17,106 research outputs found

    MICRAT: A Novel Algorithm for Inferring Gene Regulatory Networks Using Time Series Gene Expression Data

    Get PDF
    Background: Reconstruction of gene regulatory networks (GRNs), also known as reverse engineering of GRNs, aims to infer the potential regulation relationships between genes. With the development of biotechnology, such as gene chip microarray and RNA-sequencing, the high-throughput data generated provide us with more opportunities to infer the gene-gene interaction relationships using gene expression data and hence understand the underlying mechanism of biological processes. Gene regulatory networks are known to exhibit a multiplicity of interaction mechanisms which include functional and non-functional, and linear and non-linear relationships. Meanwhile, the regulatory interactions between genes and gene products are not spontaneous since various processes involved in producing fully functional and measurable concentrations of transcriptional factors/proteins lead to a delay in gene regulation. Many different approaches for reconstructing GRNs have been proposed, but the existing GRN inference approaches such as probabilistic Boolean networks and dynamic Bayesian networks have various limitations and relatively low accuracy. Inferring GRNs from time series microarray data or RNA-sequencing data remains a very challenging inverse problem due to its nonlinearity, high dimensionality, sparse and noisy data, and significant computational cost, which motivates us to develop more effective inference methods. Results: We developed a novel algorithm, MICRAT (Maximal Information coefficient with Conditional Relative Average entropy and Time-series mutual information), for inferring GRNs from time series gene expression data. Maximal information coefficient (MIC) is an effective measure of dependence for two-variable relationships. It captures a wide range of associations, both functional and non-functional, and thus has good performance on measuring the dependence between two genes. Our approach mainly includes two procedures. Firstly, it employs maximal information coefficient for constructing an undirected graph to represent the underlying relationships between genes. Secondly, it directs the edges in the undirected graph for inferring regulators and their targets. In this procedure, the conditional relative average entropies of each pair of nodes (or genes) are employed to indicate the directions of edges. Since the time delay might exist in the expression of regulators and target genes, time series mutual information is combined to cooperatively direct the edges for inferring the potential regulators and their targets. We evaluated the performance of MICRAT by applying it to synthetic datasets as well as real gene expression data and compare with other GRN inference methods. We inferred five 10-gene and five 100-gene networks from the DREAM4 challenge that were generated using the gene expression simulator GeneNetWeaver (GNW). MICRAT was also used to reconstruct GRNs on real gene expression data including part of the DNA-damaged response pathway (SOS DNA repair network) and experimental dataset in E. Coli. The results showed that MICRAT significantly improved the inference accuracy, compared to other inference methods, such as TDBN, etc. Conclusion: In this work, a novel algorithm, MICRAT, for inferring GRNs from time series gene expression data was proposed by taking into account dependence and time delay of expressions of a regulator and its target genes. This approach employed maximal information coefficients for reconstructing an undirected graph to represent the underlying relationships between genes. The edges were directed by combining conditional relative average entropy with time course mutual information of pairs of genes. The proposed algorithm was evaluated on the benchmark GRNs provided by the DREAM4 challenge and part of the real SOS DNA repair network in E. Coli. The experimental study showed that our approach was comparable to other methods on 10-gene datasets and outperformed other methods on 100-gene datasets in GRN inference from time series datasets

    A Posterior Probability Approach for Gene Regulatory Network Inference in Genetic Perturbation Data

    Full text link
    Inferring gene regulatory networks is an important problem in systems biology. However, these networks can be hard to infer from experimental data because of the inherent variability in biological data as well as the large number of genes involved. We propose a fast, simple method for inferring regulatory relationships between genes from knockdown experiments in the NIH LINCS dataset by calculating posterior probabilities, incorporating prior information. We show that the method is able to find previously identified edges from TRANSFAC and JASPAR and discuss the merits and limitations of this approach

    Bayesian variable selection and data integration for biological regulatory networks

    Get PDF
    A substantial focus of research in molecular biology are gene regulatory networks: the set of transcription factors and target genes which control the involvement of different biological processes in living cells. Previous statistical approaches for identifying gene regulatory networks have used gene expression data, ChIP binding data or promoter sequence data, but each of these resources provides only partial information. We present a Bayesian hierarchical model that integrates all three data types in a principled variable selection framework. The gene expression data are modeled as a function of the unknown gene regulatory network which has an informed prior distribution based upon both ChIP binding and promoter sequence data. We also present a variable weighting methodology for the principled balancing of multiple sources of prior information. We apply our procedure to the discovery of gene regulatory relationships in Saccharomyces cerevisiae (Yeast) for which we can use several external sources of information to validate our results. Our inferred relationships show greater biological relevance on the external validation measures than previous data integration methods. Our model also estimates synergistic and antagonistic interactions between transcription factors, many of which are validated by previous studies. We also evaluate the results from our procedure for the weighting for multiple sources of prior information. Finally, we discuss our methodology in the context of previous approaches to data integration and Bayesian variable selection.Comment: Published in at http://dx.doi.org/10.1214/07-AOAS130 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Quantitative model for inferring dynamic regulation of the tumour suppressor gene p53

