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Abstract

Mathematical models and computational simulations have proved

valuable in many areas of cell biology, including gene regulatory net-

works. When properly calibrated against experimental data, kinetic

models can be used to describe how the concentrations of key species

evolve over time. A reliable model allows ‘what if’ scenarios to be

investigated quantitatively in silico, and also provides a means to

compare competing hypotheses about the underlying biological mech-

anisms at work. Moreover, models at different scales of resolution can

be merged into a bigger picture ‘systems’ level description. In the case

where gene regulation is post-transcriptionally affected by microR-

NAs, biological understanding and experimental techniques have only

recently matured to the extent that we can postulate and test kinetic

models. In this chapter, we summarize some recent work that takes

the first steps towards realistic modelling, focusing on the contribu-

tions of the authors. Using a deterministic ordinary differential equa-

tion framework, we derive models from first principles and test them

for consistency with recent experimental data, including microarray

and mass spectrometry measurements. We first consider typical mis-

expression experiments, where the microRNA level is instantaneously

boosted or depleted and thereafter remains at a fixed level. We then
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move on to a more general setting where the microRNA is simply

treated as another species in the reaction network, with microRNA-

mRNA binding forming the basis for the post-transcriptional repres-

sion. We include some speculative comments about the potential for

kinetic modelling to add to the more widespread sequence and net-

work based approaches in the qualitative investigation of microRNA

based gene regulation. We also consider what new combinations of ex-

perimental data will be needed in order to make sense of the increased

systems-level complexity introduced by microRNAs.

1 Introduction

Most computational efforts to understand post-transcriptional gene regula-
tion by microRNAs (miRNAs) have focused on target prediction tools, as
reviewed by Rajewsky (2006), and related algorithms, tools and databases
are becoming readily available; see, for example, (Xiao et al. 2008). In this
chapter, we deal instead with mathematical and computational modelling
of gene regulation by miRNAs. We overview the current state of the art,
focusing on our own contribution to the field, and speculate on the role of
the quantitative modelling in understanding the mechanisms and functions
of miRNAs in health and disease. The motivation behind this chapter stems
from the need to develop comprehensive models of gene regulation on both
transcriptional and post-transcriptional levels with the goal of further in-
tegration of such models with target prediction algorithms in the overall
complex regulatory network of genes, proteins and RNAs.

The first papers on post-transcriptional gene regulation were proposed
in (Levine et al. 2007a, Shimoni et al. 2007, Levine et al. 2007c), and focused
on the regulation by small RNA (sRNAs). A quantitative two-class model
of gene regulation in E. coli (Levine et al. 2007a) demonstrated that sRNAs
provide a novel mode of gene regulation with a threshold-linear response,
a robust noise resistance characteristic, and a built-in capability for hierar-
chical cross talk. It has also been shown quantitatively that regulation by
sRNAs is advantageous when fast responses to external signals are needed
and that regulation by sRNA may provide fine-tuning of gene expression (Shi-
moni et al. 2007). In addition, sRNAs have been suggested to participate
in sharpening a gene expression profile that was crudely established by a
morphogen (Levine et al. 2007c).
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MiRNAs function very much like small interfering RNAs. However, they
are distinguished by their distinct pathway for maturation and by the logic
through which they regulate gene expression (Du & Zamore 2005). Cou-
pled degradation of target mRNA and its regulator (Levine et al. 2007a)
is specific to gene regulation by sRNAs. By contrast, miRNAs, which are
incorporated into the RISC complex, do not degrade with their targets but
return to the cytosol to begin a new round of target mRNA repression. It
is plausible, however, that due to increased endonucleolytic activity, miRNA
may be degraded after a few cycles of target mRNA binding (Levine et al.
2007b).

Several kinetic models of gene regulation by sRNAs, and miRNAs in par-
ticular, have recently been published. Before reviewing the kinetic models of
gene regulation by miRNAs, we outline some significant experimental find-
ings that guide the modelling process.

It is well established that miRNAs regulate gene expression post-transcriptionally,
influencing stability, compartmentalization and translation of mRNAs (see
Figure 1). The underlying molecular mechanisms are still debated (Filipow-
icz et al. 2008) but the overall effect of miRNA appears to be repressive.
It has been computationally predicted (Krek et al. 2005) and demonstrated
experimentally (Lim et al. 2005, Baek et al. 2008, Selbach et al. 2008) that
one type of miRNA may regulate large number, sometimes in the hundreds,
of different types of target mRNAs and proteins.

The regulating effect of miRNAs is typically studied by conducting miRNA
mis-expression experiments and measuring gene expression with microar-
rays (Lim et al. 2005), protein levels by powerful mass spectromic method
SILAC (Baek et al. 2008) and changes in protein synthesis by pulsed SILAC
(pSILAC) (Selbach et al. 2008). There are two general types of miRNA
mis-expression experiments (Baek et al. 2008, Krützfeldt et al. 2005, Selbach
et al. 2008),

1. overexpression or transfection of a miRNA to a cell-line or tissue where
it is initially not present, or present at small levels, and

2. knock-down of an abundant miRNA by antagomir or LNA.

