
 

Abstract— Indoor location information is increasing in 
importance in contemporary communication services and 
applications. In this paper, we discuss the long short-term 
memory (LSTM) performance for indoor localization in 
non-line-of-sight (NLoS) conditions using the received 
signal strength (RSS) and channel state information (CSI) 
obtained from Wi-Fi signals. As such, we describe the CSI 
and RSS acquisition system that is used to build a rich 
dataset to experiment with classical machine learning and 
deep learning models. The distance range error matrix is 
combined with the confusion matrix to obtain the distance 
range error probability where we have demonstrated that 
the LSTM model exhibits a maximum range error of less 
than 5 m with 4% probability.   

Index Terms— Indoor localization, Deep learning (DL), Wi-Fi, 
Receiver signal strength (RSS), Channel state information (CSI), Long 
short-term memory (LSTM), Error probability. 

I. INTRODUCTION

resently, indoor localization is making the news in the high-
tech and new technology sector. Indoor localization has 
recently received a lot of attention due to the potential use 

of a wide range of intelligent services. The exploitation of the 
Wi-Fi signal for calculating the location of a target device is one 
of the most widespread and sought-after technologies. In 
particular, Wi-Fi access points are widely deployed in any 
indoor environment. By analyzing different technologies and 
algorithms, we have concluded that the Wi-Fi-based method 
has proven to be a promising approach for determining the 
location of a device where existing indoor tracking methods 
rely on obtaining the channel state information (CSI), or 
obtaining approximate received signal strength (RSS) via a 
personal computer [1]. 

Indoor localization and navigation for mobile devices is a 
growing market with the expected size of 4 billion $ [1]. Indoor 
location information is growing in importance in modern 
communication services and applications [2] such as ambient 
assisted living and health applications for older adults by 
making them able to control their health conditions [3, 4]. 
Robotics is also one of the main applications of indoor 
localization to avoid obstacles [5]. Location is not only 
necessary for location-based services, it also has multiple uses 
in cyber-physical systems, such as intelligent transport systems 
and robotics in 5G networks [6]. 

Actually, these systems use radio signals, electromagnetic 
fields, or other information collected by different types of 
sensors with diverse technologies such as Wi-Fi, Bluetooth, 
ZigBee, and ultrasounds, to name a few [7]. These approaches 
vary significantly in terms of accuracy, coverage, efficiency, 
security, and reliability, which remain imperative obstacle in 
the indoor localization  [7], [8]. Different indoor localization 
methods can be generally classified into three main groups 
according to the modelling information that are used: received 
signal strength (RSS)-based methods, angle-of-arrival (AoA)-
based methods and time-of-arrival (ToA)-based localization 
algorithms [8] and channel state information (CSI).  

For example, [8] and [2] discuss a customized UWB system 
and a modified Wi-Fi system to acquire metrics other than RSS. 
After transforming the 802.11 wideband signal into narrowband 
pulses, the WiSee system [9] uses Short Term Fourier 
Transform Pre-Processing (STFT) to derive different 
discriminating characteristics. Alternately, [2] presents an 
approach to indoor localization using a convolutional neural 
network (CNN) for channel classification and telemetry error 
regression on raw one-dimensional CSI traces. In [10], the 
authors present a deep learning (DL) approach using measures 
of transmission channel quality, including RSS and channel 
state information (CSI). They divide a rectangular room plan 
into two-dimensional blocks. Each block is treated as a class 
and defines the location as a classification problem. Using RSS 
and CSI, they developed four deep neural networks 
implemented using multi-layer perceptrons (MLPs) and one-
dimensional convolutional neural networks (1-D-CNN) to 
estimate the position of objects in the room. Experimental 
results show that the 1-D-CNN network using CSI information 
can achieve excellent positioning performance. In [8] the 
authors used the long short-term memory (LSTM) for activity 
recognition in addition to other conventional machine learning 
(ML) techniques, such as the hidden Markov model (HMM).
Even if the LSTM approach suffers from long training time, it
is shown to outperform the ML techniques.

The traditional fingerprint-based Wi-Fi positioning system is 
easy to measure and requires little hardware, so RSS vectors 
from different access points are used as fingerprints. However, 
even in a static environment, the instability of RSS will change 
over time at a fixed location. Furthermore, RSS is approximate 
information, which can lead to confusion between adjacent 
locations and ultimately reduce the performance of the 
positioning system. With the development of a new generation 
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of Wi-Fi Network Interface Cards (NICs) supporting IEEE 
802.11n, with Orthogonal Frequency Division Multiplexing 
(OFDM) and Multiple Input Multiple Output (MIMO) 
technologies, it is now possible to extract the channel state 
information (CSI) from certain NICs, such as Intel Wi-Fi 
Wireless Link 5300. 

