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With the rapid growth of space activities and advancement of aerospace science 

and technology, many autonomous space missions have been proliferating in recent 

decades. Control of spacecraft in proximity operations is of great importance to 

accomplish these missions. The research in this dissertation aims to provide a precise, 

efficient, optimal, and robust controller to ensure successful spacecraft proximity 

operations. This is a challenging control task since the problem involves highly nonlinear 

dynamics including translational motion, rotational motion, and flexible structure 

deformation and vibration. In addition, uncertainties in the system modeling parameters 

and disturbances make the precise control more difficult. Four control design approaches 

are integrated to solve this challenging problem. The first approach is to consider the 

spacecraft rigid body translational and rotational dynamics together with the flexible 

motion in one unified optimal control framework so that the overall system performance 

and constraints can be addressed in one optimization process. The second approach is to 

formulate the robust control objectives into the optimal control cost function and prove 

the equivalency between the robust stabilization problem and the transformed optimal 
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control problem. The third approach is to employ the θ-D technique, a novel optimal 

control method that is based on a perturbation solution to the Hamilton-Jacobi-Bellman 

equation, to solve the nonlinear optimal control problem obtained from the indirect robust 

control formulation. The resultant optimal control law can be obtained in closed-form, 

and thus facilitates the onboard implementation. The integration of these three 

approaches is called the integrated indirect robust control scheme. The fourth approach is 

to use the inverse optimal adaptive control method combined with the indirect robust 

control scheme to alleviate the conservativeness of the indirect robust control scheme by 

using online parameter estimation such that adaptive, robust, and optimal properties can 

all be achieved. 

To show the effectiveness of the proposed control approaches, six degree-of-

freedom spacecraft proximity operation simulation is conducted and demonstrates 

satisfying performance under various uncertainties and disturbances. 
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CHAPTER I 

INTRODUCTION 

1.1 Background 

Spacecraft proximity operation has been recognized as a very important task for 

many space missions since the 1960s. As stated in [1], those who envisioned humans 

going to the moon and exploring other worlds, those who dreamed of humanity’s long-

term presence in space, and those who actually made it happen, realized that orbital 

rendezvous and proximity operation would play a crucial role in making these miracles 

happen. With the rapid growth of space activities and the progress of aerospace science 

and technology, many autonomous space missions such as space station assembly, 

inspection and servicing, space refueling, correction of launch failure, and removal of 

space debris, have proliferated in recent decades. The research on proximity operation is 

of great importance to accomplish these missions. Our research aims to provide a precise 

and efficient controller that possesses both optimality and robustness such that successful 

spacecraft proximity operations can be ensured. 

During the early development of space technology, spacecraft proximity 

rendezvous and docking efforts were piloted mostly by astronauts. The rendezvous and 

docking process was mission unique, labor-intensive and expensive, requiring extensive 

crew training and system redundancy to insure mission success [2]. 

The first docking between two spacecrafts can be dated back to the Gemini 

mission in the winter of 1965 [3]. That rendezvous operation was the first astronaut-
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controlled maneuver in space. The Gemini spacecraft was launched later than the target 

spacecraft Agena, and driven to a relative distance of 30 cm to 90 m with respect to the 

target Agena vehicle. On March 16, 1966, Neil Armstrong and Dave Scott docked 

Gemini VIII with the target vehicle and completed the first spacecraft docking. 

Unfortunately, the success did not last long, since one of the spacecraft thrusters failed 

and caused near-fatal spinning and tumbling. This led to the first emergency landing of a 

manned U.S. space mission. At that time, the rendezvous and docking scenario relied 

heavily on the involvement of astronauts in guidance, navigation and control (GN&C) [1]. 

Based on these preliminary space missions, scientists had accumulated many 

experiences. Most of the following missions, such as Apollo program [4] and Skylab 

project[5], are quite successful. Space technology enters a new stage of development. 

Due to the fast expansion of human activities into space, complex spacecraft proximity 

operations require more accurate control and fast response even in large scale complex 

maneuvers. Besides, the engaging space vehicles not only contain large and bulky 

spacecraft piloted by astronauts, but also include small satellites operating in conditions 

where human involvement is impractical or undesirable. The cooperation between the 

engaging space vehicles may not exist. To handle with these cases, new control methods 

are required, thus the autonomous spacecraft proximity operation is moved up the agenda. 

It is desired to reduce the work load on human missions, or accomplish the servicing and 

retrieval of a variety of target objects that may be functioning or malfunctioning, alien or 

familiar, passive or active, cooperative or non-cooperative. These high mission 

requirements drive the rendezvous and proximity operation technique to advance rapidly 

and brought about a series of space programs with or without the involvement of 

astronauts. 
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Figure 1.1 Autonomous rendezvous and 

The Demonstration of Autonomous Rendezvous Technology (DART) spacecraft

launched by NASA in April 15, 2005, is a key step in NASA

autonomous rendezvous capabilities for the US space program by performing 

autonomous rendezvous without ass

DART was designed to rendezvous with and perform a variety of maneuvers in 

close proximity to the target 

(MUBLCOM) satellite. 27 objectives were developed to measure the performance of the 

DART spacecraft for a successful mission, especially the spacecraft

independent rendezvous or meet up with a non

satellite while being a pre-programmed and unaided spacecraft
3 

1.1 demonstrates the timeline and significant events in the autonomous 

rendezvous and proximity operation history. We will take the DART mission and ATV 

ze these two proximity operation applications. 
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Figure 1.2 Demonstration for Autonomous Rendezvous Technology (DART) 
component diagram 

 

Figure 1.3 Artistic concept of Demonstration for Autonomous Rendezvous 
Technology [9] 

4 

programmed to move into MUBLCOM’s orbit with a series 

 

Demonstration for Autonomous Rendezvous Technology (DART) 
component diagram [7] 
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Demonstration for Autonomous Rendezvous Technology (DART) 



 

and stay about 1 kilometer behind the target. Then DART was ordered to evaluate its 

proximity operation performance by a series of precise, close

various pre-planned holds and a collision avoidance maneuver at a predetermined 

position [9]. Unfortunately, because of 

malfunction, the DART spacecraft made contact with and boosted the rendezvous 

MUBLCOM satellite’s orbit 2.2 km higher and end

The DART mission clearly support

rendezvous, proximity operations, and cap

important to successful space exploration. As stated in 

such a high-visibility and important project did not proceed 

learned from the mishap will help enable the future development of autonomous 

capabilities. 

 

Figure 1.4 ATV becomes a fully automatic spaceship navigating towards ISS after 
lift-off and is ready to dock with ISS
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and stay about 1 kilometer behind the target. Then DART was ordered to evaluate its 

proximity operation performance by a series of precise, close-range maneuvers, including 

planned holds and a collision avoidance maneuver at a predetermined 

. Unfortunately, because of over usage of the propellant and guidance system 

ion, the DART spacecraft made contact with and boosted the rendezvous 

s orbit 2.2 km higher and ended the mission prematurely. 

The DART mission clearly supports the fact that autonomous spacecraft 

rendezvous, proximity operations, and capture capabilities will continue to be critically 

important to successful space exploration. As stated in [8], while DART’s transition to 

visibility and important project did not proceed as planned, the lessons 

learned from the mishap will help enable the future development of autonomous 
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most complex space vehicle ever developed in Europe. As introduced in 

designed to serve the orbiting International Space Station (ISS) as a cargo carrier, storage 

facility and as a ‘tug’ vehicle to adjust the Space Station

 

Figure 1.5 ATV-2 Johannes Kepler 

Major contributions of ATV can be divided into two aspects

provides express delivery service to ISS.

permanently inhabited since 2000. It relies on logistic vehicles like ATV to upload all 

kinds of cargo, as well as propellants to maintain the orbit.

Feburary 16, 2011 at French Guiana

Kepler navigated and docked to the station automatically

commanded from the ATV Control Center

scenario, ATV’s state-of-the-art automatic rendezvous system utilize

to guide the ATV to the docking port on the Russia Zvezda module

the ISS with the precision of about

though under the surveillance of control center and the space station crews. 

ATV is also designed to re-boost the ISS into a high altitude to compensate for the 

atmosphere drag [10]. The ATV propulsion system will use more than 4 tons 
6 
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fulfill another two functions aside from raising the station’s orbit: perform necessary 

attitude control and perform ISS debris avoidance maneuvers. The ATV-2 Johannes 

Kepler mission is a total success, not only fulfilling the tasks for ISS, but also providing 

invaluable experience in practicing the existing GN&C technologies and designing the 

following ATVs. 

1.2 Research overview 

From the background sketched in Section 1.1, we can see that autonomous space 

missions have three flight segments characterized by unique mission design emphasis and 

proper GN&C support systems. These three phases are: the orbit adjusting phase, the 

relative navigation phase, and the close proximity operations phase. 

The relative navigation phase starts once the spacecraft or shuttle enters the 

proximity range (100 km) of the target. By using proper navigation and guidance scheme, 

when the relative range decreases to two kilometers and the relative velocity is under 2 

m/s, the proximity operation phase begins. During this phase, a series of maneuvers is 

conducted to adjust the attitude and position of the pursuer spacecraft so that servicing 

missions or docking can be conducted thereafter. Since the satellite rendezvous technique 

is relatively mature, in our research, we confine the scenario into the phase when the 

pursuer spacecraft has completed its orbit transferring process and is less than 1 km from 

the final stage [13]. Under the proper GNC method, the pursuer spacecraft will 

rendezvous with the target. We will control the translational and rotational motion of a 

pursuer spacecraft such that it has no relative motion (position and attitude) with respect 

to the target space body in the target body frame. For example, their docking ports will 

face towards each other.  
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Determined by whether the target body can maneuver actively, the target can be 

regarded as a cooperative target or a non-cooperative target [14]. The technologies of 

autonomous rendezvous and capturing of non-cooperative targets are becoming more and 

more important for future on-orbit servicing missions. Capturing a non-cooperative target 

is a very challenging task since the pursuer must synchronize its motion with the non-

cooperative motion of the target [15]. Therefore, a highly robust and precise control 

strategy is of necessity for the pursuer to successfully accomplish the proximity 

operation. 

Typical non-cooperative free tumbling targets include space debris or 

malfunctioning satellites. Conventional GNC methods in proximity operations for debris 

removal include self-removal and external removal. Knowing that the vast majority of 

space debris, especially smaller debris, cannot be removed under its own power, a variety 

of proposals have been put forward to directly remove the debris from orbit [16-23]. In 

these proposals, conventional large spacecraft capture is a method that may be applicable 

to most of the debris. Compared with the newly developed laser broom system [24], the 

conventional debris capture methods generate less secondary debris. Erika Carlson [16] 

proposed a design scheme that incorporates a transfer vehicle and a netting vehicle. Once 

debris has been detected, the transfer vehicle will proceed to rendezvous with the debris 

and deploy the netting vehicle. After expanding the nets, the netting vehicle returns and 

docks back to the transfer vehicle. It is apparent that in this procedure, precise rendezvous 

with the debris and docking of the transfer vehicle with the netting vehicle is essential. In 

[19-23], Sin-Ichiro et al. proposed a multiple space debris removal mission scenario. The 

servicing vehicle is required to rendezvous with a debris object (target), measure its 

motion and attempt a synchronized capture motion. Jerome Pearson and his research 
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group applied this technique to the Electro-Dynamic Debris Eliminator (EDDE) system 

[17, 18]. Debris is rendezvoused and captured by a series of EDDE vehicles and dragged 

to low altitude orbit such that the orbit life of the debris is reduced to a few months. 

For a real spacecraft system in proximity operation, we will consider not only its 

translational motion and rotational motion, but also disturbances and uncertainties that 

will affect the overall system performance. Disturbances and uncertainties can be 

classified as structural uncertainty and environmental disturbances. 

Structural uncertainty comes from flexible deployable structures [25, 26], mass 

expulsion torques, propellant slosh loads, crew motion, and other internal torques [27]. 

Typical deployable structures includes solar arrays, deployable beams, and 

articulating platforms. Most of them are hinged flexible structures that will generate 

deformation and oscillation when a fast and large scale attitude maneuver occurs. 

Empirically, flexibility must be considered by the control designer if the vibration’s 

lowest frequency mode is less than six times the desired control bandwidth. Otherwise 

there is a high possibility that this mode will be destabilized by the control system [26]. 

The Hubble Space Telescope (HST) encountered such a problem. Though designers of 

the attitude stabilization system of HST took most of the vibration of the solar panels into 

account, one of the panels still vibrated more than predicted after launch. An extra HST 

servicing mission 3B [28] had to be conducted to fix the solar panel and consumed 

millions of dollars. 

Fuel sloshing also contributes to system uncertainties. During thrust maneuvers, 

the sloshing of fuel in partially filled tanks can interact with the controlled system in such 

a way as to cause the overall system to be unstable [29]. Fuel slosh instability in the 

booster caused the failure of the first US attempt to place a spacecraft into orbit [30]. 
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Parametric uncertainties also contribute to deterioration of the system 

performance. Successful autonomous rendezvous and docking missions critically rely on 

a fault-tolerant sensor system to obtain real-time relative position and attitude 

information of two spacecraft during proximity operations. In realistic environments, pre-

launch measurement and ground measurement by means of radar or optical observations 

are usually not sufficiently accurate. Currently there are different vision systems capable 

of estimating the relative state information of moving objects [31]. All measurement 

systems, however, provide discrete and noisy position and orientation data at a relatively 

low rate. Besides, due to its importance, on-orbit or ground estimation of the spacecraft 

moment of inertia has become a hot topic in recent studies. 

External disturbances include solar radiation pressure, gas leaks, gravity gradient 

torque, magnetic torque, aerodynamic drag, and other environmental disturbances. 

As stated in [26], by careful design, the solar radiation torque can be reduced to 

10-5 or even 10-6 Newton-meters at the Earth’s distance from the sun. The gas leakage 

from a reaction control system can be held to values on the order of 10-5 Newton-meters. 