Recent proteomic and microarray studies have isolated the major sequence
determinant that mediates miRNA regulation of both mRNAs and protein:
the 6-mer “seed” (Watson-Crick consecutive base pairing between mRNAs
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and the miRNA at position 2-7 counted from its 5’ end) located in the 3’ un-
translated regions (3’UTRs) of mRNAs (Selbach et al. 2008). The accuracy
of target prediction algorithms can be improved by allowing for evolutionary
conservation of the seed site (Selbach et al. 2008). However, the false-positive
rate of target predictions, even with conserved seed incorporation, is still esti-
mated at 40% (using the entire pSILAC dataset). The extent of the miRNA-
mediated regulation is relatively mild and depends on the number of seeds
and the distances between them. It also is affected by by many other factors,
including the sequence elements around the seed, sites for RNA-binding pro-
teins and secondary structure. This is a subject of intensive research. Avail-
ability of mRNA expression levels from miRNA mis-expressions and various
tissues as well as protein levels as measured by SILAC (Baek et al. 2008)
and protein production as measured by pSILAC (Selbach et al. 2008) gives
an opportunity to improve existing targets prediction algorithms (Friedman
et al. 2008).

MiRNAs are thought to act by binding to their target mRNAs rather than
through a catalytic mechanism requiring only a transient association between
the miRNA and mRNA (Doench & Sharp 2004). The bulk of miRNAs are
associated with target mRNAs undergoing translation (Maroney et al. 2006).
It is reasonable to assume that the miRNA:mRNA complexes are being trans-
lated, but at a slower rate than free mRNAs. Certain mRNAs accumulate
in P-bodies (PB) in a microRNA-dependent manner (Bhattacharyya et al.
2006), raising the possibility that PBs might be involved in miRNA-mediated
repression. However, microRNA-mediated repression is unaffected in cells de-
void of microscopically visible PBs, suggesting that PB formation itself is not
required for repression. This led (Leung & Sharp 2007) to conclude that PBs
are a consequence, not the cause, of the microRNA-mediated silencing.

Just as there are unanswered questions relating to the sequence charac-
teristics of each miRNA:mRNA pair, relatively little is known about how
the extent of regulation depends on the expression levels the miRNA, the
target of interest as well as other targets that are affected by that miRNA.
This is an area where modelling and computation hold great promise for
adding value to experimental data sets. MiRNA mis-expression data can be
used to infer kinetic parameters for various processes involved and to eluci-
date the mechanisms of miRNA-mediated target regulation. Other problems
that can be addressed include estimating the time-response of the system
to miRNA transfection and knock-down (de-repression). As more data, in-
cluding miRNA studies by proteomics, becomes available, there is further
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potential to use dynamical models to add a quantitative level of understand-
ing that can be used to test hypotheses and tackle ‘what if’ scenarios.

2 A simple model of miRNA-mediated gene

regulation

Figure 1: MicroRNA exerts its downregulating effect on mRNA or/and pro-
tein.

We now discuss a simple yet plausible model of target regulation by miRNA.
The model summarizes the overall effect of miRNA on a target, without rep-
resenting specific molecular mechanisms of the downregulation. This model
assumes that the miRNA level remains fixed—see section 5 for a discussion
of the more general case where kinetics for miRNA are introduced.

Gene expression, or mRNA levels, m, and protein levels, p, change through
production and degradation (Bolouri & Davidson 2002). We may describe
these rates of change with an ordinary differential equation (ODE)

dm(t)

dt
= q(t) − δ · m(t), (1)

dp(t)

dt
= λ · m(t) − δP p(t). (2)
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In models of transcriptional regulation it is commonly assumed that while
the production rate governing mRNAs, q(t), depends on the availability of a
single, or multiple, transcription factors (TFs), the mRNA degradation and
protein translation are first-order processes that occur with constant rates, δ
and λ, respectively. We also assume a constant protein degradation rate, δP .

When a transcript is a target of a specific miRNA, its degradation rate,
δ, and its rate of translation, λ, both depend on the levels of this miRNA:
δ = δ(miRNA) and λ = λ(miRNA). It is known that the presence of miRNA
enhances the degradation rate (Krützfeldt et al. 2005, Lim et al. 2005) and
inhibits translation (Ambros 2004, Jackson & Standart 2007, Baek et al.
2008, Selbach et al. 2008) (Figure 1).

Plausible relations for the miRNA-mediated mRNA target degradation
rate include linear (mass-law) (Khanin & Vinciotti 2008),

δ(miRNA) = δ0

(

1 + d · miRNA
)

(3)

and Michaelis-Menten type dependency

δ(miRNA) = δ0

(

1 + d ·
miRNA

γ + miRNA

)

. (4)

Term d(miRNA) (that is equal d · miRNA in (3) and d · miRNA/(γ + miRNA))
in (4)) stands for the miRNA-mediated fold-change in the target mRNA
degradation rate relative to the basal degradation rate, δ0. To account for
multiple seeds for the same miRNA (Rajewsky 2006), the above models are
easily extended to include the cooperativity, or Hill, coefficient

δ(miRNA) = δ0(1 + d · miRNAh) (5)

δ(miRNA) = δ0(1 + d · miRNAh/(γ + miRNAh)), (6)

for (3) and (4), respectively. Here h ≥ 1 is the number of multiple seeds
for the same miRNA with optimal spacings of ≤ 40 nt (Grimson et al. 2007,
Selbach et al. 2008).

