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Indirect Angle Estimation in Switched Reluctance
Motor Drives Using Fuzzy Logic Based Motor Model

Nesimi Ertugrul, Member, IEEE,and Adrian D. Cheok, Member, IEEE

Abstract—In this paper, a novel rotor position estima-
tion scheme is described that was developed to overcome the
drawbacks of the previous sensorless techniques, which were
proposed for switched reluctance (SR) motor drives. It is based on
fuzzy-logic, and does not require complex mathematical models
or large look up tables. The scheme was implemented by using a
digital signal processor. The real-time experimental results given
in this paper exhibit that the position estimation method proposed
can provide accurate and continual position data over a wide
range of speeds (zero/low/high), and can also function accurately
at different operating conditions (chopping/single pulse mode and
steady state/transient operation).

Index Terms—Fuzzy logic, position sensorless operation,
switched reluctance motor.

I. INTRODUCTION

T HE ACCURATE knowledge of the rotor position is re-
quired for good performance of the switched reluctance

(SR) motor drive. The need for the rotor angle information in
SR motors has been traditionally satisfied by the use of some
form of rotor position sensor. However, in recent years, there
have been extensive research activities to eliminate direct rotor
position sensors, simply by indirectly determining the rotor po-
sition.

A comprehensive review of the existing indirect position de-
tection methods in SR motors was discussed in the reference
[1]. It has been shown in the reference that the indirect position
determination methods can be classified into two major groups:
inserting the low amplitude signals to the motor windings (major
papers in this group include [2]–[4]), and monitoring the actual
motor excitation waveforms (major papers in this group include
[5]–[8], [28]). In [1], observations were also made about the dis-
advantages in the use of direct rotor position sensors.

The expected benefits of the indirect methods are: elimina-
tion of the electrical connections of sensors, reduced size, no
maintenance, insusceptible to the environmental factors, and in-
creased reliability. In addition, the expected features of the indi-
rect methods over the other sensorless schemes should include:
operating at zero speed and higher speed as in the conventional
direct position sensors.

The method explained in this paper is a flux linkage based es-
timation method that uses a fuzzy motor model and estimation
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scheme to determine the position of the rotor over a wide range
of practical operating conditions. As well known, motor drives
are usually electrically noisy environments, and practical mea-
surement systems are normally subject to error and inaccuracy.
Therefore, a major reason for the choice of using a fuzzy logic
based estimation scheme was to satisfy the requirement that the
algorithm is not affected significantly by deviations and error in
the input data. The use of a fuzzy motor model in the estima-
tion algorithm provided robustness and resistance to the effects
of input noise, which is demonstrated in detail in reference [9],
and therefore is not discussed here.

Furthermore, it should be noted that previously developed
model based schemes [10]–[12] use simplified linear motor
models and involve complex mathematical computations, or
require large numerical look-up tables. This makes the previous
schemes practically difficult to implement due to the fact that
the SR motors normally operate under magnetic saturation
and thus can only be accurately described by a nonlinear
model. Moreover, complex mathematical computations are
disadvantageous because of the demand for a fast real-time
processor, which may not be suitable for all motor drives. Other
advantages and applications of fuzzy logic to electric machine
drives has been extensively detailed in [13].

The reference [14] reports the preliminary structure and hard-
ware setup of the indirect position estimator. The paper pre-
sented some initial results to prove the concept, however only
off-line results were presented that were calculated from mea-
sured voltages together with current waveforms derived from
simulation.

This paper develops the scheme further to take into account
the issues that are related to the practical motor drive operating
in real-time and with measured voltages and currents. The hard-
ware details of the DSP based system and the modifications in-
troduced to provide a robust practical motor drive are also ex-
plained. In the following sections of the paper, the principal
sections of the method are shown, implementation details are
highlighted and some typical real-time experimental results are
given to demonstrate the effectiveness of the method.

II. DEVELOPMENT OF AFUZZY LOGIC BASED SR MOTOR

MODEL

To create a fuzzy model of the motor, a training scheme is
used which trains a fuzzy logic model that is based on numer-
ical information about the SR motor. The fuzzy rule base gener-
ated in this section is used by the fuzzy reasoning mechanism to
estimate the rotor position from the input values of current and
flux linkage in the rotor position estimation scheme. The main
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advantages of developing a fuzzy logic based model of the SR
motor are as follows.

1) No complex mathematical model is required, and thus has
the advantage of relatively simple mathematical calcula-
tions used for rule processing [15], and the memory re-
quirement of the stored fuzzy model is much lower than
that required by the equivalent look-up table [16]. In addi-
tion, the fuzzy motor models allow fast computation and
hence provide cost effective solutions for computation-
ally demanding algorithms in real-time systems.

2) Fuzzy models are universal approximators [17], and
therefore, they can model a nonlinear continuous func-
tion of SR motor.

3) Neural networks can also be used to model the switched
reluctance motor using a mathematical model free ap-
proach [18], but they often have a long learning time, and
do not allow the examining of the internal structure of the
model as with fuzzy logic linguistic rules [19]. Therefore,
fuzzy models are favorable due to the fact that their be-
havior can be explained using linguistic rules, and thus,
they can be easily adjusted by altering the rules [20]. Fur-
thermore, it has been shown that the fastest possible uni-
versal computation scheme corresponds exactly to the op-
erations in fuzzy logic methods using Max–Min compu-
tations [21], which allows faster real-time operation than
is possible with an equivalent neural network model. This
is an important consideration for practical SR drives.

