatekeeper requires at least 5 vCPUs for basic operation (one for each

of the relevant functional blocks), cheaper instances with fewer vCPUs than the

m5.2xlarge could not be used. The M5 instance type family is for general-purpose

computing; other instance type families had significantly poorer network perfor-

mance for approximately the same price, so only the M5 was evaluated.

74

Figure 2.11: The time to transfer a 20 KB file during an attack with
varying Gatekeeper instance types and prices.

Figure 2.11 depicts the results of a 20 KB file transfer with attack traffic and

Gatekeeper defenses deployed at various AWS instance types. We apply a 128

Kbps rate limit to all 16,000 attack flows as well as the legitimate client flow. We

found that for these parameters, there are no significant performance benefits, and

approximately the same performance for attacks up to 10 Gbps could be achieved

using a m5.2xlarge instance at 25% of the price. However, it is worth noting that if

the Amazon testbed fully supported RSS, instances with more vCPUs could utilize

more GK instances, which could in theory provide better performance.

75

CHAPTER 3

Policy Toolkit

3.1 OVERVIEW

Since network capability systems perform admission control for the network layer

connections into the destination network, the network operator must have mech-

anisms to decide which flows should be granted access and at what rates. Most

previous capability proposals only provide a high level description of how such

destination policies would work, allowing access only in response to outgoing traf-

fic or to registered users (Anderson et al., 2004), rate limiting all traffic according to

link load and packet loss measurements (Liu et al., 2010), or by using default byte

rates or application-layer cookies and CAPTCHAs (Yang et al., 2005). Still other

capability proposals do not discuss the destination policy issue, focusing only on

the capability mechanism (Yaar et al., 2004).

In order to be deployable, Gatekeeper provides practical mechanisms for des-

tination policy specification. In this chapter, we provide a policy toolkit as a guide

for network operators looking to create a Gatekeeper deployment. Gatekeeper

actually has two policy mechanisms: one at Grantor servers to make policy deci-

sions about flows, and one at Gatekeeper servers to enforce policies over individ-

ual packets. We give an overview of both mechanisms in Section 3.2, and describe

how to map the specifications of a network under deployment to a set of policies

in Section 3.3.

The correctness and precision of the policies can make or break a Gatekeeper

deployment, since adversaries that find vulnerabilities in, or take advantage of,

policies can circumvent the protections that the system provides. Fortunately,

76

Gatekeeper provides a rich array of possibilities for applying policies to traffic,

which we break down into basic policy techniques that most deployments should

use (Section 3.4), as well as advanced techniques that could offer solutions for at-

tack detection, source spoofing prevention, and authentication, as well as provide

opportunities for further research (Section 3.5).

77

3.2 POLICY DESIGN

This section presents the design choices that shaped the format of policies and a

deployment-tested template to write policies.

The design of Gatekeeper policies borrows heavily from two streams of prior

work: capability and filtering systems to regulate the transmission rate of flows,

and SDN to centralize this decision-making process (see Section 2.2.3). However,

the design choice of implementing destination policies as programs represents a

breakthrough in the context of DDoS mitigation systems. Prior work implemented

policies as sets of rules that are pattern matched to packets or flows. These rules

and patterns are described under a predefined declarative language. The motiva-

tion for using declarative languages is to provide abstractions for hardware oper-

ations and filters. These languages, however, become the weakest link in a DDoS

protection system when attacks target their limitations. For example, the Catch-22

attack shows that attackers can force source address filtering mechanisms in legacy

routers into an untenable position: either use coarse-grained (/16 prefix) filtering

rules and incur large amounts of collateral damage, or use fine-grained filtering

rules (/32 prefix) and risk not mitigating the attack (Shi et al., 2019).

Running Gatekeeper policies as programs does not require giving up the hard-

ware abstractions. However, it enables us to move away from declarative lan-

guages and toward bytecode virtual machines (VMs). We chose to adopt policies

as programs in two ways:

1. A set of policy enforcement programs that are run at Gatekeeper servers. On

ingress, a packet’s flow is extracted and mapped to the executable enforce-

ment program that it has been assigned. Policy enforcement programs may

keep state, e.g., for a token bucket algorithm, to decide whether to drop or

78

accept traffic at a prescribed rate.

2. A single policy decision program that is run at Grantor servers. The decision

program maps flows to policy enforcement programs, and installs rules re-

flecting those decisions at Gatekeeper so that the enforcement program can

be run on subsequent packets in the given flow.

Breaking the policy process up into decision-making and enforcement parts

has two advantages. First, it enables Gatekeeper to take prompt action on flows

that misbehave after receiving a favorable policy decision, e.g., by applying sec-

ondary rate limits or by tracking negative bandwidth at policy enforcement time

(Section 3.4). Previous capability systems have relied on capability expiration or

bandwidth caps to mitigate this issue (Yaar et al., 2004; Yang et al., 2005).

Second, it allows us to separately choose the best fitting bytecode VMs for Gate-

keeper and Grantor servers. Gatekeeper servers perform policy enforcement using

VMs that run extended Berkeley Packet Filter (eBPF) programs (McCanne & Jacob-

son, 1993), whereas the policy decision program running on Grantor servers are

implemented using a Lua VM (Ierusalimschy et al., 2006). The key requirements

that led us to choose Lua on Grantor servers was (1) its support for dynamically

editing the policy (e.g., redefining functions, modules, variables) in order to en-

able changing the policy with minimum or no impact to deployed systems, and (2)

ease of integration with external libraries (typically in C). eBPF was chosen to im-

plement policy enforcement programs due to (1) the availability of static analysis

to guarantee termination, memory safety, and bounded resources (Gershuni et al.,

2019) and (2) ease of packet inspection.

While eBPF has been used in production to implement packet redirection in

load balancers (Wragg, 2020; Shirokov & Dasineni, 2018) and high-performance,

79

ad hoc packet filters in DDoS protection systems (Fabre, 2019), the use of eBPF pro-

grams in Gatekeeper to perform policy enforcement brings greater flexibility. The

difference in these approaches is in the amount of state space under the control of

eBPF programs. For example, eBPF programs in Gatekeeper can limit bandwidth

per flow, while the eBPF programs running on other systems have only enough

state to do so for a limited number of classes.

3.2.1 Decision Types

Each decision made by a policy decision program falls into one of three categories:

declined, granted, or BPF.

For declined flows, the only parameter that needs to be specified by the de-

cision program is the lifespan of the decision. Although declined decisions can

be used when attacks are detected, defining an attack is widely known to be a

difficult problem in general. Therefore, we recommend mostly using declined de-

cisions for malformed packets or well known abusers such as bogons and malware

(Section 3.4.1). A reasonable timeout is on the scale of minutes, so that the effects

of false positives (e.g., malformed packets due to misconfiguration) and collat-

eral damage (e.g., innocent users who are behind the same source NAT process

as abusive users) are lessened, with the option for cheaply extending the declined

decision on expiry.

For granted flows, there are four parameters: the rate limit of the capability

as well as three arguments that define when the capability expires and how the

capability renewal request may proceed. The setting of these parameters is highly

dependent on the network profile mapping.

For BPF flows, there are four parameters: the lifespan of the decision, the index

80

of the installed BPF program to be used at Gatekeeper, the length of a cookie to be

associated with the program, and the cookie itself. The cookie is a piece of memory

passed to the BPF program at execution time, allowing Gatekeeper to keep arbi-

trary per-flow state up to 64 bytes in size. Note the distinction between granted

flows and BPF flows: the built-in granted channel mechanism in Gatekeeper sim-

ply applies a single bandwidth limit to the flow, whereas BPF programs are also

generally applied to granted flows, but can flexibly inspect packet headers, keep

state, enforce multiple bandwidth limits, etc.

We next describe how to map the characteristics and requirements of a deploy-

ing network to policy decision and enforcement programs.

81

3.3 WRITING POLICIES

We now present guidelines for writing policies in a Gatekeeper deployment. In

our discussions with network operators, we found that a policy is most naturally

organized as follows: policy decision programs (in Lua) inspect IP addresses to

map flows to policy enforcement (eBPF) programs, and eBPF programs inspect

transport headers to monitor the behavior of flows and adhere as best as possible

to the given policy decision.

As a rule of thumb, each eBPF program reflects a network service profile. For

example, consider the profile of outgoing email servers. They have no listening

sockets – they only open connections to the SMTP port of remote email servers,

and these connections have very small ingress traffic footprints. This profile-to-

program heuristic leads to a simple breakdown of the work to write a policy: (1)

identify all network profiles, (2) write an eBPF program for each of those profiles,

and (3) map flows to those eBPF programs in the Lua policy.

Following this proposed breakdown of work, Lua policies are given a number

of network prefixes with which to classify incoming packets based on their des-

tination addresses. We use longest prefix matching on destination addresses by

default, but also adopt flexible address classification to enable approximate source

location (MaxMind, 2020), threat identification (Team Cymru, 2020; The Spamhaus

Project SLU, 2020), and to check the purpose of the source (Cloudflare, 2020b; Ama-

zon Web Services, 2020; Google, 2020b), etc. This classification of source addresses

can be used to decide on denying or granting communication, limiting bandwidth,

and differentiating service.

While translating a network profile into an eBPF program, the policy writer

should classify packets into three bins: primary, secondary, and unwanted traffic.

82

Primary traffic carries the main purpose of the service, while secondary traffic is

permitted traffic that has no reason to be present at the same scale of the primary

traffic. Examples of secondary traffic are TCP SYN, ICMP, and fragmented pack-

ets. Once the code for the classification of packets is in place, the policy writer

overlays it with two bandwidth limits: one limit before the classification to control

the bandwidth of the flow as a whole, and another limit for secondary traffic after

the classification. These limits can be implemented as token bucket algorithms.

Policies that follow the template explained above deal with the most common

forms of infrastructure attacks such as floods (e.g., SYN, UDP, ICMP), amplifica-

tions (e.g., DNS, NTP, Memcached), and arbitrary combinations of these attacks

(also known as multi-vector attacks). The fraction of the attack traffic that bypasses

these policies depends on how narrow the network profiles are, how precise they

are implemented in the policy enforcement programs, and the quality of the classi-

fications of the source addresses in the policy decision program. But even if these

factors are adjusted to perfection, some traffic attacks can only be identified by the

protected applications or intrusion detection systems (IDSes). In this case, appli-

cations and IDSes can feed the policy decision program with source addresses and

packet signatures to mitigate this sneaky traffic through ad hoc policy enforce-

ment programs and assignment of lower bandwidth limits. Gatekeeper cannot

help when there is no observable distinction between attack and legitimate traffic.

Finally, the policy template presented in this section leaves room for a potential

avenue for improvement: the fact that Grantor servers are colocated geograph-

ically. This geographical proximity often translates into low latency and ample

bandwidth between Grantor servers, which in turn, enables the employment of a

distributed database for the use of policies. With the help of this database, Lua

83

policies could potentially identify spoofed source addresses analyzing the (source

address, incoming vantage point address) pair for inconsistencies, as well as make

sophisticated bandwidth allocation based on the source AS and load of the links

behind the Gatekeeper servers.

84

3.4 BASIC POLICY TECHNIQUES

Recall that for each request (or capability renewal) packet received by Grantor, the

GT block parses it and passes a structure of packet information to the Lua policy,

which maps the packet data to a policy decision. To help accomplish this task,

Gatekeeper provides a basic set of policy functionality that will likely be used by

most deployments, which includes support for performing longest prefix match-

ing, port lookups, secondary and negative bandwidth, and the ability to rapidly

support new protocols as needed.

3.4.1 Host Lookups and Bogons

As described by the heuristics for writing policies, decisions will mainly be driven

by information derived from the network layer header, especially the source and

destination IP addresses.

Although source addresses can be spoofed (an issue that is addressed in Sec-

tion 3.5.1), there are simple checks that can be performed to filter flows based on

invalid addresses, or bogons (Team Cymru, 2020). Bogons include any IP address

in a range not allocated by IANA, or any IP address in a range reserved for private

or special usage. Actively maintained and publicly available bogon lists can be

included in a Gatekeeper policy decision program. Lists of invalid prefixes are im-

ported when the policy decision program is loaded, and they are then inserted into

a longest prefix matching (LPM) table. When requests arrive, the policy decision

program extracts the source address, performs a lookup against the bogon LPM

table, and if there is a match, the flow is declined. Source addresses can also be

checked against per-AS reputation mechanisms (Konte et al., 2015) and reputation

databases that identify known sources of cyberthreats (NERD, 2020).

85

Destination IP addresses can similarly be used as the basis of a policy decision.

If there are no indications of abuse based on the source, a decision can be made

according to the characteristics of the protected host in the destination network.

Dedicated Web servers have much different characteristics than dedicated mail

servers, so network operators may find it useful to map certain hosts (destination

IP addresses) to policies on this basis, adjusting the capability’s rate limit and ex-

piration time as appropriate. Clusters of hosts that can easily be represented by

a prefix can be inserted into an LPM table for more efficient lookups. A typical

deployment may consist of dozens of such host-to-policy mappings.

An example of a policy that primarily uses source and destination IP addresses

as the basis for a decision is shown in Listing 3.1. The program looks up the source

IP address in the LPM table (which has been populated with bogon prefixes), and

if a result is found, the flow is declined. If the source address passes the check, the

destination IP is checked against two static IP addresses that represent mail and

Web servers, and although both are given granted decisions, the rate limit and ca-

pability expiration parameters differ slightly. All non-IPv4 traffic is declined. Pro-

grams also have the ability to base policy decisions on other IP header fields, such

as the Gatekeeper priority, the ECN bits (Floyd et al., 2001), or whether the packet

is fragmented. The policy example applies a declined decision with a longer-than-

usual expiration time as a punishment for fragmented packets, which are often

abusive.

Note that some code details that are extraneous to our purposes here have been

stripped away or simplified, such as endian conversion, library names, structure

names, etc. A syntactically correct example can be found in the Gatekeeper source

code (Machado et al., 2020).

86

-- Static addresses of two protected hosts.
mail_server , _ = str_to_prefix("192 .0.2.1 /32")
web_server , _ = str_to_prefix("192 .0.2.2 /32")

-- IPv4 bogon list.
for line in io.lines("bogons -ipv4.txt") do

local ip_addr , prefix_len = str_to_prefix(line)
lpm_add(ip_addr , prefix_len , DECLINED)

end

function policy_lookup(pkt_info , decision)

if pkt_info.frag then return declined(decision , 600) end

if pkt_info.ip_ver == IPV4 then
local ipv4_hdr = (struct ipv4_hdr *) pkt_info.l3_hdr

decision = lpm_lookup(ipv4_hdr.src_addr)
if decision ~= nil then

-- Decision from source address LPM lookup.
return decision

end

-- Make decision based on host/service.

if ipv4_hdr.dst_addr == mail_server then
return granted(decision ,

64, -- TX rate
3600, 3000000 , 15000) -- decision expiration

end

if ipv4_hdr.dst_addr == web_server then
return granted(decision ,

512, -- TX rate
600, 540000 , 3000) -- decision expiration

end

-- Destination IP not recognized.
return declined(decision , 60)

end

-- Decline all non -IPv4 flows.
return declined(decision , 60)

Listing 3.1: A policy decision program in Lua that maps source and
destination IP addresses to decisions.