The miRNA-mediated translational repression in (1) can be described by

λ(miRNA) =
λ0

γ + a · miRNAh
, h ≥ 1, (7)

where a = 1 when mRNA is a translational target of this specific miRNA
and a = 0 otherwise.
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One miRNA may have many target genes (Krek et al. 2005, Lim et al.
2005, Baek et al. 2008, Selbach et al. 2008). The expression level of the ith
target mRNA transcript i is then described by the ODE (Khanin & Higham
2009):

dmi(t)

dt
= qi − δ0i(1 + di(miRNA))mi(t), (8)

dpi(t)

dt
= λi(miRNA)mi(t) − δPipi(t). (9)

Kinetic parameters qi, δPi, δ0i are gene-specific. In addition, parameters di, γi,
and hi of the miRNA-mediated downregulation that appear in the functional
relations di(miRNA) and λi(miRNA) are also target specific and depend on
the sequence and structure of each mRNA:miRNA base pairing and other
recognition elements that have not yet been identified.

The logic of transcriptional regulation by TFs and post-transcriptional
regulation by miRNAs appears to be the same (Hobert 2008). Two, or more,
miRNAs can regulate a target in different ways. Suppose that two miRNAs,
miRNA1 and miRNA2, regulate a target i. Then a SUM-type of regulation may
be represented by

δi = δ0,i

(

1 + di,1(miRNA1; hi,1) + di,2(miRNA2; hi,2)
)

(10)

λi =
λ0i

1 + miRNA
hi,1

1 /γi,1 + miRNA
hi,2

2 /γi,2

.

This is a non-cooperative regulation, wherein the effect of two miRNAs is
simply additive. A cooperative SUM-regulation takes place if the presence
of two miRNAs results in larger regulation than the sum of each miRNA-
mediated regulation. An example of cooperative SUM logic is illustrated
in (Grimson et al. 2007) wherein the downregulation of mRNAs in overex-
pression experiments is larger if the distance between the seeds for transfected
miRNA and endogenous miRNAs is within an optimal range. Alternatively,
an AND gate logic is relevant if both miRNAs must be present:

δi = δ0,i

(

1 + di,1(miRNA1; hi,1) · di,2(miRNA2; hi,2)
)

(11)

λi =
λ0,i

1 + miRNA
hi,1

1 · miRNA
hi,2

2 /γi

.

Other types of regulation, such as non-exclusive or exclusive OR gates, are
also possible and cane be described by similar type of equations.
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2.1 Fold-changes of mRNA and proteins at different

miRNA levels

The silencing effect of miRNA is estimated experimentally by comparing
levels of mRNAs and proteins at two different miRNA levels, usually when
miRNA is present (miRNA > 0) or it is absent(miRNA = 0). Microarray and
proteomic measurements are taken in miRNA mis-expression experiments or
across different tissues, cell-lines or conditions. The steady state levels of
target mRNAs and proteins (i = 1 . . .N) at a given level of the miRNA can
readily be written as

mi =
qi

δ0,i(1 + di(miRNA))
and pi =

λi(miRNA)mi

δp
i

. (12)

Microarrays, SILAC (Baek et al. 2008) and pSILAC (Selbach et al. 2008)
measure fold-changes in mRNAs, protein levels or the number of newly pro-
duced proteins under different conditions. The fold-changes for mRNA and
protein i are given by

FCmRNA
i :=

mi

mi(miRNA = 0)
=

1

1 + di(miRNA)
≤ 1 (13)

FCprot
i :=

pi

pi(miRNA = 0)
=

λi(miRNA)

λi

mi

mi(miRNA = 0)

≤
mi

mi(miRNA = 0)
< 1. (14)

The inequality (14) predicts that downregulation of proteins is larger than
that of mRNAs, as has indeed been observed for the majority of targets (Sel-
bach et al. 2008). It follows immediately from (13) and (14) that

log2FCprot
i = log2FCmRNA

i + Λi, (15)

where
Λi = log2[λi(miRNA)] − log2[λi] < 0.

Here Λi represents direct miRNA-mediated repression of translation that Sel-
bach et al. (2008) computed from experimental data by subtracting the log2
mRNA from the log2 pSILAC fold-changes. Using formula (7) for miRNA-
regulated rate of translation, Λi can be rewritten as

Λi = −log2[1 +
miRNAhi

γi

],
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where hi is the number of seeds acting cooperatively. If miRNA action
on the target i results in relatively large translational repression, so that
miRNAh

i /γi ≫ 1, then

Λi ≈ −log2[
miRNAhi

γi

] = −hilog2[miRNA] + log2[γi]. (16)

It follows from this formula that, for large negative fold-changes, translational
repression measured as log fold-change, is linearly correlated with the number
of seeds, as has indeed been observed by comparing pSILAC and microarray
data (Selbach et al. 2008). The average number of seeds, plotted as a function
of the differences between protein and mRNA fold-changes, exhibits linear
decay towards the regime of equal fold-changes (Figure 5c,d; (Selbach et al.
2008)), indicating that in addition to mediating mRNA downregulation, the
seed also mediates direct repression of translation rates for hundreds of genes.

