15,285 research outputs found

    Emotions in context: examining pervasive affective sensing systems, applications, and analyses

    Get PDF
    Pervasive sensing has opened up new opportunities for measuring our feelings and understanding our behavior by monitoring our affective states while mobile. This review paper surveys pervasive affect sensing by examining and considering three major elements of affective pervasive systems, namely; “sensing”, “analysis”, and “application”. Sensing investigates the different sensing modalities that are used in existing real-time affective applications, Analysis explores different approaches to emotion recognition and visualization based on different types of collected data, and Application investigates different leading areas of affective applications. For each of the three aspects, the paper includes an extensive survey of the literature and finally outlines some of challenges and future research opportunities of affective sensing in the context of pervasive computing

    Determining what people feel and think when interacting with humans and machines

    Get PDF
    Any interactive software program must interpret the users’ actions and come up with an appropriate response that is intelligable and meaningful to the user. In most situations, the options of the user are determined by the software and hardware and the actions that can be carried out are unambiguous. The machine knows what it should do when the user carries out an action. In most cases, the user knows what he has to do by relying on conventions which he may have learned by having had a look at the instruction manual, having them seen performed by somebody else, or which he learned by modifying a previously learned convention. Some, or most, of the times he just finds out by trial and error. In user-friendly interfaces, the user knows, without having to read extensive manuals, what is expected from him and how he can get the machine to do what he wants. An intelligent interface is so-called, because it does not assume the same kind of programming of the user by the machine, but the machine itself can figure out what the user wants and how he wants it without the user having to take all the trouble of telling it to the machine in the way the machine dictates but being able to do it in his own words. Or perhaps by not using any words at all, as the machine is able to read off the intentions of the user by observing his actions and expressions. Ideally, the machine should be able to determine what the user wants, what he expects, what he hopes will happen, and how he feels

    Multimodal Observation and Interpretation of Subjects Engaged in Problem Solving

    Get PDF
    In this paper we present the first results of a pilot experiment in the capture and interpretation of multimodal signals of human experts engaged in solving challenging chess problems. Our goal is to investigate the extent to which observations of eye-gaze, posture, emotion and other physiological signals can be used to model the cognitive state of subjects, and to explore the integration of multiple sensor modalities to improve the reliability of detection of human displays of awareness and emotion. We observed chess players engaged in problems of increasing difficulty while recording their behavior. Such recordings can be used to estimate a participant's awareness of the current situation and to predict ability to respond effectively to challenging situations. Results show that a multimodal approach is more accurate than a unimodal one. By combining body posture, visual attention and emotion, the multimodal approach can reach up to 93% of accuracy when determining player's chess expertise while unimodal approach reaches 86%. Finally this experiment validates the use of our equipment as a general and reproducible tool for the study of participants engaged in screen-based interaction and/or problem solving

    First impressions: A survey on vision-based apparent personality trait analysis

    Get PDF
    © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Personality analysis has been widely studied in psychology, neuropsychology, and signal processing fields, among others. From the past few years, it also became an attractive research area in visual computing. From the computational point of view, by far speech and text have been the most considered cues of information for analyzing personality. However, recently there has been an increasing interest from the computer vision community in analyzing personality from visual data. Recent computer vision approaches are able to accurately analyze human faces, body postures and behaviors, and use these information to infer apparent personality traits. Because of the overwhelming research interest in this topic, and of the potential impact that this sort of methods could have in society, we present in this paper an up-to-date review of existing vision-based approaches for apparent personality trait recognition. We describe seminal and cutting edge works on the subject, discussing and comparing their distinctive features and limitations. Future venues of research in the field are identified and discussed. Furthermore, aspects on the subjectivity in data labeling/evaluation, as well as current datasets and challenges organized to push the research on the field are reviewed.Peer ReviewedPostprint (author's final draft

    FAMOS: a framework for investigating the use of face features to identify spontaneous emotions

    Get PDF
    © 2017, Springer-Verlag London Ltd., part of Springer Nature. Emotion-based analysis has raised a lot of interest, particularly in areas such as forensics, medicine, music, psychology, and human-machine interface. Following this trend, the use of facial analysis (either automatic or human-based) is the most common subject to be investigated once this type of data can easily be collected and is well accepted in the literature as a metric for inference of emotional states. Despite this popularity, due to several constraints found in real-world scenarios (e.g. lightning, complex backgrounds, facial hair and so on), automatically obtaining affective information from face accurately is a very challenging accomplishment. This work presents a framework which aims to analyse emotional experiences through spontaneous facial expressions. The method consists of a new four-dimensional model, called FAMOS, to describe emotional experiences in terms of appraisal, facial expressions, mood, and subjective experiences using a semi-automatic facial expression analyser as ground truth for describing the facial actions. In addition, we present an experiment using a new protocol proposed to obtain spontaneous emotional reactions. The results have suggested that the initial emotional state described by the participants of the experiment was different from that described after the exposure to the eliciting stimulus, thus showing that the used stimuli were capable of inducing the expected emotional states in most individuals. Moreover, our results pointed out that spontaneous facial reactions to emotions are very different from those in prototypic expressions, especially in terms of expressiveness

    Machine Analysis of Facial Expressions

    Get PDF
    No abstract
    corecore