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A Swarm Intelligence Framework for
Reconstructing Gene Networks: Searching for

Biologically Plausible Architectures
Kyriakos Kentzoglanakis, Matthew Poole

Abstract—In this paper, we investigate the problem of reverse-engineering the topology of gene regulatory networks from temporal
gene expression data. We adopt a computational intelligence approach comprising swarm intelligence techniques, namely particle
swarm optimization (PSO) and ant colony optimization (ACO). In addition, the recurrent neural network (RNN) formalism is employed
for modelling the dynamical behaviour of gene regulatory systems. More specifically, ACO is used for searching the discrete space
of network architectures and PSO for searching the corresponding continuous space of RNN model parameters. We propose a novel
solution construction process in the context of ACO for generating biologically plausible candidate architectures. The objective is to
concentrate the search effort into areas of the structure space that contain architectures which are feasible in terms of their topological
resemblance to real-world networks. The proposed framework is initially applied to the reconstruction of a small artificial network that
has previously been studied in the context of gene network reverse-engineering. Subsequently, we consider an artificial data set with
added noise for reconstructing a subnetwork of the genetic interaction network of S. cerevisiae (yeast). Finally, the framework is applied
to a real-world data set for reverse-engineering the SOS response system of the bacterium Escherichia coli. Results demonstrate the
relative advantage of utilizing problem-specific knowledge regarding biologically plausible structural properties of gene networks over
conducting a problem-agnostic search in the vast space of network architectures.

Index Terms—Gene regulatory networks, network inference, recurrent neural networks, swarm intelligence, particle swarm optimiza-
tion, ant colony optimization, degree distribution.
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1 INTRODUCTION

W ITH the advent of modern experimental tech-
nologies, the accumulation of an unprecedented

amount of biological data has created the pressing need
for the development of computational methods to ana-
lyze and interpret such data. This paper is concerned
with the problem of reverse-engineering the topology
of gene regulatory networks from temporal gene ex-
pression data that capture the network’s dynamical be-
haviour. The elucidation of the logic of transcriptional
regulation, represented by a gene regulatory network,
constitutes a major challenge in the wider context of
understanding global cellular behaviour [1].

The topology of a gene regulatory network (GRN)
captures a complex web of causal relationships, where
connections represent regulatory interactions between
genes. In this context, causality refers to the regula-
tion of the gene expression process, i.e. the biochemical
chain of events according to which particular genetic
code segments (genes) are transformed to executable
compounds (proteins). Gene regulatory interactions are
indirect in the sense that causal influences are exerted
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not by the genes themselves, but rather by specialized
protein products (transcription factors). Transcription
factors bind to specific regions in the sequence of target
genes in order to modify their expression by inducing
changes in the rate of production of the corresponding
proteins. Depending on the nature of these changes, the
regulatory influence of transcription factors (regulators)
can be classified either as activation when the rate of
protein synthesis increases, or as repression when the
rate of protein synthesis decreases.

The global cellular patterns of gene expression can be
monitored using microarrays, which can simultaneously
quantify the relative abundance of thousands of mRNA
transcript species, in the form of gene expression pro-
files. However, the analysis of gene expression data for
the identification of the underlying relationships does
not come without important difficulties [2]. First of all,
the information contained in a gene expression data
set is polluted by considerable amounts of biological
and experimental noise. Secondly, the number of genes
whose expression levels are measured in the data set is,
typically, two to three orders of magnitude greater than
the number of observations or time points. The relative
insufficiency of observations compared to the number of
measured genes constitutes what is often referred to as
the “curse of dimensionality” [3].

In this paper, we use a hybrid ACO/PSO system
in order to reverse-engineer the topology of a gene
regulatory network from temporal data that capture the
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network’s dynamical behaviour. The RNN formalism is
employed for modelling the network’s dynamics. ACO
is used for searching the discrete space of network
architectures. We formulate a novel solution construction
process for artificial ants which extends a stochastic
graph generation model proposed by Bollobás et al. [4].
This process yields candidate structures that adhere to a
specific topological property, which characterizes the de-
gree distributions that have been observed in numerous
empirical studies on the topology of biological networks.
This way, the vast structure space can be significantly
restricted by considering only feasible architectures with
respect to the aforementioned property. The quality of
each candidate architecture is evaluated by training the
parameters of the corresponding RNN model using PSO,
so as to minimize the model’s prediction error.

The rest of the paper is organized as follows. Section
2 presents the relevant background and an overview
of existing approaches to the gene network inference
problem. Section 3 presents the proposed ACO/PSO
framework along with a detailed description of the novel
method of generating candidate network architectures
in the context of ACO. Finally, Section 4 discusses the
experimental application of the framework to artificial
and real-world time-course data sets, before a conclusion
is reached in Section 5.

2 BACKGROUND

A large group of approaches to gene expression data
analysis can be characterized by the use of various pair-
wise similarity metrics between individual patterns of
gene expression. The earliest such attempts consisted of
clustering temporal gene expression patterns according
to pair-wise correlation coefficients [5] and euclidean
distances [6]. Information-theoretic methods have also
been proposed, where mutual information is used to
define the similarity between pairs of gene expression
patterns [7], [8], [9]. In addition, the use of Bayesian
networks also constitutes a popular approach as a means
of modelling the statistical dependencies between gene
expression patterns [10], [11], [12], [13].

A variety of mathematical formalisms (dynamical
models) that encapsulate both the system’s structure and
dynamics have also been used in order to model, simu-
late and predict the dynamical behaviour of gene regula-
tory networks [14]. Such formalisms range from boolean
networks, where gene expression levels are modelled
as binary variables [15], to more detailed biochemical
models such as the power-law formalism (S-system) [16].

The dynamical behaviour of gene networks can also
be represented by additive regulation models [17], where
the combined causal influence of a set of regulators
to a target is expressed as the weighted sum of their
expression levels. In this case, the strength and nature of
the causal interaction between gene i (target) and gene j
(regulator) is expressed as a real number wij . A positive
value of wij denotes an activatory relationship (gene j

activates gene i), a negative value denotes a repressive
relationship (gene j represses gene i) and a zero value
signifies the absence of a causal relationship between the
two genes. This way, the structure of a gene network can
be described by a weight matrix W = [wij ]N×N , where N
is the number of genes in the network [18], [19].