Gravity gradient torque is caused by the orbited planet’s gravity gradient. Magnetic 

torque is caused by the orbited planet’s magnetic field acting on the residual magnetic 

dipole moment of the spacecraft. Aerodynamic drag becomes significant below an 

altitude of 1000 kilometers. Most of these disturbances are state related and must be 

taken into account in order to design a controller with satisfying performance. In fact, all 

these disturbance torques can also be used as control torques. A controlled gas leak is a 

thruster; a solar sail uses radiation pressure; gravity gradient, magnetic, and aerodynamic 

torques can be (and have been) used for de-saturating reactions or momentum wheels. 

But one has to realize that when dealing with tracking problems, a spacecraft maneuver 
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must be completed in a relatively short time span. Thus external torques must be treated 

as disturbance torques rather than control torques. 

1.3 Research objective and approaches 

For the challenging spacecraft proximity control problem that involves highly 

nonlinear dynamics including coupled translational motion, rotational motion, and 

induced flexible structure vibration, we will design a robust controller that is able to 

accommodate not only complicated nonlinear dynamics, but the influence of modeling 

uncertainties and external or internal disturbances on system performance. 

To achieve these challenging objectives, we propose an integrated design strategy 

in the following sections. The design scheme includes four design approaches. 

The first approach is to consider the spacecraft rigid-body translational and 

rotational dynamics as well as the flexible motion in a unified optimal control framework 

so that the overall system performance and constraints can be addressed in one 

optimization process. 

The second approach is to formulate the robust control problem into an equivalent 

optimal control problem and prove the robust stability and optimality. This approach is 

called the indirect robust control design strategy. 

The third approach is to employ the θ-D technique, which is based on a 

perturbation solution to the Hamilton-Jacobi-Bellman equation, to solve this nonlinear 

optimal control problem obtained from the indirect robust control formulation. The 

resultant optimal control law can be obtained in closed-form and thus facilitates the 

onboard implementation. 
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The fourth approach is to use the inverse optimal adaptive control method 

combined with the indirect robust control scheme to alleviate the conservativeness of the 

robust control scheme by using online parameter estimation such that adaptive, robust, 

and optimal properties can be all achieved. 

We emphasize that by utilizing the relationship among the optimal control, robust 

control and adaptive control method, the disturbances and uncertainties can be accounted 

for in an innovative way such that stabilization and optimality can be guaranteed 

simultaneously.  
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CHAPTER II 

LITERATURE REVIEW 

In the course of spacecraft technology development, various methods have been 

proposed to address the proximity control problem. In terms of the control theory 

development, there have been intensive researches on robust or adaptive control of 

spacecraft using linear control methods based on linearization of the spacecraft dynamics 

or nonlinear control methods to address the true nonlinear dynamics directly. For large 

maneuvers like the proximity operations, linear-based control methods cannot guarantee 

satisfactory performance because the linearization is not able to capture the complex 

characteristics of the nonlinear and coupled dynamics. Nonlinear approaches are thus 

applied widely in modern proximity control scenarios. The following literature reviews 

will summarize some typical nonlinear spacecraft control methodologies and discuss the 

control designs specifically for spacecraft translational motion, rotational motion, and 

flexible spacecraft structures.  

2.1 Overview of spacecraft proximity operation control techniques 

Before we start to investigate specific control scenario in spacecraft proximity 

operations, it is important for us to review some widely used spacecraft control methods. 

As stated in the previous section, the highly nonlinear and coupled spacecraft dynamics 

and modeling uncertainties and disturbances need advanced nonlinear robust control 

techniques to guarantee satisfactory performance. Typical nonlinear spacecraft control 

methods include: the Lyapunov direct control scheme, the adaptive control method, the 
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variable structure robust control, and the optimal control method. : the Lyapunov direct 

control scheme, the adaptive control method, the variable structure robust control, and the 

optimal control method 

2.1.1 Lyapunov direct control scheme 

Based on the Lyapunov stability theory, the Lyapunov direct control scheme aims 

to find an appropriate Lyapunov function candidate for the dynamic system and construct 

a corresponding feedback control law to satisfy the stability condition. For simple 

systems with explicit energy function that is also a good Lyapunov function candidate, 

this method is efficient and capable of ensuring system stability. However, when applied 

to complex nonlinear systems such as spacecraft proximity operations, finding an 

appropriate Lyapunov function is very difficult, not to mention the complexity of 

designing the controller. Tsiotras [33] designs a linear passivity-based asymptotically 

stabilizing controller and control laws without angular velocity measurements for the 

rigid body attitude motion. The corresponding Lyapunov functions are carefully designed 

based on the storage functions. In [34], a Euler-Poisson form is used to describe the 

equations of motion. Internal modal principle is applied to eliminate the sinusoidal 

disturbance. Global asymptotic stability for both axisymmetric and asymmetric spacecraft 

is proved by combining the Lyapunov direct method with LaSalle’s theorem. Using the 

polhode representation, the tumbling motion dynamics can be expressed by linear 

equations in [35]. Lyapunov direct method is applied thereafter to find the analytical 

controller. 
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2.1.2 Adaptive control method 

Adaptive control method actively integrates the disturbance compensation and 

uncertainty estimation into controller design by introducing update law. The unknown 

parameters and dynamics are estimated by the known system parameters and outputs. 

Lyapunov stability theorem is then applied to ensure system stability. In [36], the author 

reviews several adaptive control methods in spacecraft attitude tracking with standard 

model reference based techniques. In the absence of disturbance and parametric 

uncertainty, a generic form of the passivity based control law is derived by the direct 

Lyapunov control method. When the parametric uncertainty is present, adaptive control is 

used. The similar general framework for spacecraft attitude control problem is presented 

in [37]. After proposing several passivity controllers based on the Lyapunov direct 

control method, adaptive controllers are proposed to account for parametric uncertainties. 

In references [38-40], authors present several adaptive control methods based on 

spacecraft moment of inertia identification. Sanyal et al. [38-40] proposes an adaptive 

controller for the spacecraft attitude tracking without using moment of inertia. The 

disturbance rejection can be also achieved with knowledge of the disturbance spectrum 

but without knowledge of either the amplitude or phase. In [41], a new adaptive robust 

control framework was proposed. Parameter adaptation is used along with robust filter 

structures to attenuate the effect of model uncertainties as much as possible. Considering 

the problem of whether parameter estimates converge to constant values, [42] and [43] 

give affirmative answers. Notice that it is not mandatory for the estimated parameters to 

converge to their real values in adaptive control problems. 
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2.1.3 Variable structure control method 

Another widely used nonlinear robust control method to address input constraints, 

parameter uncertainties and external disturbances is the variable structure control. Sliding 

mode control (SMC) is a typical variable structure control design technique. SMC is 

advantageous in being both insensitive to parameter uncertainties and robust against 

external disturbances. Variable structure control method can be combined with other 

design methods, such as backstepping method [44] and adaptive integral control method 

[45]. SMC was used for flexible spacecraft attitude control in [46]. Reference [47] 

discussed the application of the fuzzy control method combined with the variable 

structure technique in determining controller parameters. Neural network based sliding 

mode controller was investigated in [48] and [49]. Typical drawback of the variable 

structure control method is the chattering phenomenon that may cause the 

implementation problem since the controller contains the discontinuous nonlinearity. 

Continuous approximation of the SMC are not sensitive to the chattering problem and 

can be made to mimic the sliding-mode controllers [50]. 

2.1.4 Optimal control method 

Although adaptive control methods are widely used, it is worth noting that a 

major drawback of conventional adaptive control methods is that it utilizes the nonlinear 

cancellation technique. Controllers that cancel nonlinearities are, in general, non-optimal 

since the nonlinearities may be actually beneficial in stabilization and/or minimizing the 

cost function. Therefore, optimal control method is desired for not only stabilization, but 

also performance optimization. The difficulty of conventional optimal control methods 

lies in solving the Hamilton-Jacobi-Bellman (HJB) equation, which is a nonlinear partial 
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differential equation. Methods of directly solving the HJB equation are investigated in 

[51] and [52]. Optimal control with higher order performance criteria is discussed in [53]. 

When parametric uncertainties, unmodeled dynamics, and disturbances are present, the 

optimal control method can be combined with robust or adaptive control schemes. 

Reference [54] proposes an optimal controller for the general plant model with uncertain 

parameters. Control of internal plant disturbance is accomplished with an optimal 

disturbance cancellation mechanism. This mechanism is designed to minimize the plant 

output disturbance power. An adaptive filter, with the neural network based parameter 

training method, is introduced. Nguyen and Ishihara [55] propose an adaptive optimal 

controller that can achieve adaptation with a large adaptive gain. To minimize the 

tracking error, the L2 norm of the tracking error is formulated as the performance index. 

Inverse optimal control design, on the other hand, avoids solving the HJB 

equation directly in the conventional optimal control design. The difference between the 

direct and the inverse optimal control problems is that the former seeks a controller that 

minimizes a given cost, while the latter is concerned with finding a controller that 

minimizes some derived “meaningful” cost. In the inverse optimal approach, a controller 

is designed by using a control Lyapunov function (clf) obtained from solving the 

stabilization problem. The clf employed in the inverse optimal design is, in fact, a 

solution to the HJB equation with a meaningful cost. In [56], an inverse optimal control 

method is designed to minimize a meaningful cost function that incorporates integral 

penalty on the tracking error and the control as well as a terminal penalty on the 

parameter estimation error. The controller compensates for the effect of parameter 

adaptation transients in order to achieve optimality of the overall system. The inverse 

optimal controller also possesses margins in the sense of input-to-state stability [57]. 
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After finding a stable regulator for an auxiliary system using the Lyapunov direct control 

approach, inverse optimal design can find the corresponding stabilizing controller for the 

original system with certain optimality. Application of the inverse optimal control to rigid 

spacecraft attitude control is discussed in [58]. In [59], unmodeled disturbance, 

parametric uncertainty, and system stabilization are addressed in a unified inverse 

optimal framework and solved simultaneously. The relationship between optimal control 

and adaptive control was discussed in [60] and [61]. 

The certain equivalency between robust stabilization of uncertain nonlinear 

systems and the optimal control problem has been established by several researchers. 

Haddad and Chellaboina [62-64] have shown that the Lyapunov function guaranteeing 

closed-loop stability is a solution to the steady-state Hamilton-Jacobi-Bellman (HJB) 

equation for the optimal-controlled nominal system with a modified cost function 

including uncertainty bounds. In addition, Bernstein proves that the upper bound of the 

cost function can be calculated by the Lyapunov function [65, 66]. From another unique 

perspective, Lin et al. [67, 68] prove that the robust nonlinear control problem under the 

matching condition is equivalent to an optimal control problem by defining a proper cost 

function that reflects the uncertainty bounds. The result is then extended to input matrix 

uncertainty cases and unmatched uncertainty cases [69, 70]. By solving the transformed 

optimal control problem, both robust stability and optimality can be achieved. 

Applications utilizing this equivalency relationship include control of robot manipulators 

[71], PVTOL aircraft [72], and space robot arms [73]. 

To solve the nonlinear optimal control problem, a number of methods have been 

proposed. One of the widely used techniques is the state-dependent Riccati equation 

(SDRE) method [74], which is a systematic nonlinear regulator and state estimation 
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approach. In the recent decade, the SDRE optimal control method has been applied in 

solving a wide range of engineering problems under various conditions and restrictions 

[75], [76] and [77]. However, the SDRE technique needs to solve the algebraic Riccati 

equation repetitively at every integration step, which demands an intensive computation 

load. In this dissertation, a novel approach called the θ-D method [78] is employed to 

solve the nonlinear optimal control problem in our indirect robust control formulation. 

The θ-D method is based on an approximate solution to the HJB equation via a 

perturbation process. The optimal control law can be obtained in an analytical form by 

solving a series of algebraic Lyapunov equations. This closed-form feedback control law 

is much more efficient to implement onboard because it does not require excessive 

computational power [79]. By combining the advantages of the indirect robust control 

formulation and the θ-D method, we can solve a broad range of highly nonlinear robust 

control problems. 

2.2 Control of rigid spacecraft motion 

In Section 2.1, we have reviewed various control techniques in spacecraft 

proximity operations. In the following sections, we will review each control aspect from 

the spacecraft dynamics perspective. 

The typical way of designing the spacecraft controller is to consider the 

translational motion, rotational motion, and flexible structure motion in a separate 

framework. However, in the spacecraft proximity operations, these motions will be 

highly coupled. In this section, we will review the literature on the control of these 

motions separately and set up the stage to propose our integrated design scheme in the 

next section. Based upon this, we divide the rigid body proximity motion control into the 
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translational control and rotational control. Previous corresponding works will be 

reviewed in Section 2.2.1 and 2.2.2. We want to emphasize that this separation is merely 

to facilitate the understanding of the dynamics. We do not require the translational 

motion synchronization or the attitude synchronization to converge in any particular 

order. The integrated control design will be given in Section 2.4. 

2.2.1 Control of rigid spacecraft translational motion 

Spacecraft relative motion dynamics are first given by Clohessy and Wiltshire in 

1960s. The relative motion dynamics are derived by utilizing a Hill-like rotating 

Cartesian coordinate frame [80]. The Clohessy-Wiltshire (CW) linear formulation 

assumes small deviations from a circular reference orbit and used the initial conditions as 

the constants of the unperturbed motion [81]. The resultant relative equation of motion is 

named CW equation. 

Based on the CW equation, the problem of spacecraft rendezvous was 

investigated by various methods. Gao et al [82] explore the multi-objective spacecraft 

rendezvous using the linear matrix inequality (LMI) properties and Lyapunov approach. 

Optimal control methods focusing on time-optimal or fuel-optimal control were also 

studied by many researchers. In [83], Yang et al. investigate the homing phase of 

autonomous spacecraft rendezvous and formulated an output tracking control problem. 

Tang et al. [84] utilize the non-dominated sorting genetic algorithm (NSGR) to solve the 

multi-objective optimization problem for impulsive rendezvous. Uncertainties and 

disturbance are included in the control design to improve the robustness. Simulated 

annealing (SA), a stochastic optimization algorithm with global convergence, is 

employed in Luo’s work [85] to solve an optimal rendezvous problem. Compared with 
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[85], direct solving the Riccati equation is used in [86] to find the closed loop optimal 

controller. Genetic algorithm is also widely adopted in solving the optimal rendezvous 

problem [87-89]. 

