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A Hybrid EKF and Switching PSO Algorithm for
Joint State and Parameter Estimation of Lateral

Flow Immunoassay Models
Nianyin Zeng, Zidong Wang, Yurong Li, Min Du and Xiaohui Liu

Abstract—In this paper, a hybrid extended Kalman filter (EKF)
and switching particle swarm optimization (SPSO) algorithm is
proposed for jointly estimating both the parameters and states
of the lateral flow immunoassay model through available short
time-series measurement. Our proposed method generalizes the
well-known EKF algorithm by imposing physical constraints on
the system states. Note that the state constraints are encountered
very often in practice that give rise to considerable difficulties in
system analysis and design. The main purpose of this paper is
to handle the dynamic modeling problem with state constraints
by combining the extended Kalman filtering and constrained op-
timization algorithms via the maximization probability method.
More specifically, a recently developed SPSO algorithm is used to
cope with the constrained optimization problem by converting it
into an unconstrained optimization one through adding a penalty
term to the objective function. The proposed algorithm is then
employed to simultaneously identify the parameters and states of
a lateral flow immunoassay model. It is shown that the proposed
algorithm gives much improved performance over the traditional
EKF method.

Index Terms—lateral flow immunoassay; extended Kalman
filtering; switching particle swarm optimization; constrained
optimization; parameter estimation.
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THE rapid immunochromatographic test strip, also called

lateral flow immunoassay (LFIA), has been extensively

investigated and widely used in many fields over the past

decades owing to its attractive properties such as short analysis

time, ease of use, low cost, high sensitivity, good specificity

and satisfactory stability [26], [43]. Recently, researchers have

been focusing on not only the improvement of the biochemical

properties of the strips via material selection (see e.g. [7],

[11], [16], [34]) but also the development of the quantitative

instruments (see e.g. [5], [6], [8], [17], [18]). On the other

hand, in order to produce strips with high-sensitivity and low

constant of variance for the purpose of quantification, there has

been a growing research interest in establishing a mathematical

model that allows us to predict kinetic characteristics and test

the effects of various design parameters in a both rapid and

inexpensive way. In addition to providing insights into device

operation, such a model could also enable us to optimize

device performance [23], [24], [45].

In [23], [24], the convection diffusion reaction equations

have been used to model the lateral flow immunoassay systems

and the simulation has been carried out by using the COMSOL

software. Very recently, in [45], a nonlinear state-space model

for sandwich-type lateral flow immunoassay has been devel-

oped via the extend Kalman filter (EKF) algorithm. Because of

its versatility and effectiveness, the EKF algorithm is capable

of overcoming some difficulties in system modeling brought

from short time-series data, nonlinearities and incomplete

measurement. Moreover, EKF algorithm performed like the

method used in [38]–[40] is well known for its ability in

estimating the system parameters and system states simultane-

ously. Essentially, the EKF assumes that there is no constraint

on the value of the system states, i.e., the system states

are allowed to be positive, negative or zero. Unfortunately,

this is not true for many practical models. For example, in
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the lateral flow immunoassay model, the concentration of

the materials, the association and dissociation rate constants

should be positive in the real world. Incorporating constraints

(algebraic equality and/or inequality) directly on the system

states in EKF is a non-trivial task because, mathematically, the

recursive nature of the EKF algorithm will no longer be valid

with the state constraints. As such, there is a great need to seek

an alternative approach for tackling the so-called constrained

estimation issue that aims to maintain the nice properties

of EKF algorithm while enforcing the state constraints in

the EKF framework. In search of such an approach, the

maximum probability method [29], [30] appears to be an ideal

candidate for converting the constrained estimation problem

to constrained optimization after each time step of the EKF

algorithm.