Selbach et al. (2008) reported that the slope of the average number of
seeds is steeper for pSILAC fold changes than for mRNA fold-changes, sug-
gesting that the multiplicity of a miRNA-binding site in the same 3’UTR
exerts a stronger direct effect on protein production than on mRNA lev-
els. This observation is consistent with (15) and (16), since Λi is directly
proportional to hi.

We have shown that the above formulas reproduce experimental obser-
vations of Selbach et al. (2008). They also suggest that the effect of both
mRNA and translational repression has a weak (logarithmic) dependence on
the level of miRNA itself. To verify this prediction would require further
experimental data from miRNA mis-expression experiments with different
levels of miRNA. Our modelling also predicts that fold-changes in mRNA
and protein levels do not depend on the initial target level. So targets that
are expressed at different levels are downregulated to the same extent pro-
vided the kinetic parameters of the miRNA regulation are the same. Indeed,
the average protein fold-changes (pSILAC data from Selbach et al, 2008) for
targets with seeds in their 3’UTRs as functions of their mRNA levels at con-
trol do not exhibit any pattern in protein fold-changes for a large range of
control intensities (Khanin & Higham 2009, Figure??).
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3 Non-steady-state behaviour

It is also informative to consider non-steady state behaviour of the model (1)–
(2). Fitting the model to temporal microarray and pSILAC (or SILAC) data
upon miRNA transfection/knock-down will yield kinetics of the miRNA-
mediated effect on a target gene’s degradation and translation rates. Indeed,
Khanin & Vinciotti (2008) demonstrated that it is possible to infer kinetic
parameters of miRNA-mediated mRNA degradation using temporal gene
expression data from overexpression experiments. Here we explore scenarios
of miRNA mis-expression experiments wherein miRNA levels quickly change
to a new constant level due to transfection or knock-down.

3.1 MicroRNA levels are constant

If the miRNA level in a cell-line or tissue does not change much with time
post-transfection (or post-knock-down), the value of miRNA in the system
(1)–(2) can be fixed at some arbitrary level and a closed-form solution for
each target mRNA for the transfection experiment can readily be written as:

mi(t) = m0
i e

−δi(miRNA)t + mi(miRNA)(1 − e−δi(miRNA)), (17)

pi(t) = p0
i e

−δpit + pi(miRNA)(1 − e−δpit) (18)

+
λ(miRNA)qi

δ0iδi(miRNA)

δi(miRNA) − δ0i

δpi − δi(miRNA)
(e−δi(miRNA)t − e−δpit),

where the initial levels of target mRNA and protein i are given by

m0
i = mi(miRNA = 0) =

qi

δ0i

, p0
i = pi(miRNA = 0) =

λi

δpi

m0
i (19)

and their levels at new miRNA level are

mi(miRNA) =
qi

δi(miRNA)
, pi(miRNA) =

λi(miRNA)

δpi

mi(miRNA) (20)

The above equations can be used for estimating time-responses of different
targets to miRNA transfection. It is clear that the time-scale for intro-
ducing miRNA-mediated repression is determined by either δpi or δi(miRNA),
whichever is slower. Therefore, the levels of high-turnover proteins (large δpi)
will change rapidly whereas stable proteins (low δpi) will be affected later, as
seen in Figure 2. If the measurements of protein levels by standard techniques
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such as SILAC are done at times less than 10–15h post-transfection, then er-
roneous conclusions will be reached that the “black” protein is downregulated
to a lesser degree than the “grey” protein. Thus, to assess endogenous regu-
lation of mRNA translation by miRNAs, a technique such as pulsed SILAC is
needed to measure directly genome-wide changes in protein synthesis shortly
after changes in miRNA expression (Selbach et al. 2008).

Similarly, the time-course of de-repression (removing miRNA-mediated
repression) can be found by solving equations (1)–(2) with knocking-down
miRNA at t = 0 (miRNA = 0) and initial conditions mRNA(0) = mi(miRNA)
and prot(0) = pi(miRNA). The time-responses for different types of mRNAs
and proteins can be estimated and compared with removing TF-mediated re-
pression, similar to the case of small RNAs as has been done by Shimoni et al.
(2007). The simple model (1)–(2) adequately describes experimental obser-
vations from miRNA transfections and knock-downs as shown above. This
model, however, does not include miRNA-mediated relocation of mRNAs
into P-bodies that can quickly be released into the cytoplasm (Bhattacharyya
et al. 2006). This suggests that to account for quick miRNA-mediated re-
pression and de-repression (Hobert 2008), as occurs when the miRNA profile
drastically changes in a short time-window in development processes or in
response to stress, the step of relocation/release of miRNA:mRNA complexes
from P-bodies and their subsequent translation is required.