2.2.2 Control of rigid spacecraft rotational motion 

Attitude tracking control problem has been studied in many works [29, 37, 90]. 

The spacecraft attitude control problem is to find a feedback control law such that the 

spacecraft attitude error and angular velocity error asymptotically converge to zero as 

time evolves.  

Various control algorithms have been proposed for solving the attitude tracking 

control problem. The Lyapunov direct control method [91-93] is widely used to construct 

the passivity based control law. In [94], a stabilizing controller for XTE spacecraft 

attitude tracking is proposed when no disturbance and uncertainty are considered. A 

relatively complex Lyapunov function is used in deriving the controller. When 

disturbance and uncertainties are present, the adaptive or robust control methods are more 

applicable. Reference [36] reviews the adaptive control methods when the spacecraft 

moment of inertia is not known. In [95] and [96], the disturbance torques are modeled as 

outputs of an auxiliary Lyapunov-stable system and estimated by appropriate update law. 

In [97], adaptive attitude tracking controller is designed based on a feed-forward learning 

adaptive filter. In [98] and [99], the adaptive control method is combined with the 

backstepping technique to solve the attitude tracking problem. 

To enhance the control performance with respect to a specific performance index, 

optimal control is preferable. In [100], the state-dependent Riccati equation (SDRE) 

technique is employed to control the position and attitude of a spacecraft approaching a 
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tumbling target. Robust symmetric controller is applied in ETS-VIII satellite [101] using 

the LMI optimization approach. Optimal control combined with backstepping [102] and 

variable structure control [103] are used for attitude tracking control to improve 

robustness and achieve optimality. 

Variable structure control method is also widely used in the robust attitude control 

design. In [104], extended state observer (ESO) is introduced with the SMC to stabilize 

the system under disturbance torques. Conventional boundary layer method is adopted to 

alleviate the chattering phenomenon. Chakrabortty [105] uses two high-gain filters in the 

controller design so that the disturbance and estimation error can be eliminated 

simultaneously. SMC is applied to provide the robust performance. Fuzzy sliding mode 

control is applied in [106] and a finite-time sliding mode control is proposed in [49] for 

the robust attitude tracking. 

2.2.3 Control of rigid spacecraft translational and rotational motion 

There are some research works that consider the rigid spacecraft translational 

motion and rotational motion together. In [107], an output feedback based adaptive 

control law is developed for spacecraft rendezvous and docking problems. The control 

law incorporates disturbance attenuation, parameter error compensation, and 

measurement noise estimation. Subbarao and Welsh [108] follow the method of 

decoupling the translational motion and rotational motion for the control of proximity 

operation. The control synthesis combines the feedback linearization technique with the 

adaptive control to handle the disturbance and uncertainties.  
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2.3 Control of flexible spacecraft motion 

Flexible spacecraft, as introduced in the previous sections, are spacecraft systems 

involving interconnected rigid structures and flexible appendages. In the previous rigid 

spacecraft control sections, we have reviewed a number of techniques with which 

disturbance and uncertainties are accounted for. The flexible structure deformation can be 

considered as disturbance to the rigid structure, or as part of the overall system dynamics. 

Moreover, the flexible deformation can be actively dealt with by active suppression 

methods. Actuators like piezoelectric layers [109] on the flexible structure can act as 

extra actuators for the flexible deformation suppression. 

Control techniques reviewed in Section 2.1 can be applied directly to the flexible 

spacecraft control. Feedback linearization technique and direct Lyapunov control scheme 

were applied in [110-113] for flexible space structure control. Since the generalized 

modal coordinates of the flexible motion are hard to measure, adaptive control method is 

frequently used in estimating the flexible system states. Gennaro [114] proposed a class 

of nonlinear controllers for flexible spacecraft using static controller or dynamic 

controller based on available sets of measurements. If the spacecraft rotational parameter 

(typically the moment of inertia matrix) is unknown, adaptive control method can also be 

applied assuming the full state feedback [115-119]. 

Variable structure control method is also widely used in the flexible structure 

control to ensure stability and robustness. PD type controllers with the variable structure 

were proposed in [120-122] using the passivity-based control technique. Neural network 

based sliding mode control was adopted in [123]. Closed-loop input shaping control 

scheme was developed and applied to flexible spacecraft control in [124] and [125]. 

When the input saturation is imposed, saturation compensator can be combined with the 
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input shaping and variable structure method to handle this problem in spite of disturbance 

and uncertainties [126]. In [127], reference model variable structure output feedback 

control (RMVSOFC) was proposed with the input shaping method for the flexible 

spacecraft control problem. 

When the flexible damping modes are considered as part of system states and are 

incorporated in the controller design, the conventional control method, such as adaptive 

based control method [128-130] and robust control method [131], can still be applied. 

When the flexible deformation is actively controlled, extra actuators are placed on 

the flexible structure to increase the control performance. Typical active flexible 

deformation suppression methods include: modal velocity feedback (MVF) compensator 

[132-135], positive position feedback (PPF) control [136-138], and strain rate feedback 

control [139, 140]. 

2.4 Integrated indirect robust control scheme 

As described in Section 2.2 and 2.3, complete spacecraft dynamics include the 

rigid-body translational and rotational motions coupled with the flexible structure 

dynamics. External disturbances and model uncertainties must be taken into account as 

well. Most of the previous works deal with these three dynamics separately when 

designing the controller. But since these three aspects are coupled in the proximity 

operations, a unified framework is necessary. In this dissertation, an integrated 

optimization approach is proposed to simultaneously control the rigid-body translational 

motion, rotational motion and flexible structure vibration. By doing so, the overall system 

performance and constraints can be addressed in one optimization process. However, to 
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solve this optimal control problem is a very challenging task especially when various 

model uncertainties and external disturbances must be addressed as well. 

Our research investigates the robust control of spacecraft in proximity operations 

from a new perspective by utilizing the close relationship between optimal control and 

robust control of uncertain nonlinear systems. We name this method the indirect robust 

control scheme. By properly choosing a cost function that reflects the uncertainty, state 

regulation, and control, the solution to the optimal control problem can be proved to be a 

solution to the robust control problem. 

Compared with the conventional direct robust control scheme, this new indirect 

robust control method avoids the difficulty in selecting the Lyapunov function candidate. 

The computation load will also be reduced greatly. The challenge of the indirect robust 

control scheme lies in solving the induced nonlinear optimal control problem. In 

particular, solving the corresponding Hamilton-Jacobi-Bellman (HJB) equation is always 

a challenging problem in the optimal control theory. To handle this difficulty, we employ 

the novel θ-D optimal control method [78], which can provide an approximate solution to 

the HJB equation and closed-form optimal control law such that the indirect robust 

control law can be efficiently implemented onboard without intensive computation load. 

The typical robust control scheme involves the uncertainty bounds in the control 

design and may be conservative if the bounds are hard to determine. Therefore, we 

propose the inverse optimal adaptive control method [59-61] combined with the indirect 

robust control scheme to alleviate the conservativeness of the robust control scheme by 

using online parameter estimation such that adaptive, robust, and optimal properties can 

be all achieved. 
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Remaining parts of the dissertation are organized as follows: in Chapter III, the 

spacecraft proximity control problem is described including the relevant coordinate 

frames, equations of motion, standing assumptions, and control objectives. The indirect 

robust control formulation and the review of the θ-D method are presented in Chapter IV. 

Integrated control of position, attitude, and flexible motion with uncertainties is designed 

in a unified framework in Chapter V. Controller design based on the inverse optimal 

adaptive control method will be presented in Chapter VI. Numerical results based on 6-

DOF simulations are given in Chapter VII to demonstrate the effectiveness of both 

controller design technique. Comparison and concluding remarks will be given in the last 

chapter. 
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CHAPTER III 

PROBLEM FORMULATION 

In this dissertation, we address the robust control of spacecraft position, attitude, 

and flexible motion in proximity operations in the presence of parameter uncertainties 

and bounded disturbances. 

Specifically, one servicing spacecraft denoted as pursuer S attempts to approach a 

space body denoted as target T. The target is uncontrolled and free tumbling but its full 

state information is assumed to be available, which can be obtained either from target 

sensors or from the pursuer’s observation and estimation [141]. The control objective is 

to have the pursuer position at a certain safe distance with respect to the target while 

keeping its docking port facing the docking port of the target. The attitude of the two 

vehicles must be kept synchronized during the maneuver so that subsequent operations, 

capturing or docking for instance, can be carried out safely. 

3.1 Coordinate systems and notations 

Four coordinate systems need to be defined to describe the dynamics and 

equations of motion as shown in Fig. 3.1 and Fig. 3.2. The inertial coordinate system is 

represented by the geocentric-equatorial frame . The local-vertical-

local-horizontal (LVLH) frame centered on the target has  axis 

along the target radius vector from the Earth,  axis along the direction of the orbital 

normal, and  axis completing the triad. Body-fixed coordinate frames of the pursuer 

and the target are defined as  and , respectively. 

ˆ ˆ ˆ{ } { , , }x y z=I I I I

ˆ ˆ ˆ{ } { , , }x y z=L L L L ˆ
xL

ˆ
zL

ˆ
yL

ˆ ˆ ˆ{ } { , , }s sx sy sz=B b b b ˆ ˆ ˆ{ } { , , }t tx ty tz=B b b b
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Without loss of generality, it is assumed that  axis of the pursuer and axis of the 

target are their respective outward normal directions of the docking ports. During the 

proximity operation,  axis must align with the axis and point to the opposite 

direction of axis. 
 

 

Figure 3.1 Earth inertial frame I and the local-vertical-local-horizontal frame L 

 

 

Figure 3.2 Pursuer spacecraft body frame Bs and target body frame Bt 

ŝxb t̂xb

ŝxb t̂xb

t̂xb
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3.2 Rigid spacecraft translational dynamics 

The relative translational dynamics are developed based on their relative position 

with respect to the LVLH frame fixed to the target. Define the relative position vector 

from the target to the pursuer as  and its velocity as : 
 (3.1) 

 (3.2) 

where are three components of vector in the LVLH frame. The relative 

translational dynamics are governed by [142]: 

 (3.3) 

 (3.4) 

 (3.5) 

where is the gravitational constant, [ , , ]T
x y za a a=a  is pursuer’s control acceleration 

vector represented in the LVLH frame. is the distance from the Earth center of mass to 

the target.  is true anomaly. For a circular orbit, the equations of motion become the 

linear Clohessy-Wiltshire (CW) equation [80]. The evolutions of and ν  parameters are 

governed by [142]: 
 (3.6) 

 (3.7) 
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3.3 Coupled rotational dynamics and flexible structure dynamics 

As introduced in the previous sections, flexible structure deformation should be 

considered while the spacecraft performs large angular maneuvers. In our research, the 

rigid-body rotational dynamics coupled with the flexible motion are considered in the 

controller design. 

Figure 3.3 shows the model [26] of a relatively large class of spacecraft that are 

required to undergo large maneuvers. 
 

 

Figure 3.3 Schematic representation of flexible spacecraft system with two 
axisymmetric beams 

Several assumptions are made to facilitate the formulation and control design: 

1) The maneuver of the spacecraft is limited to the orbit normal axis (pitch 

maneuver). But the elastic deflections of the appendages, which are 

assumed to be small, are not confined only in the orbital plane but in all 

three directions. 
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2) The maneuver is assumed to excite the two flexible appendages anti-

symmetrically. The shift in the spacecraft center-of-mass caused by the 

flexible deflection is thus negligible. 

Method of assumed modes is used to represent the flexible deflection. 

Appendages are considered to behave as simple Euler-Bernoulli beams to simplify the 

analysis. 

By the method of assumed modes [143], the deflections in all three directions are 

expressed in terms of a set of admissible or shape functions: 

1

( ) ( ) ( )
N

d d k k d
k

x t xη
=

= ∑u φ  (3.8) 

where, xd is the distance from the center of the rigid body,  represents the kth time-

varying amplitude, also known as generalized coordinates associated with the 

admissible shape function ( ) [ ( ), ( ), ( )]k d x d y d z dx x x xφ φ φ=φ . Components ( )x dxφ , ( )y dxφ  

and ( )z dxφ  are shape functions along the three axes, respectively. Certain boundary 

conditions must be satisfied by the shape function: 

(0) (0) ( ) ( ) 0k k k kL Lφ φ φ φ= = = =& && &&&  (3.9) 

L is the appendage length. N in (3.8) represents the number of terms used in the 

approximation and it is also known as the number of significant modes. 

The governing dynamic equations for the flexible spacecraft rotational motion can 

be derived based on the Lagrangian procedure [144].  

 (3.10) 

 (3.11) 

( )k tη

T T
s s s s s s sJ Jδ δ+ = − +& && % % &ω η ω ω − ω η Γ

0s C Kδ+ + + =&& & &η ω η η
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where [ , , ]
x y z

T
s s s sω ω ω=ω  is the angular velocity vector of the pursuer expressed in its 

own body frame;  is the pursuer’s moment of inertia matrix and is the control 

torque, which is defined in pursuer’s body frame ,  is the cross product matrix 

defined as: 

0

0

0

z y

z x

y x

s s

s s s

s s

ω ω

ω ω

ω ω

 −
 

= − 
 
−  

%ω  (3.12) 

 is the modal deformation coordinate vector. is the 

coupling matrix between the flexible and rigid body dynamics. C and K denote the 

damping and stiffness matrices, respectively, which are defined as: 

 (3.13) 

with appendage damping coefficient  and natural frequency . 

Quaternion representation is used to describe the spacecraft attitude kinematics: 

 (3.14) 

where 
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i is euler s s eulerq q c iϕ ϕ= = = ;  is the rotation angle about the 

Euler-axis;  are the direction cosines of the Euler axis with respect to the 

reference frame.  is defined as: 
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The free-tumbling target is considered as a rigid body and has similar attitude 

dynamics except that the external torque and flexible dynamics are not present: 

 (3.15) 

 (3.16) 

Where [ ]
x y z

T
t t t tω ω ω=ω  is the target angular velocity expressed in the target body 

frame; 
0 1 2 3

[ ]T
t t t tq q q q  is the target quaternion;  is the target’s moment of 

inertia matrix. 