On another research forefront, the constrained optimization

problems have recently gain considerable research attention

since they are frequently encountered in many applications

such as engineering design, very large scale integration design,

structural optimization, economics, locations and allocation

problems [22]. In particular, the Particle Swarm Optimiza-

tion (PSO) is a global evolutionary algorithm developed by

Kennedy and Eberhart [12] that stimulates the social behaviors

of birds blocking or fish schooling, etc. The PSO algorithm has

been successfully applied in a variety of fields especially for

unconstrained optimization problems due to its effectiveness

in performing difficult optimization tasks and its convenience

for implementation with fast convergence to a reasonably good

solution [10], [12], [20], [27], [28], [35], [37]. Up to now,

several variants of PSO have been proposed in [10], [20], [27],

[28], [35]. For example, in [35], a switching PSO algorithm

has been developed that introduces a mode-dependent velocity

updating equation with Markovian switching parameters in

order to overcome the contradiction between the local search

and global search. The switching PSO algorithm developed in

[35] can not only avoid the local search stagnating in a local

area and wasting more time on a invalid search but also lead

the swarm move to a more potential area quickly, which helps

to obtain a global search greatly. Although the PSO algorithm

has been developed primarily as the unconstrained optimiza-

tion method, it performs well when used in constrained

optimization problems [22]. It is worth mentioning that the

penalty function approach associated PSO algorithm has been

the most popular constraint-handling technique because of

its simple principle for converting a constrained optimization

problem to an unconstrained optimization one by adding a

penalty term to the objective function [22], [32]. Inspired by

the above discussion, in this paper, we propose to use a non-

stationary multi-stage assignment penalty function ( [22]) to

further improve the switching PSO algorithm in order to deal

with the constrained EKF problem for joint state and parameter

estimation of lateral flow immunoassay models.

In this paper, we aim to develop a hybrid EKF and switching

PSO algorithm for jointly estimating system parameters and

states of the lateral flow immunoassay model through available

short time-series measurement. The identified lateral flow

immunoassay model is proven to be more accurate than the

one obtained from the traditional EKF algorithm. The main

contribution of this paper is mainly threefold. 1) A hybrid EKF

and switching PSO algorithm is proposed to jointly estimate

the states and parameters in a simultaneous way, thereby

generalizing the well-known EKF algorithm with imposed

physical constraints on the system states. 2) The developed

algorithm is applied to model the lateral flow immunoassay

system, which represents the first of few attempts of the kind.

It is shown that the system parameters, actual concentration

distribution of the states, the system noise and measurement

noise in the nonlinear model of lateral flow immunoassay can

all be identified simultaneously through iterative procedure

by using a small number of observations. 3) Comparisons

show that the proposed algorithm provides much improved

performance over the unconstrained extended Kalman filtering.

The rest of this paper is organized as follows. The lateral

flow immunoassay model is introduced in Section II. In

Section III, EKF algorithm with inequality constraints on the

states is introduced by incorporating the maximum probability

method. In Section IV, the switching PSO algorithm for

constrained optimization problems is described. The results

of joint parameter and state estimation by the hybrid EKF and

switching PSO algorithm are discussed in Section V. Finally,

concluding remarks are given in Section VI.

II. THE LATERAL FLOW IMMUNOASSAY MODEL AND

PROBLEM FORMULATION

A typical configuration of lateral flow immunoassay, as

shown in Fig. 1 [3], consists of a variety of materials such

as sample pad, nitrocellulose membrane, conjugate pad and

wicking pad. The primary antibodies are immobilized within

a defined detection zone (test line) on the membrane. The sec-

ondary antibodies are conjugated with reporter particles such
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as colloidal gold, carbon black, fluorescent, or paramagnetic

monodisperse latex particle [1]. In this paper, we focus on the

sandwich format of gold immunochromatographic strip where

the reporter particle uses the colloidal gold nanoparticles. With

the presence of an antigen in the sample, a sandwich-type

assay is formed between the secondary antibody-immobilized

gold nanoparticle immunocomplex and the primary antibody

immobilized on the membrane. After the antigen-antibody

reaction, the red color caused by the accumulation of gold

nanoparticle at that location would appear on the membrane

[1], [26]. The color intensity of the red test line (signal

intensity), which relates directly to the concentration of the

target protein in the standard or spiked samples, is assessed

visually or by a reader system for quantitative analysis [34].