3.2 MicroRNA levels are changing

It is quite plausible that miRNA levels are influenced by TFs (Shalgi et al.
2007), or by other miRNAs (Tuccoli et al. 2006). In addition, miRNAs can
decay before they are incorporated into the stable RISC complexes or de-
grade in the process of a few cycles of mRNA binding.The latter can be
accounted for, for example, by introducing a global parameter that repre-
sents the probability for a miRNA to be co-degraded with the mRNA in the
processed state. Additionally, miRNA molecules, incorporated into the RISC
complexes, are sequestered into the target mRNA:miRNA complexes, subse-
quently translocated to the P-bodies. This can be modelled as a multi-step
process, as discussed in section 5. Some of the mRNA:miRNA complexes
might be stored in the P-bodies to be released in response to stress (Bhat-
tacharyya et al. 2006). In miRNA overexpression experiments, the miRNA
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Figure 2: Protein profiles post-transfection with miRNA: (a)-(b) miRNA
experiment: “black” protein has degradation rate that is ten-fold larger then
the that of “grey” protein.

levels can decrease due to cell growth/division, and natural miRNA decay.
The effects that cause miRNA levels to decrease can be lumped together and
considered as a linear decay process of miRNA with the rate δm (Khanin &
Vinciotti 2008):

dmiRNA(t)

dt
= s(t) − δmmiRNA(t). (21)

Here s(t) is the rate of miRNA transcription that might depend on various
TFs. In cell-lines and tissues where a specific miRNA is present, its level can
be approximated by s/δm. In miRNA transfection experiments, the miRNA
level is at its maximum level at the initial (transfection) time: miRNA(0) = 1.
Assuming no production of the miRNA in the cell-line or tissue where it is
normally not present, s(t) = 0, the miRNA temporal profile is determined
by just one parameter, δm: miRNA(t) = e−δmt. Interestingly, the majority of
downregulated target mRNA expression profiles measured for up to 120h in
miR124a transfection show upregulation in the last time-point(s) (Wang &
Wang 2006), thus suggesting that the subsequent upregulation of the target
mRNAs is due to a decrease in the level of the regulator miRNA (Khanin &
Vinciotti 2008).
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3.3 Reconstructing kinetics of mRNA-regulated Single

Input Motif from high-throughput data

Kinetic parameters of the miRNA-mediated target downregulation are dif-
ficult to measure experimentally, but they can be inferred via time-course
high-throughput datasets from miRNA mis-expression experiments using a
minimal model (1)–(2). The first attempt in this direction has been done by
Khanin & Vinciotti (2008), where the authors apply the model to temporal
gene expression data from a miRNA transfection experiment (Wang & Wang
2006). Similarly, kinetics of miRNA-mediated translational repression can be
estimated from protein measurements.

Let us consider the simplest miRNA-regulated gene circuit that involves
one miRNA post-transcriptionally acting on its numerous targets. This
structure is similar to the so-called Single Input Motif (SIM) that is com-
mon in transcription networks (Shen-Orr et al. 2002). A miRNA-SIM has
larger number of targets on average than a TF-SIM. Both types of SIMs are
condition-specific because many targets are presumably subject to control by
other miRNAs or TFs whose levels do not change in the course of the exper-
iment. Their effects are implicitly incorporated in the basal rate-constants
of transcription and degradation of target mRNAs and proteins.

Kinetic parameters of the SIM targets {qi, δi0, λi, δpi, δi(miRNA), λ(miRNA)}N
i=1,

including the unknown profile of the miRNA master regulator that is common
to all targets, can be reconstructed from the high-throughput data (Khanin
et al. 2006). One way of estimating parameters of miRNA-mediated mRNA
degradation from microarray data involving miRNA overexpression is by the
maximum likelihood procedure (Khanin & Vinciotti 2008). This method
applied to the time-course post-transfection with miRNA124a yielded a
miRNA124a half-life of 29h (95% confidence bounds (26h, 50h)). This es-
timate incorporates the effects of free miRNA decay, its sequestering into
P-bodies as well as cell growth (and thereby miRNA dilution). In addition,
it has been observed in this study that the miRNA downregulating effect on
the target mRNA degradation rates can adequately be described by either a
non-linear (4) or a linear model (3). In order to distinguish between the two
models, miRNA mis-expression (overexpression and silencing) experiments
are required where the miRNA levels can be measured. A model that takes
into account multiple sites for the same miRNA on the 3’UTR of the tar-
get mRNAs (5), gives a better fit to some mRNA profiles, so the number of
active seeds, h, can also be estimated from the data. Experiments wherein
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the mRNA expression is measured at different levels of miRNA would be
particularly helpful in determining the miRNA dosage-dependent effect on
the target downregulation. Khanin & Vinciotti (2008) estimated effective
miRNA-mediated fold-change increase in each target mRNA degradation
rate, and the reconstructed basal decay rates of target mRNAs in this study
have a very good correspondence with experimental measurements from an
independent study (Yang et al. 2003), thereby giving a strong support for
this modelling approach. These methods, with extended modelling assump-
tions, and other optimization and inference techniques, such as Bayesian
inference (Rogers et al. 2007), can be applied to new experimental datasets
and will yield kinetic information on miRNA-regulation, as well as miRNA
time-course and biogenesis.

4 Models of miRNA-mediated network mo-

tifs

As different types of high-throughput data accumulate, it is natural to in-
tegrate them together with experimentally verified regulatory relationships
as well as those obtained from bioinformatics tools and existing functional
genomics data (Rajewsky 2006). An initial effort in this direction has been
published for nematodes (Lall et al. 2006). There is now a growing number
of papers that explore the “wiring” of miRNA regulatory relationships to-
gether with known transcriptional regulatory interactions (Cui et al. 2007,
Shalgi et al. 2007, Yu et al. 2008), signal transduction networks (Cui et al.
2006) and protein-protein interactions networks (Liang & Li 2007, Hsu et al.
2008). These networks are constructed by using computational predictions
for miRNA targets and transcription factor binding sites. It appears that
a very large number (up to 43%) of human genes are under combined tran-
scriptional and post-transcriptional regulation (Shalgi et al. 2007). The true
number of human genes that are subject to a dual TF and miRNA regulation
is probably even higher considering the fact that the collection of mammalian
miRNAs is yet incomplete.