The attitude control aims to synchronize the two objects’ angular velocity and 

have the pursuer’s docking port face the docking port of the target. Without loss of 

generality, the outward normal directions of the pursuer and target docking ports are 

assumed to be along the x axis of their individual body frames. In other words, the  

axis is required to point toward the opposite direction of the  axis. For the convenience 

of control formulation, a virtual target is assumed as the desired attitude for the pursuer 

to track. This virtual target has a body frame  fixed on the target. Here  is 

obtained through rotating the original target body frame by 180 degrees about  axis. 

The transformation from the target frame  to the virtual target frame  can be 

represented by the direct cosine matrix of: 

                     (3.17) 

It can also be represented as quaternion: dt =q . Thus, the angular 

velocity of the target expressed in the virtual target frame becomes: 
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{ }dB { }dB

t̂zb

{ }sB { }dB

cos180 sin180 0 1 0 0
sin180 cos180 0 0 1 0

0 0 1 0 0 1
dtC

  − 
   = − = −   
     

o o

o o

[ ]0 0 0 1 T
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d

x y z

T

d dt t t t tC ω ω ω = = − − 
Bω ω  (3.18) 

The desired quaternion for the pursuer spacecraft to track is: 

3 2 1 0

T

d t dt t t t tq q q q = ⋅ = − − q q q  (3.19) 

The attitude synchronization is reduced to the problem of tracking the virtual 

target’s attitude  and its angular velocity . To facilitate the attitude control design, 

define the tracking error in the pursuer’s body frame as: 

 (3.20) 

 (3.21) 

where is the virtual target angular velocity expressed in the pursuer’s body frame 

,  is the virtual target body-to-inertial coordinate transformation matrix and 

is the inertial-to-pursuer body coordinate transformation matrix. They can be calculated 

by the corresponding quaternions: 

( ) ( )
( ) ( )
( ) ( )

0 1 2 3 1 2 0 3 1 3 0 2

1 2 0 3 0 1 2 3 2 3 0 1

1 3 0 2 2 3 0 1 0 1 2 3

2 2 2 2

2 2 2 2

2 2 2 2

2 2

2 2

2 2
d

d d d d d d d d d d d d

d d d d d d d d d d d d

d d d d d d d d d d d d

q q q q q q q q q q q q

T q q q q q q q q q q q q

q q q q q q q q q q q q

 + − − − +
 
 = + − + − −
 
 − + − − + 

I
B  (3.22a) 

( ) ( )
( ) ( )
( ) ( )

0 1 2 3 1 2 0 3 1 3 0 2

1 2 0 3 0 1 2 3 2 3 0 1

1 3 0 2 2 3 0 1 0 1 2 3

2 2 2 2

2 2 2 2

2 2 2 2

2 2

2 2

2 2

s s s s s s s s s s s s

s s s s s s s s s s s s

s s s s s s s s s s s s

q q q q q q q q q q q q

T q q q q q q q q q q q q

q q q q q q q q q q q q

 + − − + −
 
 = − − + − +
 
 + − − − + 

sB
I  (3.22b) 

 matrix in (3.21) is defined as: 

dq d
d
Bω

s d

de s d s dT T= − = − sB B BI
I Bω ω ω ω ω

1 1
e d s d sQ− −= =q q q q

s
d
Bω

{ }sB
d

T I
B

sT B
I

dQ
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0 1 2 3

1 0 3 2

2 3 0 1

3 2 1 0

d d d d

d d d d
d

d d d d

d d d d

q q q q

q q q q
Q

q q q q

q q q q

− − − 
 

− =  − 
 − 

 (3.23) 

In Section 3.2 and Section 3.3, spacecraft translational and rotational dynamics 

have been described in detail. As parametric uncertainties and disturbances are inevitable, 

in the following section, we will establish uncertain system equations for the robust 

controller design. 

3.4 Coupled rotational dynamics with parametric uncertainties 

In this dissertation, we consider the parametric uncertainties due to the spacecraft 

moment of inertia uncertainty and the coupling matrix uncertainty between rigid-

body dynamics and flexible motion. Other parametric uncertainties can be similarly 

attacked. When the uncertainties and  are introduced, one can derive the 

perturbed attitude dynamics from (3.10) and (3.11): 

 (3.24) 

 (3.25) 

In the following manipulations, we rewrite the above two equations as the first-

order state equations and separate the attitude dynamics into the nominal part and the 

perturbation part to facilitate subsequent robust control design. 

By eliminating the &&η  term using (3.25), (3.24) can be rewritten as: 

 (3.26) 

where , . 

J∆ δ∆

J∆ δ∆

( )T T T T
s s s s s s s s s s sJ J J Jδ ω ω δ ω ω δ δ+ = − − + + −∆ − ∆ − ∆ − ∆Γη& && % & % & & % % & &&ω η ω ω ω η η

s sC K δ δ+ + = − − ∆&& & & &η η η ω ω

0

1

( )

[ ( ) ]

T T T
s s s s s

T T T
s s s s s

M C K J
c J C K

δ ω δ δ ω

ω ω δ δ δ

= − + −

+ + − ∆ − ∆ − ∆ + ∆Γ
ω η η ω

ω ω η η

& % & %
& % % &

0
T

sM J δ δ= − 1 ( )T T Tc Jδ δ δ δ δ δ= ∆ − ∆ + ∆ + ∆ ∆
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In order to eliminate on the right hand side of the equation, we will still use 

(3.24) and (3.25) to find a proper representation of  by state variables . If we 

set   and , then: 

 (3.27) 

Using (3.27) in the  term on the right hand side of (3.26) yields: 

 (3.28) 

The perturbed part in (3.28) can be denoted as: 

 (3.29) 

where P1, P2, P3 and P4 denote the corresponding coefficient matrices. Their dimensions 

are , respectively. 

Following the similar procedure, one can establish the dynamic equation for : 

 (3.30) 

s&ω

s&ω , ,s &ω η η

,δ δ δ′ = + ∆ s sJ J J′ = + ∆ 0 ( )T
sM J δ δ′ ′ ′= −%

1 1 1 1
0 0 0 0( )T T T

s s s s s sM C M K M J Mδ ω δ δ ω− − − −′ ′ ′ ′= − + − + Γη η ω% % % %& % & %ω

s&ω

1
0

1 1
0 1 0

1 1
1 0 1 0

1
1 0

[( ) ]

{[ ( ) ( )]

+( ) ( )

}

T T
s s s s s s

T T T T
s s

T T
s s s s

s

M C K J

M c M C C
c M K K c M J J

c M

δ ω δ δ ω

δ ω δ ω δ δ

δ δ ω ω

− Τ

− −

− −

−

= − + − +

′ ′+ − − ∆ − ∆

′ ′+ ∆ − + ∆

+

& % & %
% % % &

% % % %
%

ω η η ω

η

η ω

Γ

Γ

1 1
0 1 0

1 1
1 0 1 0

1
1 0

1 2 3 4

{[ ( ) ( )]

+( ) ( )

}
P P P P

T T T T
s s

T T
s s s s

s

s s

M c M C C

c M K K c M J J

c M

δ ω δ ω δ δ

δ δ ω ω

− −

− −

−

′ ′− − ∆ − ∆

′ ′+ ∆ − + ∆

+

= + + +

% % % &
% % % %

%

&

η

η ω

η η ω
Γ

Γ

3 4,3 4,3 3, and 3 3× × × ×

&&η

( ) ( )
( )

( ) ( )
( )

1 1
0 0

1 1 1
0 0 1 0

1 1
2 0 3 0

1
4 0

P

P P

P

s s

T T T
s

T T
s s s s s

T
s s s

s

C K

M C C M K K

M J M M C

M K M J

M

δ δ

δ δ ω δ δ δ

δ ω δ δ δ δ ω δ

δ δ δ δ δ ω

δ δ

− −

− − −

− −

−

= − − ∆ − −

 = − − − + − − 
 ′+ − + − − ∆ − 

′ ′+ − − ∆ + − + ∆

′+ − − ∆

&& & & &

% &

% % &

%

η ω ω η η

η η

ω η

η ω

Γ

Γ
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In this equation, the perturbation part due to parametric uncertainties is: 

1 1
1 0 2 0

1 1
3 0 4 0

5 6 7 8

[ P ( )] ( P )

( P ) ( P )
P P P P

T T T
s

s s s s

s s

M C M K
M J M

δ δ δ ω δ δ δ δ

δ δ ω δ δ

− −

− −

′ ′− − ∆ − + − − ∆

′ ′+ − + ∆ + − − ∆
= + + +

% &
%

&

η η

ω
η η ω

Γ
Γ

 (3.31) 

where P5, P6, P7 ,and P8 denote the corresponding coefficient matrices. Their dimensions 

are , ,  , and , respectively. 

Note that Equations (3.29) and (3.31) will become zero if parametric uncertainties 

do not exist. The robust control will be designed in the next chapter such that the system 

stability and optimal performance can be guaranteed. 

 

 

4 4× 4 4× 4 3× 4 3×
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CHAPTER IV 

INDIRECT ROBUST CONTROL DESIGN SCHEME 

In this section, the indirect approach is introduced to convert the nonlinear robust 

control problem to an equivalent optimal control problem. Then a new nonlinear optimal 

control technique, the θ-D method, is employed to solve the resulting problem in closed-

form. 

4.1 Indirect robust control method 

Robust stabilization under uncertainties has been shown in [62-70] to possess 

certain equivalency with respect to the optimal control problem. The Lyapunov function 

guaranteeing closed-loop stability is in fact the solution to the steady-state HJB equation 

for the optimal-controlled nominal system with a modified cost function including 

uncertainty bounds. In this dissertation, we extend these results to a general framework to 

handle parametric uncertainties and control input uncertainties, which are considered in 

this robust spacecraft control problem. The following theorem gives the main result of the 

indirect robust control method[145-150]. 

Theorem 4.1: Consider the following nonlinear systems: 

( ) B ( ) ( ) B ( ) ( ) ( ) ( )n n n nh= + + +x f x x u x x x u x d x&  (4.1) 

where ,n m∈ ∈x u¡ ¡ ;  and  are bounded uncertainties. Assume  

and so that  is an equilibrium point. Consider the following two 

problems: 

P1: Robust Control Problem: 

( )h x ( )nd x ( ) 0n =0f

( ) 0n =0d = 0x
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Find a feedback control law  such that the closed-loop system (4.1) is 

globally asymptotically stable for all bounded uncertainties  and . 

P2: Optimal Control Problem: 

For system: 

( ) B ( ) ( ) ( B ( )B ( ) ) ( )n n n nI += + + − vx f x x u x x x x&  (4.2) 

where I is an identity matrix and B ( )n
+x  is the pseudo-inverse of B ( )n

+x , find a feedback 

control law  and an auxiliary control  to minimize the following cost function: 
22 2 2 2

max max0
( ( ) ( ) 2 )T T TJ H g Q R R dtρ ρ

∞
= + + + +∫ vx x x x u u% % %  (4.3) 

where  and are bounds for uncertainties; n nQ ×∈R%  and m mR ×∈% ¡  are 

positive definite matrices; is a positive tunable parameter. 

If one can find the solution for this optimal control problem P2 and satisfy the 

following conditions: 

 (4.4) 

 (4.5) 

22 22 2 2
max2 4 B ( ) ( )nR gρ γ+ ′+ <v x x x%  (4.6) 

for some 2 2
min ( )Qγ γ λ′ ≤ = % , where  is the minimum eigenvalue, then the u 

component of the optimal control solution is a solution to the robust control problem P1. 

Proof: 

Consider the optimal control problem (4.2) and (4.3). Let us first define: 

22 2 2 2
max max,

( ) min ( ( ) ( ) 2 )T T T

t
V H g Q R R dtρ ρ

∞
= + + + +∫v

v% % %
u

x x x x x u u  (4.7) 

( )u x

( )h x ( )nd x

( )u x ( )v x

max ( )H x max ( )g x

ρ

2 2
max( ) ( )n g≤d x x

2 2
max4 ( ) ( )Rh H≤x u x%

min ( )λ i
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as the minimum cost-to-go. From the steady-state Hamilton-Jacobi-Bellman equation 

[151] and the optimality condition, one can get the following equations: 

22 2 2 2
max max( ) ( ) + 2 +

[ ( ) B ( ) ( B ( )B ( ) ) ] 0

T T T

T
n n n n

H g Q R R

V I

ρ ρ
+

+ +

+ + + − =

v

vx

x x x x u u

f x x u x x

% % %
 (4.8) 

 4 B ( ) 0T T T
nR R V+ =xu x% %  (4.9) 

 22 ( B ( )B ( ) ) 0T T
n nV Iρ ++ − =v x x x  (4.10) 

These three equations will be used to prove that  is a Lyapunov function for 

the original robust control problem P1. It can be proved easily that  for 

and for . 
[ ( ) B ( ) B ( ) ( ) ( )]

[ ( ) B ( ) ( )] B ( ) ( )

[ ( ) B ( ) ( )] 4 ( )

T T
n n n n

T T
n n n n

T T T
n n n

V V V h
V V h

V R Rh

= = + + +

= + + +

= + + −

x x

x x

x

x f x x u x x u d x
f x x u d x x x u
f x x u d x u x u

& &

% %
 (4.11) 

(Note that the condition (4.9) is applied). 

1) For the term , one can use the following relationship: 

( )
2 2

[ 2 ( ) ] [ 2 ( ) ] 4 ( ) 4 0T T TR Rh R Rh R R Rh Rh+ + = + + ≥u x u u x u u u x u x u% % % % % % % %   

to derive: 

 (4.12) 

(Note that the condition (4.5) is applied). 