A frequently used model for describing the dynamics
of such a system is the recurrent neural network (RNN)
[20], [21], [22], [23], [24], [25], [26], whereby the expres-
sion level xi of the ith gene varies temporally according
to:

xi(t+∆t) =
∆t

ci
f

( N∑
j=1

wijxj(t)+bi

)
+

(
1−∆t

ci

)
xi(t) (1)

where bi is a bias term that can be interpreted as the basal
expression level of the ith gene and ci is a time constant
that acts as a scaling factor. Function f is a sigmoidal
function such as the logistic function f(x) = 1

1+e−x .
The parametric modelling of the dynamical behaviour

of gene networks using appropriate mathematical for-
malisms (dynamical models) such as boolean networks,
S-systems or RNNs suggests the potential to uncover the
underlying causal relationships as captured in the dy-
namical behaviour of the regulatory system. In this con-
text, the objective of a model-driven reverse-engineering
strategy is the estimation of the model’s parameter
values so as to reproduce the available time series. In
essence, this objective constitutes an optimization prob-
lem in which the parameters of the model are estimated
(trained) so as to minimize the error between the actual
and simulated time series. Formally, the objective is to
infer a model instance pc ∈ P , comprising a set of
parameter values, such that:

f(pc) = min{f(p)}p∈P (2)

where P is the set of all model instances. Function f
calculates a measure of the deviation between the actual
and simulated time series, such as the mean squared
error (MSE):

f(p) =
1

NT

N∑
i=1

T∑
t=1

(xi(t)− x̂i(t))2 (3)

where N is the number of genes measured, T is the
number of time points in the time series and xi(t) and
x̂i(t) are the actual (observed) and simulated (predicted)
expression levels of the ith gene at time point t respec-
tively.

However, as a consequence of the curse of dimen-
sionality, the system is severely underdetermined and
there exists no unique solution pc to fit the available
data. One approach to addressing the dimensionality
problem is the application of clustering, whereby genes
are substituted by gene clusters and individual temporal
expression patterns by average cluster temporal patterns
[19], [21], [23], [24], [27], [28]. Despite the advantage
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of the significant reduction in the number of model
parameters that have to be trained, the underlying tran-
scriptional regulation network is replaced by a network
of gene clusters and subsequent inferential efforts can
only identify causal relationships between these clusters
rather than individual genes.

A variety of stochastic search methods, such as simu-
lated annealing [21], [29], genetic algorithms [23], [24],
[28], [30], [31] and particle swarm optimization [25],
[32], have been applied to the parameter estimation
problem. However, the quadratic scaling of the number
of model parameters with respect to the number of genes
measured in the time series constitutes a serious im-
pediment to keeping the problem dimensionality within
feasible bounds. As such, global parameter estimation
is impossible for realistic values of N , as in the order
of hundreds or thousands of genes. For this reason,
problem decomposition strategies have been proposed
as a means to splitting the global problem of estimating
the full set of model parameters to several local sub-
problems, each corresponding to estimating the param-
eters associated with a single gene [28], [31], [33], [34].

In addition to the problem decomposition strategy,
there exists a safe assumption regarding the topology
of gene networks that can be made in order to further
reduce the number of model parameters to be trained:
gene networks are sparse (loosely interconnected) since
most genes are regulated by only a handful of other
genes [2]. This implies that most of the model’s param-
eters that represent pair-wise regulatory relationships,
such as weight matrix entries in RNNs or kinetic order
exponents in S-systems, can be set to zero and ignored
during model training. One approach to incorporating
the sparseness property to model training is the gradual
optimization strategy, according to which parameters
with small estimated values are set to zero and the model
is optimized again with reduced dimensionality [18],
[23], [24], [29], [30], [35]. Alternatively, a penalty term can
be added to the fitness function represented by Equation
3 with the objective of eliminating “futile” parameters
[21], [28], [30], [34].

However, the necessity for the development of an
appropriate environment within which topological re-
strictions of any kind can be enforced suggests the pos-
sibility of distinguishing between the structural aspect
of the problem and the dynamical aspect of the prob-
lem. This possibility can be realized by implementing
a decoupling strategy whereby the discrete space of
network architectures is separated from the continuous
space of model parameters [25], [26], [32], [36], [37]. The
search in the discrete network structure space is guided
by the search in the corresponding continuous space
of model parameters, as the quality of each candidate
architecture is assessed by the degree of success of the
corresponding trained dynamical model in reproduc-
ing the available time series. The degree of success is
expressed by the minimum achieved prediction error
of the trained dynamical model. The introduction of a

combinatorial aspect to the problem, reflected on the
need to generate candidate architectures for searching
the discrete space of network structures, is counterbal-
anced by the reduction in the dimensionality of the
corresponding parameter estimation problem.

One of the earliest approaches to imposing structural
restrictions on candidate network architectures was the
introduction of a parameter k0 that represents the al-
lowed number of regulatory inputs per gene [38], [39].
The combinatorial task of selecting k ≤ k0 inputs for
each gene in the network can be performed either by
exhaustive enumeration [40], [41], [42] or by sampling
the discrete space of k-combinations of inputs using
stochastic search methods [36], [37], [43].

However, there exists evidence of observed properties
concerning the global topology of biological networks
which can inspire the formulation of additional topo-
logical restrictions to candidate network architectures.
In particular, empirical studies on the statistical char-
acterization of the structural properties of biological
networks have demonstrated that such networks have
degree distributions which appear to be best approx-
imated by power laws of the form P (k) ∼ k−γ [44],
[45], [46], [47]. The exponent γ specifies the slope of the
linear relationship between the degree k and P (k) on
a logarithmic scale. Other empirical studies that have
considered directed graph representations of the tran-
scriptional network of S. cerevisiae (yeast) reported that
the distribution of in-degrees can be best approximated
using exponential laws of the form P (k) ∼ e−βk, while
the distribution of out-degrees is best approximated by
power-laws [48], [49].

In general, a power law distribution of node degrees
suggests the heterogeneous nature of the graph’s connec-
tivity. This is in contrast to bell-shaped (e.g. Poisson) dis-
tributions where the connectivity is homogeneous and
the concept of a typical node can be defined with respect
to the graph’s average degree 〈k〉. The heterogeneity
of the graph’s connectivity implies the existence of a
large number of nodes that have few links and a small
number of highly-connected nodes, commonly termed
hubs. Graphs with power-law degree distributions are
often referred to as scale-free graphs [50] to denote the
scale invariance of the degree distribution.

Empirical studies on the topology of biological net-
works, set in the wider context of complex networks,
have indeed produced a body of evidence in support
of the ubiquity of the scale-free property. However, the
observed scale-free nature of biological networks may
be due to introduced biases in hand-crafted pathway
maps [51]. Such biases concern functionally important
genes which happen to have been popular targets for
research. The empirical and heuristic nature of scale-free
studies has also prompted criticism by graph theorists
regarding the lack of “rigorous mathematical work” [52].
Further criticism refers to methodological decisions with
respect to the derivation of the degree distribution from
topological data. For example, Tanaka et al. [53] under-
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lined the ambiguous nature of frequency-degree plots
and showed that the use of rank-degree plots results
in distributions that can often be best approximated by
exponential rather than power laws. Nevertheless, the
empirical observations of the power-law degree distri-
bution in biological networks are valuable since they can
be exploited for the specification of biologically plausi-
ble topological restrictions to be enforced on candidate
network architectures.

