80 research outputs found

    Inference of nonlinear state-space models for sandwich-type lateral flow immunoassay using extended Kalman filtering

    Get PDF
    Copyright [2011] IEEE. This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of Brunel University's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to [email protected]. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.In this paper, a mathematical model for sandwichtype lateral flow immunoassay is developed via short available time series. A nonlinear dynamic stochastic model is considered that consists of the biochemical reaction system equations and the observation equation. After specifying the model structure, we apply the extend Kalman filter (EKF) algorithm for identifying both the states and parameters of the nonlinear state-space model. It is shown that the EKF algorithm can accurately identify the parameters and also predict the system states in the nonlinear dynamic stochastic model through an iterative procedure by using a small number of observations. The identified mathematical model provides a powerful tool for testing the system hypotheses and also inspecting the effects from various design parameters in a both rapid and inexpensive way. Furthermore, by means of the established model, the dynamic changes of the concentration of antigens and antibodies can be predicted, thereby making it possible for us to analyze, optimize and design the properties of lateral flow immunoassay devices.This work was supported in part by the International Science and Technology Cooperation Project of China under Grant 2009DFA32050, Natural Science Foundation of Fujian Province of China under Grants 2009J01280 and 2009J01281

    A hybrid EKF and switching PSO algorithm for joint state and parameter estimation of lateral flow immunoassay models

    Get PDF
    This is the post-print version of the Article. The official published can be accessed from the link below - Copyright @ 2012 IEEEIn this paper, a hybrid extended Kalman filter (EKF) and switching particle swarm optimization (SPSO) algorithm is proposed for jointly estimating both the parameters and states of the lateral flow immunoassay model through available short time-series measurement. Our proposed method generalizes the well-known EKF algorithm by imposing physical constraints on the system states. Note that the state constraints are encountered very often in practice that give rise to considerable difficulties in system analysis and design. The main purpose of this paper is to handle the dynamic modeling problem with state constraints by combining the extended Kalman filtering and constrained optimization algorithms via the maximization probability method. More specifically, a recently developed SPSO algorithm is used to cope with the constrained optimization problem by converting it into an unconstrained optimization one through adding a penalty term to the objective function. The proposed algorithm is then employed to simultaneously identify the parameters and states of a lateral flow immunoassay model. It is shown that the proposed algorithm gives much improved performance over the traditional EKF method.This work was supported in part by the International Science and Technology Cooperation Project of China under Grant 2009DFA32050, Natural Science Foundation of China under Grants 61104041, International Science and Technology Cooperation Project of Fujian Province of China under Grant 2009I0016

    Identification of nonlinear lateral flow immunoassay state-space models via particle filter approach

    Get PDF
    This is the post-print of the Article. The official published version can be accessed from the link below - Copyright @ 2012 IEEEIn this paper, the particle filtering approach is used, together with the kernel smoothing method, to identify the state-space model for the lateral flow immunoassay through available but short time-series measurement. The lateral flow immunoassay model is viewed as a nonlinear dynamic stochastic model consisting of the equations for the biochemical reaction system as well as the measurement output. The renowned extended Kalman filter is chosen as the importance density of the particle filter for the purpose of modeling the nonlinear lateral flow immunoassay. By using the developed particle filter, both the states and parameters of the nonlinear state-space model can be identified simultaneously. The identified model is of fundamental significance for the development of lateral flow immunoassay quantification. It is shown that the proposed particle filtering approach works well for modeling the lateral flow immunoassay.This work was supported in part by the International Science and Technology Cooperation Project of China under Grant 2009DFA32050, Natural Science Foundation of China under Grants 61104041, International Science and Technology Cooperation Project of Fujian Province of China under Grant 2009I0016

    Inferring nonlinear lateral flow immunoassay state-space models via an unscented Kalman filter