87

3.4.2 Port Lookups

As another line of defense, the policy writer may find it useful to define policies

based on port numbers, which provides finer granularity for making decisions, es-

pecially for servers that host multiple services. For example, a server that hosts

both encrypted (HTTPS) and non-encrypted (HTTP) Web services can grant differ-

ent rate limits on a per-port basis. It also allows an operator to block flows that are

performing network reconnaissance, i.e. probing the destination network to see

which hosts and ports are available to try to find vulnerabilities.

An example of a simple policy decision program that maps ports to decisions

is shown in Listing 3.2. There are several elements to this policy, including:

• A lookup table that maps (IP version, destination port) combinations to pol-

icy decisions. For IPv4, a flow that is trying to access port 23 (Telnet) results

in a declined decision, whereas port 80 (HTTP) is granted for both IPv4 and

IPv6. All other ports result in a declined decision.

• A validity check that makes sure the TCP packet is not malformed, based on

its length. Malformed packets result in a declined decision for the flow.

• A declined decision for any frame that is not a TCP packet.

88

function default_granted(decision)
return granted(decision ,

512, -- TX rate
600, 540000 , 3000) -- decision expiration

end

function default_declined(decision)
return declined(decision , 60)

end

local simple_policy = {
[IPV4] = {

[23] = default_declined ,
[80] = default_granted ,

},
[IPV6] = {

[80] = default_granted ,
},

}

function policy_lookup(pkt_info , decision)

local l3_policy = simple_policy[pkt_info.ip_ver]
if pkt_info.l4_proto == TCP then

if pkt_info.upper_len < sizeof(struct tcp_hdr) then
return default_declined -- Malformed packet.

end

local tcphdr = (struct tcp_hdr *) pkt_info.l4_hdr)
local decision = l3_policy[tcphdr.dst_port]
if decision == nil then

return default_declined -- Port not found.
end

return decision -- Port found.
end

return default_declined -- Not a TCP packet.

Listing 3.2: A policy decision program in Lua that maps ports to
decisions.

89

Since network profiles typically yield a set of valid ports for a deployment,

mapping ports to policy decisions can be a quick and simple way for operators to

define admission and rates based on application expectations, as well as decline

flows that are attempting to access invalid ports. However, since policy decisions

are made in response to requests, which represent the first packet in a flow1, an

attacker could craft a legitimate looking packet to gain a capability, only to then

use abusive traffic to launch an attack. Gatekeeper can deal with such malicious

behavior using secondary and negative bandwidth.

3.4.3 Secondary and Negative Bandwidth

Using techniques that are more sophisticated than standard admission and rate

limiting, such as applying secondary bandwidth limits and keeping track of band-

width debt for flows, requires using the BPF decision type. In the examples shown

thus far, when a flow is granted we have not differentiated between a Granted de-

cision type and a BPF decision type. The difference is that flows that are given a

Granted decision type use the forwarding and rate limiting mechanism built into

Gatekeeper servers, whereas a BPF decision type runs a BPF program that decides

whether and how to rate limit the flow. A simple example of such a BPF program

is to mimic the behavior of the built-in granted packet mechanism by rate limiting

the flow under a single bandwidth limit. In Listing 3.1 and Listing 3.2, the decision

could equivalently be either of these types.

However, BPF affords us the flexibility of doing further packet inspection to

decide how to rate limit flows. Whereas the policy decision program at Grantor

is only applied to the first packet in a flow (or upon renewal), the BPF program is

1Except in the case of capability renewal requests.

90

applied to every subsequent packet in the flow. This gives Gatekeeper the oppor-

tunity to monitor flows even after a capability has been granted.

Note that evaluations for the effect of secondary and negative bandwidth are

available in Section 2.4; here, we provide more details about how to encode these

mechanisms into the policy framework.

3.4.3.1 Secondary Bandwidth

In addition to a main bandwidth limit that is applied to “normal” traffic, a BPF

program can be used to apply a secondary bandwidth limit to certain classes of

traffic. For example, a Web server would expect a majority of incoming traffic to

be over TCP. Therefore, TCP traffic in general can be rate limited at a higher limit,

while all other transport layer traffic (UDP, ICMP, ICMPv6) can be given a lower,

secondary limit that is considered more appropriate for their expected use.

The secondary bandwidth limit can also be used to stem certain classes of trans-

port and application layer attacks. For example, DNS queries could be assigned

the secondary limit based on its well-known destination port number, and there-

fore attempts to launch DNS amplification attacks will be mitigated instantly at

the Gatekeeper server by virtue of the secondary rate limiting, even as other traf-

fic continues as normal. This is ideal for situations where some small usage of a

particular application or protocol is acceptable, but overuse indicates abuse. For

example, TCP SYN packets need to generally be accepted, but can be slowed to the

secondary limit, immediately mitigating TCP synflood attacks.

Listing 3.3 shows an example BPF program that uses a secondary bandwidth

limit. As with the Lua programs, simplifications have been made to the BPF code

for its use here. See the source code for a full example (Machado et al., 2020).

91

1 web_enforcement(struct bpf_context *ctx)
2 {
3 struct packet *pkt = ctx_to_pkt(ctx);
4 if (primary_limit(ctx , pkt) == DROP_PKT)
5 return DROP_PKT; /* Primary budget exceeded. */
6

7 switch (ctx ->l4_proto) {
8 case IPPROTO_ICMP:
9 goto secondary_budget;

10 case IPPROTO_TCP:
11 break;
12 default:
13 return DROP_PKT;
14 }
15

16 /* Everything below is TCP. */
17

18 if (ctx ->fragmented)
19 goto secondary_budget;
20

21 struct tcp_hdr *tcp_hdr = ...; /* Extract TCP. */
22

23 switch (tcp_hdr ->dport) {
24 case 21: /* FTP command */
25 case 80: /* HTTP */
26 case 443: /* HTTPS */
27 case 22: /* SSH */
28 if (tcp_hdr ->syn) {
29 if (tcp_hdr ->ack)
30 return DROP_PKT; /* Amplification attack. */
31 goto secondary_budget; /* Contain SYN floods. */
32 }
33 break;
34 default:
35 /* Accept connections originated from our web server. */
36 if (tcp_hdr ->syn && !tcp_hdr ->ack)
37 return DROP_PKT;
38 /* Authorized external services. */
39 switch (tcp_hdr ->sport) {
40 case 80: /* HTTP */
41 case 443: /* HTTPS */
42 break;
43 default:
44 return DROP_PKT;
45 }
46 }
47 goto forward;
48

49 secondary_budget:
50 if (granted_pkt_test_2nd_limit(pkt ->pkt_len) == false)
51 return DROP_PKT;
52 forward:
53 return FWD_PKT;
54 }

Listing 3.3: A policy enforcement program that uses secondary
bandwidth to further rate limit certain classes of transport and
application layer traffic.

92

This BPF program has several noteworthy elements:

• The primary limit is generally applied to TCP traffic and the secondary limit

is applied to ICMP traffic. Any other type of traffic is dropped.

• Fragmented traffic is given the secondary limit.

• TCP SYN ACKs sent to protected services are dropped to prevent amplifica-

tion attacks.

• TCP SYNs sent to protected services are given the secondary limit to contain

SYN flood attacks.

• The program doesn’t accept TCP SYN packets to any port except those it

explicitly knows and approves (FTP, HTTP, HTTPS, SSH).

• The program authorizes traffic from clients to the known services at the pri-

mary limit.

• The program authorizes traffic coming from Web servers at the primary limit.

This program is an exemplar of the richness that BPF program decisions afford

Gatekeeper, and helps mitigate many types of attacks that can be fingerprinted

by simply inspecting transport layer headers; see Section 2.4.4.1 for a quantitative

evaluation of how such a secondary bandwidth limit can mitigate a TCP SYN flood

attack. However, attackers can still abuse a granted capability by crafting packets

that fall under the primary bandwidth and flooding the destination network with

them. To combat this, BPF programs can also use negative bandwidth.

93

3.4.3.2 Negative Bandwidth

In the classical token bucket implementation for rate limiting, when the bucket

does not have a sufficient number of tokens to forward a packet, the packet is

dropped and no tokens are removed from the bucket. However, the algorithm can

be modified to deduct a number of tokens equal to the packet length even when

there is an insufficient number of tokens and the packet is dropped. This allows

the number of tokens for the flow to become negative, forcing the source to wait in

order for packets to be forwarded. If the source continues to send faster than the

bucket refill rate, packets in the flow will be indefinitely dropped. When imple-

mented as a part of a Gatekeeper policy enforcement program, this modification

has the effect of punishing flows that try to abuse the granted channel after receiv-

ing a capability. The effect of this can be quite dramatic when under a high rate of

attack; see Section 2.4.4.2 for a quantitative evaluation of this mechanism.

Of course, even with mechanisms like secondary and negative bandwidth, ma-

licious actors will try to find new vulnerabilities and attack vectors. Applications

and transport technologies can emerge and evolve (and so can network architec-

tures (Han et al., 2012; Machado et al., 2015)), and it is therefore imperative that

Gatekeeper supports the rapid development of new policy programs.

3.4.4 New Protocol Support: QUIC

Unlike many attack detection and firewall tools, which can require a non-trivial

development, review, and publishing process to add new features, Gatekeeper can

quickly incorporate changes to policies using the flexibility of programs.

Agility in altering policy decision programs or policy enforcement programs

may be needed when new types of attacks are discovered, or as new protocols or

94

applications emerge. At present, there is ongoing shift in transport mechanisms in

the Internet, as the QUIC protocol is deployed as a replacement for the traditional

HTTPS stack (Langley et al., 2017). Developed by Google to improve the perfor-

mance of HTTPS traffic, it was deployed on much of Google’s infrastructure by

early 2017, including being rolled out for all Chrome and YouTube users. In 2017,

the QUIC authors estimated that 7% of global traffic was running over QUIC, and

this proportion has likely increased in the years since, as both Facebook (Iyengar,

2018) and Uber (Mahindra et al., 2019) have adopted QUIC for their services. Addi-

tionally, deployment will probably continue to grow, as the HTTP/3 specification

decrees that the latest generation of Web traffic will utilize QUIC.

Often, new protocols yield new DDoS vulnerabilities, and QUIC is no excep-

tion. Its IETF draft specification identifies multiple vulnerabilities, including: (1)

amplification attacks, since a relatively small QUIC client hello message triggers a

large server response, which includes a TLS certificate in order to quickly perform

the TLS handshake; (2) Slowloris attacks, which attempt to keep many connections

open indefinitely using a minimum amount of activity; (3) stream commitment at-

tacks, analogous to TCP SYN floods, which attempt to exhaust per-stream state on

the server by opening many connections.

QUIC has built in some partial mitigations to its various vulnerabilities. For

example, to minimize the impact of an amplification attack, the QUIC protocol

sets a minimum size for the initial client hello message, thereby costing the attacker

significant bandwidth to transmit many fake client hello messages. However, the

server hello is still larger than the client hello, so the amplification asymmetry still

exists.

Depending on the vulnerability, Gatekeeper may be able to complement the

95

mitigation techniques of the QUIC endpoint or provide entirely separate mitigat-

ing maneuvers. For example, to prevent client hellos from triggering amplification

attacks, Gatekeeper can provide an upstream enforcement point for making sure

minimum length requirements are met for client hellos, just like the QUIC server

would, without wasting path or server resources. QUIC also prohibits the use

of fragmentation at the network layer, which can also be checked by Gatekeeper.

Such minimum length and protocol validation checks could be performed policy

enforcement programs.

Additionally, to combat the protected network from being the victim of a QUIC

amplification attack, i.e., the recipient of large server handshake packets, Gate-

keeper can assign QUIC server hellos to a secondary bandwidth limit, bounding

the effectiveness of the attack.

Other types of vulnerabilities, such as stream commitment attacks, require per-

connection or per-stream state, and can only be mitigated with a significant portion

of the QUIC protocol implemented. Due to memory restrictions as well as perfor-

mance and maintainability considerations, this is not feasible in Gatekeeper.

96

3.5 ADVANCED POLICY TECHNIQUES

We now describe advanced techniques for writing policies. Although the archi-

tecture is in place for these more sophisticated tools to be realized, much of what

is presented in this section serves as a jumping-off point for future research in the

Gatekeeper ecosystem, including using a distributed database to analyze traffic

at Grantor (Section 3.5.1), using port knocking for lightweight authorization (Sec-

tion 3.5.2), and load balancing and path control (Section 3.5.3).

3.5.1 Flow Capture and Analysis

3.5.1.1 Design Overview

To this point, the role of Grantor servers has been to simply make policy decisions

in response to requests and to decapsulate granted packets for their transmission

to the destination server. However, Grantor servers have much more potential that

has yet to be explored.

Due to their centralized location in the protected AS, Grantor servers acquire a

global view of all ingress traffic into the protected AS. This data could be used to

perform traffic analysis and inform policy alterations to mitigate attacks. Although

there are already many tools available for traffic aggregation and analysis (e.g.,

Cisco NetFlow (2012), Packetbeat (2020)), most tools are based in dedicated routers

and switches, require paid services, provide limited flexibility for new protocols

and attacks, give few options for remedying issues when they are found, or some

combination of all of these.

A traffic collection and analysis service that is built into Grantor servers would

be beneficial in three ways. First, there are currently no standard tools for traf-

97

fic capture and analysis using DPDK network device drivers. Since Grantor uses

DPDK, this compatibility is required. Second, Grantor is best placed to perform

processing and sampling of traffic for the purposes of analysis. Since Grantor uses

hardware and software optimizations to efficiently process traffic, layering other

software on top to do further processing or sampling would likely be inefficient.

Third, ultimately the results of the traffic analysis would ideally be used as feed-

back for creating or altering network policies, which ultimately must come back

to Grantor anyway. Therefore, we decided that Grantor should sample traffic and

directly access a database that it can use in policy contexts. We chose the Redis (Re-

dis, 2020) database due to its efficient, in-memory implementation, its distributed

design to work across multiple Grantor servers, and the fact that it is open source.