3 METHODS

The proposed framework for the reconstruction of gene
networks from temporal gene expression data comprises
the following components:
• the RNN formalism for modelling the dynamical

behaviour of the regulatory system;
• ACO for generating biologically plausible candidate

architectures; and
• PSO for training the corresponding RNN models.
The rest of this section describes the implementation

of the framework’s components. Section 3.1 is concerned
with the representation of the structure and dynamics
of gene networks. Section 3.2 discusses the PSO im-
plementation used for the purpose of model training.
Finally, Section 3.3 presents the ACO algorithm used
for searching the discrete space of network structures.
A novel method for the stochastic generation of biolog-
ically plausible candidate architectures in the context of
ACO is also presented in detail.

3.1 Gene Network Representation
The structure of a gene network can be represented as
a directed graph G = (V,E), where each vertex vi ∈ V
represents a gene and each edge eij ∈ E corresponds to
the regulatory influence of gene vj (regulator) to gene vi
(target). Equivalently, the structure of the network can
be represented as an adjacency matrix M = [mij ]N×N ,
where N is the fixed number of nodes in the network.
The binary value of each matrix entry mij determines
whether a directed edge exists from node vj to node vi.

The dynamics of the system are expressed using the
RNN formalism described by Equation 1 (in Section 2).
The complete specification of an RNN instance consists
of the weight matrix W = [wij ]N×N , the bias vector
B = [bi]1×N and the time constants vector C = [ci]1×N .
The specified RNN instance is used in order to reproduce
the available time series by calculating each predicted
(simulated) system state x̂(t + ∆t) from the previous
actual (observed) system state x(t) (one-step ahead pre-
diction).

3.2 Model Training using PSO
The quality of a candidate network architecture, in the
form of an adjacency matrix M , is evaluated by estimat-
ing the parameters of the corresponding RNN model
so as to minimize the error between the actual and

simulated time series. We apply a problem decomposi-
tion strategy [33] according to which the global problem
of estimating the full set of N(N + 2) RNN parame-
ters, where N is the number of genes in the network,
is split to N independent sub-problems, each associ-
ated with estimating the parameters of an individual
target gene. Furthermore, the weights that correspond
to non-existent edges in the network structure under
consideration are locked to zero and excluded from
the optimization process. More specifically, for the ith

sub-problem, the parameters under training include the
weights Wi = {wij | mij = 1} that correspond to the
incoming connections of gene i, the bias term bi and the
time constant ci. The objective of parameter estimation
for each independent sub-problem i is to minimize the
prediction error εi for the temporal expression pattern of
gene i, according to:

εi =
1

T

T∑
t=1

(
xi(t)− x̂i(t)

)2 (4)

where xi(t) and x̂i(t) are the actual and simulated ex-
pression levels of gene i at time point t respectively
and T is the number of available time points. Even-
tually, the overall quality of the candidate architecture
under consideration is determined by an error vector
E = [εi]1×N , where each component εi represents the
minimum achieved prediction error for the temporal
expression pattern of gene i.

Particle swarm optimization [54] is applied separately
to each independent sub-problem i for estimating the
corresponding model parameters. In general, PSO is a
simple, flexible and computationally efficient stochastic
optimization technique which has been demonstrated
to yield results of the same or better quality compared
to genetic algorithms in a variety of problem domains,
with the additional advantage of conducting a faster
exploration of the search space [55], [56]. In essence,
a particle swarm is a collection of candidate solutions
(particles) that are represented as points in the search
space. Each particle n is characterized by a position
vector ~xn, a velocity vector ~vn and a vector ~pn that serves
as memory of the best position in terms of fitness that
the particle has, thus far, encountered. Particle position
vectors encode the RNN parameters associated with
the current (ith) sub-problem under consideration, as
discussed above. The quality (fitness) of each particle
is evaluated using the RNN parameter values encoded
in the particle’s position vector in order to calculate the
prediction error for the temporal expression pattern of
gene i, according to Equation 4.

Particles interact by communicating their best posi-
tion ~pn to other particles within a neighborhood in
order to determine the neighborhood’s best position ~pb.
A dynamic neighborhood selection scheme is applied
whereby at each PSO step each particle randomly selects
K = 3 other particles to share its best position [25]. Each
particle n moves within the search space by iteratively
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updating its velocity and position vectors, attracted by
its own best position ~pn, as well as its neighborhood’s
best position ~pb, according to the equations:

~vn(t+ 1) = ω~vn(t) + ~U(0, φ1)⊗ [~pn(t)− ~xn(t)]

+ ~U(0, φ2)⊗ [~pb(t)− ~xn(t)] (5)

~xn(t+ 1) = ~xn(t) + ~vn(t+ 1) (6)

where ω is the inertia weight parameter and φ1 and φ2
are the particle’s acceleration coefficients that control the
magnitude of stochastic attraction towards ~pn and ~pb
respectively, with φ1 = φ2 = 1.496 following Clerc and
Kennedy’s recommendation [57]. Each vector ~U(0, φi)
contains random numbers drawn from a uniform dis-
tribution in [0, φi]. The operator ⊗ denotes element-wise
multiplication. The inertia weight ω effectively controls
the scope of the search, what is frequently referred to
as the balance between exploration and exploitation. We
apply a linearly decreasing inertia weight adaptation
scheme [58], with ωmax = 0.9 and ωmin = 0.3.

3.3 Network Reconstruction using ACO
Inspired by the foraging activities of ants, ant colony
optimization [59] is a class of meta-heuristics that pro-
vide a generic framework of communication between
simple agents (artificial ants), whose task is to con-
struct candidate solutions to the optimization problem
under consideration. The activities of artificial ants are
coordinated in a decentralized fashion, based on the
concept of stigmergy, a form of indirect communication
by modifying the environment [60].

The process of constructing candidate solutions com-
bines two sources of information. On one hand, stig-
mergic information refers to problem-agnostic knowl-
edge regarding the quality (cost) of previously evaluated
solutions. Stigmergic information is represented in the
form of a pheromone matrix T = [τij ]N×N , where N is
the number of genes in the network. Each pheromone
matrix entry τij is associated with a unique solution
component, in this case the corresponding directed edge
eij in the network architecture. The pheromone matrix is
continuously updated over the course of search in order
to reflect accumulated knowledge regarding the quality
of generated solutions. On the other hand, heuristic
information represents specific knowledge regarding the
problem under consideration, which is utilized in the
context of generating candidate solutions. Thus, each
solution component is associated with a heuristic value
ηij which represents the desirability of adding edge eij
to the solution under construction.

The combination of stigmergic and heuristic infor-
mation for generating candidate solutions is expressed
as the probability of adding a solution component to
the candidate solution under construction. Section 3.3.1
describes the generative process used by artificial ants to

construct candidate network architectures. Section 3.3.2
presents the precise algorithmic form of the ant system
used to infer the underlying network from the available
time-course data.