2) For the term [ ( ) B ( ) ( )]T
n n nV + +x f x x u d x , we have: 

( )V x

( ) 0V >x 0≠x

( ) 0V =x 0=x

4 ( )T TR Rh− u x u% %

2 2 2 2
max4 ( ) 4 ( ) ( )T TR Rh R Rh R H− ≤ + ≤ +u x u u x u u x% % % % %
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2 2
max

[ ( ) B ( ) ( )]

[ ( ) B ( ) ( B ( )B ( ) ) ]+ ( ) ( B ( )B ( ) )

[ ( ) B ( ) ( B ( )B ( ) ) ] ( B ( )B ( ) ) ( )

( B ( )B ( ) ) B ( )B ( ) ( )

( )

T
n n n

T T T
n n n n n n n

T T
n n n n n n n

T T
n n n n n

V
V I V V I
V I V I

V I V

H gρ

+ +

+ +

+ +

+ +

= + + − − −

= + + − + −

− − +

= − −

v v
v

v

x

x x x

x x

x x

f x x u d x
f x x u x x d x x x
f x x u x x x x d x

x x x x d x

x 22 2
max

2

( ) 2 +

2 ( ) 4 B ( ) ( )

T T T

T T T
n n n

Q R R

R R

ρ

ρ +

− −

− −

v

v

x x x u u

d x u x d x

% % %

% %

 (4.13) 

Note that the conditions (4.8-4.10) are applied. 

Now applying (4.12) and (4.13) to (4.11) leads to: 

2 22 2 2 2
max ( ) + 2 ( ) 4 B ( ) ( )T T T T

n n nV R g Q R Rρ ρ ρ +≤ − − − − −v vu x x x d x u x d x%& % % %

 (4.14) 

For 
2

4 B ( ) ( )T T
n nR R R +− −u u x d x% % % , completing the square term yields: 

2

2 2

2

4 B ( ) ( )

4 B ( ) ( ) 2 B ( ) ( )

4 B ( ) ( )

T T
n n

n n n n

n n

R R R

R R R

R

+

+ +

+

− −

= − +

≤

u u x d x

x d x u x d x

x d x

% % %

% % %

%

 (4.15) 

Thus (4.14) becomes 

222 2 2 2
max

222 2 2 2
max

222 2 2 2 2
max max

222

min

( ) 2 ( ) 4 B ( ) ( )

( ) [ ( ) ( )] 4 B ( ) ( )

( ) 2 ( ) 4 B ( ) ( )

2 4 B ( ) ( )

(

T T
n n n

T T T
n n n n

T
n n

T
n n

V g Q R

g Q R

g Q g R

Q R

Q

ρ ρ ρ

ρ ρ ρ

ρ ρ ρ

ρ

λ

+

+

+

+

≤ − − − +

≤ − − + + + +

≤ − − + + +

= − + +

≤ −

v v

v v v

v

v

+x x x d x x d x

x x x d x d x x d x

x x x x x d x

x x x d x

%& %

% %

% %

% %

% 22 22 2
max) 2 4 B ( ) ( )nR gρ ++ +vx x x%

 (4.16) 
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Therefore, if the condition (4.6), 
2 2 22 2 2

max4 B ( ) ( ) 2nR g ρ γ+ ′+ <vx x x% , is 

satisfied, then: 

  (4.17) 

Thus, according to the Lyapunov stability theorem, there exists a neighborhood of 

0,  for some  such that if  enters , then ( ) 0t →x  as . 

Furthermore, cannot always stay outside . If  for all , then: 

 (4.18) 

If t goes to infinity, it is obvious that  will go to negative, which 

contradicts the assumption that  for all . Therefore  cannot always 

stay outside of . Once it enters , it will go to 0 as t increases. This proves that by 

using the control u obtained from solving the optimal control problem P2, the robust 

control problem P1 has a globally asymptotically stable solution. □ 

Remark 4.1: Theorem 4.1 applies to systems with both matched uncertainty and 

unmatched uncertainty. The auxiliary control  in (4.2) and (4.3) is used to facilitate 

the formulation of robust control for unmatched uncertainty. In the case of matched 

uncertainty, i.e. is in the range of B ( )n x , Theorem 4.1 can be simplified to: 

Theorem 4.2: Consider the following nonlinear systems: 

( ) B ( ) ( )+B ( ) ( ) ( ) B ( ) ( )n n n n nh= + +x f x x u x x x u x x d x&   

where  is the uncertainty and . The feedback control law ( )u x  

that globally asymptotically stabilizes the closed-loop system can be obtained from 

solving the following optimal control problem: 

( ) 22 2 0V γ γ ′≤ − − <x&

{ : }cN c= <x x 0c > ( )tx cN t → ∞

( )tx cN ( )t c≥x 0t >

22 2

0 0

2 2 2 2 2 2

0

( ( )) ( (0)) ( ( )) ( )

( ) ( )

t t

t

V t V V d d

c d c t

τ τ γ γ τ

γ γ τ γ γ

′− = ≤ − −

′ ′≤ − − ≤ − −

∫ ∫
∫

x x x x&

( ( ))V tx

( ( )) 0V t >x ( )tx ( )tx

cN cN

( )v x

( )nd x

( )nd x max( ) ( )n d≤d x x
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Find a feedback control law ( )u x  that minimizes: 

2 2 2
max max0

( ( ) ( ) 2 )T T TJ H g Q R R dtρ
∞

= + + +∫ x x x x u u% % %   

subject to: ( ) B ( ) ( )n n= +x f x x u x&  

where  and  are uncertainty bounds such that: 

  

□ 

One can follow the similar steps in Theorem 4.1 to prove Theorem 4.2. 

4.2 θ-D nonlinear optimal control technique 

The above indirect approach is capable of transforming the nonlinear robust 

control problem to the nonlinear optimal control problem. However, the resultant optimal 

control problem is still very difficult to solve for general nonlinear dynamic systems. In 

this dissertation, we employ the θ-D method to find an approximate analytical solution 

via a perturbation process. As detailed in Chapter 2, the θ-D technique can provide a 

closed-form suboptimal feedback control law and is thus much more efficient to 

implement onboard because it does not require excessive computational load. The θ-D 

technique can be summarized as follows. 

Consider a class of nonlinear time-invariant systems described by: 

( ) B= +x f x u&  (4.19) 

The objective is to find a stabilizing control u and minimize the cost function: 

0

1 ( Q R )
2

T TJ dt
∞

= +∫ x x u u  (4.20) 

max ( )H x max ( )g x

2 22 2
max max4 ( ) ( ), 4 ( ) ( )nR g Rh H≤ ≤d x x x u x% %
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where , ,B , ,Q ,Rn n n m m n n m m× × ×∈Ω ⊂ ∈ ∈ ∈ ∈ ∈x f u¡ ¡ ¡ ¡ ¡ ¡  

Here we assume that  is a compact subset in n¡ , Q is a positive semi-definite 

matrix, R is a positive definite constant matrix. Also assume that  is of class  in x on 

 and f(0)=0. 

The optimal solution to this infinite-horizon nonlinear regulator problem can be 

obtained by solving the Hamilton-Jacobi-Bellman (HJB) equation [151]: 

 
11 1( ) BR B Q 0

2 2

T
T TV V V−∂ ∂ ∂ − + ∂ ∂ ∂ 

f x x x =
x x x

 (4.21) 

where V(x) is the optimal cost-to-go, i.e. 

 1( ) min Q R
2

T T

t
V dt

∞
 = + ∫ux x x u u  (4.22) 

Assume that V(x) is continuously differentiable and V(x)>0 with V(0)=0.  The 

optimal control is given by: 

 1R BT V− ∂
= −

∂
u

x
 (4.23) 

The HJB equation (4.21) is very difficult to solve in general. The θ-D method 

gives an approximate closed-form solution by introducing perturbations to the cost 

function [78], i.e. 

 
0

1

1 Q D R
2

T i T
p i

i
J dt

∞∞

=

  
= + θ +    

∑∫ x x u u  (4.24) 

where 
1

D i
i

i

∞

=

θ∑  is a perturbation series in terms of an instrumental variable θ. The 

construction of this series will be discussed afterwards. Rewrite the state equation (4.19) 

in a linear factorization structure [78], i.e. 

Ω

f 1C

Ω
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0
A( )( ) B F( ) B A B  = + = + + θ +  θ  

xx f x u x x u = x u&  (4.25) 

where A0 is a constant matrix; 0(A ,B)  is a controllable pair and {F( ),B}x  is pointwise 

controllable. Then the new optimal control problem (4.24) and (4.25) can be solved 

through the perturbed HJB equation: 

1
0

1

A( ) 1 1A BR B Q D 0
2 2

T T
T T i

i
i

V V V ∞
−

=

∂ ∂ ∂       + θ − + + θ =      ∂ θ ∂ ∂       
∑x x x x

x x x
 (4.26) 

Assuming a power series expansion of 
0

T ( , ) i
i

i

V ∞

=

∂
= θ θ

∂ ∑ x x
x

, the optimal control 

becomes: 

1

0

R B T ( , )T i
i

i

∞
−

=

= − θ θ∑u x x  (4.27) 

where T ( , )i θx  ( 0, , ,i n= L L ) is a symmetric matrix and is solved recursively by the 

following algorithm (4.28), which is obtained by substituting 
0

T ( , ) i
i

i

V ∞

=

∂
= θ θ

∂ ∑ x x
x

 in the 

perturbed HJB equation (4.26) and equating the coefficients of iθ  to zero: 

1
0 0 0 0 0 0T A A T T BR B T Q 0T T−+ − + =  (4.28a) 

1 1 0 0
1 0 0 0 0 1 1

T A( ) A ( )TT (A BR B T ) (A T BR B )T D
T

T T T− −− + − = − − −
θ θ

x x  (4.28b) 

1 1 11 1
2 0 0 0 0 2 1 1 2

T A( ) A ( )TT (A BR B T ) (A T BR B )T T BR B T D
T

T T T T− − −− + − = − − + −
θ θ

x x

 (4.28c) 

 L
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1
1 1 11 1

0 0 0 0
1

T A( ) A ( )TT (A BR B T ) (A T BR B )T T BR BT D
T n

T T T n n
n n j n j n

j

−
− − −− −

−
=

− + − = − − + −
θ θ ∑x x

 (4.28d) 

Note that (4.28a) is an algebraic Riccati equation and the rest of equations are 

Lyapunov equations that are linear in terms of Ti  ( ). 

Steps of applying the θ-D algorithm to solve Ti  recursively are summarized as 

follows [78]: 

1) Solve the algebraic Riccati equation (4.28a) to obtain T0 once A0, B, Q 

and R are determined. Note that the resulting T0 is a positive definite 

constant matrix under the controllability and observability conditions. 

2) Solve the Lyapunov equation (4.28b) to obtain 1T ( , )θx . Note that this is a 

linear algebraic equation in terms of 1T ( , )θx . A unique property of this 

equation is that the coefficient matrices 
-1

0 0A - BR B TT  and 

1
0 0A T BR BT T−−  are constant matrices. 

Assume that 1
0 0A A BR B T

0

T
c = −− . Through some linear algebra, equation 

(4.28b) can be brought into the form of [ ] [ ]0 1 1Â vec T ( , ) vec M ( , , )tθ = θx x  

where 
0 00Â A AT

n c c n= I I⊗ + ⊗  is a constant matrix and the symbol  

denotes Kronecker product. 1M ( , , )tθx  includes all the terms on the right-

hand side of the equation (4.28b); [ ]1vec M ( , , )tθx  denotes stacking the 

elements of the matrix 1M ( , , )tθx by rows in a vector form. Thus, the 

solution of 1T ( , )θx  can be written in a closed-form expression 

[ ] [ ]1
1 0 1

ˆvec T ( , ) A vec M ( , , )t−θ = θx x . 

3) Solve (4.28c) and (4.28d) for 2T , ,TnL  by following the similar procedure 

in 2). 

1, ,i n= L

⊗



 

47 

Since all the coefficients of T , 1,i i n= L  on the left-hand side of the equations 

(4.28b-4.28d) are the same constant matrices, i.e. 1
0 0A BR B TT−−  and 1

0 0A T BR BT T−− , 

closed-form solution for T ( , )i θx  can be easily obtained with only one matrix inverse 

operation, i.e. 1
0Â− . 

The perturbation matrix D , 1,i i n= L  is constructed as follows: 

1 0 0
1 1

T A( ) A ( )TD
T

l tk e−  
= − − θ θ 

x x  (4.29a) 

2 11 1
2 2 1 1

T A( ) A ( )TD T BR B T
T

l t Tk e− − 
= − − θ θ 

+x x  (4.29b) 

 

1
11 1

1

T A( ) A ( )TD T BR B Tn

T n
l t Tn n

n n j n j
j

k e
−

− −− −
−

=

 
= − − + θ θ 

∑x x  (4.29c) 

where ki and  are adjustable design parameters. 

The Di  ( ) are chosen such that: 

1
11 1

1

1
11 1

1

T A( ) A ( )T T BR B T D

T A( ) A ( )T( ) T BR B T

T i
Ti i

j i j i
j

T i
Ti i

i j i j
j

tε

−
−− −

−
=

−
−− −

−
=

− − + −
θ θ

 
= − − + θ θ 

∑

∑

x x

x x
 (4.30) 

where  (4.31) 

 is chosen to be a small number to overcome the initial large control gain 

problem because the state dependent term A(x) on the right-hand side of (4.28b)-(4.28d) 

may cause a large magnitude of T ( , )i θx  if the initial states are large. To illustrate it, let 

us suppose there is no  or Di in (4.28). For example, in (4.28b), if there exists a cubic 

L

0, 1, ,il i n> = …

1,i n= L

( ) 1 il t
i it k eε −= −

iε

iε
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term in A(x) and the initial x is large, this large value will be reflected in the solution of 

1T . Since 1T  and A(x) will be used in solving for 2T  in the ensuing (4.28c), this large 

value will be propagated and amplified. As a result, it causes the large control gain or 

even instability. Therefore, the small number  is used to suppress this large value from 

propagating in (4.28b)-(4.28d). 

 is also required in the proof of convergence and stability of the above 

algorithm [78]. The exponential term  in Di lets the perturbation terms in the cost 

function (4.24) diminish as time evolves. 