A. Obtaining the Motor Model

To obtain a fuzzy rule based model of the test motor, the
training system derives information from two main sources.

a) The static flux linkage curves of the motor, which provides
important information about the electro-magnetic charac-
teristics of the SR motor phases.

b) The dynamic real-time operating waveforms of the motor,
which can include real-time operating effects, such as
mutual coupling between phases, temperature variations,
eddy currents, and skin effects.

Due to its suitability to practical applications (fast, simple,
and accurate),the table-look-up scheme[15] was used for the
training phase of the rotor position estimation system in order
to derive a fuzzy logic based SR motor model in the form of a
fuzzy rule base.

Furthermore, it should be emphasized here that the fuzzy
model, which was implemented here, is not equivalent to a look
up table with a linear interpolation, and has many advantages
over look up tables: robustness to input noise [22], non linear
model [17], much lower memory storage [16], and triggering
multiple non linear rules for each numeric input (not just one
rule as in a look up table).

Although the fuzzy rule generation techniques are well
known, the rule generation for this specific application is
briefly explained below to emphasize the practical issues.

The motor characteristics are defined as a two input (flux
linkage and current)—one output (rotor angle) function. The
training task involves creating a fuzzy model of this function
from the training data. The training data is defined as a two-input

one-outputinput–output pair(where the word “pair” in this
term refers to the fact that there is a set of input values paired
with a set of output values, and not a pair of two values). Each
point of measured data presented to the training system is given
as

(1)

where
th data pair;

flux linkage;

current;

position.

The training phase to obtain a fuzzy logic based motor model
consists of the following steps.

Step A: Dividing the Input and Output Domains into Fuzzy
Regions: To determine the fuzzy regions, the variable spaces of

(0 to 1 Wb), (0 to 20 A), and (0 to 30 degrees) were divided
into , , and regions respectively, and number of regions
were chosen to be .

Note that the number of sets and all fuzzy sets were chosen
to have the same shape, and thus all the membership functions
were chosen to be isosceles triangular shapes, which were de-
fined after the real-time testing of the algorithm in the real-
system. This choice of sets was found to provide sufficient accu-
racy in this work. Although more regions would provide greater
accuracy in such systems, this also leads to more memory re-
quirement due to the greater number of fuzzy sets and rules.

Each region was then assigned to a fuzzy membership func-
tion. The maximum point of each triangle was chosen to lie at
the center of the fuzzy region and is given a membership value
of 1. The other two vertices were chosen to lie at the centers of
the two neighboring fuzzy regions and at these two points the
membership values were made zero. Each fuzzy set is denoted
by a fuzzy linguistic term ranging from set SM19 to BIG19 (for

), from set SM18 to BIG18 (for ), and from set SM15 to
BIG15 (for ) as shown in Fig. 1. In the figure, is the
membership value in fuzzy set of input flux value
is the membership value in fuzzy setof input current value
, and is the membership value in fuzzy set of input

angle value .
Step B: Generating Fuzzy Rules from Input Data of Flux, Cur-

rent, and Angle:During the training phase, each input–output
data pair, which consists of a crisp numerical value of measured
flux linkage, current, and angle, is used to generate the fuzzy
rules which model the system. To determine a fuzzy rule from
each input–output data pair, the first step is to find the degree
of each data value (flux, current, angle) in every membership
region of its corresponding fuzzy domain. The variable is then
assigned to the region with the maximum degree.

It should be mentioned here that each training data set pro-
duces a corresponding fuzzy rule, which is stored in the fuzzy
rule base. However, it can be seen that with a large amount of
measured training data there will normally be rules produced
by different training data which are identical, and therefore the
number of stored rules does not necessarily correspond to the
number of training data sets. In addition there may be rules
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(a)

(b)

(c)

Fig. 1. Fuzzy domain regions for each variable: (a) flux Linkage, (b) current, and (c) rotor position.

generated by different data sets that are contradictory, and the
method for dealing with this case is explained below.

Step C: Assigning Rule Degrees:When each new rule is gen-
erated from the input–output data pairs, arule degreeor truth is
assigned to that rule, where this rule degree is defined as the
degree of confidence that the rule does in fact correlate to the
function relating flux linkages and current to angle. In the de-
veloped method a degree is assigned which is theproductof the
membership function degree of each variable in it’s respective
region. For example

Rule):If is BIG2 and is BIG5Then is SM6

will have a degree

Degree (Rule)

where
membership degree of current in region BIG2;

membership degree of flux in region BIG5;

membership degree of angle in the region SM6.

The purpose of the above assignment is to choose between
data sets that produce the same antecedents but different conse-
quents. This would arise because when there is a large amount
of measured data, some data pairs will produce rules that have
the same antecedent but a different consequent (due to errors
or noise in the measured data). This would mean that there are
conflicting rules in the system, which are resolved by choosing
the conflicting rule that has the highest degree. This rule is the
one that is placed in the fuzzy rule base.

For example, let us consider two input–output data pairs
and , which produced the rules

Rule : If is BIG2 and is BIG4Then is SM7

Rule : If is BIG2 and is BIG4Then is SM9.

Thus for this example, there would be two rules with the same
precedent but different consequent. If the membership functions
for each of the variables was as follows:

Then the rule will have degree ,
whilst rule will have degree .
Therefore, only the rule with the highest degree () will be
placed into the fuzzy rule base.