Studies of network structures that involve miRNAs and TFs started by
considering just a few experimentally confirmed cases (Hornstein & Shomron
2006). Some network motifs have been experimentally found in C.elegans,
notably a double-negative feedback loop (Hobert 2004). More recently, com-
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posite feedback loops in which a TF that controls a miRNA is itself regulated
by that same miRNA have been shown to be over-represented (Martinez et al.
2008). TFs that control cell proliferation and apoptosis (Myc and E2F), and
crucial pathways, such as the p53 master network, have been found to be
under tight control of several miRNAs (Aguda et al. 2008, Sinha et al. 2008).
The goal now is to identify the over-represented motifs in large networks
and to understand how functionality is related to structure (Shalgi et al.
2007, Tsang et al. 2007, Yu et al. 2008).

Initial kinetic models of gene regulatory circuits with feedback between
miRNAs and TFs have recently appeared (Aguda et al. 2008, Yu et al.
2008, Zhdanov 2009). In these studies, a TF is one of the targets of the
miRNA under consideration, whose transcription rate, s(t) (eqn. 21) is reg-
ulated, positively or negatively, by the same TF (here denoted by P with
cooperativity n):

s(t) = β
P n

(γ + P )n
for activator; s(t) =

β

(γ + P )n
for repressor. (22)

Mathematical models of the basic miRNA-TFs structures demonstrate their
complex and intricate behaviour. The TF-miRNA feedback circuit can op-
erate as the simplest biological switch (Zhdanov 2009), potentially changing
levels of a large number of other targets. Feedback loops often include au-
toregulation of TF (e.g. a cancer network that comprises miR-17-92 cluster,
E2F and Myc (Aguda et al. 2008)). Such autoregulated feedback loops ex-
hibit changes in the steady-state levels of TF and miRNA that go in the same
direction (Aguda et al. 2008). This agrees with experimental observations
on Myc in miR-17-92 cluster in various tumors, but is somewhat counter-
intuitive, as one might expect that a mRNA/protein that is a target of a
miRNA and the miRNA are expressed reciprocally in different tissues—this
has indeed been shown to be the case for many targets (Sood et al. 2006).

The case of two TFs regulating each other with one miRNA regulating
both of them has been shown to be the most significant overrepresented net-
work motif in a human regulatory network (Yu et al. 2008). Mathematical
modelling demonstrated that miRNA stabilizes mutual regulation of two TFs
to resist perturbations. On the other hand, such a motif has the ability to
convert a transient stimulus into a stable and irreversible response. Mathe-
matical modelling of the fundamental structures has already demonstrated
that the basic repressive function of miRNAs when combined with other reg-
ulatory factors can build up more complex and higher-order functions such as

15



fine-tuning, canalization (Hornstein & Shomron 2006) and multi-dimensional
switches.

It must be noted, however, that current models of miRNA-TF feedback
circuits do not take into account the potential impact of numerous other
miRNA targets on the circuit behaviour (Aguda et al. 2008, Yu et al. 2008).
More realistic models of such circuits should be extended to include the po-
tential effect of multiple miRNA targets (Zhdanov 2009, Khanin & Higham
2009). Full models that study functionalities of miRNA-TF network motifs
should also take into account all possible modes of miRNA-mediated target
regulation, i.e. mRNA destabilization and/or repression of translation, and
multiple seeds for a miRNA (cooperativity in equation (5)). According to a
recent study (Yu et al. 2008), there exist two classes of miRNAs: miRNAs
in one class are regulated by TFs, while the other class of miRNAs regulate
TFs. Modelling the behaviour of both miRNA classes requires detailed con-
sideration of how inputs from different types of regulators, miRNAs or TFs,
exert their regulatory effect (equations (10) and (11)). Another feature of
the TF and miRNA regulatory circuits that may be significant is the time
delay between production and regulatory action (Aguda et al. 2008, Xie et al.
2007).

Modelling of networked structures is crucial in unravelling miRNA func-
tionality and its relationship with other regulatory factors. Related ques-
tions include whether miRNA-driven switches or double-negative feedback
loops (Hobert 2004) have any advantage over similar structures that are
controlled on transcriptional level. TF-driven switches and double-negative
feedback loops have been theoretically and computationally studied in great
detail by several authors. Similar studies of basic miRNA-mediated switches
will undoubtedly be performed in the near future, and will reveal the com-
monalities and differences between these structures. It seems likely that
interwoven regulatory combinations of miRNAs and TFs yield robust multi-
dimensional switches that frequently occur in differentiation (RK, unpub-
lished observations).