Fig. 1. Lateral flow immunoassay architecture.

In general, the biochemical reactions of the lateral flow

immunoassay signal pathway without consideration of the

control line can be summarized as follows [23]:

1) Assume that the sample contains various target analytes

Ai. When the sample migrates through the conjugate

pad, the analytes interact with the particulate color

particle conjugate P to form particle-analyte complexes

PAi,

Ai + P
k1−⇀↽−
k2

PAi (1)

2) The free analytes in the sample and the particle-analyte

complexes both migrate into the membrane by the

capillary action. Free analytes of type i(Ai) and particle-

analyte complexes PAi interact with the immobilized

ligands of type i(Ri) to form the complexes,

Ai +Ri

k3−⇀↽−
k4

RAi (2)

PAi +Ri

k5−⇀↽−
k6

RPAi (3)

3) Additionally, unbound particulate conjugate P may bind

to the complex RAi to form the complex RPAi,

P +RAi

k7−⇀↽−
k8

RPAi (4)

In this paper, for simplicity, we only consider a single

target analyte in the sample, therefore we drop the subscript

i from the next section. Let x1, x2, x3, x4, x5 and x6 be the

concentration of A,P, PA,R,RA and RPA, respectively. For

demonstration purpose, it is assumed that there is no time-

delay between the biochemical reactions (1)-(4). The rates of

the reactions are defined as follows:

v1 = k1x1x2 − k2x3 (5)

v2 = k3x1x4 − k4x5 (6)

v3 = k5x3x4 − k6x6 (7)

v4 = k7x2x5 − k8x6 (8)

where k1, k3, k5, k7 and k2, k4, k6, k8 are the association and

dissociation rate constants, respectively. The stoichiometrix for

the biochemical reaction of the lateral flow immunoassay is

given by

S =



−1 −1 0 0

−1 0 0 −1

1 0 −1 0

0 −1 −1 0

0 1 0 −1

0 0 1 1


.

Let x = [x1, x2, ..., x6]
T and V = [v1, v2, ..., v4]

T . The

differential equation for the biochemical reactions of the lateral

flow immunoassay is given as follows [31], [33]

dx(t)

dt
= SV (x). (9)

It should be pointed out that the variables x1, x2, x3, x4, x5

and x6 are not measurable/observable. The only observed

signal that can be detected with a reader system is the test

line’s intensity, which is typically either the color intensity

or the phosphor emission intensity or fluorescent [23]. The

signal would be proportional to the concentration of particle-

analyte complexes PA and the complex RPA. In this case,

the observation equation is obtained as follows

y = k9(x3 + x6). (10)

The most general form of the nonlinear model for the

dynamics of biochemical networks is defined by dynamic mass
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balance equations or kinetic models [33], where the system

consists of a pair of equations as follows

dx

dt
= SV (x(t)) +G(t)w(t) (11)

z(t) = g(x(t)) + L(t)v(t) (12)

where x(t) is the vector of state variables which are concen-

trations of antibodies, antigens or complex material; y(t) is the

measurement process; SV (x(t)) with S being a stoichiometric

matrix that describes the biochemical transformation in a

biochemical network and V (x(t)) being the vector of reaction

rates (usually the vector of nonlinear function of the state)

[33]; G(t) and L(t) are arbitrary time-varying matrices inde-

pendent of x(t) and y(t); g(x(t)) is the measurement model

function; w(t) and v(t) are system noise and measurement

noise, respectively. The system noise appearing in (11) is

determined by the structure, reaction rates, and concentrations

of antibodies, antigens or complex material. The system noise

typically results from the transmitted fluctuations of each of

the materials in the biochemical network or fluctuations in the

rates of the basic reactions that affect the state variables. On

the other hand, the measurement noise in (12) is unavoidable

in biochemical systems that might come from the sensor

inaccuracy and environment changes (e.g. light variation). Due

to the random nature as well as the different sources for the

system and measurement noises, it makes sure to assume that

these two kinds of noises are zero-mean uncorrelated Gaussian

noises.