    Get PDF
    This paper is concerned with the problem of learning structure of the lateral flow immunoassay (LFIA) devices via short but available time series of the experiment measurement. The model for the LFIA is considered as a nonlinear state-space model that includes equations describing both the biochemical reaction process of LFIA system and the observation output. Especially, the time-delays occurring among the biochemical reactions are considered in the established model. Furthermore, we utilize the unscented Kalman filter (UKF) algorithm to simultaneously identify not only the states but also the parameters of the improved state-space model by using short but high-dimensional experiment data in terms of images. It is shown via experiment results that the UKF approach is particularly suitable for modelling the LFIA devices. The identified model with time-delay is of great significance for the quantitative analysis of LFIA in both the accurate prediction of the dynamic process of the concentration distribution of the antigens/antibodies and the performance optimization of the LFIA devices.This work was supported in part by National Natural Science Foundation of China (Grant No. 61403319), Fujian Natural Science Foundation (Grant No. 2015J05131), Fujian Provincial Key Laboratory of Eco-Industrial Green Technology, and Fundamental Research Funds for the Central Universities

    Recent Advances on Modeling the Lateral Flow Immunoassay

    Get PDF
    The rapid immunochromatographic test strip, also called lateral flow immunoassay (LFIA), has recently attracted considerable research attention in the past decade because of its advantages when applied to a wide variety of point-of-care (POC) tests. This paper reviewed recent advances on modeling the LFIA and summarized their advantages and limitations. It is worth mentioning that there is a growing research interest on the general modeling issue for the LFIA system. In order to optimize LFIA performance for the purpose of quantification, it is of great importance to develop a mathematical model that allows us to simulate dynamic characteristics and also find out the effects of various design parameters in a both rapid and inexpensive way

    Image-based quantitative analysis of gold immunochromatographic strip via cellular neural network approach

    Get PDF
    "(c) 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works."Gold immunochromatographic strip assay provides a rapid, simple, single-copy and on-site way to detect the presence or absence of the target analyte. This paper aims to develop a method for accurately segmenting the test line and control line of the gold immunochromatographic strip (GICS) image for quantitatively determining the trace concentrations in the specimen, which can lead to more functional information than the traditional qualitative or semi-quantitative strip assay. The canny operator as well as the mathematical morphology method is used to detect and extract the GICS reading-window. Then, the test line and control line of the GICS reading-window are segmented by the cellular neural network (CNN) algorithm, where the template parameters of the CNN are designed by the switching particle swarm optimization (SPSO) algorithm for improving the performance of the CNN. It is shown that the SPSO-based CNN offers a robust method for accurately segmenting the test and control lines, and therefore serves as a novel image methodology for the interpretation of GICS. Furthermore, quantitative comparison is carried out among four algorithms in terms of the peak signal-to-noise ratio. It is concluded that the proposed CNN algorithm gives higher accuracy and the CNN is capable of parallelism and analog very-large-scale integration implementation within a remarkably efficient time

    A novel switching delayed PSO algorithm for estimating unknown parameters of lateral flow immunoassay

    Get PDF
    In this paper, the parameter identification problem of the lateral flow immunoassay (LFIA) devices is investigated via a new switching delayed particle swarm optimization (SDPSO) algorithm. By evaluating an evolutionary factor in each generation, the velocity of the particle can adaptively adjust the model according to a Markov chain in the proposed SDPSO method. During the iteration process, the SDPSO can adaptively select the inertia weight, acceleration coefficients, locally best particle pbest and globally best particle gbest in the swarm. It is worth highlighting that the pbest and the gbest can be randomly selected from the corresponding values in the previous iteration. That is, the delayed information of the pbest and the gbest can be exploited to update the particle’s velocity in current iteration according to the evolutionary states. The strategy can not only improve the global search but also enhance the possibility of eventually reaching the gbest. The superiority of the proposed SDPSO is evaluated on a series of unimodal and multimodal benchmark functions. Results demonstrate that the novel SDPSO algorithm outperforms some well-known PSO algorithms in aspects of global search and efficiency of convergence. Finally, the novel SDPSO is successfully exploited to estimate the unknown time-delay parameters of a class of nonlinear state-space LFIA model.This work was supported in part by the Royal Society of the U.K., the Alexander von Humboldt Foundation of Germany, the Natural Science Foundation of China under Grant 61403319, the Fujian Natural Science Foundation under Grant 2015J05131, and the Fujian Provincial Key Laboratory of Eco-Industrial Green Technology