3.3.1 Stochastic Generation of Candidate Solutions
In the direction of meeting the biological plausibility
requirement, a particularly appealing prospect is the
utilization of existing graph-theoretic approaches to gen-
erating topologies that exhibit the scale-free property
[61], [62], [63]. In particular, Bollobás et al. [4] proposed
a parametric, generative process, the directed scale-
free (DSF) model, based on growth and degree-based
preferential attachment that yields directed graphs with
tunable degree distributions.

We propose an extension to the DSF model that
augments the heuristic degree-based preferential attach-
ment principle of the original model, with a stigmergic
pheromone-based preferential attachment principle. This
way, the ability of a node to attract new links dur-
ing graph construction depends not only on its degree
(degree-based preferential attachment) but also on its
fitness defined in terms of the pheromone values of
its adjacent edges (fitness-based preferential attachment).
This enhancement provides the opportunity to utilize the
dynamic stigmergic information which is available in the
form of the ant system’s pheromone matrix.

More specifically, the proposed extended DSF (eDSF)
model describes a stochastic process according to which
a graph (network) grows by adding a single directed
edge (regulatory relationship) at each discrete time step.
At each such step, a new node (gene) may also be
connected in the graph. A node u is considered to be new
(unconnected) if it has a degree k(u) = kin(u)+kout(u) =
0. If k(u) > 0, node u is considered to be existing
(connected). At each step of the stochastic process, exactly
one of the following three operations is performed:
A/ a regulatory relationship is established between a

new regulator and an existing target
B/ a regulatory relationship is established between an

existing regulator and an existing target
C/ a regulatory relationship is established between an

existing regulator and a new target
Regulatory relationships (edges) are defined in terms

of the genes (nodes) they connect. Thus, each of the three
model rules comprises two steps: the selection of the
regulator gene and the subsequent selection of the target
gene on the basis of the chosen regulator. The heuristic,
degree-based preferential attachment principle of the
DSF model is preserved in the probabilistic selection
of a node. A stigmergic, pheromone-based preferential
attachment principle is also utilized for node selection,
based on the pheromone values of the node’s adjacent
edges. Specifically, the selection of a regulator gene is
performed according to its out-degree (heuristic fac-
tor) and the pheromone values of its outgoing edges
(stigmergic factor). Subsequently, the target gene is se-
lected according to its in-degree (heuristic factor) and
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(a) (b)

Fig. 1: In- and out- degree distributions averaged across 100 random graphs of 1000 vertices, generated using the DSF model [4]. (1a) Parameter
values were set at α = 0.412, β = 0.56, γ = 0.028, δin = 0.157 and δout = 0, as in the web graph example from [4]. The degree distributions
can be approximated using power laws with exponents γin = 2.1 (solid line) and γout = 2.7 (dashed line). (1b) Parameter values were set at
α = 0.1, β = 0.6, γ = 0.3, δin = 0.01 and δout = 0.05. The resulting distribution of in-degrees can be approximated by an exponential law (solid
line) of the form P (k) ∼ e−bk , with b = 0.39. The distribution of out-degrees follows a power law with exponent γout = 2.13.

the pheromone value of the edge that connects it to the
chosen regulator (stigmergic factor).

More formally, let G(t0) be the initial graph, where
t0 is the number of edges and n0 the number of nodes,
measured in G(t0). Since a single edge is added at each
time step, at time t, the graph G(t) will have exactly t
edges, and a random number of nodes n(t).

At each discrete time t, let the indices of, yet, new
(unconnected) nodes form the setNnew(t) and the indices
of existing (connected) nodes form the set Nold(t), with
Nnew(t)∩Nold(t) = ∅, Nnew(t)∪Nold(t) = N (t) (the set of
all nodes indices) and |Nold(t)| = n(t).

Furthermore, let α, β, γ, δin and δout be non-negative,
real numbers, with α+β+ γ = 1 and α+ γ > 0. Let also
τij ∈ <+ be the pheromone value associated with edge
eij . In order to obtain G(t + 1) from G(t), exactly one of
the following operations is performed:
A/ with probability α, an edge is added from a new

node u to an existing node w. Node u is selected
from the pool of unconnected nodes according to
the pheromone values corresponding to its outgo-
ing edges, with probability:

Π(u = uj) =

∑
i τij∑

κ

∑
i τiκ

where i ∈ Nold(t) and j, κ ∈ Nnew(t). Having cho-
sen node u = uj , node w is selected from the pool
of connected nodes according to kin + δin and the
pheromone value corresponding to its incoming
edge from node uj , with probability:

Π(w = wi | u = uj) =
[kin(wi) + δin][τij ]∑
κ[kin(wκ) + δin][τiκ]

where i, κ ∈ Nold(t) and j ∈ Nnew(t).

B/ with probability β, an edge is added from an exist-
ing node u to an existing node w. Node u is selected
from the pool of connected nodes according to
kout+δout and the pheromone values corresponding
to its outgoing edges, with probability:

Π(u = uj) =
[kout(uj) + δout][

∑
i τij ]∑

κ[kout(uκ) + δout][
∑
i τiκ]

where i, j, κ ∈ Nold(t). Having chosen node u = uj ,
node w is selected from the pool of connected
nodes according to kin + δin and the pheromone
value corresponding to its incoming edge from
node uj , with probability:

Π(w = wi | u = uj) =
[kin(wi) + δin][τij ]∑
κ[kin(wκ) + δin][τiκ]

where i, j, κ ∈ Nold(t).
C/ with probability γ, a new edge is added from an

existing node u to a new node w. Node u is selected
from the pool of connected nodes according to
kout+δout and the pheromone values corresponding
to its outgoing edges, with probability:

Π(u = uj) =
[kout(uj) + δout][

∑
i τij ]∑

κ[kout(uκ) + δout][
∑
i τiκ]

where i ∈ Nnew(t) and j, κ ∈ Nold(t). Having
chosen node u = uj , node w is selected from
the pool of unconnected nodes according to the
pheromone value corresponding to its incoming
edge from node uj , with probability:

Π(w = wi | u = uj) =
τij∑
κ τiκ

where i, κ ∈ Nnew(t) and j ∈ Nold(t).
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In the above rules, kin(v) is the in-degree and kout(v)
the out-degree of node v, measured in the graph G(t).
Index i always enumerates the target genes, while index
j always enumerates the regulator genes. It is worth
noting that if for all edges eij , τij = c, with c ∈ <+, then
the selection of any node is equiprobable with respect
to the stigmergic information stored in the pheromone
matrix. In this case, the eDSF model is equivalent to the
original DSF model.

According to the analysis by Bollobás et al. [4], the
original DSF model can generate directed graphs whose
degree distributions can be predetermined by setting
appropriate values for the parameters α, β, γ, δin and δout.
An empirical investigation of parameter values showed
that the degree distributions of the resulting graphs
follow either a power law or an exponential. Figure 1
demonstrates the power law and exponential regimes
for in- and out- degree distributions across an ensemble
of random graphs generated using the DSF model.

