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Abstract: The rapid immunochromatographic test strip, also called lateral flow immunoassay (LFIA), has recently 
attracted considerable research attention in the past decade because of its advantages when applied to a wide variety of 

point-of-care (POC) tests. This paper reviewed recent advances on modeling the LFIA and summarized their advantages 
and limitations. It is worth mentioning that there is a growing research interest on the general modeling issue for the LFIA 
system. In order to optimize LFIA performance for the purpose of quantification, it is of great importance to develop a 

mathematical model that allows us to simulate dynamic characteristics and also find out the effects of various design 
parameters in a both rapid and inexpensive way.  
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1. INTRODUCTION 

The lateral flow immunoassay (LFIA), which utilizes 

the specific interaction between antigens and 

antibodies as shown in Figure 1, consists of a porous 

membrane or strip that is often made out of 

nitrocellulose [1-3]. In the past few years, LFIA has 

recently attracted considerable research attention 

because of its advantages such as ease of use, short 

analysis time, low cost, high sensitivity, good 

specificity, satisfactory stability when applied to a wide 

variety of point-of-care (POC) tests [4]. Owing to these 

attractive properties, the LFIA has been widely used in 

many fields including clinical diagnostics [5], food 

safety testing [6], environmental health and safety [7], 

agriculture [8], as well as some emerging areas such 

as molecular diagnostics and theranostics [9]. Many 

organizations and departments, such as World Health 

Organization (WHO), Food and Drug Administration 

(FDA) of the U.S., are concerning with the development 

of immunochromatographic strip techniques. In the 

report of WHO, immunochromatographic strip has been 

recommended for screening part of diseases, and its 

test quality standards have been revised in accordance 

with the standards of International Standards 

Organization (ISO) and the European Union (EU) . 

Although the LFIA technology is widely used in a 

variety of fields, the continuing demand for quantitative 

result and sensitivity has presented great challenge for 

researchers since such a detection method suffers 
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Figure 1: Lateral flow immunoassay architecture. 

from several flaws including poor reproducibility for 

quantitative analysis and hook effects occurred when 

there is a high concentration of analyte in the sample 

[1, 3, 10]. Therefore, most immunochromatographic 

assays can only offer qualitative or semi-quantitative 

results observed directly by naked eyes at present 

which, in turn, significantly limit the application scope of 

these assays [11-15]. Thus, in order to optimize LFIA 

performance for the purpose of quantification, it is of 

great importance to develop a mathematical model that 

allows us to simulate dynamic characteristics and also 

find out the effects of various design parameters in a 

both rapid and inexpensive way. Furthermore, such a 

model could also enable us to optimize LFIA 

performance by providing insights into LFIA operation, 

[3, 16]. Therefore, a series of multidisciplinary 

approaches are needed for the lateral flow quantitative 
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assay development. Hence this motivates the review 

outlined in this paper, which will have great theoretical 

and practical significances in the areas of biomedical 

engineering and signal processing. 

2. METHODS 

Up to now, little research has been done on the 

general modeling issue for the LFIA system. In [16, 17], 

the convection diffusion reaction equations have been 

used to model the LFIA systems and the simulation has 

been carried out by using the COMSOL software. The 

model developed in [18] predicted the optimized 

location of test line on LFIA strip, sample volume and 

total reaction time that is needed to achieve the 

required sensitivity for different analytes. In [19], the 

effect of membrane pore size on lateral diffusion of 

protein molecules in a nitrocellulose membrane has 

been investigated. Very recently, in [3, 20, 21], a 

nonlinear state-space model for sandwich-type LFIA 

system has been developed via the Bayesian filtering 

theories. Furthermore, the expectation maximization 

(EM) algorithm is applied to the modeling of the nano-

gold immunochromatographic assay (Nano-GICA) via 

available time series of the measured signal intensities 

of the test and control lines in [22]. The model for the 

Nano-GICA is developed as the stochastic dynamic 

model that consists of a first-order autoregressive (AR) 

stochastic dynamic process and a noisy measurement. 

Therefore, these methods described above will be 

classified and introduced as follows: 

2.1. Convection Diffusion Reaction Model for the 
Lateral Flow Immunoassay 

In [16,17], a mathematical model based on the 

convection diffusion reaction equations for sandwich 

assays is developed and exploited to study the 

performance of the LFIA device under various 

operating conditions. 