In practice, when modeling biochemical networks from

observed data (time series), discrete-time models play a more

crucial role than their continuous-time counterparts in today’s

digital world. In order to obtain the nonlinear model for lat-

eral flow immunoassay biochemical networks from discretely

obtained measurements, it is usually essential to formulate the

discrete-time analogue as follows [33]:

x(k + 1) = x(k) + SV (x(k)) + w(k) (13)

z(k) = g(x(k)) + v(k) (14)

To facilitate the parameter estimation, in this paper, let

us use θ = [k1, k2, ..., k9]
T to denote the parameters to be

estimated, which are the association and dissociation rate

constants in the vector V (x(k)). Therefore, we can rewrite

the model (13)-(14) in the following more compact form:

x(k + 1) = f(x(k), θ) + w(k) (15)

z(k) = g(x(k), θ) + v(k) (16)

where x(k) is the vector of state variables at the time point

k, f(., .) is a nonlinear function with θ being a parameter

vector to be identified. w(k) and v(k) denote the zero-mean

uncorrelated Gaussian noises with covariance matrices Qk

and Rk, respectively. z(k) is the measurement data from

experiments at the time point k.

It is clear from (15)-(16) that what we need to do is to

identify the parameter vector θ for the purpose of establishing

the lateral flow immunoassay model. In the Ref. [45], the EKF

method is used to estimate the parameters of the model (15)-

(16) from the possibly small number of the measured data. It

has been shown in [45] that the EKF method is able to jointly

estimate the parameters and states simultaneously. However,

in practice, the concentration of the materials, the association

and dissociation rate constants should all be positive and such

a state constraint has not been taken into account in [45].

Therefore, the main aim of this paper is to jointly estimate

the parameters and states of the model (15)-(16) with state

constraints via the hybrid EKF and switching PSO method

from the possibly small number of the measured data.

III. EXTENDED KALMAN FILTERING WITH INEQUALITY

CONSTRAINTS

A. Traditional Extended Kalman Filtering

In this section, for the convenience of the readers, we first

introduce the EKF approach to parameter identification, see

e.g. [4], [15], [41] for more details.

The Kalman filter is the optimum state estimator for a linear

system. If the system is nonlinear, we may use a linearization

process at every time step to approximate the nonlinear system

with a linear time-varying (LTV) system. This LTV system

is then used in the Kalman filter, resulting in an EKF on

the true nonlinear system. Note that although EKF is not

necessarily optimal, it often works very well. Discussions on

the convergence of EKF can be found in [9], [13] and the

references therein.

Consider the following nonlinear system

x(k + 1) = f(x(k)) + w(k) (17)

y(k) = g(x(k)) + v(k) (18)

where k is a non-negative integer, x(k) ∈ Rn is the system

state vector, y(k) ∈ Rr is the observation vector, and w(k)

and v(k) are the system noise and the measurement noise,

respectively. w(k) and v(k) are zero-mean white Gaussian

stochastic sequences with covariance matrices Qk and Rk,
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respectively. Here, f : Rn → Rn is a nonlinear state transition

function and g: Rn → Rr is a nonlinear measurement

function.