Remark 3.2:  and  are design parameters used to modulate system transient 

responses. Selection of  and  can be done systematically [78] by applying the least-

squares curve-fitting of the maximum singular value of the θ-D solution with that of the 

state-dependent Riccati equation solution. 

Remark 3.3: θ is merely an intermediate variable. The introduction of θ is for the 

convenience of power series expansion, and it is cancelled when T ( , )i θx  times iθ  in the 

final control calculations, i.e., equation (4.27). Note that in every iθ  equation (4.28) and 

Di  expression (4.29), 
1

iθ
 factor appears linearly on the right-hand side of the equations. 

Consequently, 
1

iθ
 will appear linearly in the solution of Ti , i.e. T̂T i

i i=
θ

 where T̂i  is the 

solution without 
1

iθ
. When Ti  is multiplied by iθ  in the control (4.27), iθ  gets cancelled. 

In the θ-D algorithm, retaining the first three terms, T0, T1 and T2, in the control 

equation (4.27) has been sufficient to achieve satisfactory performance in the problems 

iε

iε

il te−

ik il

ik il
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that have been solved [78, 152, 153]. Theoretical results concerning the convergence of 

series 
0

T ( , ) i
i

i

∞

=

θ θ∑ x , closed-loop stability, and optimality of truncating the series can be 

referred to [78]. 
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CHAPTER V 

INTEGRATED INDIRECT ROBUST CONTROL DESIGN FOR SPACECRAFT 

PROXIMITY OPERATION 

Theorem 4.1 has shown the equivalency of the robust control problem and the 

optimal control problem. In this section, we will design the robust controller for 

spacecraft proximity operation using the indirect robust control scheme and the θ-D 

optimal control method, 

First, the translational dynamic equations need to be expressed in the state-space 

representations. The relative translational equation of motion (3.3-3.5) can be rewritten as: 

 (5.1a) 

 (5.1b) 

 (5.1c) 

 (5.1d) 

 (5.1e) 

 (5.1f) 

d x x
dt

= &

d y y
dt

= &

d z z
dt

= &

2
3 3 2

2 2 2 2 2 22 2

2
(( ) ) (( ) )

x
d x rx y y x a
dt rr x y z r x y z

µ µ µ
ν ν ν= + + − − + +

+ + + + + +
& && && &

2
3

2 2 2 2

2
(( ) )

y
d y x x y y a
dt r x y z

µ
ν ν ν= − − + − +

+ + +
& && && &

3
2 2 2 2(( ) )

z
d z z a
dt r x y z

µ
= − +

+ + +
&
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In order to apply the θ-D method, f(0)=0 needs to be satisfied. If there are terms 

that make , they prevent a direct  factorization of f(x). These terms are called 

biased terms. For example, terms such as  and  are biased terms 

because they do not go to zero when the states become zero. One of the ways [79, 145, 

146, 148-150] to handle this problem is to augment the system with a stable state ‘ ’ 

satisfying: 

  (5.2) 

in which  is a positive number. With the augmented state ‘ ’, the biased terms can 

then be factorized as 

 3 3
2 2 2 2 2 22 2(( ) ) (( ) )

a

a

r r s
r x y z r x y z s

µ µ − = − 
 + + + + + + 

 (5.3a) 

  (5.3b) 

The introduction of ‘ ’ does not change the actual spacecraft dynamics. Each 

time through the controller, the initial value  is used in the state-dependent 

coefficient matrix and in calculating the control. Usually we set =1. 

Thus, the state variables for the translational motion are: 

[ ][ ] TT T T
L L a as x y z x y z s=r v & & &  (5.4) 

The state-space representations of the coupled attitude dynamics and flexible 

motion from the previous model in Chapter 3 are repeated here: 

( ) 0≠0f 1C

3
2 2 2 2(( ) )

r

r x y z

µ
−

+ + +
2r

µ

as

a a as sλ= −&

aλ as

2 2 a
a

s
r r s
µ µ 

=  
 

as

(0)as

(0)as
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 (5.5) 

 (5.6) 

Note that (5.5) and (5.6) are expressed in the form of nominal dynamics plus 

parametric uncertainties. Define , (5.5) can be rewritten as: 

 (5.7a) 

 (5.7b) 

The relative attitude kinematics can be described in terms of quaternion error  

and angular velocity error  [142]: 

 (5.8) 

where , and  are the angular velocity tracking errors expressed in the 

spacecraft body frame , which are defined in (3.20);  is added to the 

quaternion error kinematics in order for the Riccati equation (4.28a) to have a stable 

solution. Note that (5.8) is only used for the control design. When the attitude quaternion 

kinematics is propagated (or integrated), the true kinematics equation is used without . 

Let . Referring to (3.20), the angular velocity tracking error can be 

written as: 
  

1 1 1 1
0 0 0 0 1 2 3 4( ) P P P PT T

s s s s s s s sM C M K M J Mδ ω δ δ ω− − Τ − −= − + − + + + + +& % & % &ω η η ω η η ωΓ Γ

1 1 1 1
0 0 0 0 5 6 7 8[ ( ) ] ( ) P P P PT T T

s s s s s s sM C C M K K M J Mδ δ ω δ δ δ δ ω δ− − − −= − − − + − − + − + + + +&& % & % &η η η ω η η ωΓ Γ

1 2,= = &s sη η

1 2=s s&

1 1 1 1
2 0 2 0 1 0 0

5 2 6 1 7 8

[ ( ) ] ( )
P P P P

T T T
s s s s s

s s

M C C M K K M J Mδ δ ω δ δ δ δ ω δ− − − −= − − − + − − + −
+ + ++

s s s
s s

& % % ω
ω

Γ
Γ

eq

eω

0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

1
2

e t e ex e ey e ez

e ex e t e ez e ey
e

e ey e ez e t e ex

e ez e ey e ex e t

q q q q
q q q q
q q q q
q q q q

ω

ω

ω

ω

ε ω ω ω
ω ε ω ω
ω ω ε ω
ω ω ω ε

− − − 
 + + − =
 − + +
 + − +  

q&

,ex eyω ω ezω

{ }sB 0.0001tωε = −

tωε

s d

d dT T=ξ B BI
I B ω

[ ] [ ] [ ]1 0 0 ; 0 1 0 ; 0 0 1ex sx ey sy ez szω ω ω ω ω ω= − = − = −ξ ξ ξ
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Thus, the attitude error kinematics (5.8) can be rewritten in a linear form: 

 (5.9) 

where , , , and  and  are the corresponding 

coefficient matrices. 

In order to improve the relative position tracking performance, an integral of the 

relative position vector is augmented into the state space, i.e. 

 (5.10) 

The state variables for the entire integrated control system are chosen to be: 

1 2

TT T T T T T T
L L a e s LIs =  vX r q r s sω  (5.11) 

and control variables are defined as: 

[ ]
x y z

T
x y z s s sa a a= Γ Γ Γu  (5.12) 

 and  are defined in (3.1). Their dynamics are governed by (5.1).  is the 

augmented state to absorb the biased terms and satisfies (5.2). The attitude error 

quaternion , pursuer’s angular velocity , and coupling flexible motion states  and 

are governed by (5.9), (5.5), and (5.7), respectively. In this dissertation, the number of 

significant elastic modes is 3. It has been shown to be a good approximation for 

spacecraft applications [110, 144]. So each of the states  and  becomes a  

vector. The state-space in (5.11) has the dimension of 25. 

In addition to the parametric uncertainty, we also consider the control input 

uncertainty due to actuators. The input matrix uncertainty  and its bound  

1 2 3

0 3 2
1 2

3 0 1

2 1 0

1 1 1 1
2 2 2 2

t e e e

t e e e
e e s e s

t e e e

t e e e

a b c q q q
a c b q q q

Q Q
b c a q q q
c b a q q q

ω

ω

ω

ω

ε
ε

ε
ε

− − −   
   − − −   = + = ⋅ + ⋅
   − − −
   − − −   

ξ ξ ξ
ξ ξ ξ
ξ ξ ξ
ξ ξ ξ

q q ω q ω&

[1 0 0]a = [ ]0 1 0b = [ ]0 0 1c = 1Q 2Q

Lr

LI L=r r&

Lr Lv as

eq sω 1s

2s

1s 2s 4 1×

( )h X max ( )H X
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satisfy the condition (4.5). In order to use Theorem 4.1, the nonlinear state-space equation 

for the spacecraft control problem is rewritten as: 

( ) B ( ) B ( ) ( ) ( )n n n nh= + + +X f X X u X X u d X&  (5.13) 

where: 

[ ]

1 7 4 7 3 7 3 7 4 7 4

4 7 1 2 4 3 4 4 4 4

1 1 1
3 7 3 4 0 3 3 0 0

3 3 3 4 3 4 3 3 3 3 3 4 3 4

4 7 4 4 4 3 4 3 4 4 4 4
1 1 1

4 7 4 4 0 4 3 0 0

( ) F( )
0 0 0 0 0
1 10 0 0 0
2 2

0 0 0 ( )
0 0 0 0 0 0

0 0 0 0 0
0 0 0 (

n

T T T
s s s

T T
s s

A

Q Q

M J M K M C
I

I
M J M K K M C

ω δ δ ω δ

δ ω δ δ δ δ ω

× × × × ×

× × × ×

− − −
× × ×

× × × × × × ×

× × × × × ×
− − −

× × ×

=

− −

− − − −

f X X X

= % %

% % )T
s Cδ

 
 
 
 
 
 
 
 
 
 − 

X

 (5.14) 

 corresponds to the translational dynamics (5.1) and the dynamics of the biased 

absorbing state   

  (5.15) 

where 3 2
2 2 2 2

,
(( ) )

coeff bias coeff r
rr x y z

µ µ
= = − +

+ + +
i  

The input matrix B ( )n X  is: 

1A

as

2
1

2

0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0

0 0 2 0
0 2 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0

a

a

A coeff bias s
coeff

coeff

ν ν ν
ν ν ν

λ

 
 
 
 
 = − 
 − − −
 

− 
 − 

& && &
&& & &
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1 7 3

4 3 4 3
1

3 3 0

3 3 3 3

4 3 4 3
1

4 3 0

0
0 0
0

B ( )
0 0
0 0
0

n

B

M

Mδ

×

× ×
−

×

× ×

× ×
−

×

 
 
 
 

=  
 
 
 

−  

X  (5.16) 

where  is the control coefficient matrix corresponding to the translational dynamics 

(5.1), i.e. 

 (5.17) 

Note that B ( )n X  is a constant matrix in this spacecraft control problem. 

The disturbance term  is derived from Eqs (5.5) and (5.6): 

 (5.18) 

In order to use Theorem 4.1, the uncertainty bounds  and need to 

be determined. Rewrite  as: 

 (5.19) 

1B

3 3

1 3 3

1 3

0

0
B I

×

×

×

 
 =  
  

( )nd X

3 1

3 1

1 1

4 1

1 2 3 4

3 1

4 1
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0
0
0
0
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0
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P P P P

n

×

×

×

×

×

×

 
 
 
 
 
 =  + +
 
 
 
 

+ + +  

s s

s s

d X
&

&

η η ω

η η ω

Γ

Γ

max ( )g X max ( )H X

( )nd X

11 14

3 2 1 4

7 14

7 6 5 8

0
P P P P

( )
0

P P P P

s

n

s

×

×

   
   
   =
   
   
   

d X
&

ω
η
η
Γ
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then  

If we consider the detail formulation of  bound and  bound, then the 

bound for each  will be very complicated and hard to determine. In this 

dissertation, the bound for is chosen to be a quadratic form in terms of the 

rotational states such that the θ-D method can be easily applied, i.e. 

( ) 2

T
s s

n σ
   
   ≤    
      

d X
& &

ω ω
η η
η η

 (5.20) 

where 
1

2

3

σ
σ σ

σ

 
 
 
  

=  is a positive definite diagonal matrix. We can estimate the σ  

value and use it as a tunable design parameter. Then for the condition (4.4) 

2 2
max( ) ( )n g≤d X X , we can select 2

max 0 0( ) ( ) ( )

T
s s

Tg C Cσ σ
   
   = =   
      

X X X
& &

ω ω
η η
η η

. The 

constant matrix 0C  is defined as: 
3 11 3 3 3 11

0 4 17 4 4 4 4

4 21 4 4

0 0
0 0

0

I
C I

I

× × ×

× × ×

× ×

 
 =  
  

 

Consider the condition (4.5), . Suppose the control input 

uncertainty is bounded by , where  is a predefined constant number,  

then  can be selected as . 

11 14 11 14

2 3 2 1 4 3 2 1 4

7 14 7 14

7 6 5 8 7 6 5 8

0 0
P P P P P P P P

( )
0 0

P P P P P P P P

T
s

T T T T
n s s

s

× ×

× ×

     
     
      =        
     
     

d X &
&

ω
η

ω η η
η

Γ

Γ

J∆ δ∆

1 2 8P ,P ,...,P

( )nd X

2 2
max4 ( ) ( )Rh H≤X u X%

2 2( )h β≤X u X β

max ( )H X
22 2

max ( ) 4 TH Rβ=X X X%
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Regarding the condition (4.6): 

22 22 2 2
max2 4 B ( ) ( )nR gρ γ+ ′+ <v x x x%   

notice that 

2 2 22
max 0 0 0 0B ( ) ( ) B ( ) ( ) B ( )T T T

n n nR g R C C R C Cσ σ+ + +≤X X X X X = X X X% % %  (5.21) 

This provides a condition on choosing a proper weight matrix Q%  since  can be 

selected as large as min ( )Qλ % . With a careful selection of , σ , and Q% , the condition (4.6) 

can be satisfied. 

According to Theorem 4.1, we can formulate the following optimal control 

problem with the system equation: 

( ) B ( ) ( B ( )B ( ) ) F( ) B( )n n n nI +  
= + + − = +  

 
v

v
u

X f X X u X X X X X&  (5.22) 

where B( ) [B ( ) ( B ( )B ( ) )]n n nI += −X X X X  is a constant matrix, and with the cost 

function: 

22 2 2 2
max max0

[ ( ) ( ) 2 ]T T TH g Q R R dtρ ρ
∞

+ + +∫ v+X X X X u u% % %   

where 2
max 0 0( ) T Tg C Cσ=X X X , , The cost function can be 

rewritten in a quadratic form: 

[ ]22 2
0 0 20

2
[4 ]

T
T T R RR I C C Q dt

I
β ρ σ

ρ

∞      + + +    
    

∫ v
v
u

X X u
% %%%  (5.23) 

so that the θ-D technique can be applied to design the optimal controller. 

