938 research outputs found

    Recent Advances and Applications of Fractional-Order Neural Networks

    Get PDF
    This paper focuses on the growth, development, and future of various forms of fractional-order neural networks. Multiple advances in structure, learning algorithms, and methods have been critically investigated and summarized. This also includes the recent trends in the dynamics of various fractional-order neural networks. The multiple forms of fractional-order neural networks considered in this study are Hopfield, cellular, memristive, complex, and quaternion-valued based networks. Further, the application of fractional-order neural networks in various computational fields such as system identification, control, optimization, and stability have been critically analyzed and discussed

    Performance enhancement of multivariable model reference optimal adaptive motor speed controller using error-dependent hyperbolic gain functions

    Get PDF
    The main contribution of this paper is to formulate a robust-adaptive and stable state-space speed control strategy for DC motors. The linear-quadratic-integral (LQI) controller is utilized as the baseline controller for optimal speed-regulation, accurate reference-tracking and elimination of steady-state fluctuations in the motor’s response. To reject the influence of modelling errors, the LQI controller is augmented with a Lyapunov-based model reference adaptation system (MRAS) that adaptively modulates the controller gains while maintaining the asymptotic stability of the controller. To further enhance the system’s robustness against parametric uncertainties, the adaptation gains of MRAS online gain-adjustment law are dynamically adjusted, after every sampling interval, using smooth hyperbolic functions of motor’s speed-error. This modification significantly improves the system’s response-speed and damping against oscillations, while ensuring its stability under all operating conditions. It dynamically re-configures the control-input trajectory to enhance the system’s immunity against the detrimental effects of random faults occurring in practical motorized systems such as bounded impulsive-disturbances, modelling errors, and abrupt load–torque variations. The efficacy of the proposed control strategy is validated by conducting credible hardware-in-the-loop experiments on QNET 2.0 DC Motor Board. The experimental results successfully validate the superior tracking accuracy and disturbance-rejection capability of the proposed control strategy as compared to other controller variants benchmarked in this article

    Complex Dynamics in Fed-Batch Systems: Modeling, Analysis and Control of Alcoholic Fermentations

    Get PDF
    Modeling and control of fed-batch fermentation processes has been a subject of great interest to realize high productivity and yields from the fermentation technique. The goal of this dissertation was to gain insights into how the complex dynamic behaviors exhibited in fed-batch fermentation systems affect the stability of standard single-loop as well as non-standard feedback control structures. Novel PID stability theorems were established to help construct the controller stabilizing regions

    Indirect angle estimation in switched reluctance motor drives using fuzzy logic based motor model

    Get PDF
    Copyright © 2000 IEEEIn this paper, a novel rotor position estimation scheme is described that was developed to overcome the drawbacks of the previous sensorless techniques, which were proposed for switched reluctance (SR) motor drives. It is based on fuzzy-logic, and does not require complex mathematical models or large look up tables. The scheme was implemented by using a digital signal processor. The real-time experimental results given in this paper show that the position estimation method proposed can provide accurate and continual position data over a wide range of speeds (zero/low/high), and can also function accurately at different operating conditions (chopping/single pulse mode and steady state/transient operation).Nesimi Ertugrul and Adrian D. Cheo

    Analysis of a hybrid Genetic Simulated Annealing strategy applied in multi-objective optimization of orbital maneuvers

    Get PDF
    Optimization of orbital maneuvers is one of the main issues in conceptual and preliminary design of spacecraft in different space missions. The main issue in optimization of high-thrust orbit transfers is that the common optimization algorithms such as Genetic Algorithm and Simulated Annealing are not effectual in finding optimal transfer when they are purely used in optimization. In such problems, modified algorithms are required to find the optimal transfer. Such modifications involve consecutive search and dynamic boundary delimitation. This paper presents a direct approach to optimize high-thrust orbit transfers using a hybrid algorithm based on Simulated Annealing and Genetic Algorithm. This multi-objective optimization method considers optimum fuel transfers while minimizing the error of orbital elements at the end of orbital maneuver. Trajectory optimization is conducted based on converting the orbit transfer problem into a parameter optimization one by assigning proper mathematical functions to the variation of thrust vector direction. Optimization problem is solved using intelligent boundary delimitation in a general optimization method. Taking advantage of nonlinear simulation, a technique is proposed to acquire good quantity for optimization variables, which results in enlarged convergence domain. Numerical example of a three dimensional optimal orbit transfer is analyzed and the accuracy of proposed algorithm is presented. Optimality and convergence of the proposed algorithm is discussed by comparing the results obtained by different approaches. Results confirm the efficiency of the proposed hybrid algorithm in comparison to Simulated Annealing and Genetic Algorithm