The EKF is implemented by the following consecutive

steps:

1) Consider the last filtered state estimate x̂(k|k)
2) Linearize the system dynamics (17) around x̂(k|k)
3) Apply the prediction step of the Kalman filter to the

linearized system dynamics just obtained, yielding x̂(k+

1|k) and P (k+1|k), which are priori state estimate and

error covariance at step k + 1 given knowledge of the

process prior to step k + 1, respectively

4) Linearize the observation equation (18) around x̂(k|k)
5) Apply the filtering or update cycle of the Kalman filter

to the linearized observation dynamics, yielding x̂(k +

1|k + 1) and P (k + 1|k + 1)

Let

Â(k) =
∂f(x(k))

∂x(k)

∣∣∣∣
x(k)=x̂(k|k)

(19)

Ĉ(k) =
∂g(x(k))

∂x(k)

∣∣∣∣
x(k)=x̂(k|k−1)

(20)

Assume that x(0) ∼ N (x0, Px0), w(k) ∼ N (0, Qk), v(k) ∼
N (0, Rk) with Rk > 0, and that {w(k)} and {v(k)} are white

noise processes uncorrelated with x(0) and with each other.

Then, the EKF algorithm can be stated below:

Initialization

For k = 0, set

x̂(0|0) = E[x(0)] = x0,

P (0|0) = E[(x(0)− x0)(x(0)− x0)
T ] = Px0 .

For k = 1, 2, 3, ... compute

Time update (‘Predict’)

State estimate time update: x̂(k|k−1) = f(x̂(k−1|k−1))

Error covariance time update: P (k|k−1) = Â(k−1)P (k−
1|k − 1)Â(k − 1)T +Q(k − 1)

Measurement update (‘Correct’)

Compute the Kalman gain matrix: Kk = P (k|k −
1)Ĉ(k)T [Ĉ(k)P (k|k − 1)Ĉ(k)T +R(k)]−1

Update the estimate with measurement y(k): x̂(k|k) =

x̂(k|k − 1) +Kk[y(k)− g(x̂(k|k − 1))]

Error covariance measurement update: P (k|k) = (I −
KkĈ(k))P (k|k − 1).

In addition, in order to improve the precision of state

estimation and also reduce the possible biases, there is a

need to properly quantify the parameters Q and R in the

EKF algorithm. To tackle this issue, we use the innovation-

based adaptive estimation approach [21], where the covariance

matrices Q(k) and R(k) are estimated and then updated

iteratively according to the following equations:

R(k) = Cvk + Ĉ(k)P (k|k)Ĉ(k)T (21)

Q(k) = KkCvkK
T
k (22)

where Cvk is the innovation covariance matrix computed

through averaging the innovation sequence s(k) inside a

moving estimation window of size N as follows

Cvk =
1

N

k∑
i=k−N+1

s(k)s(k)T (23)

s(k) = y(k)− g(x̂(k|k − 1)). (24)

Based on the above equations, the appropriate values of Q and

R can be determined at each iteration.

Remark 1: EKF has proven to be a very practical method

in the state estimation of nonlinear systems. Augmenting the

unknown parameters to the state vector makes it possible to

use EKF for parameter identification too.

B. The Maximum Probability Method

The EKF algorithm has been successfully used to estimate

the state variables of a dynamic system [4], [33], [41] without

particular constraints. However, in many engineering practice,

there does exist certain restrictions on the system states such as

the positivity constraint. A typical example is the lateral flow

immunoassay model where the concentration of the materials,

the association and dissociation rate constants should all be

positive in the real world. Within the recursive framework of

traditional EKF, it is fundamentally difficult to incorporate the

constraints (algebraic equality and/or inequality) directly on

the system states since this is basically a constrained estima-

tion problem. On the other hand, the maximum probability

method [29], [30] is well known to be capable of converting

the constrained estimation problem to constrained optimization

problem after each time step of the EKF algorithm and,

therefore, this method is chosen to handle the constrained EKF

problem in this paper with applications in state and parameter

estimation for lateral flow immunoassay systems.

Consider the nonlinear dynamical system of (17)-(18) with

the following additional constraint

Dx ≤ d (25)

where D is a known s×n constant matrix with full row rank, s

is the number of constraints, n is the number of state variables
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and s ≤ n. (25) means that each entry of the vector Dx − d

is non-positive. It is known from [2], [29], [30] that, based on

Kalman filtering theory, the state estimate of x maximizes the

conditional probability density function:

P(x|Y ) = (2π)−
n
2 |P |− 1

2 exp

{
−1

2
(x− x)TP−1(x− x)

}
(26)

where n is the dimension of x, P is the covariance of

the Kalman filter estimate, Y denotes the column vector

that contains the measurements {y0, y1, ..., yk}, and x is the

conditional mean of x given the measurements Y .