    Get PDF
    Background: The availability of various "omics" datasets creates a prospect of performing the study of genome-wide genetic regulatory networks. However, one of the major challenges of using mathematical models to infer genetic regulation from microarray datasets is the lack of information for protein concentrations and activities. Most of the previous researches were based on an assumption that the mRNA levels of a gene are consistent with its protein activities, though it is not always the case. Therefore, a more sophisticated modelling framework together with the corresponding inference methods is needed to accurately estimate genetic regulation from "omics" datasets. Results: This work developed a novel approach, which is based on a nonlinear mathematical model, to infer genetic regulation from microarray gene expression data. By using the p53 network as a test system, we used the nonlinear model to estimate the activities of transcription factor (TF) p53 from the expression levels of its target genes, and to identify the activation/inhibition status of p53 to its target genes. The predicted top 317 putative p53 target genes were supported by DNA sequence analysis. A comparison between our prediction and the other published predictions of p53 targets suggests that most of putative p53 targets may share a common depleted or enriched sequence signal on their upstream non-coding region. Conclusions: The proposed quantitative model can not only be used to infer the regulatory relationship between TF and its down-stream genes, but also be applied to estimate the protein activities of TF from the expression levels of its target genes

    Mathematical and computational modelling of post-transcriptional gene relation by micro-RNA

    Get PDF
    Mathematical models and computational simulations have proved valuable in many areas of cell biology, including gene regulatory networks. When properly calibrated against experimental data, kinetic models can be used to describe how the concentrations of key species evolve over time. A reliable model allows ‘what if’ scenarios to be investigated quantitatively in silico, and also provides a means to compare competing hypotheses about the underlying biological mechanisms at work. Moreover, models at different scales of resolution can be merged into a bigger picture ‘systems’ level description. In the case where gene regulation is post-transcriptionally affected by microRNAs, biological understanding and experimental techniques have only recently matured to the extent that we can postulate and test kinetic models. In this chapter, we summarize some recent work that takes the first steps towards realistic modelling, focusing on the contributions of the authors. Using a deterministic ordinary differential equation framework, we derive models from first principles and test them for consistency with recent experimental data, including microarray and mass spectrometry measurements. We first consider typical mis-expression experiments, where the microRNA level is instantaneously boosted or depleted and thereafter remains at a fixed level. We then move on to a more general setting where the microRNA is simply treated as another species in the reaction network, with microRNA-mRNA binding forming the basis for the post-transcriptional repression. We include some speculative comments about the potential for kinetic modelling to contribute to the more widespread sequence and network based approaches in the qualitative investigation of microRNA based gene regulation. We also consider what new combinations of experimental data will be needed in order to make sense of the increased systems-level complexity introduced by microRNAs

    Nonparametric Bayesian inference for perturbed and orthologous gene regulatory networks

    Get PDF
    Motivation: The generation of time series transcriptomic datasets collected under multiple experimental conditions has proven to be a powerful approach for disentangling complex biological processes, allowing for the reverse engineering of gene regulatory networks (GRNs). Most methods for reverse engineering GRNs from multiple datasets assume that each of the time series were generated from networks with identical topology. In this study, we outline a hierarchical, non-parametric Bayesian approach for reverse engineering GRNs using multiple time series that can be applied in a number of novel situations including: (i) where different, but overlapping sets of transcription factors are expected to bind in the different experimental conditions; that is, where switching events could potentially arise under the different treatments and (ii) for inference in evolutionary related species in which orthologous GRNs exist. More generally, the method can be used to identify context-specific regulation by leveraging time series gene expression data alongside methods that can identify putative lists of transcription factors or transcription factor targets. Results: The hierarchical inference outperforms related (but non-hierarchical) approaches when the networks used to generate the data were identical, and performs comparably even when the networks used to generate data were independent. The method was subsequently used alongside yeast one hybrid and microarray time series data to infer potential transcriptional switches in Arabidopsis thaliana response to stress. The results confirm previous biological studies and allow for additional insights into gene regulation under various abiotic stresses. Availability: The methods outlined in this article have been implemented in Matlab and are available on request
    corecore