Step D: Create the Fuzzy Rule Base:As it can be seen from
Step C, every training data set produces a corresponding fuzzy
rule that is stored in the fuzzy rule base (except if an identical
rule exists on the rule base already, or the generated rule is elimi-
nated due to a lower degree of truth than an existing rule with the
same antecedent but different consequent). Therefore, as each
input-output data pair is processed, and the rules are generated,
a fuzzy rule or knowledge base is in the form of a two dimen-
sional table, which can be looked up by the fuzzy reasoning
mechanism. The current and flux linkage fuzzy sets, which are
the antecedents, are the axes of a two dimensional look-up table,
and the stored table values are the rotor position output sets.

B. Implementation of Training Scheme

A flow-chart showing the logical flow of the training proce-
dure software routine is given in Fig. 2 [23], which is the same
for both phases of training (using the static training data and the
dynamic real time training data). The training algorithm learns
the motor model from the two sets of measured motor data: the
static magnetization curves and the real time dynamic operation
data. After training the system with all the points on the static
flux linkage curves, the rule table is generated.
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Fig. 2. Flow chart for thetraining algorithm.

It was found out that the static flux linkage curves charac-
terize the motor to a good degree. However, the real time oper-
ating effects such as mutual inductances between phases, eddy
currents, temperature effects and skin effects may be significant.
It was found that there are some empty rule areas which cannot
be explained by the rule table obtained as they lie in the region
of flux and current in which the curves lie, and therefore, the
dynamic testing requirement for the rule base determination is
found to be necessary.

To determine the real time operational points of the SR motor
it is important that data is measured during the real-time training
phase include a wide range of operating conditions: transient
and steady state speeds, step changes in load, and chopping and
single pulse mode.

After the real-time running tests, the modifications made to
the rule base from the static data training phase are highlighted
(boxes with black background) in Fig. 3. The empty rule areas
are shown by “XX” in the figure. For example, there is no rule
for the inputs “Current is SMALL16 and Flux is BIG10.”

It should be reported here that the amount of data that is re-
quired to be measured in the dynamic tests and used for training
data cannot be exactly specified. However, it can be said that
the accuracy of the model, up to a point, will increase with an
increase in the data processed during the training phase. This is
important because if data from a wide range ofreal timecon-
ditions is used for training, then the developed motor model
will be able to predict the rotor position more accurately from
the real time measurements of current and flux. Furthermore, it
should be emphasize here that all the measurements in the motor
are done for a single phase of the four-phase SR motor, and as
a result, a single table is produced. Therefore, it can be said that

the model developed here evolve an “averagemodel” by using
the mechanism of maximum degree of truth.

In addition to this, note that fuzzy sets are defined over a
range of values, with the membership function of the fuzzy set
varying for different values in the range. This means that an
input data point with error or noise can still be placed, with lower
membership function, in the same set as a point with no error or
noise (depending on the amplitude of the error). In other words,
by the use of fuzzy sets, input data that is corrupted by noise,
can be accepted into the same set as clean data but with a lesser
degree of truth [24]. The length of range of the membership
function will determine the range of values with noise, which
will be accepted as a part of the fuzzy set. Therefore by the
fuzzification of the input data, small deviations in the input data
do not have significant effect on the output position estimation.

III. I MPLEMENTATION OF THE COMPLETE ROTOR ANGLE

DETECTION SCHEME

A. Position Estimation

A block diagram of the complete position estimation algo-
rithm is shown in Fig. 4. The position estimator essentially op-
erates as follows: While the motor is running, the phase currents
and voltages in each of the four phases are measured and the flux
linkages are estimated by using trapezoidal integration (see the
block A in Fig. 4) as given by

(2)
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Fig. 3. Fuzzy rule bases generated after the real-time test results,S: small,C: center,B: big.

Fig. 4. Block diagram of the fuzzy logic based position estimation scheme.

where
sample number;
sampling period;
winding voltage;
line current;
winding resistor.

Note that when no current flows in a SR motor phase, the ini-
tial flux linkage value at is zero. Therefore, at the end
of each electrical cycle for each phase the flux linkage can be
reset to zero in the integrator. Unlike the other three-phase ac
motor drives, this feature of SR drive flux linkage estimation
provides a means of reducing the effect of flux linkage offset
error [9]. This is because the accumulation of the large errors in
each phase, such as the effects of currents and voltage dc offset,

measurement errors and resistance variation, will not normally
continue for more than one electrical cycle.

It should also be noted here that the maximum integration
error is also proportional to the highest value of the second
derivative of the integrated function [23]. This means that when
trapezoidal integration is applied to the flux linkage estimation,
the maximum error is dependent on the second derivative of the
integrated current and voltage waveforms.

It should be emphasized that, the current and voltage wave-
form are simple functions at high motor speeds (in the single
pulse mode). However due to the commutation seen in the chop-
ping mode, the current and voltage waveforms are more com-
plex and nonlinear. Therefore, for the same conditions, it can be
expected that the error in the integration of flux linkage in the
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chopping mode may be higher than in the single pulse mode (in
which the integration intervals is wider and the second deriva-
tive is lower).

In the above figure, is the flux linkage, 1,2,3 and 4 represent
the phase numbers, andis the rotor angle. , and

indicate “present,” “previous” and “next step” values of the
parameters respectively. The superscript,and the subscripts,

and in the terms indicate the weighted values, the predicted
values and the estimated values respectively.

In the second stage, the block B, the crisp numeric flux
linkage and current values from each phase are then input to the
fuzzy logic rule base (where the fuzzy motor model is located).
These inputs will trigger theIf-Then rules in the rule base,
which have previously been created from the training phase.
Since the crisp values of current and flux linkage will normally
be members of two fuzzy sets, four rules will normally be
triggered per phase measurement. Therefore, composition of
multiple fuzzy rules is required, using theAggregation of Rules
procedure. The aggregate of the fuzzy rules triggered by the
inputs of each phase will produce an output fuzzy set in the
rotor position fuzzy domain. A single crisp numeric value of
estimated rotor position is obtained by using defuzzification. In
this paper, the Max-Product and center average defuzzification
methods are chosen due to the simple calculations of these
methods [15].