The constrained EKF can be derived by finding an estimate

x̃ such that the conditional probability P(x̃|Y ) is maximized

and x̃ satisfies the constraint (25). Since maximizing P(x̃|Y )

is equivalent to maximizing its natural logarithm, the problem

to be solved can be expressed as

max lnP(x̃|Y ) =⇒ min(x̃− x)TP−1(x̃− x)

such that Dx̃ ≤ d (27)

So far, it can be seen that the constrained state estimation

problem has been converted into an equivalent constrained

optimization problem that can be solved after each time step

of the EKF algorithm.

IV. SWITCHING PARTICLE SWARM OPTIMIZATION FOR

CONSTRAINED OPTIMIZATION PROBLEMS

A. Switching Particle Swarm Optimization Algorithm

PSO is a popular stochastic optimization algorithm proposed

by Kennedy and Eberhart in 1995 [12]. The main idea of

PSO algorithm was based on the simulation of simplified

social models such as bird flocking and fish schooling. In PSO

[35], a swarm consists of S particles moving around in a D-

dimensional search space. The position of the ith particle is

denoted by a vector, xi(k) = (xi1(k), xi2(k), · · · , xiD(k)),

where xin(k) ∈ [xmin,n, xmax,n] (1 ≤ n ≤ D) with

xmin,n and xmax,n being lower and upper bounds for the

nth dimension, respectively. During the search process, the

particle successively adjusts its position towards the global

optimum according to the two factors: the best position en-

countered by itself (pbest) denoted as pi = (pi1, pi2, · · · , piD)

and the best position in the whole swarm (gbest) de-

noted as pg = (pg1, pg2, · · · , pgD). The velocity of the

ith particle at the kth iteration is represented by vi(k) =

(vi1(k), vi2(k), · · · , viD(k)), and is limited to a maximum

velocity vi,max = (vimax,1, vimax,2, · · · , vimax,D). r1,j and

r2,j are two uniform random number samples from U(0, 1).

The parameters c1 and c2 are called acceleration coefficients,

namely, cognitive and social parameters, respectively. The

velocity and position of the particle at next iteration are

updated according to the following equations:

vi(k + 1) = wvi(k) + c1r1(pi(k)− xi(k))

+c2r2(pg(k)− xi(k)),

xi(k + 1) = xi(k) + vi(k + 1), (28)

where w is the inertia weight. It is shown that a larger inertia

weight tends to facilitate the global exploration and a smaller

inertia weight achieves the local exploration to fine-tune the

current search area [28].

In this paper, a modified version of the traditional PSO

algorithm, namely, switching PSO algorithm [35], is employed

to tackle the constrained optimization problem. The basic

difference between the traditional PSO and the switching PSO

algorithms is that, the contradiction between the local search

and global search in the traditional PSO algorithm is removed

in the switching PSO algorithm. Generally speaking, in the

early search stage, the particle in the swarm should keep its

independence and swarm’s diversity, which helps to enlarge

the search scope and avoid premature problem happening. In

the latter stage of the search process, all the swarms may

converge to the best particle for getting more accurate solution.

In the switching PSO algorithm, a mode-dependent velocity

updating equation with Markovian switching parameters is

introduced to overcome the contradiction between the local

search and global search [35]. The velocity and position of the

particle at next iteration are updated with Markovian jumping

parameters according to the following equations:

vi(k + 1) = w(ξ(k))vi(k) + c1(ξ(k))r1(pi(k)− xi(k))

+c2(ξ(k))r2(pg(k)− xi(k)),

xi(k + 1) = xi(k) + vi(k + 1), (29)

where w(ξ(k)), c1(ξ(k)) and c2(ξ(k)) are the inertia weight

and acceleration coefficients. All of them are mode-dependent

on a non-homogeneous Markov chain ξ(k) (k ≥ 0), which

take values in a finite state space S= {1, 2, · · · , N} with

probability transition matrix Π(k) = (π
(k)
ij )N×N . π

(k)
ij ≥ 0

(i, j ∈ S) is the transition rate from i to j and
∑N

j=1 π
(k)
ij = 1.