3.5.1.2 Case Study: Source Address Spoofing Detection

One potential application of a Grantor distributed database is detecting a form

of source address spoofing, one of the major architectural issues that enable DDoS

attacks (Section 1.3). Attackers that use a large botnet to launch attacks may choose

to spoof source addresses in order to confuse per-flow rate control mechanisms,

such as those in Gatekeeper. It would be beneficial to identify source addresses

that are spoofed, either at policy decision or policy enforcement time, so that flows

can be declined.

Because Gatekeeper uses a distributed overlay of vantage points, it has addi-

tional path and geographic information that it can use to try to detect spoofing.

When Grantor receives an encapsulated packet from Gatekeeper, the source IP ad-

dress of the outer header is the IP address of the back interface of Gatekeeper. This

IP address uniquely identifies the vantage point in the Gatekeeper overlay. There-

98

fore, Grantor can associate the source IP address of the inner header, the client’s

IP address, with the vantage point through which it came. Figure 3.1 gives an

overview of the association of flows to vantage points.

Figure 3.1: Example geographic overview of flows associated to VPs.

Given the static nature of deployments, the mapping of source network to its

anycast-closest VP will be fairly static as well. This property allows Grantor to

detect anomalous behavior whenever it receives packets from a client’s source IP

address that do not match the VP that was seen in a previous sample. An example

of such a policy at work can be seen in Listing 3.4.

A caveat to this technique is that it gives attackers a potential handle for deny-

ing service to other flows. An attacker with a priori knowledge of the source ad-

dress and assigned VP of a legitimate client could preemptively spoof that source

address, so that requests from the legitimate client are declined by Grantor.

Because the test is not guaranteed to be accurate and could result in collateral

damage to legitimate clients, this technique could be used as supplemental infor-

mation to decide which rate to allot a flow, or could be used to de-prioritize flows

that appear to have a spoofed source IP when Gatekeeper is overwhelmed by an

attack. We leave a more thorough examination of the advantages and potential pit-

99

falls of such a source address spoofing detection, as well as other techniques that

leverage geographical VP information, to future work.

function vp_changed(pkt_info)

-- Get GK server 's IP address.
local outer_hdr = (struct ipv4_hdr *) pkt_info.outer_hdr
local gk_src = tostring(outer_hdr.src_addr)

-- Get client 's IP address.
local inner_hdr = (struct ipv4_hdr *) pkt_info.inner_hdr
local cli_src = tostring(inner_hdr.src_addr)

prev_gk_src = redis_db.get(cli_src)
if prev_gk_src == nil then

-- Client IP has not been seen before; add mapping.
redis_db.set(cli_src , gk_src)
return false

end

-- Return whether the Gatekeeper address is consistent.
return prev_gk_src ~= gk_src

end

function lookup_policy(pkt_info , policy)

-- Check whether the source address might be spoofed.
if vp_changed(pkt_info) then

-- Decline for 60s.
return declined(policy , 60)

end

return default_granted(policy)

Listing 3.4: A policy decision program that detects changes in the
mapping of client IP to VP, and declines flows whose VP changes.

3.5.1.3 Traffic Analysis with Machine Learning

Once the ability to sample, store, and analyze traffic data is established, statisti-

cal techniques and machine learning can be applied to detect network anomalies,

which can be used to inform Gatekeeper policies.

100

Although the threat model for Gatekeeper is mostly concerned with infrastruc-

ture layer attacks, there do exist classes of attacks that use low-rate, benign-looking

traffic to target vulnerabilities in protocol or application implementations. There

is a significant body of work in network anomaly detection (Garcia-Teodoro et al.,

2009) and intrusion detection via machine learning (Buczak & Guven, 2015) to pick

up on such low and slow attacks. Given the ability of Gatekeeper to craft policies

that inspect protocol header data, principal component analysis techniques can be

used to mine network anomalies and report which traffic features are responsible

for the anomaly (Lakhina et al., 2005). The resulting analysis could be used in an

offline process to construct Gatekeeper policies, or perhaps in an online process to

make adjustments to rate limits, for example.

In general, Grantor can be used as an insertion point for network analysis tools,

such as attack detection research or industry tools for traffic analysis.

3.5.2 Port Knocking

The ideal scenario for a network capability system is for clients to be authorized

for transmission a priori, before packets are put on the wire, so that the capability

system can simply authenticate the client and verify its capability. Clearly, this

sort of planning is not always feasible, since out-of-band capability distribution

mechanisms are not convenient or easy to implement, not every interaction on the

Internet is planned in advance, and it may not even be prescribed in the interaction

model of the service to require pre-authorization of users.

Still, there is clearly a time and a place for such mechanisms. TLS client cer-

tificates, for example, allow servers to cryptographically authenticate clients based

on a distributed digital certificate. Although the possession of a TLS client certifi-

101

cate does not imply that the client should be able to send at an arbitrary rate, it

represents a form of authorization and can be the first step in a defense-in-depth

strategy with multiple layers of protection.

For performance reasons, Gatekeeper servers are not currently equipped to per-

form TLS client authentication, although there is no technical reason why they

could not do so. However, more lightweight forms of authorization, such as port

knocking (Degraaf et al., 2005), are compatible with Gatekeeper. Port knocking tra-

ditionally refers to a technique that allows clients to open ports on a firewall by

generating a specific sequence of connection attempts against particular ports. By

default, ports protected by the port knocking mechanism appear closed. However,

if a client generates a correct “knock,” i.e., sequence of ports, then the firewall is

opened for the client, allowing it to access services at valid ports.

In Gatekeeper’s case, the Gatekeeper server itself represents the firewall. For

each flow, a BPF program can be parameterized with a knock sequence, and state

can be kept regarding the client’s knocking progress using a simple counter. If

the client completes the knock sequence, then their traffic is assigned the primary

bandwidth of the link. Otherwise, the client’s traffic is assigned the secondary

bandwidth or dropped. An example is shown in Listing 3.5.

102

1 port_knocking(struct gk_bpf_pkt_ctx *ctx)
2 {
3 struct state *state = (struct state *) pkt_ctx_to_cookie(ctx);
4 struct packet *pkt = ctx_to_pkt(ctx);
5

6 if (primary_limit(ctx , pkt) == DROP_PKT)
7 return DROP_PKT; /* Primary budget exceeded. */
8

9 if (state ->correct_knocks == NUM_PORT_KNOCKS)
10 goto forward; /* Client already successfully port knocked. */
11

12 if (ctx ->l4_proto != IPPROTO_TCP)
13 goto secondary; /* Can only knock using TCP. */
14

15 if (pkt ->l4_len < sizeof (* tcp_hdr))
16 return DROP_PKT; /* Malformed TCP header. */
17

18 struct tcphdr *tcp_hdr = (struct tcphdr *)(pkt + offset)
19 uint16_t knocked_port = tcp_hdr ->d_port;
20

21 /* Check whether this knock matches the next in the sequence. */
22 if (knocked_port == state ->ports[state ->correct_knocks])
23 state ->correct_knocks ++;
24 else
25 state ->correct_knocks = 0;
26

27 if (state ->correct_knocks == NUM_PORT_KNOCKS)
28 goto forward; /* This was the last knock needed. */
29

30 secondary:
31 if (granted_pkt_test_2nd_limit(pkt ->pkt_len) == false)
32 return DROP_PKT;
33 forward:
34 return FWD_PKT;
35 }

Listing 3.5: A policy enforcement program that uses port knocking
to decide whether a flow should be assigned a primary or secondary
bandwidth.

3.5.3 Load Balancing and Path Control

Policy enforcement programs can also be used to load balance flows to desti-

nation servers, either using encapsulation or direct delivery, instead of sending

granted traffic through Grantor. This increases the robustness and performance

of the protected network’s services, while removing the need for dedicated load

balancers. Since the load balancing is performed from VPs, Gatekeeper there-

103

fore becomes a scalable, geographically-distributed, DDoS-protected, centrally-

administrated load balancer.

With the ability to perform encapsulation to an arbitrary destination in the pro-

tected network, Gatekeeper could also redirect flows. Flow redirection opens Gate-

keeper up to new possibilities, such as integrating with intrusion detection systems

or utilizing path control, which could be used to forward flows around congested

links [or attacked links (Section 4.4)]. Combined with the fact that policies control

(1) which flows are redirected, (2) the conditions under which they are redirected,

and (3) the redirection destination, this technique could also be seen as a form of

on-demand tunneling.

Overall, the richness of Gatekeeper policy decision and enforcement programs

provides many opportunities for expressive control over the network capability

system. We expect that the techniques previewed in this section will mature into

tools that network operators can use in their deployments.

104

CHAPTER 4

Defending Against Next-Generation Attacks

4.1 OVERVIEW

We now turn to the future, and consider where malicious actors might take the

DDoS field of play next. For the past two decades, attackers have been steadily

increasing the effectiveness of their attacks along three axes: the magnitude of at-

tacks, the frequency of attacks, and the sophistication of attacks (Arbor Networks,

2014; NETSCOUT, 2019; Neustar, 2020; AWS, 2020b). The trends are clear, and

show no signs of slowing down. So how have attackers achieved this?

We can look to the state-of-the-art DDoS attack techniques for an answer, and

perhaps no attack has greater exemplified the trends than Mirai (Antonakakis et al.,

2017). The Mirai attack co-opts various IoT devices around the Internet, including

cameras, DVRs, and routers, and uses them to infect more devices and launch a

variety of attacks. Many of these devices are computation- and bandwidth-limited,

and may reside in regions with low bandwidth capacity (Antonakakis et al., 2017).

Despite these limitations, Mirai attacks have reached peak capacities of over 1.2

Tbps, and have targeted (and successfully brought down) entities that provide

global DNS and cloud services, affecting large swaths of the Internet.

Still, Mirai-like attacks have not reached their full potential. This is because Mi-

rai typically uses well-known TCP exhaustion and application layer attacks, which

can be detected and mitigated using signature-based mechanisms. In one analy-

sis (Antonakakis et al., 2017), 70% of the attack traffic was from non-infrastructure

layer attacks. But not all attacks are like this. Consider the Crossfire attack (Kang

et al., 2013). First described in 2013, Crossfire combines many of the properties of

105

Mirai with stealth. Crossfire uses low-rate, legitimate-looking traffic to launch a

clandestine attack upon its victim, upping the ante in terms of attack sophistica-

tion.

Looking ahead, the network landscape is shifting in a direction that favors at-

tacks like Mirai and Crossfire. New developments in the realms of user devices,

access networks, and protocols are likely to further advantage attackers, and de-

fensive solutions will desperately be needed.

In this chapter, we consider why Gatekeeper can be such a solution. In Sec-

tion 4.2, we provide a primer on the Crossfire attack, which we have chosen to

study as an example for two reasons. First, it it is especially relevant to this the-

sis because it enjoys architectural advantages over defensive systems. Second, the

outlook for the growth of Crossfire attacks in the foreseeable future should worry

network operators. We discuss this outlook in Section 4.3, where we describe the

possibility of a perfect storm of factors – the proliferation of IoT devices, 5G net-

works, and IPv6 infrastructure – that could lead to highly disruptive Crossfire at-

tacks. We then propose that Gatekeeper, with its architecturally-minded approach,

is capable of mitigating or severely limiting the effectiveness of Crossfire attacks,

shown in Section 4.4.

106

4.2 CROSSFIRE PRIMER

4.2.1 Attack Summary

Crossfire is a form of link flooding attack (LFA), i.e., an attack which seeks to deny

service to legitimate clients by overwhelming one or more links in the network, as

opposed to overwhelming only the network connection, CPU, or memory capac-

ity of a target server directly. Crossfire was first described by Kang et al. (2013),

which has led to a small but significant body of work about LFAs in general, in-

cluding Kang et al. (2016); Lee et al. (2013); Smith & Schuchard (2018); Tran et al.

(2019).

Although the locus of the attack is a set of one or more links, the victim of

the attack is a target area, a geographic region which could be as small as a network

enclave within an organization and as large as a country. As examples, target areas

could be an individual university or the entire East coast of the United States.

To cut off service to a target area, the adversary seeks to find a set of target links

that are geographically close to the target area. The adversary carefully chooses

target links based on measurements that determine which of the relevant links

likely carry a large share of the traffic to the target area. Therefore, launching a

DDoS attack against this set of target links cuts off a target area from legitimate

traffic.

An overview of the Crossfire attack is shown in Figure 4.1, and the relevant

components for attack construction are summarized in Table 4.1. In order to calcu-

late the set of target links, the adversary finds a set of public servers in the target

area as well as a set of decoy servers in the vicinity of the target area. We call this

set of public and decoy servers D. The adversary then selects a set of bots, B, and

107

sends multiple traceroute probes from every b ∈ B to every d ∈ D. The result of

these probes is a set of paths P , each of which is composed of links drawn from all

encountered links, L. The adversary then extracts the persistent links L′ ⊂ L from

these paths, i.e., those that always occur in the traceroute output across multiple

trials for each pair (b, d). The set L′ composes a network-layer link map (grey links

in Figure 4.1), which represents the set of candidate links from which the target

links will be chosen.

Figure 4.1: An overview of the Crossfire attack, illustrating the bots,
target area, decoy servers, and target links. Based on diagram origi-
nally from Kang et al. (2013).

To select the target links, the adversary analyzes the map to find the links that

would be most useful to flood with an attack. The metric used by the adversary is

the flow density for each link l ∈ L′, which is defined as the number of paths p ∈ P

108

that cross l. Links with a high flow density are likely to carry the highest amount

of legitimate traffic, and are therefore are the highest value links for an attacker to

flood.

After selecting the set of target links T ⊂ L′, the adversary gives instructions

to each bot, consisting of the set of decoy servers the bot should send to, as well

as the rate at which it should send to each server. Bots use low-rate, legitimate-

looking traffic that is destined for real, public servers, so that no individual flow

looks out of the ordinary, but in aggregate the bots are coordinated in such a way

that the target links are flooded. To circumvent defensive strategies and maintain

attack persistence, the adversary can periodically rotate the set of target links that

the bots flood, and/or rotate the set of bots performing the flooding.

Symbol Definition
B The set of bots
D The set of public and decoy servers
P The set of paths output by traceroute for all (b ∈ B, d ∈ D) pairs
L The set of links that compose paths p ∈ P
L′ The set of persistent links; subset of L; candidates for target links
T The set of target links; subset of L′

Table 4.1: Summary of the components of the Crossfire attack con-
struction.

The result is an attack that is exceptionally difficult to detect. Since link at-

tacks like Crossfire cut off traffic at intermediate links in the client-server paths,

the attack traffic does not reach the server itself, and therefore signature-based

detection mechanisms that analyze traffic are not useful. Middleware appliances

such as intrusion detection systems (IDS) that are placed further up the path may

process some of the attack traffic, but only if some of the target links are cho-

sen to be between the IDS and the public servers. Even then, other target links

109

may not be in that range. Furthermore, since the attack traffic uses low-rate flows

with legitimate-looking traffic to legitimate destinations, the IDS is unlikely to flag

traffic from Crossfire bots as anomalous. Automatic link failure detection mecha-

nisms, such as those built into OSPF and BGP, are too slow to react to target link

set changes that the adversary can perform.