It should be noted here that, in practice, drive environments
are electromagnetically noisy, due to the proximity of power
electronic devices, which have high amplitude voltage and cur-
rent switching transient waveforms, with low power computa-
tion circuits. In addition, leakage inductances and coupling ca-
pacitances, which are always finite in such systems, can lead to
noise voltages being induced in measurement circuits. There-
fore, the reliability and robustness of the algorithm was highly
important if it is designed to operate in the practical drive. To
achieve this additional performance enhancement features have
been added so that the sensorless angle estimation algorithm
copes better with measurement errors and inaccuracies found
in real motor drives.

B. Performance Enhancement Features

Fuzzy Optimal Phase Selector:The knowledge based op-
timal phase selector is added (the block C in Fig. 4) to pick the
most desirable phase for estimating angle in order to maximize
accuracy. This sub-system is used because in the SR motor there
may be more than one phase that conducts excitation current
at any instant of time. For example, if three phases were con-
ducting current at a given instant in time, this would normally
consist of two phases being turned on, with one previously ex-
cited phase having a decaying current component. Therefore,
any of these current carrying phases may be used for rotor po-
sition estimation. Theoretically, the same position should be
output by each of the excited phase rotor position estimations.
However in practice, each phase may produce a slightly dif-
ferent estimated angle result.

It is important to note that each phase has rotor angle regions
of optimal sensing. In some rotor angle regions the rotor posi-
tion estimation will be more affected by errors than at other rotor

Fig. 5. Approximate optimal sensing region of the magnetization curves.

angle regions. The reason that each phase will be operating in a
different phase region at any point in time is that at every phys-
ical rotor position, the rotor to stator phase angle will lie in a
different region in each motor phase. Therefore, for implemen-
tation in a practical drive, the estimated rotor position from the
phase in the rotor angle that lies in the optimal region should be
given the most weighting. The optimal sensing region in Fig. 5
can be found from an analysis of the flux linkage curves [25].

Note also that the region shown in Fig. 5 is only approximate,
as it is difficult to exactly define in an exact manner. It can gener-
ally be said from the magnetization curves, that when the angle
is near the unaligned position (ie. forsmallrelative angles) and
the current islow, that the curves are very tightly bunched up.
Therefore under this condition, small errors in the flux linkage
estimation or current measurement will result in large errors in
the position estimate. Additionally, when the angle is close to
alignment (i.e.,large relative angles) the curves are also tightly
bunched up, and therefore a small error in current measurement
can produce large errors in rotor angle. Therefore, the optimal
sensing positions, where the best resolution is offered, is for
mediumangles between alignment and unalignment.

However, the optimal sensing region in fact does not stop
or start abruptly but has a transition region, or in other words
it contains smooth edges. In addition, the termssmall, low,
medium, and large used above to describe the regions, are
linguistic terms. Furthermore it can be seen that the above
descriptions in the previous paragraph describing the optimal
sensing regions were in fact heuristic knowledge based rules.

Thus due to the imprecise regions, the ability to describe them
using linguistic terms, and the availability of heuristic rules, a
fuzzy logic rule base can be employed. Hence, to decide whether
a motor phase measurement is in the optimal sensing region, a
fuzzy rule based optimal phase selector (Block C) is placed after
the fuzzy logic based motor model (Block B) seen in Fig. 4. The
decision block encapsulates the general heuristic rules that were
mentioned above, which describe the optimal sensing regions of
the motor phases.

To perform the weighting of each of the position estimations
from each phase, based on the heuristic rules described above,
the optimal phase selector, uses a two input-single output fuzzy

Authorized licensed use limited to: Adelaide University. Downloaded on October 13, 2008 at 02:04 from IEEE Xplore.  Restrictions apply.



ERTUGRUL AND CHEOK: INDIRECT ANGLE ESTIMATION IN SWITCHED RELUCTANCE MOTOR DRIVES 1035

Fig. 6. Optimal phase selector domains. [� (i) = fuzzy membership
functions of current.� (�) = fuzzy membership functions of rotor angle.
� (C) = fuzzy membership functions of confidence.]

system. The input fuzzy domain iscurrent andangleand the
output isconfidence. It gives a weighting or confidence value
ranging from zero to 100% of each phase’s rotor position esti-
mate. The membership functions of the input and output fuzzy
domains used in the optimal phase selector are shown below in
Fig. 6.

A fuzzy rule base defines the linguistic rules that are used
by the optimal phase selector. This is shown in the two-dimen-
sional array of rules relating the inputs of current and angle to
the output confidence value in Table I. It can be seen from the
rule table that an example rule in this system is

If current is (S) and angle is (S)

Then confidence is (S) (3)

As it was discussed above, these rules are based on heuristic
knowledge about the optimal sensing regions in the flux linkage
curves. The ability of fuzzy logic to model this heuristic knowl-
edge allows a simple and easy to understand linguistic based
system to be easily developed. This is achieved without the re-
quirement of analytically defining the optimal regions of posi-
tion sensing.