Usually, in the initiative stage, the inertia weights w(ξ(k))

and c1(ξ(k)) are larger than those of in the latter stage for

maintaining the swarm diverse, while c2(ξ(k)) is compara-
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tively smaller than that in the early stage for getting the global

optimum more accurately.

In order to maintain a balance between global search and

local search, Π(k) should be adjusted by the current search

information such as the swarm diversity and the current best

solution in the swarm. The diversity of a swarm is used to

describe the distribution of the each individual particle in a

whole field, which can be calculated by the diversity-measure

[35], [36] as follows:

Div(k) =
1

S · |L|

S∑
i=1

√√√√ D∑
d=1

(xid(k)− x̄d(k))2 (30)

where S is the swarm size, |L| is the length of the longest

diagonal in the search space, D is the dimension of the

objective problem, xid is the dth value of the ith particle,

while x̄d is the dth value of the average point x̄ in the whole

swarm that can be computed by:

x̄d(k) =
1

S

S∑
i=1

xid(k). (31)

Let h be a coefficient to be used to differentiate the early

search stage and late search stage. Here, h is chosen as h ∈
[23 ,

4
5 ]. Tmax is the largest iterations for the algorithm. For the

sake of simplicity, we set N = 2. The pseudo code of SPSO

algorithm is described as follows by above discussion [35]:

Initialize the velocity vi and position xi (k = 0).

Set the w(ξ(0)), c1(ξ(0)), c2(ξ(0)), Π(0) and initial mode

s = 1.

while (not satisfying the termination condition)

do

for i = 1 to particle numbers S;

{
Evaluate fitness of every particle;

Update the swarm best solution pg and the particle best

solution pi;

if (0 < k < h∗Tmax) and diversity Div(k) < a set value

increase the χ of Π(k) =

(
χ 1− χ

χ 1− χ

)
(χ ∈

[0.3, 0.7]);

end;

if (k > h ∗ Tmax) and pg < a set value

Π(k) =

(
ρ 1− ρ

ρ 1− ρ

)
(ρ ∈ [0.05, 0.2]);

end;

Calculate particle new velocity vi(k + 1) by Eq.(29);

Calculate particle new position xi(k + 1) by Eq.(29);

k=k+1;

}
end do;

end;

B. The Penalty Function Approach

PSO as a global evolutionary algorithm has been success-

fully applied in a variety of areas especially for unconstrained

optimization problems [10], [12], [20], [27], [28], [35], [37].

Although PSO has been developed primarily as the uncon-

strained optimization method, it also performs well when

used in constrained optimization problems [22] that occur

frequently in the real world. The penalty function approach

has been the most popular constraint-handling technique due

to its simple principle. By using the penalty function approach,

a constrained optimization problem can be converted into a

corresponding unconstrained optimization one by adding a

penalty term to the objective function [22], [32].

In this paper, a non-stationary multi-stage assignment

penalty function [22] is used to cope with the constrained

optimization. The penalty function is defined as

F (x) = f(x) + h(k)H(x), x ⊂ Rn (32)

where f(x) is the original objective function of the constrained

optimization problem in Eq. (25); h(k) is a dynamically

modified penalty value with k being the algorithm’s current

iteration number; and H(x) is a penalty factor defined as

H(x) =
s∑

i=1

θ(qi(x))qi(x)
γ(qi(x)) (33)

where qi(x) = max{0, gi(x)} (i = 1, ..., s), the function

qi(x) is a relative violated function of the constraints, s is the

number of the constrains, θ(qi(x)) is a multi-stage assignment

function, γ(qi(x)) is the power of the penalty function, and

gi(x) = Dx− d are the constraints described in Eq. (25).