    Quantitative analysis of breast cancer diagnosis using a probabilistic modelling approach

    Get PDF
    Background:Breast cancer is the most prevalent cancer in women in most countries of the world. Many computer aided diagnostic methods have been proposed, but there are few studies on quantitative discovery of probabilistic dependencies among breast cancer data features and identification of the contribution of each feature to breast cancer diagnosis. Methods:This study aims to fill this void by utilizing a Bayesian network (BN) modelling approach. A K2 learning algorithm and statistical computation methods are used to construct BN structure and assess the obtained BN model. The data used in this study were collected from a clinical ultrasound dataset derived from a Chinese local hospital and a fine-needle aspiration cytology (FNAC) dataset from UCI machine learning repository. Results: Our study suggested that, in terms of ultrasound data, cell shape is the most significant feature for breast cancer diagnosis, and the resistance index presents a strong probabilistic dependency on blood signals. With respect to FNAC data, bare nuclei are the most important discriminating feature of malignant and benign breast tumours, and uniformity of both cell size and cell shape are tightly interdependent. Contributions: The BN modelling approach can support clinicians in making diagnostic decisions based on the significant features identified by the model, especially when some other features are missing for specific patients. The approach is also applicable to other healthcare data analytics and data modelling for disease diagnosis

    Development and Performance Evaluation of an Antibody-Based Technology for Detection of E. coli O157 in Meat Samples and Its Potential Evolution Using Antibody Engineering

    Get PDF
    Escherichia coli O157 is a persistent pathogen linked to food and waterborne infectious outbreaks with severe health consequences such as hemorrhagic colitis and hemolyticuremic syndrome (HUS). Because it is considered one of the major pathogens that contributes to the global burden of foodborne disease, its early detection within the food chain is an important milestone towards reducing foodborne diseases and economic losses due to contaminated food. Herein, the development and validation of a lateral flow immunoassay (LFIA) point-of-care (POC) device is described. Application of the LFIA test kit was focused on detection of E. coli O157 in raw meat products due to the fact that ground beef has been one of the major food items implicated in E. coli outbreaks and recalls within Canada. Moreover, the LFIA Test Kit was subjected to an independent validation study based upon Health Canada’s guidelines for the validation of alternative microbiological methods as established in the Compendium of Analytical Methods. The protocol comprised a pre-collaborative study, where the LFIA Test Kit was compared against the reference culture method, MFHPB-10, using eight different raw meat products following an unpaired samples experimental layout. The results demonstrated that the newly developed LFIA Test Kit exceeds the performance parameters criteria established by the Microbiological Methods Committee (MMC), thus suggesting that the LFIA Test Kit represents a reliable alternative for meat producers in order to obtain presumptive presence/absence results in less than one day. The design and expression of a single-chain variable fragment (scFv) targeting E. coli O157 is also presented. Recombinant antibody fragments such as scFv have not been extensively exploited within food safety diagnostics, especially for pathogen detection. Thus, in this project the anti-O157 mouse monoclonal antibody (mAb) used as the detection reagent in the LFIA Test Kit was genetically sequenced prior to bioengineering a scFv that could potentially be used to improve the performance of the LFIA Test Kit

    NASA Thesaurus. Volume 1: Hierarchical listing

    Get PDF
    There are 16,713 postable terms and 3,716 nonpostable terms approved for use in the NASA scientific and technical information system in the Hierarchical Listing of the NASA Thesaurus. The generic structure is presented for many terms. The broader term and narrower term relationships are shown in an indented fashion that illustrates the generic structure better than the more widely used BT and NT listings. Related terms are generously applied, thus enhancing the usefulness of the Hierarchical Listing. Greater access to the Hierarchical Listing may be achieved with the collateral use of Volume 2 - Access Vocabulary
    corecore