The biochemical reactions of the LFIA signal 

pathway can be summarized as follows [16]: 

1) If the sample contains the target analyte  A , the 
analyte  A  interact with the particulate color particle 
conjugate  P  to form particle-analyte complexe  PA , 
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2) The free analyte  A  and the particle-analyte 
complexe  PA  interact with the immobilized ligands of 
type  R  to form the complexes when migrating into the 
membrane by the capillary action, 

   

A+ R
k

3

k
4

RA  

   

PA+ R
k

5

k
6

RPA  

3) Finally, unbound particulate conjugate  P  may 
bind to the complex  RA  to form the complex  RPA , 

P + RA
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In the above, references [16, 17] assumed that the 
first-order reversible interactions.  

The concentrations of the free target analyte 

  
([A(x, t)]) , the particle–analyte complex 

  
([PA(x, t)]) , the 

free particles 
  
([P(x, t)]) , the ligand–analyte complex 

([RA(x, t)]) , and the ligand–analyte–particle complex 

([RPA(x, t)])  are described by the convection–

diffusion–reaction equations as follows: 
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In the above, 
 
D

A
 and 

 
D

P
 are the molecular 

diffusion coefficients of the analyte and the particles, 

respectively. 
 
F

PA
, 

 
F

RA
, 

  
F

RPA

1  and 
  
F

RPA

2  are the rates of 

formation of the particle–analyte complex ( PA ), the 

ligand–analyte complex ( RA ) and the complex  RPA , 

respectively.  RA  and  RPA  exist only in the capture 

zone and are equal to zero elsewhere. 

Then, the model was used to study the performance 

of the LFIA device under various operating conditions 

by using the COMSOL software. It should be mention 

that, based on the above model, Ragavendar and 

Anmol [18] predicted the optimized location of test line 

on LFIA strip, sample volume and total reaction time 

that is needed to achieve the required sensitivity for 

different analytes on a case to case basis. Therefore, 

this model can be used as a design tool to optimize the 

LFIA strip construction and reagent development 

processes. 



48    Journal of Advances in Biomedical Engineering and Technology, 2015, Vol. 2, No. 1 Zeng et al. 

2.2. Nonlinear State-Space Model for the Lateral 
Flow Immunoassay 

In [3, 20, 21], a nonlinear state-space model is 

considered that consists of the biochemical reaction 

system equations and the observation equation. The 

system state equations describe the dynamics of the 

concentration distribution subject to stochastic 

disturbances, and the system measurements are 

determined in terms of an observation equation 

containing measurement noises. 

According to the biochemical reactions of the LFIA 

signal pathway and the general form of dynamic 

balance equations or kinetic models, the nonlinear 

model for the LFIA consists of a pair of equations as 

follows 

dx

dt
= SV (x(t)) +G(t)w(t)           (1) 

y(t) = g(x(t)) + L(t)v(t)           (2) 

where x(t)  is the vector of state variables which are 

concentrations of antibodies, antigens or complex 

material; y(t)  is the measurement process; SV (x(t))  

with  S  being a stoichiometric matrix that describes the 
biochemical transformation in a biochemical network 

and V (x(t))  being the vector of reaction rates (usually 

the vector of nonlinear function of the state) [23]; G(t)  

and L(t)  are arbitrary time-varying matrices 

independent of x(t)  and y(t) ; g(x(t))  is the 

measurement model function; w(t)  and v(t)  are 

system noise and measurement noise, respectively.  

In order to obtain the nonlinear model for lateral flow 
immunoassay biochemical networks from discretely 
obtained measurements, it is usually essential to 
formulate the discrete-time analogue as follows [23]: 

  
x(k +1) = x(k) + SV (x(k)) + w(k)          (3) 

  
y(k) = g(x(k)) + v(k)           (4) 

Especially, the nonlinear model can be described in 
detail as follows: 
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of A , P , PA , R , RAand RPA , respectively. And, 
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association and dissociation rate constants, 

respectively. 