Below we will briefly discuss how the simple model (1)–(2) can be ex-
tended to include the binding of miRNA to its target mRNAs (Levine et al.
2007b, Khanin & Higham 2009). This brings about miRNA-mediated target
cross-talk if miRNA degrades after a few cycles target mRNA binding.
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5 A multi-step model: including miRNA bind-

ing to target mRNA

The two-step model of (Levine et al. 2007b) is based on plausible biological
assumptions: the binding of miRNA to the mRNA promotes a secondary
process (e.g. ribosome run-off or deadenylation) that ultimately leads to
mRNA accumulation in its processed state, perhaps in P-bodies. The authors
show that the target mRNA and protein levels may be tuned by target-
specific parameters while global effectors may alter this behavior for some,
but not all, miRNA targets in the cell. However, this model erroneously
predicts that the fold-changes in protein levels can not be higher than those
of corresponding mRNAs (eqn. 2 in Levine et al. (2007b)), contrary to
experimental findings (Selbach et al. 2008). This is due to their assumption
that proteins are produced at equal rates from both free and microRNA-
bound mRNAs.

Figure 3: Cartoon of microRNA bindings to mRNA targets

Khanin & Higham (2009) developed a model that takes into account the
miRNA binding to mRNAs, and gives results that are consistent with miRNA
mis-expression experiments (see also (Khanin & Higham 2007)). Here we will
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outline the model assumptions, display the ODE system, and briefly present
the results.

To set up a model, consider a system where a single type of miRNA
targets several different types of mRNA molecules, mi. We assume that each
type of mRNA is produced with its own transcription rate qi and decays with
its own rate δi. The miRNA itself is being produced in the cell with a rate
pm and decays with a rate δm. The model allows mRNA and miRNA to form
a complex, miRNA · mi, with a forward rate βi and a reverse rate β−

i . The
complex miRNA · mi decays at a rate δ⋆

i . Proteins, pi, are being translated
at a rate λi from free mRNAs, mi, and with a rate λ⋆

i from the complexes,
miRNA · mi, and degrade at a rate δp

i . The key downregulating property of
the miRNA is introduced by two constraints:

• δ⋆
i ≥ δi, so that the complex degrades faster than free mRNA, and/or

• λ⋆
i ≥ λi, so that the complex produces protein more slowly than free

mRNA.

The ratios δ⋆
i /δi and λ⋆

i /λi will depend on specific target mRNA and miRNA
base-pairing in and around the seed region. We further suppose that when
the complex degrades, a fixed proportion, 0 ≤ κ ≤ 1, of the miRNA returns
to the pool.

In the case where there are two targets, the ODE model may be written

dm1

dt
= q1 − δ1m1 − β1m1miRNA + β−

1 miRNA · m1

dp1

dt
= λ1m1 − δp

1p1 + λ⋆
1miRNA · m1

dm2

dt
= q2 − δ2m2 − β2m2miRNA + β−

2 miRNA · m2

dp2

dt
= λ2m2 − δp

2p2 + λ⋆
2miRNA · m2

dmiRNA

dt
= pm − δmmiRNA − β1m1miRNA + β−

1 miRNA · m1

− β2m2miRNA + β−

2 miRNA · m2 + δ⋆
1qmiRNA · m1 + δ⋆

2qmiRNA · m2

dmiRNA · m1

dt
= β1m1miRNA− β−

1 miRNA · m1 − δ⋆
1miRNA · m1

dmiRNA · m1

dt
= β1m1miRNA− β−

1 miRNA · m1 − δ⋆
1miRNA · m1.
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This generalizes readily to any number of targets; see (Khanin & Higham
2009).

Although this nonlinear ODE system cannot be solved analytically, it is
possible to analyse the steady state behaviour. It can be shown that the
κ = 1 regime completely uncouples the targets, while 0 ≤ κ < 1 introduces
coupling into the system, wherein the level of achieved miRNA-mediated
repression is dependent on the amount of miRNA itself, the expression level
of the target under consideration and levels of other targets Doench & Sharp
(2004). Indeed, miRNA degradation after several rounds of binding to target
mRNA results in miRNA-mediated target cross-talk, when changing the level
of one target has an effect on the level of other target(s). Increase in the level
of one target can be caused by external signal, or by some feedback in the
circuit itself, wherein one of the targets is a transcription factor for another
one. Additionally, as discussed above, the feedback between target TFs in
the circuit and miRNA can result in changing the levels of the miRNA itself.

To illustrate these effects, in Figure 4 we give computational solutions to
the full ODE model. We show output over a time interval 0 ≤ t ≤ 10, where
at time zero, each species was set to a level of 10. The figure shows the level
of target one protein p1(t), and the level of miRNA, miRNA(t). We set q2 = 1
in the upper picture and and q2 = 25 in the lower picture. We see from the
figure that increasing q2, that is, raising the transcription rate fo the second
target, causes the level of target one protein to rise. This is explained by the
decreased availability of miRNA. The repressive effect of miRNA on target
one has been reduced because more miRNA is binding to the over-abundant
target two.