The main contributions of this paper are: 
1. We describe our WIFI CSI acquisition system that we used 

to acquire both the RSS and the CSI.
2. We exploit the RSS and the CSI using machine and deep

learning techniques for indoor localization applications.
Particularly, we will introduce the LSTM model in
comparison with other techniques such as those studies in
[2], [8] and [10]. To our knowledge, this is the first work
that uses both RSS and CSI with LSTM model. The
proposed model outperforms state of the art proposals in
[2] and [8] while competing those proposals that use deep
convolutional neural networks such as [10].

3. Finally, since the localization problem is treated as a
classification problem, a localization error range is
presented to evaluate the models beyond the coarse
localization accuracy performance metric where the
minimum and maximum distance range matrix is
combined with the confusion matrix to obtain the distance
range error probability.

The paper is organized as follows: Section II describes the 
system architecture while Section III discusses the 
measurements and the dataset. In Section IV, the LSTM model 
is presented and optimized to address the indoor localization 
application as a classification problem. Therein, the localization 
error range analysis is discussed. Finally, the conclusions are 
drawn and some future research directions are outlined in 
Section V. 

II. SYSTEM ARCHITECTURE

The system architecture for indoor localization is 
conceptually depicted in Fig. 1. The CSI is measured at the 
physical layer to obtain reliable communication. With firmware 
modification, the CSI is accessible via the upper layer. A CSI 
acquisition tool based on the Intel Wi-Fi 5300 Network 
Interface Card [7] is used to measure CSI. The receiver uses the 

Intel NIC 5300 to receive data from the transmitter, namely the 
TP-Link gateway.  

On the other hand, a personal computer (PC) runs a Matlab-
based script to retrieve the collected data. The same PC leverage 
the machine and deep learning models and tools to implement 
the indoor localization application as a classification task.   

III. MEASUREMENTS AND DATASET

This section outlines the measurement procedures for 
collecting the indoor non-line-of-sight (NLoS) classification 
dataset. The measurement campaign includes the collection of 
a NLoS dataset at the campus of the université du Quebec à 
Trois-Rivières (UQTR, Quebec, Canada). The placement of 
access points (APs) and laptops is fixed and known a priori (see 
Fig. 2.a). By changing the place of the transmitter in a lab, the 
receiver can record different raw CSI and RSS and form a 
training dataset.  

 Localization performance is generally affected by the 
complexity of the indoor environment. In order to evaluate the 
robustness of the proposed method, we chose the signal and 
integrated system’s laboratory at UQTR (see Fig.2.a) while 

Fig. 1 System architecture for indoor localization with Intel 
NIC5300 as a receiver and TP-Link as a transmitter. 

a) 

b) 
Fig. 2 a) Experimental environment location at UQTR, and b) the 
measurement reference points at the signal and integrated 
system’s laboratory at UQTR (2488LP) where horizontal distance 
is 𝑑𝑑ℎ = 2m and the vertical distance is 𝑑𝑑𝑣𝑣 = 2m 



adding a reasonable number of obstacles (regular chairs and 
tables we find in a typical lab/office) to increase the complexity 
of the environment. 

The lab is an enclosed space of 8.37 metres long and 7.44 
metres wide. The rectangular area between the offices in the 
room is divided into 10 points. The centre of each point is the 
reference point (or training point), as indicated by the blue 
circle in Fig. 2.b. It is worth noting that similar 
experimentations were conducted in a residential house and 
other facilities. However, due to lack of space and similar 
findings we focus on the lab location at UQTR.  

As depicted in Fig. 1, to build a ML classification model for 
indoor localization, an extensive dataset representing 10 
distinct locations is needed. Since it is very time consuming to 
build an extensive dataset with a large number of predefined 
node locations, we have limited our experimentation to 10 
distinct points to demonstrate how to leverage the RSS and the 
CSI. The transmitter (gateway) is positioned in a fixed location 
based on the 10 points as shown in Fig. 2.b. 

n = 7500 measurements in total were made at every point, 
with almost equal data sizes between locations. The collected 
dataset is organized in the X_input cell array that contains cells 
X1 to Xn, each cell contains is 180 ×1 measurement vector. A 
given vector contains the real and the imaginary parts (2x) of 
the complex valued CSI of the 30 subcarriers of a system 
operating in 1x3 MIMO mode. Note that figure 3 shows a 2x3 
MIMO mode, however, most location were acquired with only 
a single transmit antenna. Let's take an example of the first cell 
(see Fig. 3): the first entry represents the real value of the CSI 
at the first receive antenna from the first transmit antenna, the 
second entry represents the imaginary value of the CSI at the 
first receive antenna from the first transmit antenna, entry 9 
represents the real value of the CSI at the second receive 
antenna from the second transmit antenna, while entry 10 
represents the imaginary value of the CSI at the second receive 
antenna from the second transmit antenna as depicted in Fig. 3. 