Even if a victim could recognize that an attack was occurring, there is no mech-

anism for networks to protect themselves if the target links are outside of the ad-

ministrative control of the network operator. A principal conclusion of Kang et al.

(2013) is that coordination between networks is necessary to mitigate an attack if

target links reside in different domains. These properties show that Crossfire takes

advantage of the architectural issues that enable DDoS attacks, as we describe next.

4.2.2 Architectural Advantages of Crossfire

Crossfire is an interesting case study, as it relates to the architectural aspects of

DDoS, as it enjoys several architectural advantages over defensive systems and

exacerbates the architectural issues described in Section 1.3.

Inability to mitigate at attack locus (relates to Architectural Issue 1). Since

the links used to cut off a target area can be outside of the target area’s network,

mitigation of the attack has to happen upstream, by another provider. Allowing a

victim network to request mitigation from another network would require crossing

management and trust boundaries, which is unlikely to happen in the near future

given the decentralized operation of the Internet.

Seemingly benign nature of attack traffic (relates to Architectural Issue 2).

Typically, attack traffic is unwanted, which provides at least a starting point for at-

tack detection and fingerprinting mechanisms to distinguish it from traffic that is

110

legitimate. However, the nature of the attack traffic in Crossfire is more nuanced:

it is unwanted in the sense that it is not deriving any real benefit for the client

or server, and is dealing damage to the victim network. However, it is “wanted”

in the sense that Crossfire uses seemingly legitimate traffic – valid uses of appli-

cations and protocols at appropriate rates – between real clients and servers, and

therefore is indistinguishable from actual legitimate traffic. In this way, Cross-

fire exacerbates Architectural Issue 2 (there is no mechanism to stop unwanted traffic),

since stopping unwanted traffic is predicated on being able to discern which traffic

is unwanted.

No source spoofing required (relates to Architectural Issue 3). Since Crossfire

uses legitimate-looking traffic, such as Web requests, it does not need to spoof

source IP addresses. However, since the victim network does not necessarily have

visibility into the attack traffic, the lack of source spoofing is not an additional

advantage for the attacker beyond the appearance of legitimate traffic.

Widespread distribution of bots. (Relates to Architectural Issue 4). Similar

to most DDoS attacks, Crossfire can be achieved using a distribution of bots from

around the Internet. However, this is notably different from a closely related form

of link attack, Coremelt (Studer & Perrig, 2009), where attack traffic is directly be-

tween bots and therefore the selection and utility of the attack locus is subject to

the bot distribution.

Given these advantages, it is unsurprising that Crossfire attacks have made the

leap from being theorized about in academic papers to hitting real-world infras-

tructure.

111

4.2.3 Recorded Crossfire Attacks

Malicious actors have already launched attacks similar to Crossfire in the Internet.

In 2013, the anti-junk e-mail company Spamhaus was the victim of a massive (300

Gbps) DDoS attack. The locus of the attack was the links in the Internet exchange

where Spamhaus traffic crossed on its way to Cloudflare, who provided DDoS

protection services to Spamhaus (Prince, 2013; Bright, 2013). The attackers were

able to find the IP addresses of peers in the IXP, and used those IP addresses to

oversaturate some of the IXP links, leading to a successful attack. The Spamhaus

attack used DNS amplification to obtain a high attack rate, so it did not quite use

the legitimate-looking flows of traditional Crossfire, but it did focus its attack on

upstream links, outside of where Spamhaus or Cloudflare could immediately see.

Two years later, in 2015, ProtonMail was the target of a week-long 50 Gbps

attack (Patternson, 2015). The attackers set their sights on the links in the upstream

ISPs that connected to the ProtonMail datacenters, and attacking them brought the

datacenters offline. ProtonMail CEO Andy Yen described the event in stark terms:

“We realized we were dealing with a different, far more scary attacker. One that

didn’t fit the pattern of any previous attack.” It was only through the combined

efforts of transit providers and other companies that ProtonMail was able to restore

service.

These incidents demonstrate that large-scale link attacks are not only feasible,

but can be very damaging in practice. However, there are not currently any com-

prehensive and deployable solutions to combat link attacks, as we describe next.

112

4.2.4 Previous Attempts at a Solution

Multiple partial solutions to link flooding attacks have been proposed. For exam-

ple, CoDef (Lee et al., 2013) proposes collaborative rerouting, which permits victim

networks to send “reroute” requests to source networks, asking them to use detour

paths around congested routers or links. However, CoDef assumes the presence

of a path identifier mechanism and inter-domain collaboration, both of which are

not available in the current Internet architecture. SPIFFY (Kang et al., 2016) pro-

poses to use mechanisms to increase the bandwidth of target links and observe

the resulting traffic response, forcing attackers to either increase their attack cost

or allow themselves to be differentiated from legitimate traffic. However, this so-

lution assumes that the target links are within the jurisdiction of the deploying

network. RADAR (Zheng et al., 2018) shows that an SDN-based approach can be

used to detect and rate-limit link flooding attacks within a single network, but is

not generalizable across networks.

For attack detection, LinkScope (Xue et al., 2014) proposes new end-to-end and

hop-by-hop measurement techniques to detect LFAs, but does not provide a miti-

gation solution.

As a proactive defense, NetHide (Meier et al., 2018) proposes techniques for

hiding the internal topology of a network to make the reconnaissance phase of link

attacks difficult, but faces deployment hurdles in requiring the programmability of

routers and does not provide a mitigation technique for target links that are able

to be identified.

STRIDE (Hsiao et al., 2013) and SIBRA (Basescu et al., 2016) aim to use band-

width isolation and reservation mechanisms to guarantee a minimum level of ser-

vice for critical flows. While promising in their ability to combat DDoS attacks,

113

these proposals are not feasible in the current Internet architecture and would

work best in novel network architectures such as SCION (Zhang et al., 2011).

Most recently, Nyx (Smith & Schuchard, 2018) proposes to use BGP poisoning

to achieve isolation of traffic and route around congested links, obviating the need

for trying to filter or throttle DDoS attacks. However, in response, Tran et al. (2019)

suggested that the techniques used in Smith & Schuchard (2018) are not feasible in

practice due to limitations in the implementations of BGP, and showed that adap-

tive adversaries can find new paths for its attacks.

The main problem with this body of work is that it consists of partial solutions

and solutions that would require significant and expensive changes to the Internet

architecture to deploy. Unfortunately, as we describe next, link flooding attacks

may soon become more commonplace in the Internet, accelerating the need for a

comprehensive and deployable solution.

114

4.3 THE PERFECT STORM

The ecosystem of the Internet’s infrastructure and connected devices may soon be

changing in a way that makes Crossfire attacks even more feasible for attackers to

launch. There are at least three recent developments that could provide new attack

opportunities.

The proliferation of IoT devices. Recent years have seen the development of

cheap and simple ways of constructing botnets composed of IoT devices. Although

IoT botnets existed before 2016, that year saw the introduction of the Mirai botnet,

which (along with its derivatives) has become the foremost example. The original

Mirai botnet reached a population of 200,000-300,000 bots, but it is estimated that

at least around 20 million such devices exist in the Internet as of 2020 (Guo &

Heidemann, 2020). The number of devices will continue to grow, and the diversity

of these devices will continue to grow, which makes finding and patching security

vulnerabilities like those exploited by Mirai quite difficult.

Such a wealth of potential bots is especially useful for Crossfire, since IoT de-

vices are distributed throughout the world, providing a diverse snapshot of paths

that lead to a target area. Further, the modest network capacity of IoT devices is

well-suited for Crossfire, since it can achieve successful attacks using just a few

Kbps (Kang et al., 2013).

The introduction of 5G networks. The rollout of the fifth generation of mobile

networks has begun across the world (Xu et al., 2020). 5G networks will provide

higher bit-rates, lower latencies, and greater reliability, enabling many real-time

and virtual applications. The 5G was built in part to support features for IoT, such

as systems for slicing virtualization and infrastructure and access technologies for

the massive density of traffic between IoT devices (3GPP Org., 2019).

115

Although Crossfire may not fully utilize the bandwidth increases enabled by

5G networks (since it uses low-rate flows to its advantage), the new network sup-

port for billions of new devices provides Crossfire with the infrastructure needed

to leverage the billions of new potential bots at its disposal.

The deployment of IPv6. Although support for IPv6 began to roll out in the

late 1990s, adoption did not significantly pick up steam until around 2009 (Czyz

et al., 2014a), and there has been a steady increase in adoption since then. By

the numbers: 30% of Google’s users access their services using IPv6 as of 2020,

and has been increasingly approximately 5% per year since 2014 (Google, 2020a).

IPv6 usage in IXPs is on an upward trend as well: IX.br has measured peak IPv6

throughput at over 500 Gbps (IX.br, 2020), and 5-10% of the average traffic passing

through SeattleIX is IPv6, with a peak around 16% (SeattleIX, 2020). In terms of

adoption by network, mobile carriers and telecoms are generally leading the way,

with India-based Reliance Jio at 90% IPv6 deployment among its users, and all

combined US carriers at 86% (World IPv6 Launch, 2020).

IPv6 brings many technical strengths to the Internet landscape, but burgeon-

ing deployments also present weaknesses. Rapidly rising deployment rates in

both content networks and eyeball networks across the globe, especially mobile

providers, are driving up rates of IPv6 traffic, but management tools, hardware,

and native deployments (“IPv6 only”) of links and services may not be adequately

provisioned. Network configuration tools as well as DDoS detection and mitiga-

tion tools have had more time, resources, and events to be refined, and IPv6 will

have its own unique challenges. For example, state exhaustion attacks may be-

come more prevalent due to the expanded address space of IPv6.

Anecdotally, in our implementation of Gatekeeper, we found both hardware

116

and software support for filters for IPv6 traffic to be more limited. In our conversa-

tions with network operators, we found that networks are incrementally shifting

parts of their services and infrastructure to IPv6 to test the waters before larger

deployments are realized. Such partial migrations may leave parts of their infras-

tructure underprovisioned or otherwise not ready to face an IPv6-based attack.

In summary, the combination of the emergence of IoT devices, 5G networks,

and IPv6 presents a scenario where the number of devices and their aggregate

capacity is rapidly increasing, while the underlying network infrastructure is si-

multaneously undergoing a radical shift. Such a confluence of factors may lead to

a perfect storm of conditions for large scale link attacks like Crossfire to become

commonplace.

As the Internet hurdles toward this next generation, there are no deployable,

comprehensive defensive strategies for combating Crossfire-like attacks. However,

there may be hope: architectural approaches to mitigation, such as Gatekeeper,

may provide the techniques needed to defend against large-scale link attacks.

117

4.4 CROSSFIRE DEFENSE WITH GATEKEEPER

Recall that a Crossfire attack consists of three phases: constructing the link map,

coordinating bots to flood target links, and periodically rotating the set of target

links to maintain attack persistence. Gatekeeper offers strategies for combating

attackers at each of these phases.

Crucially, some of these strategies depend on the ability of Gatekeeper to be

deployed in cloud environments. Clouds offer an advantage to Gatekeeper in two

ways. First, due to the massive infrastructure investment of large cloud providers,

e.g., Amazon, Microsoft, and Google, significant portions of cloud paths are in-

dependent from, and more reliable than, public Internet paths, to the extent that

such paths have been proposed to improve the quality of service of many appli-

cations (Haq et al., 2017, 2020). Gatekeeper leverages the independent nature of

these paths to circumvent links that are targeted by adversaries, or else require

that Crossfire botnets are composed of cloud VMs. Second, due to the flexibility of

deployment in the cloud, Gatekeeper VPs can be quickly bootstrapped, analyzed

for their topological characteristics, and put into service during an attack. Because

of these advantages, some of the strategies discussed next may or may not be ap-

plicable when Gatekeeper is deployed in other environments, such as IXPs.

To support our findings, we employed a real-world measurement study that

emulates the attack setup of a Crossfire adversary, the details of which are pre-

sented in Section 4.4.1. Then, we show the advantages that Gatekeeper has over

Crossfire attacks. First, Gatekeeper can disrupt the attacker’s ability to construct a

useful link map (Section 4.4.2). When an attacker floods links, many Gatekeeper

paths may not cross any of the target links chosen from the link map, even when

rotating sets of links are used (Section 4.4.3). Finally, even when an attack is suc-

118

cessful, Gatekeeper can use a moving target defense to reduce the likelihood of

legitimate traffic crossing saturated links (Section 4.4.4).

Note that we do not quantitatively compare our results to the previous attempts

at Crossfire solutions (Section 4.2), as the measurement study simply evaluates

the feasibility of the proposed Gatekeeper defense. Additionally, since all of the

previous attempts at solutions are either (1) partial solutions with much different

assumptions (e.g., the ability to collaborate between networks), or (2) not feasible

in the current architecture, a direct comparison is not practical.

4.4.1 Measurement Study Setup

In order to evaluate how Gatekeeper can respond to a a Crossfire attack, we needed

to emulate the steps that an actual attacker would perform, as described in Sec-

tion 4.2. Although for ethical and practical reasons we did not launch a large-

scale link attack, we developed the Crossfire link map construction algorithm as

described in Kang et al. (2013), which includes algorithms to extract a set of persis-

tent links from traceroute results, find target links with high flow densities, and

pick sets of target links to use in rotating attacks to maintain attack persistence.

For a target area, we selected a geographic region that approximately corre-

sponds to the city of Boston, Massachusetts, USA. Notably, Boston is home to many

higher education institutions, as well as medical, biotechnology, and general high

technology and innovation industries, making it a well-connected region in terms

of network infrastructure as well as technological importance. The results of the

study may or may not apply to regions with poorer connectivity properties.

We also selected approximately 100 Looking Glass nodes using the CAIDA

Periscope (Giotsas et al., 2016) as a proxy for the Crossfire botnet. These nodes are

119

distributed across the world, and are available for public use to run traceroute for

Internet measurement purposes. We limited our botnet to the 100 nodes with the

consistently highest link persistence on the path from each bot to the target area.

However, to increase the geographic distribution of bots, we limited our set to at

most one bot per city.

To compose our set of decoy servers, we found approximately 60 public servers

in the networks of institutions around the target area. Although Kang et al. (2013)

recommend finding such decoy servers through “port-scanning,” we took a multi-

step approach:

1. Perform subdomain enumeration to find publicly accessible subdomains from

institutions around the target area. To avoid selecting decoy servers that are

not physically near the target area, such as for subdomains that resolve to

cloud services, cross-referencing should be performed with multiple tools to

estimate the approximate geographic location of each IP.