TABLE I
FUZZY RULE BASE FOROPTIMAL DECISION BLOCK (S = SMALL , M =

MEDIUM, L = LARGE, H = HIGH)

Another advantage of using the fuzzy system is that the fuzzy
linguistic rules of the optimal phase selector can remain un-
changedevenwhenadifferentmotor isused.This isbecauseonly
the definitions of the fuzzy membership functions in the input
domains of current and angle are required to be changed if there
is a change in the motor with different optimal phase sensing
regions. For example, the membership function ofLOWcurrent
seen in Fig. 6 could be modified to lie over a different range of the
current domain. However, the fuzzy rule base does not need to be
changed, and this allows the modification of the Optimal Phase
Selector Block for another motor to be easily achieved.

As it was mentioned above, each of the four motor phases
produces an estimated value of position, and each of them will
be given a confidence weighting by the fuzzy phase selector,
based on the estimated position and the phase current. This final
weighted value is based on the weighting or confidence, C, of
each of the rotor position estimates corresponding to which re-
gion the estimated rotor position lies in each phase. In essence,
the optimal phase selector block in Fig. 4 decides the optimum
phase for angle measurements, and gives this phase the greatest
weighting if more than one phase is used in producing a rotor po-
sition estimate. Hence outputs one final weighted
value of .

To determine the final angle value , each estimated
phase angle is multiplied by its respective confidence value
found from the Optimal Phase Selector, and the total is divided
by the addition of all the confidence factors. For example, if
there are two phases that produce an angle estimate, then the
algorithm computes the position by

(4)

where
final angle estimate;
phase angle estimates of phase 1 and phase 2,
respectively;
confidence values of phase 1 and phase 2, respec-
tively.

It should also be noted here that (4) is given only for two
conducting phases. If three, or in some cases, four phases have
some current (for example, trail currents, at high-speed opera-
tions), the equation should be modified to take these operating
conditions into account.
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Fig. 7. Flow-chart of the prediction algorithms in the blocks D and F.

Fuzzy Flux Linkage and Angle Predictors with Fuzzy
Choosers: The flux linkage and rotor angle predictors (the
blocks D and F in Fig. 4) are included in the algorithm. The
purpose of the predictors is to forecast future values of flux
linkage and rotor position during the operation of the sensorless
algorithm. The predictors are implemented using a fuzzy logic
rule based system, with the rules of the fuzzy prediction system
being adapted during run time.

The predictors are used to minimize errors by using a com-
bination of the estimated and predicted rotor position and flux.
To achieve this, a comparison between estimated and predicted
rotor position and flux values are made during each iteration.
Then some combination of these is chosen in order to lessen the
effect of errors.

The problem of predicting the flux linkage and angle in future
steps of time is a problem oftime seriesprediction. It should be
noted that in this fuzzy predictor, both learning and prediction
occurs simultaneously, unlike the previously described training
method. A flow-chart of the prediction algorithm is given in
Fig. 7, where the values of represent either flux linkage
or rotor position.

When a new value of flux linkage or rotor position is
estimated by the integrator or fuzzy model respectively, it is
first passed into the rule learning block in Fig. 7, together
with previous iteration values. For the flux linkage prediction,
the rule learning block creates a new rule and modifies the
rule table, from the new input–output data pair consisting
of the present value and the previous four values

. For the fuzzy
rules of the rotor predictor, however, two output predicted
values, and are created from four previous inputs

. For the flux
prediction and the rotor position prediction, the input–output
data pairs can be written, respectively, as

(5)

(6)

This rule can then modify the fuzzy rule base so that the fuzzy
rules which predict the next values from the previous four values
is continuously adapted with each new measurement.

After the Rule Learning Block in Fig. 7, the prediction routine
is executed, which estimates the next iteration value
(and for the angle prediction), from the values of

, and .
Furthermore, as shown in Fig. 4, the predicted values of rotor

position , and flux linkage are used in conjunction
with the estimated values of flux linkage and rotor posi-
tion . In the ideal case, the predicted and estimated values
should be exactly the same. However, due to errors the values
are not equal. In this case either the predicted values or the es-
timated values may be used, and a decision must be made as
to which value should be chosen. In this system a knowledge
based, heuristic decision maker (Fuzzy Chooser) was imple-
mented, which places a weighting on both the predicted and
estimated values (the blocks E and G in Fig. 4). The decision
blocks of the flux linkage and angle produce a final weighted
value and respectively.

It can be intuitively said that the confidence in predicted
values will behigh understeadyspeeds and conditions. Under
transient speeds and conditions, however, confidence will
be low. In addition, it can be said that the confidence in the
predicted values will behigherfor low acceleration values than
for high acceleration values.

From the above discussion it may seem that some con-
ventional mathematical function relating confidence in the
predicted values to the actual motor acceleration can easily be
defined. However some practical considerations make the use
of a fuzzy system advantageous.

Firstly it can be seen from the above discussion, that high,
low, and steady are linguistic terms that contain a certain amount
of fuzziness. With conventional mathematical logic functions it
is difficult to adequately represent heuristic knowledge directly.
However, fuzzy systems can deal with situations where sharp
distinctions between the boundaries of application of rules do
not occur.

Furthermore, a major advantage of using a fuzzy system is
that it can cope with inherent uncertainty in the input signals.
In this system the input variable is acceleration, which cannot
be directly measured by a mechanical sensor in this application,
because the system is sensorless. Another method is to calcu-
late acceleration from speed values. Successful techniques have
been recently developed to estimate acceleration from measured
speed, such as by using predictive polynomial differentiators or
by model based state observation [27]. However in this case no
direct measurement of position or speed is possible. If the posi-
tion estimates are used instead, the errors in the estimates may
be too high for calculation of acceleration.