As was discussed in Section 2, the topology of gene
networks can be characterized by an exponential be-
haviour with regard to the distribution of in-degrees and
a power-law behaviour with regard to the distribution
of out-degrees [48], [49]. In this respect, the eDSF model
with the empirical parameter values α = 0.1, β = 0.6,
γ = 0.3, δin = 0.01 and δout = 0.05 can generate
directed graphs, the degree distributions of which can
be assumed to be fairly consistent with those of directed
graphs corresponding to real gene regulatory networks.

3.3.2 Ant Colony Optimization

The eDSF model for generating candidate network archi-
tectures by combining stigmergic and heuristic informa-
tion constitutes ACO’s solution construction process in
the context of searching the discrete space of network
structure. Once a candidate architecture, in the form
of an adjacency matrix M , has been generated by an
artificial ant, its quality is evaluated by estimating the
parameters of the corresponding RNN model so as to
minimize the error between the actual and simulated
time series, as discussed in Section 3.2. The outcome of
evaluating the quality of a candidate architecture is an
error vector E = [εi]1×N , with each component εi repre-
senting the optimizer’s degree of success in reproducing
the temporal expression pattern of the ith gene.

Over the course of ACO, the algorithm keeps track
of the best topology discovered so far (global best so-
lution), as well as the best topology discovered during
the current ACO step (local best solution). The local
best solution is assembled by examining the generated
solutions at the current ACO step, while the global
best solution is updated using the assembled local best
solution. In both cases, the best topology is determined
on a per-gene basis in terms of the achieved prediction
errors εi. As such, the prediction error εi of each gene is
treated independently and the best solution is assembled
so that, for each gene, the combination of regulators

that produced the best prediction error is identified and
recorded.

More specifically, at each ACO step, k artificial ants
generate k candidate architectures, each represented by
an adjacency matrix Mk. The quality of each candidate
architecture Mk is determined by the error vector Ek ob-
tained by estimating the parameters of the RNN instance
that corresponds to the topology Mk. At the end of each
ACO step, all candidate solutions (Mk, Ek) are examined
in order to discover for each gene i the combination of
regulators which achieved the lowest prediction error
εi. These combinations are stored in an adjacency matrix
M̂ = [m̂ij ]N×N which represents the (local) best solution
for the current ACO step. The corresponding error vector
Ê = [ε̂i]1×N stores the lowest achieved prediction errors
ε̂i for each target gene i. The update of the local adjacency
matrix M̂ and the error vector Ê from each candidate
solution (Mk, Ek) of the current ACO step is performed
according to Algorithm 1.

Algorithm 1 Update an adjacency matrix M = [mij ] and an error
vector E = [εi] with an adjacency matrix M ′ = [m′ij ] and an error
vector E ′ = [ε′i]

for each target i do
if ε′i < εi then

for each regulator j do
mij ← m′ij

end for
end if

end for

Besides storing the best topology in the local context
of each ACO step, the algorithm also keeps track of the
(global) best topology achieved so far over the course of
the search. For this purpose, the global adjacency matrix
M̃ = [m̃ij ]N×N along with the associated error vector
Ẽ = [ε̃i]1×N are updated after the end of each ACO step
using local information from M̂ and Ê again according
to Algorithm 1.

The topology M̂ and the associated error vector Ê
reflect the best local information that has been gathered
at the end of each ACO step. This information is used in
order to update the colony’s artificial pheromone matrix
T = [τij ] at the end of each ACO step. Subsequently, the
pheromone matrix is also updated using the global best
topology M̃ with the error vector Ẽ so as to reinforce
the impact of global information that has been accumu-
lated over all ACO steps. The process of updating the
pheromone matrix T using an adjacency matrix M and
an error vector E is outlined in Algorithm 2.

Algorithm 2 Update the pheromone matrix T = [τij ] using an
adjacency matrix M = [mij ] and an error vector E = [εi].

for each target i do
for each regulator j do

if mij = 1 then
τij ← τij + log εi/(log εi − 1)

end if
end for

end for
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The last action performed before the initiation of the
next ACO step is a simulation of the physical process
of pheromone evaporation. The motivation behind the
evaporation of the pheromone matrix is to promote the
exploration of the search space by avoiding the prema-
ture convergence of the search process to a suboptimal
solution. For this reason, the value of each pheromone
matrix entry is recalculated according to Algorithm 3
using the pheromone evaporation rate ρ ∈ [0, 1].

Algorithm 3 Perform evaporation of the pheromone matrix T =
[τij ] using the evaporation rate ρ

for each target i do
for each regulator j do
τij ← (1− ρ)τij

end for
end for

At the end of all ACO steps, the best discovered
solution is represented by the global adjacency matrix
M̃ . This topology is optimal in terms of the minimum
achieved prediction errors per gene, stored in the as-
sociated error vector Ẽ . The precise form of the ACO
algorithm is outlined in Algorithm 4.

Algorithm 4 ACO algorithm

Initialize pheromone matrix T = [τij ]N×N

Initialize global adjacency matrix M̃ = [0]N×N

Initialize global error vector Ẽ = [∞]1×N

for each ACO step do
Initialize local adjacency matrix M̂ = [0]N×N

Initialize local error vector Ê = [∞]1×N

for each artificial ant k do
Generate candidate architecture with adjacency matrix Mk

Obtain error vector Ek for Mk (parameter estimation)
Update M̂ , Ê with Mk , Ek (see Algorithm 1)

end for
Update pheromone matrix T with M̂ , Ê (see Algorithm 2)
Update M̃ , Ẽ with M̂ , Ê (see Algorithm 1)
Update pheromone matrix T with M̃ , Ẽ (see Algorithm 2)
Perform pheromone evaporation (see Algorithm 3)

end for
return solution (M̃, Ẽ)

4 EXPERIMENTS AND RESULTS

The stochastic nature of the employed optimization tech-
niques implies that, for a given temporal data set, the
inferred topologies produced by running a number of
independent ACO trials will be expected to demonstrate
structural differences. For this purpose, an ensemble
learning strategy is implemented according to which
the space of inferred networks is sampled so as to
assemble a family of L inferred topologies, by running L
independent ACO trials and recording the best solution
represented by the adjacency matrix M̃l at the end of
the lth trial. Having assembled L adjacency matrices, a
voting scheme is applied with the assignment of a score
vij to each edge eij according to:

vij =
1

L

L−1∑
l=0

m̃l
ij (7)

with m̃l
ij ∈ M̃l and vij ∈ [0, 1]. After calculating the

scores for all edges eij , the final inferred network can
be represented in the form of an adjacency matrix M̌ =
[m̌ij ]N×N , where the value of each entry m̌ij ∈ M̌ is
determined according to:

m̌ij =

{
1, if vij ≥ σ
0, otherwise (8)

and σ is the threshold for the inclusion of an edge to the
final inferred network, with σ ∈ [0, 1].