When the association and dissociation rate 

constants in the vector 
  
V (x(k))  are denoted by 

   
= k

1
, k

2
, , k

9

T

, the model (3)-(4) can be rewritten in 

the following more compact form: 

  
x(k +1) = f (x(k), ) + w(k)  

  
y(k) = g(x(k), ) + v(k)  

where x(k)  is the vector of state variables at the time 

point  k , f (.,.)  is a nonlinear function with  being a 

parameter vector to be identified. w(k)  and v(k)  

denote the zero-mean uncorrelated Gaussian noises 

with covariance matrices 
 
Q

k
 and 

 
R

k
, respectively. 

y(k)  is the measurement data from experiments at the 

time point  k . 

Finally, Bayesian filtering theories such as the 

extend Kalman filter [4], Particl filter [20], hybrid extend 

Kalman filter and particle swarm optimization algorithm 

[21], are applied for joint state and parameter 

estimation of the lateral flow immunoassay model. 

2.3. Stochastic Dynamic Model for the Lateral Flow 
Immunoassay 

Different from the above problems, the focus of the 

paper [22] is on the new research issue of gaining deep 

insight into the relationship between the signal 

intensities of the test and control lines of the nano-gold 

immunochromatographic assay (Nano-GICA). The 

model is viewed as a stochastic dynamic model, which 

consists of the first-order autoregressive (AR) 

stochastic dynamic process and the noisy 

measurement. 

The measured data from the signal intensities of the 

Nano-GICA system are often contaminated by 

measurement noises. 

   
y

i
(k) = x

i
(k) + v

i
(k), i = 1,2, , n, k = 1,2, , m,  

where 
  
y

i
(k)  is the measurement data of the i th value 

of test and control lines at time  k , x
i
(k)  is the i th 

actual value of test and control lines at time  k , v
i
(k)  is 

the measurement noise, n  is the number of states 
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(  n = 2  in this system including the signal intensities of 

the test and control lines) and m  is the measurement 

time points. 
  
v

i
(k)  is assumed as a zero mean 

Gaussian white noise sequence with covariance 
  
V

i
> 0 . 

The Nano-GICA containing n  states is modeled by 

the following stochastic discrete-time dynamic system: 

   

x
i
(k +1) = a

i, j
j=1

n

x
j
(k) + w

i
(k), i = 1,2, , n, k = 1,2, , m,  

where 
  
a

i, j
 represents the relationship and degree 

amongst the value of test and control lines. 
  
a

i, j
> 0  

means the 
 
j th state positive stimulating the i th state 

and, similarly, 
  
a

i, j
< 0  stands for the j th state negative 

repressing the i th state, while a value of zero indicates 

that 
 
j th state does not influence the transcription of 

 i th state. w
i
(k)  is a zero mean Gaussian white noise 

sequence with covariance 
  
W

i
> 0 , and 

  
w

i
(k)  and 

  
v

i
(k)  

are mutually independent. 

After specifying the model structure, the expectation 

maximization (EM) algorithm [22] is applied to handle 

such a system identification problem via available time 

series of the measured signal intensities of the test and 

control lines. By using the EM algorithm, the model 

parameters, the actual signal intensities of the test and 

control lines, as well as the noise intensity can be 

identified simultaneously. Therefore, we could be well 

guided to choose a good feature parameter for the 

purpose of quantification.  

3. CONCLUSION AND FUTURE WORK 

In this paper, we have reviewed recent advances on 

modeling the lateral flow immunoassay. Up to now, the 

modeling issue can be castigated into three methods, 

which are, 1) Convection diffusion reaction equations; 

2) nonlinear state-space model; 3) stochastic dynamic 

model for the LFIA system. Especially, we have 

summarized their advantages and limitations.  

It is worth mentioning that the existing results on the 

issue of modeling the LFIA system have largely 

focused on the chemical reaction kinetics without 

considering the various uncertainties, time-delays, 

random factors and state-variables constraints in the 

biochemical reaction networks between the antigens 

and the antibodies. However this is not always the case 

in practice and significant differences exist widely 

within the LFIA systems. Therefore, there still exist 

many problems on the modeling issue to gain further 

insight into device operation. Especially, a series of 

multidisciplinary approaches are needed for the lateral 

flow quantitative assay development. 
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