Therefore a fuzzy system was developed to relate prediction
confidence to acceleration, which only requires the acceleration
feedback to be accurate enough to determine which predefined
fuzzy domain the acceleration belongs to. Thus only imprecise
knowledge is required about the motors acceleration.

Hence, instead of acceleration, anacceleration factoris used
which gives an approximation of the actual acceleration. As dis-
cussed above, this approximation can be used in this application
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Fig. 8. SR motor drive hardware system developed.

because only therelativeacceleration is important (e.g.,highor
low), and not the actual numeric value. Therefore an accelera-
tion factor is defined as

(7)

Here, is the rotor angle at stepand is the time between
each iteration, and and are constants (each chosen to be 5 in
this application).

The above equation estimates the average speed over the last
six iterations (i.e., over iterationto where is the last es-
timated position value), and compares it to a previous estimated
average speed measured over to ). Other values
of and may be chosen depending on the desired tradeoff
between a longer sampling time of measuring the acceleration
factor (which leads to less noisy values) and the delay in deter-
mining the value from the first measurement .

The difference of these two values provides an estimate of
the relative motor speed transient magnitude. However it was
found out in the practical system that, to lessens the effect of
angle estimate noise on the calculation, the acceleration factor
could be further modified to use the average of the previous 3
estimated acceleration factors, which is given by

(8)

The weighted rotor angle from the estimated and predicted value
is used as an input to the rotor position predictor in Fig. 4,
in order that further predictions are corrected. In addition, the
flux linkage value output from the decision block is used as the
next integration constant for the flux linkage integrator. In this
manner, the corrected values are used to not only correct the
present values of flux linkage and position, but also to correct
future values of flux linkage and position. The effectiveness of
the flux linkage and angle prediction with fuzzy choosers in re-
ducing the effect of impulsive type noise commonly found in
motor drives is detailed below.

IV. I SSUESRELATED TO START-UP, INITIALIZATION AND NEXT

STEP ANGLE

In the method developed, there are some practical applica-
tion points, which apply in all operations in the drive. This in-
cludes issues such as the starting procedure, the initialization of
the fuzzy predictors in each test, and the use of predicted angle
when the fuzzy logic based predictors do not output a predicted
angle due to lack of rules in the learning period. These issues
are explained below.

A. Start-Up Procedure

During the start up of the sensorless motor drive, there are two
problems. Firstly, the position is not known, and therefore, the
controller does not have knowledge of the required initial phase
control strategy. Secondly, if only one phase is used initially,
there will be two solutions to the estimate of rotor position for
each flux linkage and current data pair.

In the initial starting instant, two phases of the motor are ex-
cited using a short pulse of current, to produce two sets of flux
linkage and current pairs. This will produce four possible values
of absolute position (two from each motor phase). Only one
angle estimate of one phase will agree with one angle estimate of
the other phase. This is the actual absolute rotor position. After
this step is performed, the absolute value of rotor position has
been found, and there will be no ambiguity in further measure-
ments. This is because knowledge of the last rotor position, and
the direction of rotation, allows the controller to decide which
of the two possible angles found from a flux linkage and current
pair is in fact the correct position.

B. Initialization of Fuzzy Predictors

The fuzzy predictors of flux linkage and rotor position are
initialized at the beginning of each of the tests. Therefore, in
each of the graphs that are plotted, at time there are zero
rules in the fuzzy prediction rule base and learning begins with
the first iteration. This is performed so that every test shown in
the results section has a fair comparison, regardless of whether
the motor starts at (as in the start up tests) or not (as in
the steady-state speed tests). It should be remembered that, this
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arbitrarily places a learning period at the initial stages of each
test, regardless of the motor operating conditions.

In addition, when the predictors cannot make a predicted
value, due to a lack of developed rules in the learning system,
the output is set to zero. This signifies that no prediction can be
made at that particular iteration (in addition there is a software
flag output implemented in the software to differentiate be-
tween no output, and an actual predicted value of zero degrees).
If no prediction can be made for the current angle and flux
linkage, then it is not of high consequence. However, if no
prediction can be made for the next step angle, then this creates
a problem for the controller, which uses the next step for the
continuous control. Therefore, a backup system is used for the
prediction of the next angle value.

C. Use of Next Step Predicted Angle in Fuzzy Predictor

When the predictors can not make a prediction, the output
is set to zero. However, although the fuzzy predictor of flux
linkage and rotor position is only required for error minimiza-
tion, the next step angle is used by the controller. Therefore,
in the case when the output of the next step angle is zero, the
prediction reverts to a simpler prediction scheme which is inde-
pendent and running in parallel to the predicted value.

The independent next step angle prediction acts essentially
as a backup, and normally is not used by the controller, except
when the predictor cannot make any prediction. This indepen-
dent next step angle predictor performs a linear extrapolation
of the previous two iteration’s angle rotor position values. The
value of the predicted angle can be found from the simple rela-
tion

(9)

where are the predicted angles of the next iter-
ation step, the present iteration step, and the previous iteration
step, respectively, and is the iteration period.

The predicted angle using this method is normalized to one
electrical cycle (60 degrees). The new angles are used for pre-
diction in the next iteration.

V. HARDWARE DETAILS AND REAL-TIME TESTRESULTS

To test the method described in this paper, a switched reluc-
tance motor drive system was designed and constructed with
a controller. The drive consists of several distinct sub systems
as illustrated in Fig. 8: 4-phase IGBT inverter (two switch per
phase type), 8/6 SR motor (4kW, 415V, 9A, 1500 rpm, four
phase), the DSP board, A/D converters, and the interfaces for
signal input and output (currents, voltages, position and gate sig-
nals for IGBT’s).