IV. INDOOR LOCALIZATION

This section addresses the LSTM model-based classification. 
LSTM is an artificial recurrent neural network (RNN) 
architecture.  An LSTM unit is commonly composed of a cell, 
an input gate, an output gate and a forget gate [11]. The cell 
recalls values at arbitrary time intervals while the 
three gates regulate the flow of information into and out of the 

cell. In other words, the previous network state is not wasted 
and the previous state is utilized for the next prediction. 

As shown in Fig. 4, 180 ×1 vectors of CSI and RSS values 
are provided to the system as input. The input data is first 
normalized using max-min normalization. A portion (70%) of 
the input CSI and RSS vectors are used to train the LSTM 
model. A grid search of the model hyperparameters is 
performed. By examining the training and validation curves, we 
deduced the optimal value of the hyperparameters. Table 1 
depicts the optimal values of these hyperparameters [chap. 6 of 
11]. 

A. Measurements of RSS and CSI
Figures 5 and 6 show the RSS and the absolute CSI over 30

subcarriers in dB scale, respectively. The different colors in the 
figures indicate the signals measured at different 
locations/measurement point. The measurements were shown 
for two different points to illustrate that the changes produced 
by RSS are relatively small, meaning that RSS is less sensitive 
to environmental changes than CSI. 

B. LSTM model’s evaluation
In order to evaluate our proposed model (Table 1), the dataset 

is divided into two categories: training and validation. We 
collected a total of 6 000 training samples and 1 500 validation 
samples. 

On the other hand, we have experimented with several ML 
models which are implemented using Matlab® Toolbox. These 
models include Weighted KNN (W-KNN), quadratic support 
vector machines (Q-SVM), fine KNN and kernel naïve bayes 
(KNB). Only the variants with the highest accuracy are shown 
in Table 2. One can clearly see that both the LSTM and Q-SVM 
are demonstrating outstanding accuracies at 99% and 98%, 

Fig. 3 Data preprocessing for each measurement point 

Fig. 4 Flowcharts of the hyperparameter selection process 

Table 1. Optimal LSTM parameters 
Optimizer Adam 

Learning Rate 0.0065 
Input Layer 180 

Number of Hidden Layers 400 
Batch Size 2000 

Max Epoch 50 
L2Regularization 0.001 



 

respectively, if both the RSS and CSI at different receiving 
antennas are well exploited (not shown here for the lack of 
space, the accuracy is 96% and 97% without RSS). This 
outperformes state of the art proposals in [2] and [8] while 
competing those proposals that use deep convolutional neural 
networks such as [10]. Unfortunately, such coarse accuracy 
metric does not tell the whole story about the localization error. 
For instance, one would be interested to know what is the 
classification error rate for a given range in meters. 

C. Localization error analysis 
This paper presents localization as a classification problem 

and uses the prediction accuracy or prediction error rate to 
evaluate localization performance. 

As we discussed earlier, we divide our lab into 2-by-5 blocks. 
If the target is in a block (class) and what is predicted in another 
block (class), the location system will issue a classification error 
and the location error is proportional to the distance between 
the target block and the predicted one. In this subsection, our 
goal is to convert the prediction error rate to the location error, 
which meets the requirements for the location task. The location 
error is the distance between the position of the reference point 
and the estimated position [10]. 

(a) Localization error for correct prediction 
In the case of correct prediction, the predicted block is the 

target block. In this case, we will consider point 1 as a reference 
point, the minimum localization error is 𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚 = 0 and the 
maximum locates error 𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚 = �(0.5𝑑𝑑ℎ)2 + (0.5𝑑𝑑𝑣𝑣)2 where 
horizontal distance is 𝑑𝑑ℎ = 2m and the vertical distance is 𝑑𝑑𝑣𝑣 =
2m. 

 
Fig. 5 RSS waveforms measured at different reference points. 

 
Fig. 6 CSI waveforms measured at different reference points. 