In order to evaluate the inferential power of the
framework, the predicted (inferred) network topology
represented by the adjacency matrix M̌ is compared
to the actual (true) network topology represented by
the adjacency matrix M for the purpose of validating
the inferred regulatory interactions. An edge eij can be
classified as either a true positive (TP), a false positive
(FP), a true negative (TN) or a false negative (FN), on the
basis of comparing the values of m̌ij ∈ M̌ and mij ∈M .

The true positive rate (TPR) of the predicted network,
also referred to as sensitivity or recall, is defined as the
fraction of the number of edges that were correctly
inferred (TP) over the total number of edges that should
have been inferred (TP and FN), according to TPR =
TP/(TP+FN). The false positive rate (FPR) of the predicted
network, also referred to as the complementary specificity,
is defined as the fraction of the number of edges that
were falsely inferred (FP) over the total number of edges
that should not be inferred (FP and TN), according
to FPR = FP/(FP + TN). Finally, the positive predictive
value (PPV) of the predicted network, also referred to
as precision, captures the rate of correctly inferred edges
(TP) out of all inferred edges (TP and FP), according to
PPV = TP/(TP + FP).

The ACO/PSO framework is first applied to the prob-
lem of reconstructing gene networks using artificial data
sets with results presented in Section 4.1. Subsequently,
the framework is applied to a real-world time-course
data set which captures the dynamical behaviour of the
SOS response system of E. coli, with results presented in
Section 4.2.

4.1 Inference using artificial data
In order to assess the relative value of utilizing
heuristic information in the context of the proposed
eDSF model, an alternative stochastic graph construc-
tion model in ACO is also considered. The alterna-
tive pheromone-based (PHERO) model ignores heuristic,
problem-specific information and operates solely on the
basis of stigmergic information as represented by the
ant colony’s pheromone matrix T . In this respect, it is
conceptually analogous to the purely stigmergic ACO
implementation of Ressom et al. [32]. The PHERO model
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Fig. 2: Training network dynamics for the 4-gene artificial network
of Section 4.1.1.

generates sparse candidate solutions by considering the
probabilistic addition of each edge eij to the graph under
construction according to the corresponding pheromone
trail τij . Specifically, for each target gene i, all possible
regulators j are considered and the probability of adding
each edge eij to the graph under construction is calcu-
lated according to:

pij =
τij∑
j τij

(9)

The comparison between the results using the eDSF
solution construction model and the results using the
PHERO solution construction model will constitute
an assessment of the relative advantage of utilizing
problem-specific, heuristic information (eDSF model)
over performing a problem-agnostic search in the space
of network structures (PHERO model).

We begin by considering the reconstruction of a small
artificial network in Section 4.1.1, followed by exper-
iments with a subnetwork of the genetic interaction
network of S. cerevisiae (yeast) using artificial gene ex-
pression data with added noise in Section 4.1.2

4.1.1 Reconstructing a small artificial network
Our initial experiment concerns the reconstruction of a
small artificial gene network comprising 4 nodes and 8
edges, that has previously been studied in the context
of gene network reconstruction [23], [25]. The network
dynamics were generated using an RNN model, whose
parameter values are displayed in Table 1. The training
dynamics (see Figure 2) comprise 50 time points and
were assembled by evenly sampling from a time series
of 300 time points that was generated by setting ∆t = 0.1
in Equation 1.

The reconstruction experiment consisted of L = 10
independent ACO trials of 50 steps each using a pop-
ulation of 5 artificial ants, for both PHERO and eDSF
solution construction models. The statistical properties
of the resulting network structures at the end of each
ACO trial are displayed in Figure 3. These results are
consistent with those reported by Xu et al. [25] with
regard to the true positive count, when considering
single time series. The false positive count is much lower

TABLE 1: RNN model parameters

wij bi ci
20 -20 0 0 0 10
15 -10 0 0 -5 5
0 -8 12 0 0 5
0 0 8 -12 0 5

The parameters of the RNN model used to generate
the dynamics of the artificial network of Section 4.1.1

Parameter values from [23], [25]

Fig. 3: The statistical properties (true and false positives) of the
solutions acquired from L = 10 independent ACO trials, for each
experimental setting (eDSF and PHERO) of Section 4.1.1. The error
bars correspond to the standard error of the sample. The white bars
represent the results of Xu et al. [25] on the same network using the
same dynamics (Figure 2).

in comparison to Xu et al. in both the eDSF and PHERO
experiments, with the eDSF model yielding the best
results overall.

With regard to the nature of the inferred relationships,
further experiments were conducted with the RNNs
that corresponded to the final inferred topologies M̌ , in
order to determine the degree to which they succeeded
in recovering the nature of the underlying regulatory
relationships. In particular, for each experiment (eDSF
and PHERO), we trained 100 RNN instances that corre-
sponded to the inferred topology M̌ (with an inclusion
threshold σ = 0.5) using PSO. For each trained RNN
instance, we calculated the proportion of true positive
edges whose corresponding RNN weight sign (+ or -
) matched the nature of the relationship (activatory or
repressive) in the actual network (see Table 1). Both
experiments succeeded in recovering the correct nature
of approximately 65% of the true positive relationships
(65%±2% for eDSF and 63%±3% for PHERO; the error
terms refer to the sample’s standard error).

4.1.2 Reconstructing a real-world network
We proceed by considering the reconstruction of a real-
world network using artificial data with added noise
in order to compare the performance of the eDSF and
PHERO models in the context of ACO/PSO. We used
GeneNetWeaver (GNW) [64], an open source software
package for the generation of network topologies and
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Fig. 4: The topology of the artificial network that was extracted from
the yeast genetic interaction network using GNW. Normal arrow heads
denote activation, while T-shaped arrow heads denote repression.

in-silico simulation of their dynamical behaviour. GNW
generates network topologies by extracting modules
from known biological networks and simulates the sys-
tem dynamics using differential equation models. The
software has been used for performing rigorous and sys-
tematic assessments of network inference algorithms in
the context of the DREAM network inference challenges,
a series of competitions for the reverse-engineering of
networks from real and artificial gene expression data
sets [65].

Our target network structure was extracted from the
yeast genetic interaction network that is available in
GNW. The target network, consisting of 10 nodes and
12 edges, is shown in Figure 4. GNW was also used for
generating the dynamics of the target network, which
included both additive and synergistic network interac-
tions. We opted for the stochastic differential equation
(SDE) model in order to include the effects of noise in the
simulated dynamics. We preserved GNW’s default noise
term coefficient of 0.05, a moderate level that is similar
to the simulation settings of the DREAM challenge [66].
The generated dynamics consisted of 21 time points.