The controller consists of a high-speed DSP chip
(ADSP-21 020) with on board memory. The DSP performs
the fuzzy logic based rotor position estimation in addition
for providing full control of the motor via the power inverter.
Inputs to the digital signal processor include the current and
the voltage of each phase. To sample four phase voltages
and currents simultaneously, eight A/D converters were used,
and in order to provide greater digital conversion accuracy, a
programmable gain amplifier was utilized to adjust the gain

Fig. 9. Measured current, voltage, estimated flux linkage, predicted flux
linkage of phase A, measured and estimated position, respectively, from the
top, 810 rpm.

of the voltage signal. A shaft encoder was used to provide a
reference for checking the estimated position.
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Fig. 10. Predicted and next step ahead predicted angles (in degrees).

The actual operating effects of the SR motor drive include:
mutual inductance between motor phases, parameter variation
of motor inductances and resistances, asymmetrical inductance
variation in the motor phases, variation in the magnetization
curves in each of the phases, and effects on the motor waveforms
of eddy currents (which can distort the phase current, especially
during current transients).

Therefore, experimental waveforms, which will be affected
by all the above effects, should be used to verify the ability of
the sensorless scheme to operate with a real SR motor. Using the
experimental hardware, a wide range of operating modes and
conditions were applied to the test motor. A few distinct oper-
ating results are presented in this paper: single pulse operation at
steady-state speed, acceleration from zero speed, and zero/slow
speed operation.

1) Single Pulse Mode Operation:In Fig. 9, the test results
are given for the single pulse mode of the motor with a steady-
state speed of 810 rpm. At high speeds, the back emf during pole
overlap will become higher than the dc supply voltage. There-
fore, the current does not reach the chopping mode current level
(but is greater than the rated current) during the phase conduc-
tion period. Note that justification of “high” or “low” speed op-
eration depends upon the machine details. For the motor used in
this paper, low, base and high speeds correspond to the chopping
mode, the changeover speed of 650 rpm and the single pulse
mode, respectively.

It can also be seen in the figure that, in the single pulse mode,
the current waveform is regular and the flux linkage has a simple
profile, a quasitriangular wave-shape. Therefore, it was found
that the fuzzy predictors of flux linkage have a short learning

period with these flux linkage waveforms. This learning period
was less than 200 iterations, corresponding to 46% of one rev-
olution.

The reference position measured by the encoder had an 8-bit
output, which means that 256 discrete positions per revolution
can be measured, which corresponds to discrete
points per electrical cycle. Therefore, in calculating the position
error in the test results, the encoder measurement will normally
have some quantization error, and thus not provide a very ac-
curate reference. Nevertheless, it was taken to be the true rotor
angle when comparisons were made between the estimated and
the measured angle.

The predicted and next step ahead predicted angles for the test
in Fig. 9 is given in Fig. 10. It was found that approximately 240
iterations were needed for the initial learning period. This was
equivalent to 52% of one revolution of the rotor. In comparison
with the flux linkage prediction of this test, it is seen that the
learning period is slightly longer, due to the higher estimation
error of position in comparison to the estimation error of flux
linkage in this test.

2) Chopping Mode Transient Operation:To verify the op-
eration of the method during transient operation, another set
of experimental results is given in Fig. 11 during a transient
start-up from zero speed to 346 rpm. As can be seen in the figure,
the phase A motor current increases during the starting period
and exceeds the rated current of 9A. However, when the motor
approaches to the steady state speed of 346 rpm, the currents
become significantly lower due to the decreased acceleration
torque. This operation presents a more difficult problem for the
position estimation due to following two main reasons.
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Fig. 11. Results of the transient start up with hysteresis current control: current, voltage, measured position, estimated position, and position error.

1) Not all the components of the waveforms are captured
by the A/D converter at the specified constant sampling
frequency of 6 kHz.

2) The predictors of flux linkage and rotor position, which
are used to lessen errors in the flux linkage and position
estimation, are not as effective during transient modes of
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Fig. 12. Zero/low speed test.

operation as stated in Section III-A. This is because of the
learning period always required when the motor wave-
forms vary. Therefore, the confidence in the predicted
values will not be as high in the transient mode of op-
eration.

In the transient mode of operation, the average angle error
is somewhat higher. The performance has suffered due to the
higher flux linkage estimation errors, and the trajectory of rotor
position continuously changes in contrast to the linear variation
of the previous steady-state speed tests. However, the estimated
angle follows the measured position closely throughout the test.

3) Zero/Low Speed Operation:In this test the motor is
initially stalled with a high inertial mechanical load that is
thereafter slowly accelerated. The conditions of this test allow
the sensorless position estimation algorithm to be tested for
a number of important conditions. This includes zero speed
operation (seen from ), slow acceleration,
and low speed (seen from onwards).

The plot of the phase current, phase voltage, phase flux
linkage, as well as measured and estimated rotor position, are
shown together for one motor phase in Fig. 12. At
the rotor is stalled, and it can thus be seen that the rotor angle
remains constant. However at the rotor is again

accelerated with a low acceleration rate, and the rotor position
again gradually increases.

It can be seen in the phase current waveforms of Fig. 12 that
there are oscillations in the current hysteresis level even during
zero and low speed. This is due to the bandwidth limitation of
the hysteresis current controller. Furthermore it can be seen that
the flux linkage changes when the rotor begins to accelerate
from zero speed due to the change in incremental inductance
with position.