The figure illustrates that levels of mRNAs that are targets of the same
miRNA are interdependent, via the level of miRNA that affects them. If
the levels of one or several mRNAs increases due to transcriptional control,
the miRNA may become limiting and its downregulating effect on the rest
of the targets will be substantially decreased. If it is crucial to keep other
targets at a low level, then additional controls at either transcriptional or
post-transcriptional level (by combinatorial regulation with another miRNA)
are needed. Indeed, a recent study strongly suggested that coordinated tran-
scriptional and post-transcriptional (p53 and miRNAs mediated) networks
are an integral part of tumorigenesis (Sinha et al. 2008).
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Figure 4: Levels of target one protein and miRNA. In the lower picture,
where q2 = 25, target two mRNA production is much greater and target one
protein production has indirectly benefited. for Parameter values q1 = 5,
δ1 = 1, δ2 = 1, b1 = 50, b2 = 50, b−1 = 0.1, b−2 = 0.1, λ1 = 2, λ2 = 1, δ+

1 = 1,
δ+
2 = 1, λ⋆

1 = 2, λ⋆
2 = 2, pm = 10, δm = 1.1, δ⋆

1 = 100, δ⋆
2 = 100 and κ = 0.5.

Extrapolating from our simple illustration of two targets to the case where
several types of miRNA interact with multiple targets, it becomes clear that
the problem of inferring regulatory relationships directly from mRNA expres-
sion data alone will generally be infeasible due to the high level of cross-talk.

The multi-step model for a large number of targets includes many different
parameters. It is yet to be determined whether rate-constants for miRNA-
mRNA complex formation/dissociation are target specific or whether it is
plausible to assume that the kinetics of the translocation to/from P-bodies is
governed by global parameters that are determined by cell condition (Levine
et al. 2007b).
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The above multi-step model was not designed to address the molecu-
lar mechanism of miRNA action. A very promising step in this direction
has recently been undertaken by Nissan & Parker (2008), who examined by
means of computational analysis the effect of miRNA on different steps in
translation. Kinetic analysis of their model with the rate-constants carefully
estimated from experimental data demonstrate that a miRNA will have a
modest effect on the overall rate of protein production from a specific target
mRNA if the step it affects is not rate-determining. Their model is consis-
tent with the suggestion that miRNAs may primarily repress translational
initiation at a late step. However, the authors demonstrate that the experi-
mental observations used to argue for this suggestion are open for alternative
interpretations (Nissan & Parker 2008).

6 Future prospects

In this review, we described recent progress in computational and mathe-
matical modelling of post-transcriptional gene regulation by miRNAs. We
can divide current approaches into three types or classes. The first approach
deals with computational prediction of miRNA targets. A growing number of
algorithms predict miRNA sites on the targets taking into account miRNA-
mRNA base-pairing and its secondary structures, seed conservation among
species and other sequence characteristics, including AU-richness and prox-
imity of various RNA motifs. Despite various underlying and additional mod-
elling assumptions, all target prediction tools are clearly sequence-based.

Another approach that is gaining momentum is integration of available
predictions from the sequence-based methods together with other regulatory
relationships, such as transcription factors and their targets, into a network-
based approach. Unlike purely transcriptional regulatory networks studied
by many groups, miRNA–TF networks are two dimensional, as each target
(node) can be regulated on two different levels: transcriptional and post-
transcriptional. In addition, regulators in this network, TFs and miRNAs,
mutually regulate each other. Moverover, post-transcriptional regulation in-
volves miRNA-mediated destabilization of target mRNA and/or translational
repression, and the links connecting the two would ideally indicate the mode
of regulation. Study of two-dimensional, directed networks clearly requires
new tools for description, representation, visualization and efficient search
algorithms for over-represented motifs.
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In this chapter, we focused on a third class of models, based on expression

levels. Although we restricted ourselves to kinetic modelling of miRNA-
mediated gene regulation using ordinary differential equations; we note that
equations can easily be translated into stochastic form in order to study ex-
trinsic and intrinsic noise and the cases of low number of molecules (Higham
2007, M.Marba 2009).

With very few exceptions, sequence, network and expression approaches
used in computational studies of miRNA-mediated regulation currently go
pretty much in parallel without much much feedback between them. Clearly,
both network and expression approaches require predictions from sequence

algorithms. In addition, ODE models of over-represented network motifs are
being built and studied. But can the results from thenetwork and ODE based
approaches improve the target prediction tools? In our view, they can. Fu-
ture experimental data should be interpreted by taking into account not only
sequences of the participating mRNAs and proteins, as has been successfully
done in the past (Baek et al. 2008, Selbach et al. 2008). Target prediction
and verification can benefit from including information on expression levels
of miRNAs and mRNAs as well as details of regulatory miRNA–TF struc-
tures. On one hand, Khanin & Higham (2009) have shown theoretically and
verified on pSILAC datasets that targets that are expressed at different lev-
els are downregulated to the same extent (i.e. their fold-changes are equal)
provided the kinetic parameters of the miRNA regulation are the same. On
the other hand, the number of false-positives in lowly expressed mRNAs at
control is likely to be considerably larger than for those mRNAs that are
expressed at higher levels (RK, unpublished observations on pSILAC data).

Dynamic modelling of network structures and pathways from a consor-
tium of datasets that will become available in the next 5–10 years might
therefore point at some additional features that ought to be included in tar-
get prediction algorithms. An important contribution would be to identify
specific conditions when certain miRNA sites are active, as they require co-
operative action from other nearby miRNA sites or RNA-binding proteins,
thereby reducing the fraction of false-positives from the sequence based pre-
dictions. The avalanche of new data sets can be harnessed by integrating
different types of data and studying them computationally, by taking into
account sequences, regulatory relationships, and kinetics simultaneously, in
our effort to elucidate mechanisms and functions of miRNAs.
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