For the experiments, the number of independent ACO
trials is set to L = 10. Each ACO run consists of 100
steps with a population size of 5 artificial ants and a
pheromone evaporation rate set to ρ = 0.1. The number
of iterations for each decomposed sub-problem in PSO is
set to 2000, while the swarm population size is calculated
by ni = b10 + 2

√
Dic. Di is the dimensionality of the ith

sub-problem with Di = 2 +
∑
jmij , where mij ∈M and

M is the adjacency matrix of the network under training.
Table 2 summarizes the characteristics of the final

inferred topologies M̌ , assembled using Equation 8 for
varying threshold (σ) values. The eDSF model succeeds
in discovering a larger proportion of true network edges
(TPR), consistently across all threshold values. Figure

(a) eDSF

(b) PHERO

Fig. 5: Actual and predicted time series for the experiments of
Section 4.1.2. The predicted dynamics were generated using a trained
RNN model that corresponded to the final inferred topology M̌
with a threshold value σ = 0.5. Actual expression levels have been
plotted using solid lines and cross marks, while predicted expression
levels using dotted lines and x marks. (a) The eDSF experiment with
prediction MSE 2.4×10−3. (b) The PHERO experiment with prediction
MSE 2.5× 10−3.

5 displays the actual and predicted dynamics for both
experiments (eDSF and PHERO), with the respective
prediction MSEs being in the same order of magnitude
(×10−3). With regard to the nature (activatory or repres-
sive) of the inferred relationships, we trained 100 RNN
instances that corresponded to the inferred topology M̌
(with σ = 0.5) using PSO, for each experiment (eDSF and
PHERO). Both experiments succeeded in recovering the
correct nature of approximately 80% of the true positive
relationships (79% ± 2% for eDSF and 78% ± 2% for
PHERO; the error terms refer to the sample’s standard
error).

The statistical properties of the solution ensembles
resulting from L independent ACO trials for each exper-
imental setting are shown in Figure 6. The eDSF model
clearly outperforms the PHERO model in terms of the
sensitivity (TPR) and the precision (PPV) of the inference
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TABLE 2: Characteristics of final inferred networks using ensemble learning

TPR FPR PPV Graph edges
σ eDSF PHERO eDSF PHERO eDSF PHERO eDSF PHERO

0.4 0.58 0.42 0.24 0.24 0.27 0.21 26 24
0.5 0.50 0.42 0.19 0.22 0.29 0.23 21 22
0.6 0.42 0.25 0.14 0.12 0.31 0.25 16 12
0.7 0.42 0.25 0.14 0.09 0.31 0.30 16 10
0.8 0.42 0.25 0.14 0.09 0.31 0.30 16 10
0.9 0.42 0.25 0.13 0.08 0.33 0.33 15 9
1.0 0.25 0.08 0.08 0.05 0.33 0.20 9 5

Characteristics of the final inferred network topologies M̌ , assembled using Equation 8,
for varying levels of the threshold σ. The true (target) network is shown in Figure 4.

Fig. 6: The statistical properties of the solutions acquired from L =
10 independent ACO trials, for each experimental setting (eDSF and
PHERO) of Section 4.1.2. The error bars correspond to the standard
error of the sample. The random values were determined by running
the corresponding model (eDSF or PHERO) in order to generate 10, 000
random networks of the same size (number of nodes) with the target
network, using pheromone matrices with identical entries τij = 1.

Fig. 7: A commonly recurring structural pattern is demonstrated in
four gene triplets extracted from the inferred network topology M̌ ,
with σ = 0.8. In the examples shown above, the coregulation of the
two target genes by YCR018C has been correctly inferred. However, a
spurious edge between the coregulated genes has also been (falsely)
inferred. Solid lines correspond to correctly inferred (TP) edges and
dashed lines to incorrectly inferred (FP) edges.

results, with the false positive rates being the same across
the two models.

A recent study on the comparative assessment of the
performance of various network inference methods in
the context of the latest DREAM challenge [66] identified
certain types of systematic structural prediction errors
by performing network motif analysis in the predicted
topologies. Our inferred networks also exhibit multiple

instances of one such prediction error type (fan-out
error). An investigation of the network topologies M̌
predicted by the ACO/PSO framework reveals that a
commonly recurring structural pattern is characterized
by a false positive edge connecting a pair of genes that
share a common, correctly identified, regulator (gene
YCR018C). Figure 7 shows four such examples from the
inferred network topology M̌ (with σ = 0.8) where the
correct identification of coregulation in a gene triplet,
consisting of one regulator and two target genes, was
accompanied by the identification of a spurious edge
connecting the two target genes.

4.2 Inference using real-world data
In this section, the ACO/PSO framework, incorporating
the eDSF model of generating candidate architectures,
is applied to a real-world gene expression data set for
the purpose of reconstructing the underlying gene regu-
latory network. The data set captures the dynamical be-
haviour of the SOS response system of E. coli, a transcrip-
tional network consisting of proteins that are involved
in DNA repair activities. SOS response functionality is
induced with the detection of sudden increases in DNA
damage. There exist about 40 SOS genes [67] involved in
DNA repair, the expression of which is regulated by the
interplay between two proteins: LexA and RecA. LexA
is the master repressor protein of the SOS genes. Under
normal conditions, LexA binds to the promoter regions
of the SOS genes in order to inhibit their expression.
The role of protein RecA is to detect increased levels
of DNA damage in the cell. When that happens, RecA
switches to an active state and binds to the promoter
region of gene lexA, thereby mediating the destruction
(self-cleavage) of protein LexA. As a result, the SOS
genes are de-repressed and the production levels of the
corresponding proteins increase in order to address the
DNA damage situation. Once DNA damage is repaired
or bypassed, the cell returns to its normal state, with
the concentration of the activated protein RecA dropping
and the transcription factor LexA accumulating in order
to re-repress the expression of the SOS genes.

Ronen et al. [68] developed an experimental technique
for monitoring the temporal transcriptional activity of
SOS response operons using green fluorescent protein
(GFP), after initial irradiation of DNA with UV light.
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Fig. 8: The structure of the SOS DNA repair transcriptional network
of E. coli [68]. The displayed relationships express known regulatory
interactions between genes. Normal arrow heads denote activation,
while diamond-shaped arrow heads denote repression.

TABLE 3: Results from the SOS experiments

Data set TP FP TPR FPR PPV
1 3 10 0.38 0.21 0.23
2 8 5 0.89 0.10 0.62
3 4 9 0.50 0.19 0.31
4 0 9 0.00 0.19 0.00

Metric values for the inferred topologies M̌ with a strict threshold
value σ = 0.9 for the four SOS data sets.

Using this method, they obtained time courses capturing
the dynamical behaviour of the SOS response system
with a temporal resolution in the order of minutes. The
transcriptional activity of 8 SOS operons were measured,
namely lexA, recA, uvrA, uvrD, uvrY, umuD, ruvA and
polB. Figure 8 displays the known regulatory interac-
tions among the 8 SOS genes measured in the time
course experiments. Four experiments were conducted
at various UV light intensities, with each experiment
consisting of 50 measurements, evenly sampled every
6 minutes1.