Comparing (5.22) with the θ-D formulation (4.25): 

2γ ′

ρ

22 2
max ( ) 4 TH Rβ=X X X%
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0
A( )F( ) B( ) A B( )

     = + + θ +     θ     v v
u uXX X X X = X X&  (5.24) 

we can choose 0 0A F( )= X , 0A( ) F( ) A= −X X where  is the initial state, and choose 

22 2
0 0Q 2(4 )TR I C C Qβ ρ σ= + + %% , 2

2
R

TR R
Iρ

 
=  

 

% %
. 

The first three terms in the control law (4.27) have been found to be good enough 

to achieve satisfactory performance. So the optimal control can be written as [78, 145, 

146, 148]: 

1
0 1 2

1 2

R B ( )[T T ( , ) T ( , )]

( ) ( ) 0 ( ) ( )

T

T
T T T T T T T

L c L c e e LI cdt

− 
= − + θ + θ ⋅ 

 

 − − − − ∫

v

v v d
e

u
X X X

r r q q r r s sω

 (5.25) 

where 0 1 2T ,T ( , ) and T ( , ),θ θX X  are solved from the θ-D algorithm (4.28)-(4.30). Note 

that only the u component in (5.25) is applied to the actual spacecraft control and  is 

just an auxiliary control variable. 

The control law (5.25) is implemented as a servomechanism [78, 145].  is the 

desired relative position expressed in the LVLH frame. The pursuer is required to be 

positioned at a safe distance of  along the target body  axis that is the outward 

normal direction of its docking port. Thus,  is a desired relative position 

vector expressed in the target body frame. The desired relative position vector expressed 

in the LVLH frame, i.e.  , can be obtained by: 

 (5.26) 

0X

v

cr

dr t̂xb

[ ]0 0 T
dr

cr

[ ] [ ]ˆ 0 0 0 0
t t t

T T
c d tx d dT r T r T T r= ⋅ = ⋅ = ⋅L L L I

B B I Br b
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where  is the target body-to-LVLH coordinate transformation matrix; is the target 

body-to-inertial coordinate transformation matrix and can be computed from the target 

quaternion ; is the inertial-to-LVLH coordinate transformation matrix and can be 

computed from the target orbital elements  [154]: right ascension of ascending node, , 

inclination it, argument of latitude ut, etc. 

The desired relative velocity  can be computed from  by differentiating  

in the LVLH frame and expressing the result in the LVLH frame, i.e. 

 (5.27) 

where is the angular velocity of the target body frame with respect to the LVLH 

frame expressed in the target body frame. It can be computed from: 

 (5.28) 

where  is the target angular velocity with respect to the inertial frame 

expressed in the target body frame;  and  are the angular velocity of the LVLH 

frame with respect to the inertial frame expressed in the target body frame and the inertial 

frame respectively. These values can be calculated from the orbital elements [154]. 

The desired quaternion error  in (5.25) is , which implies the 

attitude of the pursuer is synchronized with the target attitude. 

The perturbation coefficient matrices Di  are chosen to be: 

0.01 0 0
1

T A( ) A ( )TD
T

te−  
= − − θ θ 

X X  (5.29a) 

t
T L

B t
T I

B

tq T L
I

tΩ

cv cr cr

[ ]( 0 0 )t

t t

Tc
c d

d= T r
dt

= ×v BL
B B / L

r
ω

/
t

t

B
B Lω

/
t t t t t

t t t
T= − = − ⋅B B B B B I

B L B / I L / I B / I I L / Iω ω ω ω ω

t

t t=B
B / Iω ω

tB
L/ Iω I

L/ Iω

d
eq [ ]1 0 0 0 T
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0.01 11 1
2 1 1

T A( ) A ( )TD T BR B T
T

t Te− − 
= − − + θ θ 

X X  (5.29b) 

Note that we are designing an optimal controller for this highly nonlinear 

dynamical system with 25 state variables. Conventional optimal control methods are 

difficult to handle the control problem related with this nonlinear, complex and coupled 

spacecraft dynamic system. However, the θ-D optimal control technique is particularly 

useful here since the integrated controller (5.25) can be obtained in a closed-form by 

virtue of the θ-D algorithm. This closed-form controller facilitates the real-time 

implementation because it does not demand intensive and iterative computations. 
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CHAPTER VI 

INVERSE OPTIMAL ADAPTIVE CONTROL DESIGN FOR SPACECRAFT 

PROXIMITY OPERATION 

In this chapter, we will redesign the controller by combining an adaptive control 

approach with an inverse optimal control approach, which is named as the inverse 

optimal adaptive control (IOAC) method. A controller with analytical form and certain 

optimality will be derived. Theorem 4.1 will be applied to extend this approach to cases 

where disturbances and uncertainties are present. The purpose of using the IOAC is to 

evaluate the indirect robust control method against the adaptive control approach. 

6.1 Motivation 

When designing the integrated indirect robust control in Chapter 5, the conditions 

(4.4)-(4.6) on disturbance bounds must be satisfied. Since these conditions are based on 

the uncertainty bounds, the resultant robust control design may be conservative if these 

bounds cannot be estimated accurately. 

As discussed in the literature review in Section 2.1.2, conventional methods to 

deal with unknown parametric uncertainties are usually based on adaptive control 

methods. Adaptive control is different from robust control in that it does not need prior 

information about the bounds on these uncertain or time-varying parameters. Robust 

control guarantees that if the changes are within given bounds, the control need not 

change, while adaptive control adjusts its control gains by updating the knowledge about 
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the uncertain parameters. Certain update laws for the unknown parameters are designed 

to explicitly deal with the parametric uncertainties. 

In order to alleviate the conservativeness of the indirect robust control method, we 

propose a new method called the indirect optimal adaptive control (IOAC). The IOAC 

design combines the advantages of adaptive control, robust control and optimal control. 

By using the Lyapunov direct method, a parameter estimation update law and a 

corresponding controller of a special formulation are designed to stabilize the system 

with parametric uncertainties. Then a modified dynamic feedback control law, together 

with the original update law, is proved to be capable of minimizing a derived meaningful 

cost function that penalizes the parameter estimation error and keeps system performance 

optimal [57, 58, 102]. When the IOAC is combined with the indirect robust control, the 

IOAC method can be enhanced with robustness to the unknown disturbances. 

The IOAC method can circumvent the difficulty of directly solving the Hamilton-

Jacobi-Bellman equation since it handles the problem of optimal adaptive control as 

“adaptive control made optimal” [61]. In other words, the adaptive controller is truly a 

minimizer of a meaningful cost function but is designed before constructing the 

performance index. The overall system optimality and stability can be ensured 

simultaneously. 

Comparing with integrated indirect robust control method, the IOAC method 

shares certain similarities since the indirect robust control also penalizes the disturbance 

and uncertainties in the performance index. 

To evaluate the effect of the conservative bounds and test the performance of the 

indirect robust control method, we redesign the spacecraft proximity motion controller by 

IOAC in this chapter. For the spacecraft proximity operations, the system is a relatively 
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high-dimensional system with coupled nonlinearities and uncertainties. Here we separate 

the translational motion control and rotational motion control. We use IOAC to design 

the attitude tracking controller since uncertainties mainly exist in the attitude dynamics, 

while the indirect robust control method will be applied in the translational controller 

design. 

It is worth noting that this separate design is for the convenience of comparison. 

No requirement is placed on the convergence order of the translational or attitude motion 

synchronization. 

6.2 Attitude control design 

In order to compare the IOAC result with the one from the indirect robust control, 

we assume that the moment of inertia matrix of the pursuer spacecraft, Js, is unknown, 

and the pursuer is under the influence of flexible structure deformation and other un-

modeled disturbances when undergoing large angular maneuvers. 

Since it is required to have the pursuer spacecraft’s docking port face the one on 

the target, virtual target frame is again used as the reference attitude and the control 

objective is to synchronize the pursuer’s rotational motion with the one of the virtual 

target. How to generate such a virtual frame from the target frame has been described in 

Chapter 4. The state vector is chosen to be the same as the one in the previous chapter: 

 (6.1) 

The quaternion error , pursuer angular velocity , and generalized 

deformation modal coordinate vector  and its time derivative  are the 

spacecraft rotational motion state variables. When external disturbance torque is present, 

the coupled rotational dynamics are given below as in (5.8), (3.10) and (3.11): 

[ ]1 2; ; ; ; ; ; ;L L a e s LIs= vX r q r s sω

eq sω

1= sη 2= s&η
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0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

1
2

x y z

x z y

y z t x

z y x

e t e e e e e e

e e e t e e e e

e
e e e e e e e

e e e e e e e t

q q q q

q q q q

q q q q

q q q q

ω

ω

ω

ω

ε ω ω ω

ω ε ω ω

ω ω ε ω

ω ω ω ε

− − − 
 

+ + − 
=  − + + 

 + − + 

q&  (6.2a) 

 (6.2b) 

 (6.2c) 

where d is the external disturbance torque, dω  is the virtual target angular velocity, 

[ ] s

x y z d

BT
e e e e s B dTω ω ω= = −ω ω ω  is the angular velocity tracking error, C and K are 

defined as in (3.13). 

For the quaternion kinematics, we separate the quaternion vector part and 

quaternion scalar part. If we denote 
0 1 2 3 0 1 2 3

[ , , , ]
s

T
e e e e e e e e e eq q q q q q q q q= = + + + =q i j k  

ve+q  where 
0se eq q=  is the scalar part and 

veq is the vector part. Rewrite (6.2a) as: 

3 3
1 1[ ]
2 2s v v s v

T
e e e e e e eq q I ×

×= − , = +q q q&& ω ω  (6.3) 

In (6.3), 
ve

×q  is the cross product matrix. As (3.12), for any 3 by 1 vector 

1 2 3[ , , ]Ta a a=a , its cross product matrix can be given by: 

3 2

3 1

2 1

0
0

0

a a
a a
a a

×

− 
 = − 
 − 

a   

The dynamics of the angular velocity tracking error  can be 

derived from Eq. (6.2b): 

( ) ( ) ( )s s s s

d d d d

B B B B T T
s e e B d s e B d s e B d B d s sJ T J T J T T δ δ× × ×= − + + + − − − + + d& & & && Γω ω ω ω ω ω ω ω ω η η

 (6.4) 

T T
s s s s s s sJ Jδ δ× ×+ = − + + d& && &ω η ω ω − ω η Γ

sC K δ+ + = −&& & &η η η ω

s

d

B
e s B dT= −ω ω ω
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The transformation matrix  represents attitude transformation from virtual target body 

frame to the pursuer spacecraft body frame, and can be calculated from the quaternion 

error: 
2

3 32 2 ( )s

d v v s v s v v

B T T
B e e e e e e eT q q I×

×= − + −q q q q q  (6.5) 

As discussed in the introduction section, flexible deformation can be suppressed 

actively by extra actuators on the flexible structure, or can be suppressed by the overall 

attitude control torque. Here we treat the flexible deformation as the disturbance. If the 

flexible deformation is too large to keep the system stability, we can adopt the active 

suppression method reviewed in Chapter 2. 

Rewrite (6.4) as: 

 (6.6) 

where T T
n s δ δ×= − −d d & &&ω η η  is the lumped uncertainty term. 

Combine equations (6.3) and (6.6), we now have the rotational system dynamics: 

1
2s v

T
e e eq = − q& ω  (6.7a) 

3 3
1[ ]
2v s ve e e eq ×

×= +q I q& ω  (6.7b) 

( ) ( ) ( )s s s s

d d d d

B B B B
s e e B d s e B d s e B d B d s nJ T J T J T T× ×= − + + + − + + d& &ω ω ω ω ω ω ω ω Γ  (6.7c) 

First, we will follow the steps of the IOAC scheme [59] to find the stabilizing 

controller for the system with the moment of inertia uncertainty. Then we will prove 

using the indirect robust control method that this controller is also robust to the 

disturbance of nd . 

s

d

B
BT

( ) ( ) ( )s s s s

d d d d

B B B B
s e e B d s e B d s e B d B d s nJ T J T J T T× ×= − + + + − + + d& &ω ω ω ω ω ω ω ω Γ



 

66 

Error quaternion dynamic system (6.7) is a typical cascaded system in which the 

quaternion kinematics can be considered as a subsystem with eω as the control input. The 

typical backstepping procedure can be applied in the next two sections to find the 

required stabilizing controller for the system (6.7). 

6.2.1 Quaternion kinematic subsystem 

For the quaternion kinematics, if we treat  as a virtual control  for the 

subsystem (6.7a) and (6.7b), we can prove that if 
vv n eK= − qω , where  is any positive 

definite matrix, the system quaternion will converges to 
0

[1,0,0,0]T
e =q  asymptotically. 

To justify this, first we will show that by using 
vv n eK= − qω  as virtual control, 

seq  

goes to 1 as t goes to  whenever (0) 1
seq ≠ − . Let k1 and k2 be the minimum and 

maximum eigenvalue of nK , respectively. When 
ve v n eK= = − qω ω , it is obvious that: 

 2 2
1 2

1 1 1(1 ) (1 )
2 2 2s s v v s

T
e e e n e ek q q K k q− ≤ = ≤ −q q&   

From the comparison principle [155]: 

1 2

1 2

2[1 (0)] 2[1 (0)]
1 ( ) 1

1 (0) [1 (0)] 1 (0) [1 (0)]
s s

s

s s s s

k t k t
e e

ek t k t
e e e e

q e q e
q t

q q e q q e

− −

− −

− −
− ≤ ≤ −

+ + − + + −
 ,  for all . 