The estimated angle that is seen in these results can be seen to
always have some error, even though the rotor position is con-
stant. This can be explained by the fact that the current is not
constant but has variations due to the hysteresis control. This
high frequency variation will not be completely captured by
the A/D converters, leading to measurement errors. Furthermore
noise and modeling errors that are always present will lead to the
error seen in the rotor position.

A large amount of other experimental tests were performed on
the motor to vigorously prove the performance and reliability of
the fuzzy logic sensorless rotor position detection scheme under
all conditions. Although two sets of the tests (steady state and
transient) were presented above, Table II is provided to show
the comparison of other distinctive test results, average of the
absolute value of the position errors, maximum errors and cor-
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TABLE II
SUMMARY OF TEST RESULTS ON THEERRORANALYSIS

responding learning periods in each test [22], [23]. When the
quantization error in the measured position is taken into ac-
count, the position error presented in the previous graphs and
in Table II are not high. The operation of the motor has not been
effected due to the small error in the position estimation. How-
ever, it should be emphasize here that the position estimation
error can be reduced further if the sampling frequency and/or
number of fuzzy-regions are increased. In addition to this, it
should be remembered that measured reference position may
also be in error.

A. Effectiveness of Fuzzy Predictors in Practical Drive
Operation

The practical SR motor drive often has the problem of high
amplitude impulsive type noise caused by switching or com-
mutation of high amplitude currents in the inverter circuit. The
commutated current waveforms have short rise and fall times,
and thus contain significant amounts of energy at high frequen-
cies. This radiated energy can be transmitted through parasitic
stray capacitances to the control, interface, and measurement
circuitry.

The characteristic feature of this generated noise is that it
can have high amplitude during the switching of a power de-
vice. However, this noise is only seen during the switching in-
stant. Therefore, the coupled noise in the control and current
and voltage measurement circuits may have high amplitude, but
be transient in nature. This type of high amplitude impulsive
type noise is difficult to suppress efficiently [26]. However, the
fuzzy predictive filters of flux linkage and angle as described
above were developed to successfully lower the effect of impul-
sive noise for the practical operation of the sensorless position
estimation scheme.

In Fig. 13, a demonstration of the fuzzy predictive filter’s ef-
fectiveness is shown. Firstly, these figures show estimated flux
linkage and angle derived from experimentally measured wave-
forms of current and voltage with the motor drive running at
670 rpm. It can be seen in the figures, that high amplitude error

pulses occur in both the estimated flux linkage waveform and
the estimated rotor position waveform.

In Fig. 13(a), the waveform of the flux linkage estimated from
the measured current and voltages are shown, with a triangle rep-
resenting each point where the flux is estimated from the current
and voltage measurements. In the figure, a flux linkage wave-
form with high noise error can also be seen. The estimated flux
linkage waveform with error is input to the flux linkage predictor
instead of the actual estimated flux. It can be seen that the points
with high-level noise have effectively been replaced by predicted
values. It should be noted that if the predictor could not remove
the erroneous value, then due to the operation of integration, all
future values of the estimated flux linkage would carry this error.

Fig. 13(b), the waveforms are shown of the measured encoder
angle and the estimated angle with impulsive type noise (at dif-
ferent test times, but with the same conditions as the flux linkage
test). In the results, a triangular point shows the measured en-
coder positions at each sample time. In this test, the estimated
angle that has been corrupted with high amplitude noise pulses
is input to the angle predictor. It can be seen that the noise in
the estimated angle is effectively removed in the filtered angle
value. The filtered value can thus be used instead of the esti-
mated value to reduce the effect of switching noise.

The results above have shown that when the fuzzy logic based
predictive filters of flux linkage and angle are used, the high
error pulses from sources such as switching noise are effectively
eliminated, which leads to a more robust and stable motor drive
operation.

VI. CONCLUSION

A novel fuzzy logic based rotor position detection technique
is explained and implementation details are given, which
provides an alternative way of measuring the rotor position in
SR motor drives. The experimental tests verified that the new
scheme can successfully and vigorously predict the rotor angle
of the practical SR motor under the real operating conditions.
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Fig. 13. Error elimination ability of fuzzy logic-based predictors: (a) flux linkage and (b) rotor position. The points with arrows highlight the iterations where
the predicted value can be used instead of the estimated angle to lessen the effect of switching noise.

TABLE III
PRINCIPAL IMPROVEMENTS OF THENEW SCHEME OVER THE MOST SOPHISTICATEDMETHODS TODATE: THE MODEL BASED SCHEMES

Since there is no starting difficulty in the motor drive and no
difficulty at zero speed operation, the motor drive can be oper-
ated in four-quadrants. It was shown that in general, the fuzzy
logic based prediction algorithm had a fast learning period of
approximately 200–250 iterations for simpler waveforms, such
as the rotor angle trajectory and the flux linkage in the single

pulse mode. The predictors of flux linkage and angle were
also shown to be effective. The learning period became longer
for highly nonlinear waveforms, such as the flux linkage in
chopping mode.

The position estimator implemented in this research does not
have restrictions seen in other schemes, as it can be used under
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all operating speeds and conditions, including transients, stand-
still, and start-up. It also does not require any external testing
circuitry or test signals.

The tests shown were taken with the A/D converter sampling
frequency limited to 6000 Hz. This demonstrates the ability of
the scheme to work with a relatively long iteration time of 166.7

s. The average processing time of the position estimation rou-
tine is approximately 33 s (the cycle time varies slightly ac-
cording to which particular subroutines are used in the fuzzy
prediction and fuzzy rule processing routines). The processing
time can be further reduced by optimization of code and full
assembly programming. The advantages made available by this
scheme are summarized in Table III.
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