2. For each IP address corresponding to a subdomain, perform a traceroute to

that IP address in order to test whether probes are administratively blocked

by the network.

3. If traceroute probes succeed, then look for other servers in the same net-

work, since there may be other servers that are publicly accessible but do not

have DNS entries. To find these servers, we use nmap (Lyon, 2009) against the

/24 network prefix of the IP address found as a guess of what other servers

may exist with the same administrative policies.

4. Run traceroute to each of the servers found by nmap to verify that they can

be probed.

120

The target area, bots, and decoy servers are sufficient for the Crossfire setup

and attack. However, to evaluate the effect of Gatekeeper defensive strategies,

we simulate a Gatekeeper deployment using cloud nodes in AWS to represent 6

geographically distributed vantage points, in Ohio (US), Frankfurt (EU-1), Paris

(EU-2), Sydney (AU), Mumbai (IN), and São Paulo (BR). We refer to these VPs as

the set V , We chose nodes in these regions to simulate a global Gatekeeper deploy-

ment, but also chose two VPs in Europe (Frankfurt and Paris) to be able to compare

the value of VPs that are geographically close.

Note that in this evaluation, Gatekeeper is not actually deployed. We simply

use representative vantage point locations to determine what Gatekeeper’s effect

would be on the topological assumptions and advantages of Crossfire, were Gate-

keeper actually deployed there.

Figure 4.2: Distribution of Looking Glass nodes for bots (blue pins)
and simulated Gatekeeper vantage points (yellow icons).

An overview of the distribution of bots and VPs is shown in Figure 4.2. With

this setup, we then evaluated how Gatekeeper can defend against Crossfire attacks

during the link map construction, link flooding, and attack rotation phases. We

discuss Gatekeeper’s defense to each of the phases next.

121

4.4.2 Link Map Disruption

In constructing Crossfire link maps, adversaries may use traceroute results that

are from bots to servers protected by Gatekeeper. This can occur either when the

Gatekeeper-protected AS is in the target area, or when the Gatekeeper-protected

AS can be used for decoy servers around a target area. If the adversary knows that

certain servers are protected by Gatekeeper, either because such information is

public or through path analysis, then they might choose to specifically avoid those

servers if there are a sufficient number of other decoy servers available. However,

if these paths are included in the link map construction, then the utility of the result

may be diminished in terms of candidate target links for the following reasons.

The effect of encapsulation. Since traffic between Gatekeeper and Grantor is

encapsulated, the attacker has no visibility into that section of the path. This is due

to the way that traceroute is typically implemented: using probes with incremen-

tally increasing time-to-live (TTL) values, causing routers who see TTL values of

0 to return ICMP Time Exceeded messages back to the source. This sequence of

messages allows senders to piece together the path to the destination. However,

between Gatekeeper and Grantor, the IP header with this crafted TTL value is sub-

merged in another IP header, so routers do not inspect it and therefore do not send

the ICMP messages to the sender. Additionally, Gatekeeper and Grantor servers

at the ends of the tunnel do not inspect this value, and Grantor is expected to be

deployed on the same network segment as the ultimate destination. Therefore, af-

ter the last hop before Gatekeeper, the only hop along the path that will reply to

the probe is the destination server (Figure 4.3). This obscures the adversary’s view

into the links around the target area. Since this is an area where potentially many

paths converge, the pool of candidate target links may be reduced.

122

Figure 4.3: Handling of traceroute probes around the Gatekeeper to
Grantor tunnel.

The effect of anycast. In a Gatekeeper deployment, the only links that are

visible to the adversary’s traceroute bots are the links leading up to the VP. These

links have indeed been targeted by large-scale link attacks in the past (Prince, 2013;

Bright, 2013). However, in that attack, the IP address of the router inside of the IXP

was exposed, and therefore the adversary could use all of its bots to target the links

leading up that router as a part of the flood. Since traffic destined for Gatekeeper-

protected ASes are anycast to the topologically nearest VP, the adversary’s pool of

bots is divided, limiting the bots that could attack a given VP to those that are geo-

graphically close. We could not measure this effect in our study, since dividing our

pool of bots among the VPs would create some sample sizes that were too small

to be relevant, especially for VPs that had only a few bots (e.g., Australia). Even if

the pool of bots were large enough to saturate a critical mass of links leading to a

VP, that is only one entry point for Gatekeeper traffic. Traffic that uses other VPs

in a global deployment would be unaffected.

The effect of policies. Some Gatekeeper deployments may choose to lever-

age the ability of Gatekeeper to deliver granted packets directly to destinations,

instead of first through Grantor servers (Section 2.2.3). In this case, encapsulation

123

is not used along the Gatekeeper-Grantor channel. However, Gatekeeper policies

can be formed to administratively prohibit traceroute along this path. Although

there is no definitive signature of traceroute packets, which are typically either be

UDP or ICMP datagrams, there are heuristics that can be used. For example, they

typically have low TTL values in order to trigger responses from routers. A sam-

ple policy decision program in Lua that captures packets likely to be traceroute

and declines the flow is shown in Listing 4.1. A similar technique could be used in

policy enforcement programs for flows that have already been granted.

local function policy_lookup(pkt_info)

if pkt_info.l4_proto == policylib.c.ICMP then

-- Snip: extract IPv4 header and ICMP type/code.

-- Disable traceroute through ICMP into network.
if ipv4_hdr.time_to_live < 16 and

icmp_type == ICMP_ECHO_REQUEST_TYPE and
icmp_code == ICMP_ECHO_REQUEST_CODE then

return declined
end

end

return default

Listing 4.1: A policy decision program in Lua that declines flows that
appear to use traceroute.

The defenses discussed so far only relate to adversaries that try to use servers

protected by Gatekeeper as part of the link map construction. But this is not nec-

essarily the case. Adversaries may attempt to victimize a Gatekeeper-protected

network by building a link map using decoy servers that are known to be geo-

graphically close to the victim network. We discuss this scenario next.

124

4.4.3 Diversity of Cloud Paths From Gatekeeper

Crossfire does not rely solely on servers in the target area to perform the link map

construction. If an attacker knew that Gatekeeper was protecting a target network,

then it could construct the link map solely using decoy servers in unprotected

networks, with the assumption that the target links would overlap with links in the

paths from Gatekeeper VPs to the target area. However, even if an attacker takes

this approach, the effectiveness of this link map is limited due to the topological

differences of Gatekeeper paths, at least when Gatekeeper is deployed in a cloud.

To measure this effect, we analyzed the results of the study described in Sec-

tion 4.4.1. We used the results to construct a link map (|L′| = 843), and picked a

set of target links according to the attack construction described in Section 4.2. Fig-

ure 4.4 shows the persistent links ranked by flow density, and highlights the target

links that were chosen, where |T | = 20.

Figure 4.4: The target links T chosen from the set of persistent links
found in the measurement study, where |T | = 20.

To investigate whether Gatekeeper would enable client traffic to circumvent

these target links, we then ran traceroute probes from our set V of vantage points

125

in AWS to a sample of the target area servers. We then compared the v ∈ V to d ∈ D

paths to check whether they crossed the target links constructed by the Crossfire

attack. Our four main findings are:

1. The number of paths that cross target links when directed through a Gate-

keeper VP is much fewer than the number of paths that cross target links

when forwarded directly to the target area.

2. Even if Gatekeeper paths cross target links, they are not necessarily crossing

the links with the highest flow density, so attackers would need to flood more

links in order to maintain an effective attack, raising attack cost.

3. Findings (1) and (2) are true for both a static attack of 20 target links and a

rolling attack of three sets of 10 target links.

4. Moving target-based defenses could be effective due to the marginal path

diversity obtained from different VPs.

We now elaborate on these findings.

Cloud paths from Gatekeeper cross fewer target links. We use the degradation

ratio (Kang et al., 2013) to measure the effectiveness of a set of target links in cap-

turing traffic to the target area. For a given number of target links, the degradation

ratio is the proportion of paths that cross target links (the set PT) to the overall

set of paths P : |PT |
|P | . In other words, it is the fraction of the paths to a target area

that can expect to run into at least one saturated, targeted link during an attack. A

successful attack will create a high degradation ratio.

Figure 4.5 shows the degradation ratios from our measurement study for dif-

ferent sizes of T , from 1 ≤ |T | ≤ 50. The No VP series represents the degradation

126

ratios for the traditional Crossfire attack, without any VPs. In general, only a small

set T is needed to force most paths through a target link: 75% of paths to the target

area cross a target link when |T | = 10. This result is consistent with Kang et al.

(2013).

Figure 4.5: The degradation ratios when paths are forwarded di-
rectly to a target area and forwarded through VPs.

Figure 4.5 also shows the degradation ratios for all (v, d) paths, from each VP to

the decoy servers in the target area. This result emulates a Gatekeeper defense, in

which all client traffic is funneled through a vantage point before being sent to the

target area. We found that the degradation ratios for paths from VPs are mostly

less than what they would be if forwarded directly to the target area, in some cases

considerably so. This means that client traffic forwarded through Gatekeeper in a

cloud deployment would largely not cross target links.

For example, no paths from the US (Ohio) or the IN (Mumbai) VPs crossed any

target links. Only one path from AU (Sydney) crossed a target link. The EU (Paris)

and BR (São Paulo) VPs saw the most overlap with target links: over 60% of paths

in both cases. However, we must also consider which links are being crossed by

such paths.

127

Target links in cloud paths from Gatekeeper are not necessarily high-value

links. For an adversary, it is desirable to minimize the number of target links

used to launch an attack. More target links can require more bots to make the at-

tack successful, since Crossfire attacks use low-intensity flows to maintain attack

persistence. However, when Gatekeeper paths cross target links, they are not nec-

essarily high value links in terms of flow density.

To visualize this, we can drill down into the case where the number of target

links is 20. At that level of attack, we can view which target links the VP-to-target

area paths are crossing in Figure 4.6. Each plot is from the perspective of a dif-

ferent VP, and shows all persistent links, ranked by flow density, with target links

highlighted. The arrows point to target links crossed by paths from the VP.

Paths from EU (Frankfurt), EU (Paris), and AU (Sydney) cross only a single tar-

get link in each case, but all cross fairly high-value target links: the fifth, second,

and seventh target links by flow density, respectively. We previously noted that

60% of the flows from the BR (São Paulo) VP crossed target links. However, all of

those flows crossed a single, relatively low value target-link: the 16th. The flow

density of this link is just 31, compared to 957, 319, and 275 of the top three per-

sistent links by flow density. Overall, these results show that (1) even when paths

from VPs in clouds cross target links, they do not cross many of the links in the

set, and (2) the paths do not necessarily cross high-value target links, forcing the

adversary to attack more links, raising attack cost.

We omit charts for the US (Ohio) and IN (Mumbai) VPs, since no paths crossed

target links. However, we note that this result is ideal for a Crossfire defense.

128

129

Figure 4.6: Target links cut by flows from the various VPs, where
|T | = 20. Paths from VPs do not cross many target links, and may
not cross high-value target links.

Cloud paths from Gatekeeper can circumvent rotating sets of target links.

To maintain attack persistence, adversaries can use disjoint sets of target links to

avoid mitigations. Each target link set is chosen independently, after removing all

links chosen in previous sets. We evaluated Gatekeeper paths in this context, and

found that such rolling attack strategies do not provoke higher degradation ratios.

Figure 4.7 again shows the persistent links ranked by flow density, but this

time highlights three sets of 10 target links. For each VP, we note the percentage

of paths that go through each set of target links. Note that paths can go through

more than one target link, which is why the path percentage may not equal the

sum of the fractions of the links. In general, the findings are similar to the 20 target

link case. Attackers can capture a good deal of Gatekeeper paths in some cases

[63% for one set from EU (Paris) and 50% for one set from BR (São Paulo)]. In most

cases, however, zero or few paths contain target links, and overall just 11 out of the

30 target links capture any paths at all. Therefore, rolling attacks do not give the

attacker a significant advantage in terms of degradation ratio.

130

131

Figure 4.7: Target links cut by flows from the various VPs, where
there are three sets of 10 target links. The arrows point to target links
crossed by paths from the VP, and the label indicates the fraction of
paths that cross that link.

Clearly, cloud paths are independent enough from Internet paths that attackers

must flood more links to increase the likelihood of a successful attack, and even if

they do so, there are no guarantees. However, even for the attacks that are success-

ful, Gatekeeper can respond by utilizing a moving target defense.

132

4.4.4 Moving Target Defense

A major advantage for Gatekeeper is the ability to leverage the agility and flexibil-

ity of the cloud to deploy new vantage points. While the planning and manage-

ment of deployments at IXPs is more of a long-term process, often consisting of

establishing a physical presence1 and contractual agreements, cloud deployments

can be created quickly. Therefore, we ask: is it feasible to deploy new VPs during

an attack as a mitigating maneuver?

Such a maneuver would be a moving target defense, similar in spirit to several

previous proposals (Geng & Whinston, 2000; Wang et al., 2014; Venkatesan et al.,

2016) which range in complexity from simply changing the victim’s IP address to

shuffling clients that are affected by attacks to intermediate, cloud-based proxies.

Unlike these proposals, Gatekeeper does not use a lookup or authentication server

to map clients to intermediate proxies, but rather utilizes the anycast enabled by

BGP route prefix announcements to map clients to their nearest VP.

The “moving target” in such a scenario is the set of paths that carry traffic from

Gatekeeper VPs to the destination network. The adversary’s goal is to pick a set of

target links that cover as many of these paths as possible. Therefore, if Gatekeeper

had the ability to alter this set of paths, the adversary would be forced to change

their strategy to find a new set of effective links. The effectiveness of the moving

target defense will depend on the ability of Gatekeeper to (1) to maximize the in-

dependence of these paths from those that already exist (and are being saturated)

and (2) alter the set of paths significantly more quickly than the adversary can find

them and attack them.

To evaluate the independence of paths from new VPs, we did a pairwise com-

1Except in the case of remote peering (Chatzis et al., 2013).

133

parison of the links on paths from each VP to the destination network. In general,

we found that there is a strong possibility that the cloud paths from new VPs are

quite disjoint from existing paths. The size of the intersection between each VP’s

set of links is shown in the form of a heat map in Figure 4.8. The diagonal of the

heat map represents the number of persistent links in paths from each VP to the

destination network. We find that in our measurement environment, the size of the

intersection of the links between each VP is fairly small. For example, there were

only 11 persistent links in common between (1) all paths from the US VP to the

target area and (2) all paths from a European VP to the target area. This indicates

that the paths from each VP contain largely disjoint sets of links. This is perhaps

an intuitive result for VPs that are geographically far apart, so we also compared

two VPs that are relatively close: EU (Frankfurt) and EU (Paris). We found that

the size of the link set intersection between these two VPs is very small (37 links)

and not significantly different from all other pairs of VPs. This means that it can

be valuable to create new VPs as part of a moving target defense even when they

are geographically close to existing VPs.