The ACO/PSO framework settings used for inferring
the SOS response network from the available gene ex-
pression time series were the same as in the artificial data
experiments described in Section 4.1.2. The first time
point was removed from all four time series, since all
expression levels at that point were zero. Subsequently,
the temporal gene expression patterns for each gene
were normalized in the interval [0, 1]. Specifically, the
normalized expression level x′i(t) of gene i at time point
t was calculated using:

x′i(t) =
xi(t)− xmin

i

xmax
i − xmin

i

(10)

where xi(t) is the actual expression level of gene i at
time point t, while xmin

i and xmax
i are the minimum and

maximum expression levels of gene i respectively.
The characteristics of the inferred network topologies

M̌ for each of the four time series are shown in Table 3.
The best prediction was achieved using the second time
series, with an inferred topology consisting of 13 edges,
8 of which were true positives and 5 false positives (see
Figure 9). The dominance of gene lexA was fully recog-
nized with all relationships (with the exception of recA
→ lexA) being correctly reconstructed. Figure 10 shows

1. The four data sets were downloaded from http://www.
weizmann.ac.il/mcb/UriAlon/Papers/SOSData

Fig. 9: The predicted topology M̌ of the SOS network, resulting from
10 independent ACO runs, with a strict threshold set at σ = 0.9.
Correctly inferred edges (true positives) have been drawn with solid
lines and falsely inferred edges (false positives) with dashed lines.

Fig. 10: Actual and predicted dynamics for the SOS experiment, using
the second data set. The prediction MSE is 1.2 × 10−2. The actual
dynamics consist of the second time series in the data set of Ronen et
al. [68]. The predicted dynamics were generated using a trained RNN
model that corresponded to the inferred network topology M̌ , with
a strict threshold set at σ = 0.9. Actual expression levels have been
plotted using solid lines and cross marks, while predicted expression
levels using dotted lines and x marks.

the actual and predicted dynamics, using a trained RNN
model corresponding to the inferred topology M̌ with
a threshold value of σ = 0.9. The prediction MSE is
1.2× 10−2.

The differences in the quality of prediction, depending
on which data set is used as input to the reverse-
engineering framework, may be due to a number of
reasons. First, in the second data set, the expression peak
of the master repressor lexA is smoother and its activity
is more sustained than in the other data sets. Second,
the expression levels of target genes uvrY and ruvA
appear to be higher in the second data set than in the
other data sets. For this reason, a variety of approaches
to reconstructing the SOS network using the S-system
formalism and the same data sets do not consider the
expression profiles of these two genes [69], [70], [71],
[72]. However, our method was able to correctly predict
the regulation of uvrY and ruvA by lexA, even if their
expression was minimally induced by UV light irradi-
ation in the experiments. A detailed comparison of the
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TABLE 4: Comparison of predictions for the SOS data set

Known interaction Predictions by
[12] [73] [69]† [25]‡ [70]† [71]† [72]† ACO/PSO

lexA → lexA yes yes yes no yes yes yes yes
lexA → recA yes yes no yes yes yes yes yes
recA → lexA yes yes yes no yes yes yes no
lexA → uvrA yes yes yes yes no yes yes yes
lexA → uvrD no no yes yes yes yes yes yes
lexA → uvrY no no – no – – – yes
lexA → umuD no yes yes yes yes yes yes yes
lexA → ruvA no no – no – – – yes
lexA → polB no no yes yes yes yes yes yes
Spurious edges (FP) 5 10 6 2 15 16 11 5
Precision (PPV) 0.44 0.33 0.50 0.71 0.29 0.30 0.39 0.62

† The profiles of genes uvrY and ruvA were not included in these experiments.
‡ In addition to this prediction, Xu et al. [25] also report a “less conservative” prediction

which includes all nine true relations but more false positives (FP=7), leading to
a lower precision value (PPV=0.56).

Fig. 11: All five false positive edges in the inferred topology shown
in Figure 9 are instances of the fan-out prediction error [66], i.e. the
incorrect identification of a link (dashed arrow) between a pair of
coregulated genes.

results from different methods (including ours) on the
reconstruction of the SOS network using the same data
sets is shown in Table 4.

With respect to the inferred topology M̌ , we observed
the repeated occurrence of the fan-out prediction error
[66], just as in the experiments of Section 4.1.2. In fact,
all five incorrectly identified edges of the predicted
topology are instances of this type of prediction error as
shown in Figure 11. In general, though, the occurrence of
spurious edges in the predicted network does not neces-
sarily imply the identification of incorrect relationships.
A spurious edge might represent a novel regulatory
relationship, whose validity can only be verified experi-
mentally in the laboratory. Alternatively, spurious edges
can emerge in the predicted topology as an indirect
consequence of the transcriptional activity of external
regulators, whose levels of expression have not been
measured in the available gene expression data set. For
example, there exists evidence for the activation of the
uvrY operon by another regulator, gene sdiA, which
does not belong to the SOS response network under
consideration [74].

5 CONCLUSION AND FURTHER WORK

In this paper, we investigated the problem of recon-
structing the structure of gene regulatory networks from
time-course data using a decoupled framework based

on swarm intelligence techniques and the RNN for-
malism. Particular attention was paid to the biologi-
cal plausibility of candidate solutions in the context of
searching the discrete space of network architectures. A
novel stochastic process (eDSF model) was formulated
for generating candidate architectures that extends a
graph generation mechanism proposed by Bollobás et
al. [4]. This process yields directed graphs that exhibit
topological properties similar to those of real-world bi-
ological networks. Experiments demonstrated that the
introduction of problem-specific (heuristic) knowledge
to the stochastic process of searching the network struc-
ture space produced improved results compared to the
problem-agnostic approach which operated solely on the
basis of ACO’s stigmergic apparatus.

One direction towards strengthening and expanding
the conclusions of this paper consists of investigating our
framework’s response with respect to increasing network
sizes and noise levels. In essence, such an investigation
will serve to widen the scope of the artificial data experi-
ments of Section 4.1.2, where we considered only a single
network with a noise level which is rather moderate in
comparison to real microarray data.

Our implementation of the proposed framework is in
a scripted language (Python using the numpy numerical
library) and requires approximately 4 hours for a single
ACO run of the SOS network on a typical desktop ma-
chine running Ubuntu Linux. We are currently finishing
an implementation in a compiled language and, at the
same time, considering the parallelization capabilities of
modern GPUs (using frameworks such as NVidia’s Cuda
and OpenCL) in order to be able to handle more realistic
network sizes in the future.

In general, the problem of network inference is
far from solved. Recent comparative results from the
DREAM challenges have shown that a large fraction of
methods produce predictions that are, on average, not
significantly better that random guessing [66]. Further-
more, the integration of all available sources of data
(both steady-state and time series) proved to be a defin-
ing characteristic of the best performing methods. The
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same results also revealed that the performance of a
method that is applied to the reconstruction of a partic-
ular network depends strongly on the properties of that
network. In other words, caution should be exercised
when generalizing with respect to the performance of
an inference method using a single network. This serves
to underline the need for rigorous testing of reverse-
engineering methods on sufficiently large ensembles of
diverse target network topologies in order to obtain
more accurate statistical estimations of inferential suc-
cess.
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