Finally, the flowchart of our purposed hybrid EKF and

Switching PSO algorithm is presented in Fig. 2

V. SIMULATION RESULTS AND DISCUSSION

In this section, the proposed novel hybrid EKF and switch-

ing PSO method is utilized to joint state and parameter

estimation of the sandwich-type lateral flow immunoassay

model via the short time series data used in the Ref. [45].
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Yes
Time update‘Predict’

 Satisfy constrained?
InitialiseMeasurement update‘Correct’

Constrained optimizationSwitching Particle Swarm Optimization
extended Kalman FilterMaximum probability method No

Fig. 2. The flowchart of the hybrid EKF and Switching PSO
algorithm.

Take

x0 =[5, 6.5, 0, 13, 0, 0]T ,

k0 =[0.03, 0.0001, 0.01, 0.0001, 0.04, 0.0001, 0.04, 0.0001, 2.2]T

as the initial values of the state variables and parameters,

respectively. Regarding the penalty function parameters, we

use the same values as used in [22], [44]. Specifically, if

qi(x) < 1, then γ(qi(x)) = 1, otherwise γ(qi(x)) = 2.

Moreover, if qi(x) < 0.001, then θ(qi(x)) = 10; else, if

qi(x) ≤ 0.1, then θ(qi(x)) = 20; else, if qi(x) ≤ 1, then

θ(qi(x)) = 100; otherwise θ(qi(x)) = 300. The function h(.)

is set as h(k) =
√
k. Both the identified state variables and

parameters are shown in Fig. 3 and Fig. 4, which are depicted

in the form of time series. The time series for error covariances

is also obtained, simultaneously, which are plotted in Fig. 5

and Fig. 6. Fig. 7 shows the time series for the noise variance

Qk and Rk.

It is observed from Fig. 3 and Fig. 4 that the simulated

results satisfy the constraints on the state variables, i.e., the

concentration of the materials, the association and dissociation

rate constants should be positive. Also, we can see from Fig. 5

and Fig. 6 that the estimation covariances are small, which

means that our model fits the data very well.

Furthermore, to evaluate the model quality in a quantitative
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way, let us introduce the following criterion for the modeling

errors (error ratio in percentage) between the actual and the

model predicted data [19], [42]:

Error ratio = 100× 1

l

l∑
c=1

[√∑s
k=1(yck − ŷck)2∑s

k=1(yck)
2

]
% (34)

where l is the number of observations (dimension) involved

in the modeling (l=1 in this paper); s is the number of

observations (length), and yck is the actual value for cth

observation at the kth time point. The results are given in

Table I. It can be concluded that the model identified by

the proposed algorithm does make more practical sense than

the unconstrained EKF. It is noticed that the error ratio of

the proposed algorithm is bigger than the unconstrained EKF

through only 45 time points (images), which is mainly due to

the positivity constraints on the system states.

TABLE I
QUANTITATIVE MODEL EVALUATION FOR TIME SERIES WITH DIFFERENT

CONCENTRATIONS

Experiment Unconstrained Constrained
Error ratio 1.05% 3.26%

VI. CONCLUSIONS

In this paper, we have presented a hybrid EKF and switch-

ing PSO algorithm for incorporating inequality constraints

on the system states. Note that such constraints are often

ignored within the framework of extended Kalman filtering

theory. By using the maximization probability method, the

constraints on state variables in dynamic state estimation

problem can be handled by combining the EKF algorithm with

a constrained optimization problem. Then, the constrained

optimization problem has been solved by a recently proposed

switching PSO algorithm together with the penalty function

method. In the end, the proposed algorithm has been success-

fully applied to identify the constrained parameters and states

of the lateral flow immunoassay model simultaneously. The

simulation results has demonstrated the effectiveness of the

proposed method.
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