Figure 4.8: A heat map showing the size of the intersection between
sets of persistent links on paths from different VPs.

134

The second key concern, regarding the agility of the moving target defense, de-

pends on the speed and accuracy of actions from both the defensive system and the

attacker. The defensive system must be able to quickly bootstrap a new vantage

point, but also must be able to propagate BGP prefix announcements sufficiently

quickly to forward traffic to the new VP. In most cases, the convergence time of

BGP update messages is below 5 seconds, although it can take on the order of

minutes in the tail (Tran et al., 2019; Cox, 2019). On the other hand, the adversary

must quickly and accurately find a new set of target links. In Tran et al. (2019),

the authors show that a detour-learning attack can quickly and accurately find new

target links after routing changes affect the topology of the attack surface, but the

technique presented depends on the ability of the adversary to use traceroute. As

shown in Section 4.4.2, Gatekeeper disrupts traceroute and hinders the construc-

tion of the link map due to the tunneling of data plane packets throughout much of

the path to the destination server. Therefore, it is unclear how valuable a moving

target defense using Gatekeeper would be; we leave a more thorough analysis of

defensive techniques and adversary reactions to future work.

In general, Gatekeeper provides several tools and techniques to combat large-

scale link attacks like Crossfire. In the end, the most promising solution may be to

leverage the unique path properties of cloud deployments with the architectural

benefits of Gatekeeper to neutralize the rising threat of large-scale link attacks in

the near future.

135

CHAPTER 5

Conclusions

5.1 DEPLOYMENTS

A recurring theme in the design and implementation of Gatekeeper is deployabil-

ity. At publication time, Gatekeeper is undergoing the initial stages of deployment

by two networks: Digirati and Mail.Ru.

Digirati. A Brazilian Internet company that provides Website hosting and do-

main registration services, Digirati was the initial source of funding for Gatekeeper

and was interested in deploying it for 10 Gbps of protection. The Digirati deploy-

ment drove the development of policies, forming the basis of the network profile-

to-program heuristic described in Section 3.3. It also motivated the development of

Drib (Nathan, 2020), a Rust tool that lets operators manage IPv4 and IPv6 address

for use in configuring Gatekeeper.

Mail.Ru. The second ongoing deployment is by Mail.Ru, a major Internet com-

pany in Russia that owns and manages three large social media networks, and pro-

vides email, search, and e-commerce services. After searching for available open

source solutions for DDoS mitigation, Mail.Ru settled on Gatekeeper as a compo-

nent in their overall defense architecture, and is currently working on a 1 Tbps

deployment.

5.2 CLOSING REMARKS

From time to time, issues arise that challenge the Internet architecture. The Inter-

net is constantly growing in scale and scope, including the emergence of new user

bases [e.g., Africa (Tuerk, 2020)], devices (e.g., IoT), infrastructure and hardware

136

capabilities [e.g., 5G, SmartNICs (Firestone et al., 2018)], and applications and ser-

vices [e.g., telesurgery (Gupta et al., 2019)].

These developments push, pull, and poke the architecture in new ways, and

force us to consider how, for example, we can better program networks [e.g., ANTS

(Wetherall et al., 1998)], manage networks [e.g., SDN (Casado et al., 2007)], and

evolve networks [e.g., XIA (Han et al., 2012)]. Along the same lines, the increas-

ing financial, political, and social importance of the Internet has driven malicious

actors to seize on DDoS attacks as a disruptive tool, and so the networking com-

munity has also been forced to reconcile the architecture with techniques to protect

networks.

However, there is a major difficulty in creating solutions that tackle these high-

level problems in the Internet: the architecture itself is famously resistant to change

and intricately anchored to certain principles and protocols. For example, the dis-

tributed administration of the Internet makes it exceptionally difficult to reach con-

sensus among the Internet’s myriad stakeholders. Without consensus, change can-

not happen. Additionally, the architecture’s reliance on IP as the de-facto network

layer protocol makes it prohibitively expensive to remove that dependency all the

way down to the infrastructure level. The number of solutions that have broached

these challenges and failed are too numerous to count. But to be fair, a select few

have succeeded in achieving the escape velocity needed to see actual deployment

(e.g., SDN).

Indeed, there is a tension between architectural “purity” and deployability (An-

derson et al., 2005). Purists argue against the mechanisms that massage the archi-

tecture into being amenable to the deployment of new solutions, such as overlays,

middleboxes, and virtual networks. And there is a convincing argument for this

137

view: the architecture is the most stationary aspect of the Internet. Everything else

– the users, the devices, the applications – changes, and does so fairly rapidly, but

the architecture stays the same. Therefore, solutions that are not inherently tied

to the architecture (architectural “barnacles” (Anderson et al., 2005)) risk weigh-

ing it down as trends change. Is the temporary relief worth the added long-term

complexity?

This is the tension that DDoS mitigation solutions from the literature have

found themselves in for the past 20 years. To approach this challenge, we de-

signed Gatekeeper to fit within the Internet ecosystem and architecture as much

as possible. We do not propose new hardware, modifications to servers or clients,

new wire protocols, or shared mechanisms between networks. Instead, we pro-

pose addressing the architectural aspects of DDoS using well-known techniques

and readily-available infrastructure, and doing so while providing flexibility and

performance, as well as aligning incentives, to achieve full deployability.

Central to this approach is the choice of vantage points, which help Gatekeeper

cut to the heart of some of the architectural issues and drive deployment. Their

distributed nature helps Gatekeeper combat the asymmetry of defending a single

network against Internet-scale attacks, and provides topological insight that can

help neutralize source address spoofing. Their proximity to source networks helps

Gatekeeper enforce a connection-oriented network layer with network capabilities,

while minimizing the amount of wasted resources. And the fact that they are well-

provisioned is a natural fit for the DDoS mitigation use case, and lowers financial

barriers to deployment.

We think that this approach is timely. Amid the rising magnitude, frequency,

and sophistication of attacks, there exists a real possibility of large-scale link at-

138

tacks such as Crossfire becoming commonplace in the near future. Since Cross-

fire takes particular advantage of the architectural shortcomings, such as using

legitimate-looking traffic and positioning the attack locus outside of the victim net-

work’s control, an approach is needed that neutralizes the architectural issues at

play. By removing the need for a collaborative defense between networks and

introducing path diversity to scramble an attacker’s attempts at funneling traf-

fic through congested links, Gatekeeper shows promise for combating these next-

generation attacks as no other solution has; moreover, it does so deployably.

So, is Gatekeeper a barnacle? We suppose that depends on what the reader

considers to be inside or outside of the architecture. Are IXPs and clouds extra-

architectural? Does a connection-oriented network layer infringe on the openness

property of the Internet? Do programs in the network core violate the end-to-end

principle? We do not claim to have the exact answers to these questions, but we do

feel comfortable foregoing architectural purity as necessary to mitigate the dam-

age that DDoS attackers have been dealing to the Internet with impunity. We are

also confident that leaving networks undefended and forced to pay for protective

services was not an intended aspect of the architecture. So although Gatekeeper

may or may not fit within the architecture as it was strictly intended, it certainly co-

exists with the architecture as it is. For us – and for the networks that have chosen

to deploy Gatekeeper – that is enough.

139

BIBLIOGRAPHY

3GPP Org. (2019). 3GPP release 15. https://www.3gpp.org/release-15.

Akamai (2017). Q4 2017 State of the Internet / Security Report. https :
//www.akamai.com/us/en/multimedia/documents/state-of-the-internet/q4-
2017-state-of-the-internet-security-report.pdf.

Akamai (2019). State of the Internet / Security: 2019 – A Year in Review. https:
//www.akamai.com/us/en/multimedia/documents/state-of-the-internet/soti-
security-a-year-in-review-report-2019.pdf.

Akamai (2020). Prolexic IP Protect. https://www.akamai.com/us/en/multimedia/
documents/product-brief/prolexic-proxy-product-brief.pdf.

Amazon Web Services (2020). AWS IP address ranges. https://docs.aws.amazon.
com/general/latest/gr/aws-ip-ranges.html.

Andersen, D. G. (2003). Mayday: Distributed filtering for Internet services. In
USENIX Symposium on Internet Technologies and Systems (USITS ’03), vol. 4, (pp.
20–30).

Anderson, T., Peterson, L., Shenker, S., & Turner, J. (2005). Overcoming the Internet
impasse through virtualization. IEEE Computer, 38(4), 34–41.

Anderson, T., Roscoe, T., & Wetherall, D. (2004). Preventing Internet denial-
of-service with capabilities. ACM SIGCOMM Computer Communication Review
(CCR), 34(1), 39–44.

Anstee, D., Bowen, P., Chui, C., & Sockrider, G. (2017). 12th Annual Worldwide
Infrastructure Security Report. https://www.netscout.com/news/press-release/
worldwide-infrastructure-security-report.

Antonakakis, M., April, T., Bailey, M., Bernhard, M., Bursztein, E., Cochran, J.,
Durumeric, Z., Halderman, J. A., Invernizzi, L., Kallitsis, M., et al. (2017). Un-
derstanding the Mirai botnet. In USENIX Security Symposium (SEC ’17), (pp.
1093–1110).

Arazi, E. (2020). Why free DDoS protection can be the most expensive. https://
blog.radware.com/security/ddos/2020/02/why-free-ddos-protection-can-be-
the-most-expensive.

https://www.3gpp.org/release-15
https://www.akamai.com/us/en/multimedia/documents/state-of-the-internet/q4-2017-state-of-the-internet-security-report.pdf
https://www.akamai.com/us/en/multimedia/documents/state-of-the-internet/q4-2017-state-of-the-internet-security-report.pdf
https://www.akamai.com/us/en/multimedia/documents/state-of-the-internet/q4-2017-state-of-the-internet-security-report.pdf
https://www.akamai.com/us/en/multimedia/documents/state-of-the-internet/soti-security-a-year-in-review-report-2019.pdf
https://www.akamai.com/us/en/multimedia/documents/state-of-the-internet/soti-security-a-year-in-review-report-2019.pdf
https://www.akamai.com/us/en/multimedia/documents/state-of-the-internet/soti-security-a-year-in-review-report-2019.pdf
https://www.akamai.com/us/en/multimedia/documents/product-brief/prolexic-proxy-product-brief.pdf
https://www.akamai.com/us/en/multimedia/documents/product-brief/prolexic-proxy-product-brief.pdf
https://docs.aws.amazon.com/general/latest/gr/aws-ip-ranges.html
https://docs.aws.amazon.com/general/latest/gr/aws-ip-ranges.html
https://www.netscout.com/news/press-release/worldwide-infrastructure-security-report
https://www.netscout.com/news/press-release/worldwide-infrastructure-security-report
https://blog.radware.com/security/ddos/2020/02/why-free-ddos-protection-can-be-the-most-expensive
https://blog.radware.com/security/ddos/2020/02/why-free-ddos-protection-can-be-the-most-expensive
https://blog.radware.com/security/ddos/2020/02/why-free-ddos-protection-can-be-the-most-expensive

140

Arbor Networks (2014). 9th Worldwide Infrastructure Secu-
rity Report. https : //archive . nanog . org/sites/default/files/
tuesday general sockrider infrastructure 3.pdf.

Argyraki, K., & Cheriton, D. (2005a). Network capabilities: The good, the bad and
the ugly. ACM Hot Topics in Networks (HotNets-IV).

Argyraki, K. J., & Cheriton, D. R. (2005b). Active Internet traffic filtering: Real-
time response to denial-of-service attacks. In USENIX Annual Technical Confer-
ence (ATEC ’05), (pp. 135–148).

AWS (2020a). AWS Shield Pricing. https://aws.amazon.com/shield/pricing.

AWS (2020b). AWS Shield Threat Landscape Report, Q1 2020. https://aws-shield-
tlr.s3.amazonaws.com/2020-Q1 AWS Shield TLR.pdf.

AWS (2020c). Global Infrastructure. https://aws.amazon.com/about-aws/global-
infrastructure.

AWS (2020d). Peering Policy. https://aws.amazon.com/peering/policy.

Barbette, T., Soldani, C., & Mathy, L. (2015). Fast userspace packet processing. In
2015 ACM/IEEE Symposium on Architectures for Networking and Communications
Systems (ANCS ’15), (pp. 5–16).

Barr, J. (2016). Elastic Network Adapter – High Performance Network Interface for
Amazon EC2. https://aws.amazon.com/blogs/aws/elastic-network-adapter-
high-performance-network-interface-for-amazon-ec2.

Basescu, C., Reischuk, R. M., Szalachowski, P., Perrig, A., Zhang, Y., Hsiao, H.,
Kubota, A., & Urakawa, J. (2016). SIBRA: Scalable internet bandwidth reserva-
tion architecture. In Network and Distributed System Security Symposium (NDSS
’16).

BIRD (2020). The BIRD Internet Routing Daemon. https://bird.network.cz.

Bonomi, F., Milito, R., Zhu, J., & Addepalli, S. (2012). Fog computing and its role in
the Internet of Things. In ACM SIGCOMM Workshop on Mobile Cloud Computing
(MCC ’12), (pp. 13–16).

Bosshart, P., Daly, D., Gibb, G., Izzard, M., McKeown, N., Rexford, J., Schlesinger,
C., Talayco, D., Vahdat, A., Varghese, G., et al. (2014). P4: Programming protocol-
independent packet processors. ACM SIGCOMM Computer Communication Re-
view (CCR), 44(3), 87–95.

https://archive.nanog.org/sites/default/files/tuesday_general_sockrider_infrastructure_3.pdf
https://archive.nanog.org/sites/default/files/tuesday_general_sockrider_infrastructure_3.pdf
https://aws.amazon.com/shield/pricing
https://aws-shield-tlr.s3.amazonaws.com/2020-Q1_AWS_Shield_TLR.pdf
https://aws-shield-tlr.s3.amazonaws.com/2020-Q1_AWS_Shield_TLR.pdf
https://aws.amazon.com/about-aws/global-infrastructure
https://aws.amazon.com/about-aws/global-infrastructure
https://aws.amazon.com/peering/policy
https://aws.amazon.com/blogs/aws/elastic-network-adapter-high-performance-network-interface-for-amazon-ec2
https://aws.amazon.com/blogs/aws/elastic-network-adapter-high-performance-network-interface-for-amazon-ec2
https://bird.network.cz

141

Bray, H. (2016). Akamai breaks ties with security expert. https ://
www . bostonglobe . com/business/2016/09/23/cybercrooks - akamai/
qOAhvHoohJcmkxIwg5ChKO/story.html.