Table 2. Comparison of prediction accuracy (%) 
Reference 

points LSTM Q-SVM W-KNN Fine 
KNN KNB 

1 94.7 95.7 90.5 92.5 86.4 
2 100.0 96.9 97.3 98.3 100 
3 100.0 98.8 95.1 98.4 100 
4 100.0 99.9 99.6 99.9 99.9 
5 100.0 99.5 96.7 97.9 99.9 
6 96.7 99.1 72.5 84.1 91.5 
7 100.0 97.3 90.1 88.1 96.9 
8 100.0 100.0 98.8 98.0 100 
9 100.0 98.0 93.7 97.1 84.3 
10 98.7 98.7 93.2 92.8 99.5 

Average 99.00 98.40 92.81 94.71 95.84 
 



 

(b) Localization error for incorrect prediction 
In the case of incorrect prediction, the prediction is not the 

target. There are three situations in this case: 

• Horizontal error 
Suppose the reference point is in the center of block 𝑖𝑖, then 

the estimated position will be at any position of the other block 
j in the horizontal direction. In addition, the maximum 
localization error exists when the estimate is in the top right or 
bottom right corner of block 𝑗𝑗. We can calculate the minimum 
and maximum error as 

𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑑𝑑ℎ(|𝑗𝑗 − 𝑖𝑖| − 0.5)                     (1) 

𝑑𝑑𝑚𝑚𝑎𝑎𝑎𝑎 = �((|𝑗𝑗 − 𝑖𝑖| + 0.5)𝑑𝑑ℎ)2 + (0.5𝑑𝑑𝑣𝑣)2        (2) 

where 𝑖𝑖, 𝑗𝑗 = 1,2, … ,5, 𝑑𝑑ℎ is the distance between two horizontal 
neighbours and  𝑑𝑑𝑣𝑣 is the distance between two vertical 
neighbours. In our implementation  𝑑𝑑ℎ = 2𝑚𝑚 and  𝑑𝑑𝑣𝑣 = 2𝑚𝑚. 

• Vertical error 
It is assumed that the reference point is in the middle of the 

block 𝑖𝑖 and that the estimated location at any position of the 
other block 𝑗𝑗 will be in the vertical direction.  

𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑑𝑑ℎ(|𝑗𝑗 − 𝑖𝑖| − 4.5)                         (3) 

𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚 = �((|𝑗𝑗 − 𝑖𝑖| − 4.5)𝑑𝑑ℎ)2 + (|𝑗𝑗 − 𝑖𝑖| − 3.5)𝑑𝑑𝑣𝑣)2   (4) 

• Oblique error 

In this case, the estimated position at each position of the 
other block 𝑗𝑗 will be in the oblique direction of the reference 
point. we can calculate the minimal and maximal error as 

𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚 = �((|𝑗𝑗 − 𝑖𝑖| − 5 − 0.5)𝑑𝑑ℎ)2 + (0.5𝑑𝑑𝑣𝑣)2       (5) 

𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚 = �((|𝑗𝑗 − 𝑖𝑖| − 5 + 0.5)𝑑𝑑ℎ)2 + (1.5𝑑𝑑𝑣𝑣)2       (6) 

As depicted in Table 3, using the formulas (1) to (6) we 
obtain a 10-by-10 matrix of distance [𝑑𝑑𝑖𝑖𝑖𝑖] where each entry has 
two values, a minimum localization error 𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚 and a maximum 
localization error 𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚.  

Combining the distance range error matrix with the 
confusion matrix, we obtain the distance range error probability 
𝑝𝑝(𝑑𝑑), as shown in Table 4 for the reference point # 1 (in Fig. 2). 

Based on the worst accuracy performance using point # 1, the 
LSTM model shows the smallest error probability for distance 
range errors above 5 m.  

It shall be noted that the literature in this field is very 
promising for obtaining good precision in indoor environments. 
However, there are still challenges for future work, such as how 
to use CSI phase information in addition to amplitude, how to 
stabilize the system in different dynamic environments, and 
how to calculate localization error for correct prediction. 
Nevertheless, for the sake of completeness, Table 5 represents 
the performance of proposed LSTM in comparison with other 
approaches as reported in references [2], [8] and [10]. It is time 
consuming to rigorously implement the models in [2], [8] and 
[10]. It is also out of the scope of the current work to provide 

Table 4. Comparison of localization error probability (%) of 
various methods for the reference point # 1 (in Fig. 2) 
Error Range 

(m) LSTM Q-SVM W- KNN Fine 
KNN KNB 

[0.00, 1.41] 94.7 95.7 90.5 92.5 86.4 
[1.00, 3.16] 0 0 0 0 0 
[1.00, 3.16] 0 0 0 0.1 0 
[1.41, 4.24] 4.6 0.9 0.8 0.1 12.9 
[3.00, 5.10] 0 0 0.1 0 0 
[4.24, 5.83] 0 0.7 1.1 1.6 0 
[5.00, 7.07] 0.7 2.7 2.9 2.7 0.7 
[5.83, 7.62] 0 0 0 0 0 
[7.00, 9.06] 0 0 0 0 0 
[7.62, 9.49] 0 0 4.5 2.9 0 

 

Table 5. Comparison of location accuracies (%) for different 
measurement methods based on RSS and CSI. 