    Integrated Optimal and Robust Control of Spacecraft in Proximity Operations

    Get PDF
    With the rapid growth of space activities and advancement of aerospace science and technology, many autonomous space missions have been proliferating in recent decades. Control of spacecraft in proximity operations is of great importance to accomplish these missions. The research in this dissertation aims to provide a precise, efficient, optimal, and robust controller to ensure successful spacecraft proximity operations. This is a challenging control task since the problem involves highly nonlinear dynamics including translational motion, rotational motion, and flexible structure deformation and vibration. In addition, uncertainties in the system modeling parameters and disturbances make the precise control more difficult. Four control design approaches are integrated to solve this challenging problem. The first approach is to consider the spacecraft rigid body translational and rotational dynamics together with the flexible motion in one unified optimal control framework so that the overall system performance and constraints can be addressed in one optimization process. The second approach is to formulate the robust control objectives into the optimal control cost function and prove the equivalency between the robust stabilization problem and the transformed optimal control problem. The third approach is to employ the è-D technique, a novel optimal control method that is based on a perturbation solution to the Hamilton-Jacobi-Bellman equation, to solve the nonlinear optimal control problem obtained from the indirect robust control formulation. The resultant optimal control law can be obtained in closedorm, and thus facilitates the onboard implementation. The integration of these three approaches is called the integrated indirect robust control scheme. The fourth approach is to use the inverse optimal adaptive control method combined with the indirect robust control scheme to alleviate the conservativeness of the indirect robust control scheme by using online parameter estimation such that adaptive, robust, and optimal properties can all be achieved. To show the effectiveness of the proposed control approaches, six degree-offreedom spacecraft proximity operation simulation is conducted and demonstrates satisfying performance under various uncertainties and disturbances

    Event-triggered impulsive control for second-order nonlinear multi-agent systems under DoS attacks

    Get PDF
    We investigated impulsive consensus in second-order nonlinear multi-agent systems (MASs) under Denial-of-Service (DoS) attacks. We consided scenarios where the communication network is subjected to DoS attacks, disrupting communication links and causing changes in the communication topology. An event-triggered impulsive control(ETIC) approach is proposed to flexibly address these issues. Additionally, an upper bound on the DoS attack period is introduced. Finally, a numerical example is given to verify the validity of the major results

    Nonlinear Systems

    Get PDF
    Open Mathematics is a challenging notion for theoretical modeling, technical analysis, and numerical simulation in physics and mathematics, as well as in many other fields, as highly correlated nonlinear phenomena, evolving over a large range of time scales and length scales, control the underlying systems and processes in their spatiotemporal evolution. Indeed, available data, be they physical, biological, or financial, and technologically complex systems and stochastic systems, such as mechanical or electronic devices, can be managed from the same conceptual approach, both analytically and through computer simulation, using effective nonlinear dynamics methods. The aim of this Special Issue is to highlight papers that show the dynamics, control, optimization and applications of nonlinear systems. This has recently become an increasingly popular subject, with impressive growth concerning applications in engineering, economics, biology, and medicine, and can be considered a veritable contribution to the literature. Original papers relating to the objective presented above are especially welcome subjects. Potential topics include, but are not limited to: Stability analysis of discrete and continuous dynamical systems; Nonlinear dynamics in biological complex systems; Stability and stabilization of stochastic systems; Mathematical models in statistics and probability; Synchronization of oscillators and chaotic systems; Optimization methods of complex systems; Reliability modeling and system optimization; Computation and control over networked systems

    Time-Delay Systems

    Get PDF
    Time delay is very often encountered in various technical systems, such as electric, pneumatic and hydraulic networks, chemical processes, long transmission lines, robotics, etc. The existence of pure time lag, regardless if it is present in the control or/and the state, may cause undesirable system transient response, or even instability. Consequently, the problem of controllability, observability, robustness, optimization, adaptive control, pole placement and particularly stability and robustness stabilization for this class of systems, has been one of the main interests for many scientists and researchers during the last five decades
    corecore