Bright, P. (2013). Can a DDoS break the internet? Sure... just not all
of it. https://arstechnica.com/information-technology/2013/04/can-a-ddos-
break-the-internet-sure-just-not-all-of-it.

Buczak, A. L., & Guven, E. (2015). A survey of data mining and machine learning
methods for cyber security intrusion detection. IEEE Communications Surveys &
Tutorials, 18(2), 1153–1176.

Casado, M., Freedman, M. J., Pettit, J., Luo, J., McKeown, N., & Shenker, S. (2007).
Ethane: Taking control of the enterprise. ACM SIGCOMM Computer Communi-
cation Review (CCR), 37(4), 1–12.

Chatzis, N., Smaragdakis, G., Feldmann, A., & Willinger, W. (2013). There is more
to IXPs than meets the eye. ACM SIGCOMM Computer Communication Review
(CCR), 43(5), 19–28.

Cisco (2020). Cisco Annual Internet Report (20182023) White Paper. Tech. rep.,
Cisco.

Cisco NetFlow (2012). Introduction to Cisco IOS NetFlow - a technical overview.
https://www.cisco.com/c/en/us/products/collateral/ios-nx-os-software/ios-
netflow/prod white paper0900aecd80406232.html.

Cloudflare (2020a). DDoS Protection with Cloudflare. https ://www.
cloudflare . com/resources/assets/slt3lc6tev37/2hIapovmEBdhDq0DLCuwDR/
3691243ee090906900ba1a8dce7ddd45/Two Pager Rate Limiting Letter EN-US.
pdf.

Cloudflare (2020b). IP Ranges. https://www.cloudflare.com/ips.

Corero (2019). Infographic: Impact of DDoS on Enterprise Organizations.
https ://www. corero . com/blog/infographic - impact - of - ddos - on - enterprise -
organizations/.

Cox, B. (2019). The speed of BGP network propagation. https://blog.apnic.net/
2019/05/15/the-speed-of-bgp-network-propagation/.

Czyz, J., Allman, M., Zhang, J., Iekel-Johnson, S., Osterweil, E., & Bailey, M.
(2014a). Measuring IPv6 adoption. ACM SIGCOMM Computer Communications
Review (CCR), 44(4), 8798.

https://www.bostonglobe.com/business/2016/09/23/cybercrooks-akamai/qOAhvHoohJcmkxIwg5ChKO/story.html
https://www.bostonglobe.com/business/2016/09/23/cybercrooks-akamai/qOAhvHoohJcmkxIwg5ChKO/story.html
https://www.bostonglobe.com/business/2016/09/23/cybercrooks-akamai/qOAhvHoohJcmkxIwg5ChKO/story.html
https://www.cisco.com/c/en/us/products/collateral/ios-nx-os-software/ios-netflow/prod_white_paper0900aecd80406232.html
https://www.cisco.com/c/en/us/products/collateral/ios-nx-os-software/ios-netflow/prod_white_paper0900aecd80406232.html
https://www.cloudflare.com/resources/assets/slt3lc6tev37/2hIapovmEBdhDq0DLCuwDR/3691243ee090906900ba1a8dce7ddd45/Two_Pager_Rate_Limiting_Letter_EN-US.pdf
https://www.cloudflare.com/resources/assets/slt3lc6tev37/2hIapovmEBdhDq0DLCuwDR/3691243ee090906900ba1a8dce7ddd45/Two_Pager_Rate_Limiting_Letter_EN-US.pdf
https://www.cloudflare.com/resources/assets/slt3lc6tev37/2hIapovmEBdhDq0DLCuwDR/3691243ee090906900ba1a8dce7ddd45/Two_Pager_Rate_Limiting_Letter_EN-US.pdf
https://www.cloudflare.com/resources/assets/slt3lc6tev37/2hIapovmEBdhDq0DLCuwDR/3691243ee090906900ba1a8dce7ddd45/Two_Pager_Rate_Limiting_Letter_EN-US.pdf
https://www.cloudflare.com/ips
https://www.corero.com/blog/infographic-impact-of-ddos-on-enterprise-organizations/
https://www.corero.com/blog/infographic-impact-of-ddos-on-enterprise-organizations/
https://blog.apnic.net/2019/05/15/the-speed-of-bgp-network-propagation/
https://blog.apnic.net/2019/05/15/the-speed-of-bgp-network-propagation/

142

Czyz, J., Kallitsis, M., Gharaibeh, M., Papadopoulos, C., Bailey, M., & Karir, M.
(2014b). Taming the 800 pound gorilla: The rise and decline of NTP DDoS at-
tacks. In ACM Internet Measurement Conference (IMC ’14), (pp. 435–448).

Degraaf, R., Aycock, J., & Jacobson, M. (2005). Improved port knocking with strong
authentication. In IEEE Annual Computer Security Applications Conference (ACSAC
’05).

Dhamdhere, A., & Dovrolis, C. (2010). The Internet is flat: modeling the transi-
tion from a transit hierarchy to a peering mesh. In ACM Conference on emerging
Networking EXperiments and Technologies (CoNEXT ’10), (pp. 1–12).

Doucette, C. (2020). https://github.com/cjdoucette/bird/tree/gatekeeper.

DPDK (2020). Intel Data Plane Development Kit (DPDK). http://dpdk.org.

Fabre, A. (2019). L4Drop: XDP DDoS Mitigations. https://blog.cloudflare.com/
l4drop-xdp-ebpf-based-ddos-mitigations.

Firestone, D., Putnam, A., Mundkur, S., Chiou, D., Dabagh, A., Andrewartha, M.,
Angepat, H., Bhanu, V., Caulfield, A., Chung, E., et al. (2018). Azure accelerated
networking: SmartNICs in the public cloud. In USENIX Symposium on Networked
Systems Design and Implementation (NSDI ’18), (pp. 51–66).

Floyd, S., Ramakrishnan, K., & Black, D. (2001). RFC 3168: The Addition of Explicit
Congestion Notification (ECN) to IP. Request for Comments, IETF.

Fu, Q. (2020). High Performance Software Packet Processing. Ph.D. thesis, Boston
University.

Gallenmüller, S., Emmerich, P., Wohlfart, F., Raumer, D., & Carle, G. (2015). Com-
parison of frameworks for high-performance packet IO. In 2015 ACM/IEEE Sym-
posium on Architectures for Networking and Communications Systems (ANCS ’15),
(pp. 29–38).

Garcia-Teodoro, P., Diaz-Verdejo, J., Maciá-Fernández, G., & Vázquez, E. (2009).
Anomaly-based network intrusion detection: Techniques, systems and chal-
lenges. Elsevier Computers & Security, 28(1-2), 18–28.

Geng, X., & Whinston, A. B. (2000). Defeating distributed denial of service attacks.
IEEE IT Professional, 2(4), 36–42.

Gershuni, E., Amit, N., Gurfinkel, A., Narodytska, N., Navas, J. A., Rinetzky, N.,
Ryzhyk, L., & Sagiv, M. (2019). Simple and precise static analysis of untrusted
Linux kernel extensions. In CM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI ’19), (pp. 1069–1084).

https://github.com/cjdoucette/bird/tree/gatekeeper
https://blog.cloudflare.com/l4drop-xdp-ebpf-based-ddos-mitigations
https://blog.cloudflare.com/l4drop-xdp-ebpf-based-ddos-mitigations

143

Gilad, Y., Herzberg, A., Sudkovitch, M., & Goberman, M. (2016). CDN-on-
Demand: An affordable DDoS defense via untrusted clouds. In Network and
Distributed System Security Symposium (NDSS ’16).

Gill, P., Arlitt, M., Li, Z., & Mahanti, A. (2008). The flattening internet topology:
Natural evolution, unsightly barnacles or contrived collapse? In International
Conference on Passive and Active Network Measurement (PAM ’08), (pp. 1–10).

Gillani, F., Al-Shaer, E., Lo, S., Duan, Q., Ammar, M., & Zegura, E. (2015). Agile
virtualized infrastructure to proactively defend against cyber attacks. In IEEE
Conference on Computer Communications (INFOCOM ’15), (pp. 729–737).

Giotsas, V., Dhamdhere, A., & Claffy, K. C. (2016). Periscope: Unifying looking
glass querying. In International Conference on Passive and Active Network Measure-
ment (PAM ’16), (pp. 177–189).

Giotsas, V., Smaragdakis, G., Dietzel, C., Richter, P., Feldmann, A., & Berger, A.
(2017). Inferring BGP blackholing activity in the Internet. In ACM Internet Mea-
surement Conference (IMC ’17), (pp. 1–14).

Google (2020a). Statistics: IPv6 adoption. https://www.google.com/intl/en/ipv6/
statistics.html.

Google (2020b). Where can I find Compute Engine IP ranges? https://cloud.
google.com/compute/docs/faq#find ip range.

Guirguis, M., Bestavros, A., & Matta, I. (2004). Exploiting the transients of adap-
tation for RoQ attacks on Internet resources. In IEEE International Conference on
Network Protocols (ICNP ’04), (pp. 184–195).

Guo, H., & Heidemann, J. (2020). Detecting IoT devices in the internet. IEEE/ACM
Transactions on Networking (TON ’20), (pp. 2323–2336).

Gupta, R., Tanwar, S., Tyagi, S., & Kumar, N. (2019). Tactile-Internet-based
telesurgery system for healthcare 4.0: An architecture, research challenges, and
future directions. IEEE Network, 33(6), 22–29.

Han, B., Gopalakrishnan, V., Ji, L., & Lee, S. (2015). Network function virtual-
ization: Challenges and opportunities for innovations. IEEE Communications
Magazine, 53(2), 90–97.

Han, D., Anand, A., Dogar, F., Li, B., Lim, H., Machado, M., Mukundan, A., Wu,
W., Akella, A., Andersen, D. G., et al. (2012). XIA: Efficient support for evolv-
able internetworking. In USENIX Symposium on Networked Systems Design and
Implementation (NSDI ’12), (pp. 309–322).

https://www.google.com/intl/en/ipv6/statistics.html
https://www.google.com/intl/en/ipv6/statistics.html
https://cloud.google.com/compute/docs/faq#find_ip_range
https://cloud.google.com/compute/docs/faq#find_ip_range

144

Han, S., Jang, K., Park, K., & Moon, S. (2010). PacketShader: a GPU-accelerated
software router. ACM SIGCOMM Computer Communication Review (CCR), 40(4),
195–206.

Haq, O., Doucette, C., Byers, J. W., & Dogar, F. R. (2020). Judicious QoS using cloud
overlays. In ACM Conference on emerging Networking EXperiments and Technologies
(CoNEXT ’20), (pp. 371–385).

Haq, O., Raja, M., & Dogar, F. R. (2017). Measuring and improving the reliability
of wide-area cloud paths. In International Conference on World Wide Web (WWW
’17), (pp. 253–262).

Hasan, S., Gorinsky, S., Dovrolis, C., & Sitaraman, R. K. (2014). Trade-offs in op-
timizing the cache deployments of CDNs. In IEEE Conference on Computer Com-
munications (INFOCOM ’14), (pp. 460–468).

Hsiao, H.-C., Kim, T. H.-J., Yoo, S., Zhang, X., Lee, S. B., Gligor, V., & Perrig, A.
(2013). STRIDE: sanctuary trail – refuge from Internet DDoS entrapment. In
ACM SIGSAC Symposium on Information, Computer and Communications Security
(ASIA CCS ’13), (pp. 415–426).

Ierusalimschy, R., De Figueiredo, L. H., & Celes, W. (2006). Lua 5.1 reference man-
ual. https://www.lua.org/manual/5.1.

Imperva (2020). Imperva DDoS Protection. https://www.imperva.com/products/
ddos-protection-solutions/.

IX.br (2020). IX.br aggregate statistics. https://ix.br/agregado.

Iyengar, S. (2018). Moving fast at scale: Experience deploying IETF QUIC at Face-
book. In ACM CoNEXT Workshop on the Evolution, Performance, and Interoperability
of QUIC (EPIQ ’18), (p. Keynote).

Kang, M. S., Gligor, V. D., Sekar, V., et al. (2016). SPIFFY: Inducing cost-detectability
tradeoffs for persistent link-flooding attacks. In Network and Distributed System
Security Symposium (NDSS ’16).

Kang, M. S., Lee, S. B., & Gligor, V. D. (2013). The crossfire attack. In IEEE Sympo-
sium on Security and Privacy (S&P ’13), (pp. 127–141).

Konte, M., Perdisci, R., & Feamster, N. (2015). ASwatch: An AS reputation system
to expose bulletproof hosting ASes. In ACM SIGCOMM, (pp. 625–638).

Krebs, B. (2016). The democratization of censorship. https://krebsonsecurity.com/
2016/09/the-democratization-of-censorship.

https://www.lua.org/manual/5.1
https://www.imperva.com/products/ddos-protection-solutions/
https://www.imperva.com/products/ddos-protection-solutions/
https://krebsonsecurity.com/2016/09/the-democratization-of-censorship
https://krebsonsecurity.com/2016/09/the-democratization-of-censorship

145

Krishnan, P., Raz, D., & Shavitt, Y. (2000). The cache location problem. IEEE/ACM
Transactions on Networking (TON ’00).

Lakhina, A., Crovella, M., & Diot, C. (2005). Mining anomalies using traffic feature
distributions. ACM SIGCOMM Computer Communication Review (CCR), 35(4),
217–228.

Langley, A., Riddoch, A., Wilk, A., Vicente, A., Krasic, C., Zhang, D., Yang, F.,
Kouranov, F., Swett, I., Iyengar, J., et al. (2017). The QUIC transport protocol:
Design and Internet-scale deployment. In ACM SIGCOMM, (pp. 183–196).

Lee, S. B., Kang, M. S., & Gligor, V. D. (2013). CoDef: Collaborative defense against
large-scale link-flooding attacks. In ACM Conference on emerging Networking EX-
periments and Technologies (CoNEXT ’13), (pp. 417–428).

Liu, X., Yang, X., & Lu, Y. (2008). To filter or to authorize: Network-layer DoS
defense against multimillion-node botnets. In ACM SIGCOMM, (pp. 195–206).

Liu, X., Yang, X., & Xia, Y. (2010). NetFence: preventing Internet denial of service
from inside out. In ACM SIGCOMM, (pp. 255–266).

Liu, Z., Jin, H., Hu, Y.-C., & Bailey, M. (2016). MiddlePolice: Toward enforcing
destination-defined policies in the middle of the Internet. In ACM SIGSAC Con-
ference on Computer and Communications Security (CCS ’16), (pp. 1268–1279).

Lyon, G. F. (2009). Nmap network scanning: The official Nmap project guide to network
discovery and security scanning. Insecure.