Methods Accuracy 
(%) 

SVM [2] 82.50 
MLP [2] 82.90 
CNN [2] 87.40 
LSTM [8] 90.50 
HMM [8] 73.30 
Random forest [8] 64.60 
CNN [10] 99.98 
MLP [10] 99.93 
Proposed LSTM 99.00 
Proposed Q-SVM 98.40 

 

Table 3. 10-by-10 distance range error matrix [𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚 , 𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚] (referred to Fig. 2 for 10-point location) 

 1 2 3 4 5 6 7 8 9 10 
1 [0.00, 1.41] [1.00, 3.16] [3.00, 5.10] [5.00, 7.07] [7.00, 9.06] [1.00, 3.16] [1.41, 4.24] [4.24, 5.83] [5.83, 7.62] [7.62, 9.49] 
2 [1.00, 3.16] [0.00, 1.41] [1.00, 3.16] [3.00, 5.10] [5.00, 7.07] [7.00, 9.06] [1.00, 3.16] [1.41, 4.24] [4.24, 5.83] [5.83, 7.62] 
3 [3.00, 5.10] [1.00, 3.16] [0.00, 1.41] [1.00, 3.16] [3.00, 5.10] [5.00, 7.07] [7.00, 9.06] [1.00, 3.16] [1.41, 4.24] [4.24, 5.83] 
4 [5.00, 7.07] [3.00, 5.10] [1.00, 3.16] [0.00, 1.41] [1.00, 3.16] [3.00, 5.10] [5.00, 7.07] [7.00, 9.06] [1.00, 3.16] [1.41, 4.24] 
5 [7.00, 9.06] [5.00, 7.07] [3.00, 5.10] [1.00, 3.16] [0.00, 1.41] [1.00, 3.16] [3.00, 5.10] [5.00, 7.07] [7.00, 9.06] [1.00, 3.16] 
6 [1.00, 3.16] [7.00, 9.06] [5.00, 7.07] [3.00, 5.10] [1.00, 3.16] [0.00, 1.41] [1.00, 3.16] [3.00, 5.10] [5.00, 7.07] [7.00, 9.06] 
7 [1.41, 4.24] [1.00, 3.16] [7.00, 9.06] [5.00, 7.07] [3.00, 5.10] [1.00, 3.16] [0.00, 1.41] [1.00, 3.16] [3.00, 5.10] [5.00, 7.07] 
8 [4.24, 5.83] [1.41, 4.24] [1.00, 3.16] [7.00, 9.06] [5.00, 7.07] [3.00, 5.10] [1.00, 3.16] [0.00, 1.41] [1.00, 3.16] [3.00, 5.10] 
9 [5.83, 7.62] [4.24, 5.83] [1.41, 4.24] [1.00, 3.16] [7.00, 9.06] [5.00, 7.07] [3.00, 5.10] [1.00, 3.16] [0.00, 1.41] [1.00, 3.16] 
10 [7.62, 9.49] [5.83, 7.62] [4.24, 5.83] [1.41, 4.24] [1.00, 3.16] [7.00, 9.06] [5.00, 7.07] [3.00, 5.10] [1.00, 3.16] [0.00, 1.41] 

 



 

in-depth discussion and comparison against other localization 
systems that resorts to UWB, Bluetooth and ZigBee signals. 

V. CONCLUSION 

In this paper, we have presented an indoor Wi-Fi based 
localization system, which can acquire RSS and CSI 
information. A 99% classification accuracy can be easily 
obtained using DL models such as LSTM and even a simple 
quadratic support vector machines (Q-SVM) can reach more 
than 98% accuracy if both CSI and RSS information are well 
exploited. The proposed model outperforms state of the art 
proposals in [2] and [8] while competing those proposals that 
use deep convolutional neural networks such as [10]. 
Unfortunately, such aggregate score does not tell the whole 
story. As such combining the distance range error and the 
confusion matrix one can readily predict the distance range 
error probability.   
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