29 research outputs found

    Hybrid UHF/UWB antenna for passive indoor identification and localization systems

    Get PDF
    WOS:000312996000040 (NÂș de Acesso Web of Science)There is a growing interest for simultaneous identification and centimetre-resolution localization of multiple targets in indoor environments. A hybrid passive UHF/UWB RFID concept has been recently proposed that conciliates the potential from high resolution UWB impulse radio with the typical range from UHF-RFID identification systems. This paper proposes a new planar antenna for hybrid passive tag systems, which operates both in the UHF-RFID band and in the FCC UWB band. The co-designed UHF and UWB antenna elements are printed back-to-back on each side of a common substrate with appropriate topology for future integration with a single UHF-UWB RFID chip. Experimental tests have shown that both UHF-RFID and UWB performance of the hybrid antenna are comparable to available commercial solutions that work just on a single band. The antenna is adequate for low-cost mass production of hybrid passive tags. It aims at low-cost passive RFID systems combining the ability of item identification with precise tracking in indoor environments

    Soft-connected Rigid Body Localization: State-of-the-Art and Research Directions for 6G

    Full text link
    This white paper describes a proposed article that will aim to provide a thorough study of the evolution of the typical paradigm of wireless localization (WL), which is based on a single point model of each target, towards wireless rigid body localization (W-RBL). We also look beyond the concept of RBL itself, whereby each target is modeled as an independent multi-point three-dimensional (3D), with shape enforced via a set of conformation constraints, as a step towards a more general approach we refer to as soft-connected RBL, whereby an ensemble of several objects embedded in a given environment, is modeled as a set of soft-connected 3D objects, with rigid and soft conformation constraints enforced within each object and among them, respectively. A first intended contribution of the full version of this article is a compact but comprehensive survey on mechanisms to evolve WL algorithms in W-RBL schemes, considering their peculiarities in terms of the type of information, mathematical approach, and features the build on or offer. A subsequent contribution is a discussion of mechanisms to extend W-RBL techniques to soft-connected rigid body localization (SCW-RBL) algorithms

    Localization System Supporting People with Cognitive Impairment and Their Caregivers

    Get PDF
    Localization systems are an important componentof Ambient and Assisted Living platforms supporting personswith cognitive impairments. The paper presents a positioningsystem being a part of the platform developed within the IONISEuropean project. The system’s main function is providing theplatform with data on user mobility and localization, whichwould be used to analyze his/her behavior and detect dementiawandering symptoms. An additional function of the system islocalization of items, which are frequently misplaced by dementiasufferers.The paper includes a brief description of system’s architecture,design of anchor nodes and tags and exchange of data betweendevices. both localization algorithms for user and item positioningare also presented. Exemplary results illustrating the system’scapabilities are also included

    Intelligent Luminaire based Real-time Indoor Positioning for Assisted Living

    Full text link
    This paper presents an experimental evaluation on the accuracy of indoor localisation. The research was carried out as part of a European Union project targeting the creation of ICT solutions for older adult care. Current expectation is that advances in technology will supplement the human workforce required for older adult care, improve their quality of life and decrease healthcare expenditure. The proposed approach is implemented in the form of a configurable cyber-physical system that enables indoor localization and monitoring of older adults living at home or in residential buildings. Hardware consists of custom developed luminaires with sensing, communication and processing capabilities. They replace the existing lighting infrastructure, do not look out of place and are cost effective. The luminaires record the strength of a Bluetooth signal emitted by a wearable device equipped by the monitored user. The system's software server uses trilateration to calculate the person's location based on known luminaire placement and recorded signal strengths. However, multipath fading caused by the presence of walls, furniture and other objects introduces localisation errors. Our previous experiments showed that room-level accuracy can be achieved using software-based filtering for a stationary subject. Our current objective is to assess system accuracy in the context of a moving subject, and ascertain whether room-level localization is feasible in real time

    A new device to track and identify people in a multi-residents context

    Get PDF
    In recent years, technologies for monitoring people inside a house lead to the development of smart home. However, the vast majority of works deals only in monitoring the activities of a single inhabitant. Nevertheless, most of the people in the current context of ageing population does not live alone. Recognizing the activities performed by each inhabitant in a house is an important challenge. A first step to achieve this is to be able to distinguish where each inhabitant is in the house. In this paper, we present a new device to track and identify people in a multi-residents context. Experiments have been conducted to validate the reliability and accuracy of the proposed device

    Feasibility of LoRa for Smart Home Indoor Localization

    Get PDF
    With the advancement of low-power and low-cost wireless technologies in the past few years, the Internet of Things (IoT) has been growing rapidly in numerous areas of Industry 4.0 and smart homes. With the development of many applications for the IoT, indoor localization, i.e., the capability to determine the physical location of people or devices, has become an important component of smart homes. Various wireless technologies have been used for indoor localization includingWiFi, ultra-wideband (UWB), Bluetooth low energy (BLE), radio-frequency identification (RFID), and LoRa. The ability of low-cost long range (LoRa) radios for low-power and long-range communication has made this radio technology a suitable candidate for many indoor and outdoor IoT applications. Additionally, research studies have shown the feasibility of localization with LoRa radios. However, indoor localization with LoRa is not adequately explored at the home level, where the localization area is relatively smaller than offices and corporate buildings. In this study, we first explore the feasibility of ranging with LoRa. Then, we conduct experiments to demonstrate the capability of LoRa for accurate and precise indoor localization in a typical apartment setting. Our experimental results show that LoRa-based indoor localization has an accuracy better than 1.6 m in line-of-sight scenario and 3.2 m in extreme non-line-of-sight scenario with a precision better than 25 cm in all cases, without using any data filtering on the location estimates

    A Review of Hybrid Indoor Positioning Systems Employing WLAN Fingerprinting and Image Processing

    Get PDF
    Location-based services (LBS) are a significant permissive technology. One of the main components in indoor LBS is the indoor positioning system (IPS). IPS utilizes many existing technologies such as radio frequency, images, acoustic signals, as well as magnetic sensors, thermal sensors, optical sensors, and other sensors that are usually installed in a mobile device. The radio frequency technologies used in IPS are WLAN, Bluetooth, Zig Bee, RFID, frequency modulation, and ultra-wideband. This paper explores studies that have combined WLAN fingerprinting and image processing to build an IPS. The studies on combined WLAN fingerprinting and image processing techniques are divided based on the methods used. The first part explains the studies that have used WLAN fingerprinting to support image positioning. The second part examines works that have used image processing to support WLAN fingerprinting positioning. Then, image processing and WLAN fingerprinting are used in combination to build IPS in the third part. A new concept is proposed at the end for the future development of indoor positioning models based on WLAN fingerprinting and supported by image processing to solve the effect of people presence around users and the user orientation problem

    Long short-term memory for indoor localization using WI-FI received signal strength and channel state information

    Get PDF
    Indoor location information is increasing in importance in contemporary communication services and applications. In this paper, we discuss the long short-term memory (LSTM) performance for indoor localization in non-line-of-sight (NLoS) conditions using the received signal strength (RSS) and channel state information (CSI) obtained from Wi-Fi signals. As such, we describe the CSI and RSS acquisition system that is used to build a rich dataset to experiment with classical machine learning and deep learning models. The distance range error matrix is combined with the confusion matrix to obtain the distance range error probability where we have demonstrated that the LSTM model exhibits a maximum range error of less than 5 m with 4% probability
    corecore