Machado, M., Doucette, C., & Byers, J. W. (2015). Linux XIA: an interoperable meta
network architecture to crowdsource the future Internet. In 2015 ACM/IEEE
Symposium on Architectures for Networking and Communications Systems (ANCS
’15), (pp. 147–158). IEEE.

Machado, M., Doucette, C., & Fu, Q. (2020). Gatekeeper. https://github.com/
AltraMayor/gatekeeper.

Mahajan, R., Bellovin, S. M., Floyd, S., Ioannidis, J., Paxson, V., & Shenker, S. (2002).
Controlling high bandwidth aggregates in the network. ACM SIGCOMM Com-
puter Communication Review (CCR), 32(3), 62–73.

Mahindra, R., Chandar, V., & Guo, E. (2019). Employing QUIC protocol to optimize
Ubers app performance. https://eng.uber.com/employing-quic-protocol.

Majkowski, M. (2017). Meet Gatebot - a bot that allows us to sleep. https://blog.
cloudflare.com/meet-gatebot-a-bot-that-allows-us-to-sleep.

https://github.com/AltraMayor/gatekeeper
https://github.com/AltraMayor/gatekeeper
https://eng.uber.com/employing-quic-protocol
https://blog.cloudflare.com/meet-gatebot-a-bot-that-allows-us-to-sleep
https://blog.cloudflare.com/meet-gatebot-a-bot-that-allows-us-to-sleep

146

Majkowski, M. (2018). How to drop 10 million packets per second. https://blog.
cloudflare.com/how-to-drop-10-million-packets/.

Makrushin, D. (2017). The cost of launching a DDoS attack. https://securelist.com/
analysis/publications/77784/the-cost-of-launching-a-ddos-attack.

Marvin, R. (2019). Chinese DDoS attack hits Telegram during Hong Kong
protests. https://www.pcmag.com/news/chinese-ddos-attack-hits-telegram-
during-hong-kong-protests.

MaxMind, I. (2020). GeoIP Products. https://dev.maxmind.com/geoip.

McCanne, S., & Jacobson, V. (1993). The BSD Packet Filter: A New Architecture for
User-level Packet Capture. In USENIX Winter, vol. 46.

McKeown, N., Anderson, T., Balakrishnan, H., Parulkar, G., Peterson, L., Rexford,
J., Shenker, S., & Turner, J. (2008). OpenFlow: enabling innovation in campus
networks. ACM SIGCOMM Computer Communication Review (CCR), 38(2), 69–74.

Meier, R., Tsankov, P., Lenders, V., Vanbever, L., & Vechev, M. (2018). NetHide:
Secure and practical network topology obfuscation. In USENIX Security Sympo-
sium (SEC ’18), (pp. 693–709).

Menscher, D. (2020). Exponential growth in DDoS attack volumes.
https : //cloud . google . com/blog/products/identity - security/identifying -
and-protecting-against-the-largest-ddos-attacks.

Moore, D., Voelker, G. M., & Savage, S. (2001). Inferring internet denial-of-service
activity. USENIX Security Symposium (SEC ’01).

Nathan, A. (2020). DRIB. https://github.com/andrenth/dribf.

NERD (2020). Network entity reputation database. https://nerd.cesnet.cz/.

NETSCOUT (2019). Cloud in the crosshairs. NETSCOUT’s 14th annual worldwide
infrastructure security report. https://www.netscout.com/report.

Neustar (2020). DDoS attacks increase 180% in 2019 compared to 2018.
https://www.home.neustar/about-us/news-room/press-releases/2020/ddos-
attacks-increase-180-in-2019-compared-to-2018.

NexusGuard (2020). NexusGuard DDoS threat report, 2020 Q1.
https://blog.nexusguard.com/threat-report/ddos-threat-report-2020-q1.

Nygren, E., Sitaraman, R. K., & Sun, J. (2010). The Akamai network: a platform for
high-performance Internet applications. ACM SIGOPS Operating Systems Review
(OSR), 44(3), 2–19.

https://blog.cloudflare.com/how-to-drop-10-million-packets/
https://blog.cloudflare.com/how-to-drop-10-million-packets/
https://securelist.com/analysis/publications/77784/the-cost-of-launching-a-ddos-attack
https://securelist.com/analysis/publications/77784/the-cost-of-launching-a-ddos-attack
https://dev.maxmind.com/geoip
https://cloud.google.com/blog/products/identity-security/identifying-and-protecting-against-the-largest-ddos-attacks
https://cloud.google.com/blog/products/identity-security/identifying-and-protecting-against-the-largest-ddos-attacks
https://github.com/andrenth/dribf
https://nerd.cesnet.cz/
https://www.netscout.com/report

147

Packet Clearing House (2020). Internet exchange point growth by country. https:
//www.pch.net/ixp/summary growth by country.

Packetbeat (2020). Lightweight shipper for network data. https://www.elastic.co/
beats/packetbeat.

Parno, B., et al. (2007). Portcullis: protecting connection setup from denial-of-
capability attacks. In ACM SIGCOMM, (pp. 289–300).

Patternson, D. (2015). Exclusive: Inside the ProtonMail siege: how two
small companies fought off one of Europe’s largest DDoS attacks. https:
//www.techrepublic.com/article/exclusive-inside-the-protonmail-siege-how-
two-small-companies-fought-off-one-of-europes-largest-ddos/.

Paxson, V. (2001). An analysis of using reflectors for distributed denial-of-service
attacks. ACM SIGCOMM Computer Communication Review (CCR), 31(3), 38–47.

PeeringDB (2020). The interconnection database. https://www.peeringdb.com/.

PF_RING (2020). PF_RING: high-speed packet capture, filtering and analysis.
https://www.ntop.org/products/packet-capture/pf ring/.

Prince, M. (2013). The DDoS that knocked Spamhaus offline (and how we
mitigated it). https://blog.cloudflare.com/the-ddos-that-knocked-spamhaus-
offline-and-ho/.

Redis (2020). https://redis.io/.

Rizzo, L. (2012). Netmap: a novel framework for fast packet I/O. In USENIX
Security Symposium (SEC ’12), (pp. 101–112).

Rossow, C. (2014). Amplification hell: Revisiting network protocols for DDoS
abuse. In Network and Distributed System Security Symposium (NDSS ’14).

Satyanarayanan, M. (2017). The emergence of edge computing. Computer, 50(1),
30–39.

SeattleIX (2020). Traffic graphs. https://www.seattleix.net/statistics.

Shi, L., Sisodia, D., Zhang, M., Li, J., Dainotti, A., & Reiher, P. (2019). The catch-22
attack. In IEEE Annual Computer Security Applications Conference (ACSAC ’19).

Shirokov, N., & Dasineni, R. (2018). Open-sourcing Katran, a scalable network
load balancer. https://engineering.fb.com/open-source/open-sourcing-katran-
a-scalable-network-load-balancer/.

https://www.pch.net/ixp/summary_growth_by_country
https://www.pch.net/ixp/summary_growth_by_country
https://www.elastic.co/beats/packetbeat
https://www.elastic.co/beats/packetbeat
https://www.techrepublic.com/article/exclusive-inside-the-protonmail-siege-how-two-small-companies-fought-off -one-of-europes-largest-ddos/
https://www.techrepublic.com/article/exclusive-inside-the-protonmail-siege-how-two-small-companies-fought-off -one-of-europes-largest-ddos/
https://www.techrepublic.com/article/exclusive-inside-the-protonmail-siege-how-two-small-companies-fought-off -one-of-europes-largest-ddos/
https://www.ntop.org/products/packet-capture/pf_ring/
https://redis.io/
https://www.seattleix.net/statistics
https://engineering.fb.com/open-source/open-sourcing-katran-a-scalable-network-load-balancer/
https://engineering.fb.com/open-source/open-sourcing-katran-a-scalable-network-load-balancer/

148

Smith, J. M., & Schuchard, M. (2018). Routing around congestion: Defeating DDoS
attacks and adverse network conditions via reactive BGP routing. In IEEE Sym-
posium on Security and Privacy (S&P ’18), (pp. 599–617).

Studer, A., & Perrig, A. (2009). The coremelt attack. In European Symposium on
Research in Computer Security (ESORICS ’09), (pp. 37–52).

Team Cymru (2020). The Bogon Reference. https://team-cymru.com/community-
services/bogon-reference/.

The Spamhaus Project SLU (2020). The Spamhaus Don’t Route Or Peer Lists. https:
//www.spamhaus.org/drop/.

Tran, M., Kang, M. S., Hsiao, H.-C., Chiang, W.-H., Tung, S.-P., & Wang, Y.-S. (2019).
On the feasibility of rerouting-based DDos defenses. In IEEE Symposium on Se-
curity and Privacy (S&P ’19), (pp. 1169–1184).

Tuerk, M. (2020). Africa Is The Next Frontier For The Internet. https://www.
forbes.com/sites/miriamtuerk/2020/06/09/africa-is-the-next-frontier-for-the-
internet/?sh=b6d309b49001.

Venkatesan, S., Albanese, M., Amin, K., Jajodia, S., & Wright, M. (2016). A moving
target defense approach to mitigate DDoS attacks against proxy-based architec-
tures. In IEEE Conference on Communications and Network Security (CNS ’16), (pp.
198–206).

Wang, H., Jia, Q., Fleck, D., Powell, W., Li, F., & Stavrou, A. (2014). A moving target
DDoS defense mechanism. Computer Communications, 46, 10–21.

Wetherall, D. J., Guttag, J. V., & Tennenhouse, D. L. (1998). ANTS: A toolkit for
building and dynamically deploying network protocols. In 1998 IEEE Open Ar-
chitectures and Network Programming, (pp. 117–129).

World IPv6 Launch (2020). Network operator measurements. https://www.
worldipv6launch.org/measurements/.

Wragg, D. (2020). Unimog - Cloudflares edge load balancer. https://blog.
cloudflare.com/unimog-cloudflares-edge-load-balancer/.

Xu, D., Zhou, A., Zhang, X., Wang, G., Liu, X., An, C., Shi, Y., Liu, L. L., & Ma, H.
(2020). Understanding operational 5G: A first measurement study on its cover-
age, performance and energy consumption. In ACM SIGCOMM, (pp. 479–494).

Xue, L., Luo, X., Chan, E. W., & Zhan, X. (2014). Towards detecting target link
flooding attack. In USENIX Large Installation System Administration Conference
(LISA ’14), (pp. 90–105).

https://team-cymru.com/community-services/bogon-reference/
https://team-cymru.com/community-services/bogon-reference/
https://www.spamhaus.org/drop/
https://www.spamhaus.org/drop/
https://www.forbes.com/sites/miriamtuerk/2020/06/09/africa-is-the-next-frontier-for-the-internet/?sh=b6d309b49001
https://www.forbes.com/sites/miriamtuerk/2020/06/09/africa-is-the-next-frontier-for-the-internet/?sh=b6d309b49001
https://www.forbes.com/sites/miriamtuerk/2020/06/09/africa-is-the-next-frontier-for-the-internet/?sh=b6d309b49001
https://www.worldipv6launch.org/measurements/
https://www.worldipv6launch.org/measurements/
https://blog.cloudflare.com/unimog-cloudflares-edge-load-balancer/
https://blog.cloudflare.com/unimog-cloudflares-edge-load-balancer/

149

Yaar, A., Perrig, A., & Song, D. (2004). SIFF: A stateless internet flow filter to
mitigate DDoS flooding attacks. In IEEE Symposium on Security and Privacy (S&P
’04), (pp. 130–143).

Yang, X., Wetherall, D., & Anderson, T. (2005). A DoS-limiting network architec-
ture. In ACM SIGCOMM, (pp. 241–252).

Yang, Z., Cui, Y., Li, B., Liu, Y., & Xu, Y. (2019). Software-defined wide area network
(SD-WAN): Architecture, advances and opportunities. In IEEE International Con-
ference on Computer Communication and Networks (ICCCN ’19), (pp. 1–9).

Yap, K.-K., Motiwala, M., Rahe, J., Padgett, S., Holliman, M., Baldus, G., Hines,
M., Kim, T., Narayanan, A., Jain, A., et al. (2017). Taking the edge off with
espresso: Scale, reliability and programmability for global internet peering. In
ACM SIGCOMM, (pp. 432–445).

Yeganeh, B., Durairajan, R., Rejaie, R., & Willinger, W. (2019). How cloud traffic
goes hiding: A study of Amazon’s peering fabric. In ACM Internet Measurement
Conference (IMC ’19), (pp. 202–216).

Zhang, X., Hsiao, H.-C., Hasker, G., Chan, H., Perrig, A., & Andersen, D. G. (2011).
Scion: Scalability, control, and isolation on next-generation networks. In IEEE
Symposium on Security and Privacy (S&P ’11), (pp. 212–227).

Zheng, J., Li, Q., Gu, G., Cao, J., Yau, D. K., & Wu, J. (2018). Realtime DDoS defense
using COTS SDN switches via adaptive correlation analysis. IEEE Transactions
on Information Forensics and Security (TIFS ’18), 13(7), 1838–1853.

CURRICULUM VITAE

	Acknowledgements
	Abstract
	List of Tables
	List of Figures
	List of Symbols and Abbreviations
	Denial of Service in the Past, Present, and Future
	Overview
	Mitigation Techniques
	Threat Model and Goals
	Commercial Solutions
	Academic Solutions

	Architectural Underpinnings
	The Next Generation
	Thesis Statement and Approach
	Contributions

	Gatekeeper
	Overview
	Components
	Step-By-Step Example

	Design
	Vantage Points
	Gatekeeper Servers
	Grantor Servers
	Request Channel
	Vulnerabilities
	Architectural Properties and Deployability

	Implementation
	Packet Processing Framework
	Functional Block Decomposition
	Hardware Offloading
	Software Techniques
	Operational Features

	Evaluation
	Goals
	Testbeds
	Baseline Functionality
	Effect of Policies
	Performance Benchmarking
	Cost Analysis

	Policy Toolkit
	Overview
	Policy Design
	Decision Types

	Writing Policies
	Basic Policy Techniques
	Host Lookups and Bogons
	Port Lookups
	Secondary and Negative Bandwidth
	New Protocol Support: QUIC

	Advanced Policy Techniques
	Flow Capture and Analysis
	Port Knocking
	Load Balancing and Path Control

	Defending Against Next-Generation Attacks
	Overview
	Crossfire Primer
	Attack Summary
	Architectural Advantages of Crossfire
	Recorded Crossfire Attacks
	Previous Attempts at a Solution

	The Perfect Storm
	Crossfire Defense with Gatekeeper
	Measurement Study Setup
	Link Map Disruption
	Diversity of Cloud Paths From Gatekeeper
	Moving Target Defense

	Conclusions
	Deployments
	Closing Remarks

	Bibliography
	Curriculum Vitae