Hence ( ) 1
seq t = −  for all t if (0) 1

seq = − . In addition, we have ( ) 0
seq t >  for all t that 

satisfies 1
1max{0, ln[(1 (0)) / (1 (0))]}

s se et k q q−≥ − +  with lim ( ) 1
st eq t→∞ = . Now, we have 

lim ( ) 1, (0) 1
s st e eq t q→∞ = ∀ ≠ − . We also can derive 3 1lim ( ) 0

vt e t→∞ ×=q . Notice that 

[ 1,0,0,0]T−  represents the same attitude as 
0

[1,0,0,0]T
e =q  

Furthermore, using the direct Lyapunov method, we can prove that the error 

quaternion 
0

[1,0,0,0]T
e =q  is globally asymptotic stable when 

ve v n eK= = − qω ω . Select 

the Lyapunov function: 

eω vω

nK

∞

0t ≥
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2(1 )
v v s

T
q e e eV q= + −q q   

Its time derivative under  is: 

0
v v v

T T
q e e e n eV K= = − ≤& q q qω   

Thus the global asymptotical stability of 
0

[1,0,0,0]T
e =q  is ensured when 

ve v n eK= = − qω ω . 

6.2.2 Adaptive attitude control using the IOAC 

We first consider attitude control system with the moment of inertia uncertainty. 

The lumped disturbance will be added in the next section. 

The unknown pursuer spacecraft moment of inertia is a symmetric matrix: 

(1,1) (1,2) (1,3)
(1, 2) (2, 2) (2,3)
(1,3) (2,3) (3,3)

s s s

s s s s

s s s

J J J
J J J J

J J J

 
 =  
  

 

Rewrite the element of Js into a vector form: 

[ (1,1), (2, 2), (3,3), (2,3), (1,3), (1,2)]T
s s s s s sJ J J J J J=P  

Denote the function L that satisfies: 

  

where a is any 3 by 1 vector 1 2 3[ , , ]Ta a a=a . Based on the above relationship, we may 

get the value of Js if we have the value of P. 

Let  denote the estimated value for P,  denote the estimated value for Js, and 

 and  be the estimation error, i.e. . We make the following 

transformations: 

vω

1 3 2

2 3 1

3 2 1

0 0 0
( ) , ( ) 0 0 0

0 0 0
s

a a a
J L L a a a

a a a

 
 = =  
  

a a P a

P̂ ˆ
sJ

P% sJ% ˆ ˆ, s s sJ J J= − = −P P P% %
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 ˆ, ( ( ) ( ))
ve v e n e e s d d dK L L×= − = + = + − −z q P&ω ω ω ω ω ωΓ Γ  (6.8) 

where Kn is any positive definite matrix,  is the stabilizing virtual control as in the 

Section 6.1.1. 

Rewrite (6.7c) into the following form: 

[ ( , , , , ) ( , , )] ( , )
s v s vs e e e d d e e e d d eJ F q G q H= + + +z q q P P%& && ω ω ω ω ω ω Γ  (6.9) 

where: 

1

1 1

( , , , , ) ( ) ( ) ( ) ( ) ( )

( ) ( )
s ve e e d d e d e d e e d d

d d d

F q L T T L T L T

L T L T

× ×

×

= − + − + ×

− −

q &

&

ω ω ω ω ω ω ω ω ω ω ω

ω ω ω
 (6.10a) 

3 3
1( , , ) ( ( ) )
2s v s ve e e n e e eG q L K q I ×

×= +q qω ω  (6.10b) 

( , ) ( ) ( )d d d d dH L L×= − −& &ω ω ω ω ω  (6.10c) 

and 1 3 3 3 3, 2 2 2s

d v v s v v v

B T T
B e e e e e eT T T T I q I×

× ×= = − = − −q q q q q . 

By these equations, we transfer the attitude synchronization problem (6.7a), (6.7b) 

and (6.9) to the stabilization problem: 

1
2s v

T
e e eq = − q& ω  (6.11a) 

3 3
1[ ]
2v s ve e e eq I ×

×= +q q& ω  (6.11b) 

[ ( , , , , ) ( , , )] ( , )
s v s vs e e e d d e e e d d eJ F q G q H= + + +z q q P P%& && ω ω ω ω ω ω Γ  (6.11c) 

The system state vector is defined as [ ]
s v

T T T
r e eqx q z@ . 

We also need to make a reasonable assumption on the target angular velocity: 

vω
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Assumption 6.1: The desired angular velocity  and its time derivative  are bounded 

for all . 

The following theorem gives the adaptive control law: 

Theorem 6.1: For the unperturbed rotational system (6.11), , under the assumption 

6.1, the system can be stabilized asymptotically with the feedback control law: 

1ˆ( , , , , , ) ( )
s v ve rot e e e d d e n eR q K−= − +q P q&Γ ω ω ω ω  (6.12) 

and update law: 
ˆ [ ( , , , , ) ( , , ) ( , )] ( )

s v s v v

T
e e e d d e e e d d e n eF q G q H Kγ= × + + +P q q q& & &ω ω ω ω ω ω ω  (6.13) 

where matrices F, G and H are given in (6.10) 

 
1

1 1 1 2 1 2
1 2 2

T T

rot
KR K

−
− Ψ Ψ Ψ Ψ

= + +  (6.14a) 

1 2 1 2 1
1 3 3

1 1 1
2 2 3

ˆ ˆ ˆ ˆ[( ) ( ) ( ) 0.5 ( )
ˆ ˆ ˆ( ) ]

s ve d s s d s d s e e

T
s d d s s

c K T J J T J T J K q I cK

J T T K J T K J T K

− × × × × −
×

× − × − −

Ψ = + + − − + +

+ − −

qω ω ω ω

ω ω
 (6.14b) 

 2 3 3
1 ˆ ˆ( )
2 s vs e e e sJ K q I J× ×

×Ψ = + −q ω  (6.14c) 

 2 3 32 2 2
v v s

T T
e d d e e dT I q ×

×= − +q qω ω ω  (6.14d) 

 3 3 32 2 2
v v s

T T
e d d e e dT I q ×

×= − +q q& & &ω ω ω  (6.14e) 

Kn, K1 , and  are positive definite and constant matrices, and . 

Proof: 

To validate that the controller (6.12) with the update law (6.13) can stabilize the 

rotational system (6.11), we propose the following control Lyapunov function candidate: 

2 11 1(1 )
2 2v v s

T T T
e e e sV c c q J γ −= + − + +q q z z P P% %  (6.15) 

dω d&ω

0t ≥

n = 0d

γ 0c >
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Its time derivative can be calculated by: 

12 2 (1 )
ˆ( ) [ ( ) ] [ ( ) ] ( )
ˆ[ ( ) ]

v v s s

v v

v v v

T T T
e e e e s

T T T T
e n e e

T T
e e e e

V c c q q J

c K F G H F G F G H

c K c F G

γ −= − − +

= − + + + + + + − + +

= − + + + +

q q z z + P P

q z q z P z P P z P

q q z q P

&& % %& & &

% % %Γ

Γ

 (6.16) 

We may choose  to cancel all the nonlinearities in the  so that , but as 

stated in Chapter 2, controllers based on nonlinearity cancellation are in general non-

optimal. Here in our derivation, to achieve inverse optimality, the preferred controller  

is required to have certain mathematical formulation as (6.12). To design such controller, 

we rewrite (6.16) and complete the square. 

Apply (6.10) to (6.16), we have: 

1

3 3 1 1

1

ˆ ˆ ˆ[ ( ) ( ) ( ) ( )

1ˆ ˆ ˆ ˆ( ) ( ) ( )( ) ( ) ]
2

ˆ ˆ[ ( ) ( )

v v v v v v

v s v v

v v

v

T T
e n e e e e e s n e s d n e s d

s d n e s n e e n e d s d s d d

T T
e e e

T
e e s s d

V c K c T J K J T K J T

J T K J K q I K J T J T T

c K

cK T J J T

× ×

× × × ×
×

− × ×

= − + + − + − + − −

− − + + − − +

= −

+ + + − −

q q z q q z q z q

z q q z q

z q q

z q

& &ω ω ω

ω ω ω ω ω

ω ω

Γ

Γ

3 3

3 3

1 1

1 ˆ ˆ( ) ( ) ]
2

1 ˆ ˆ ˆ ˆ ˆ[ ( ) ] [( ) ( ) ( ) ]
2

ˆ ˆ ˆ[ ( ) ]

s v v

s v

s n e e s d n e

T T
s n e e e s s d d s s d

T T
d s s d d s d

J K q I J T K

J K q I J J T J J T

J J T T J T

× ×
×

× × × × ×
×

× ×

+ +

+ + − + − −

+ − + −

q q

z q z z z

z z &

ω

ω ω ω ω

ω ω ω ω
 (6.17) 

Note that it is easy to verify that  is a skew-

symmetric matrix. Thus term . 

Inspecting the terms in (6.17), we can regroup the RHS into several groups: 

( ) , ( ) , ( ) ,
v v v

T T T T
e e e eq q z q z z zi i i Γ , ( ) ,T

dz i ω  and ( )T
dz &i ω . Here ( )i  represents the omitted 

matrices in these terms. Using (6.14d) and (6.14e), we have: 

1 2 1 3,
v vd e d eT T T T= =q q&ω ω  (6.18) 

eΓ V& 0V ≤&

eΓ

ˆ ˆ ˆ[( ) ( ) ( ) ]s d d s s dJ T J J T× × ×− −ω ω ω

ˆ ˆ ˆ[( ) ( ) ( ) ] 0T
s d d s s dJ T J J T× × ×− −z z =ω ω ω
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so that terms ( )T
dz i ω  and ( )T

dz &i ω  can be transformed to ( )
v

T
ez qi . 

Using (6.18) into the corresponding terms in (6.17) and after a series of 

manipulations, we can get: 

1
3 3

1 1 1
2 2 3

3 3

1ˆ ˆ ˆ ˆ[ ( ) ( ) ( ) ( )
2

ˆ ˆ ˆ( ) ]

1 ˆ ˆ[ ( ) ]
2

v v

v s v

v

s v

T T
e e n e

T
n e e s s d s n e e s d

d s n s d n s n n e

T
s n e e e s

V c K

cK T J J T J K q I J T

J T K J T T K J T K K

J K q I J

− × × × ×
×

× − × − −

× ×
×

= −

+ + + − − + +

− + −

+ + −

z q q

z q q

q

z q z

&

ω ω ω

ω ω

ω

Γ

  

Now using  and  defined in (6.14b) and (6.14c) into the above equation 

leads to: 

1 2 1 2
1 2v v v

T T T T T
e e n e n eV c K c K= − + Ψ + Ψz q q z q z z& Γ  (6.19) 

Then utilizing (6.12) and (6.14a), we can complete the square: 

21 2 1 2 1
1 1 1 2 1 1 2

1

1 1 1 ( ) ( )
2 2 2 2

1
2 2

v v v

v v

T T T T
e n e n e

T T
e n e

cV K K c K K K K

c K K

−= − − − − Ψ − − Ψ − Ψ

≤ − −

q q z z q z z z

q q z z

&
 (6.20) 

Thus, we can conclude that function V&  is negative semi-definite, 1K is a positive definite 

matrix and symmetric. Besides, the control Lyapunov function ( )V x  is bounded below 

by ˆ ˆ( , , , , ) ( , , , ,0)
s se eV q t V q≤

v ve eq z P q z P  for all 0t > . 

Using Barbalat’s Lemma[156], we can conclude that 0V →&  as t → ∞ . Based on (6.20), 

we have → 0
veq  and → 0z  as t → ∞ . It is easy to derive e → 0ω  and 1

seq → . Thus the 

dynamic feedback control law (6.12) with update law (6.13) stabilized the rotational 

system. Besides, based on (6.13), parameter estimation error ˆ → 0P  as 0t → . □ 

1Ψ 2Ψ
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Based on Theorem 6.1 and inverse optimal adaptive control theory, we may 

construct a meaningful optimal performance index and a modified controller so that the 

modified controller will possess both stability and optimality for the original attitude 

control system. 

To demonstrate the optimality, we propose the following theorem: 

Theorem 6.2: For the unperturbed system with Assumption 6.1, the feedback control 

law: 

' 1ˆ( , , , , , ) ( )
s v ve n e n rot e e e d d e n eR q Kβ β −= = − +q P q&Γ Γ ω ω ω ω  (6.21) 

with the same update law as (6.13): 

ˆ [ ( , , , , ) ( , , ) ( , )] ( )
s v s v v

T
e e e d d e e e d d e n eF q G q H Kγ= × + + +P q q q& & &ω ω ω ω ω ω ω  (6.22) 

where , stabilizes the attitude system (6.11) and at the same time, minimizes the 

cost function: 

{ }1

2 ' '

0
ˆlim ( ) 4 [1 ( )] ( ( , , , , , ) )

s s v

t T
a n n e e e e d d e rot et

J t c q t l q R dt
γ

β β
−→∞

= + − + +∫P q P% &ω ω ω Γ Γ  (6.23a) 

where: 

2 1

ˆ ˆ( , , , , , ) 2 [ ( ) ( ) ]

( ) ( )
s v v v

v v

T T
e e e d d n e e e n e

T
n e n e rot e n e

l q c K F G

K R K

β

β −

= − + + +

+ + +

q P q q P

q q

&ω ω ω ω ω

ω ω
 (6.23b) 

c is any positive constant number, rotR is defined in (6.14). As in (6.13),  is a selected 

positive definite matrix. 

Proof: 
To prove that the controller can stabilize the nominal system, we use the same 

control Lyapunov candidate (6.15) as in Theorem 6.1. When we replace (6.12) with 

(6.21), the time derivative of (6.19) can be rewritten as: 

2nβ ≥

γ
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' 1 2 1 2
1 2

1 2 1 2
1 2( 1)

v v v

v v v

T T T T T
e e e e

T T T T T T
n e e e e e

V c K c K

c K c Kβ

= − + Ψ + Ψ

− − + Ψ + Ψ

z q q z q z z

= z + z q q z q z z

& Γ

Γ Γ
  

Note that 1( 1) ( 1)T T
n e n rotRβ β −− = − −z z zΓ . The remaining term is proven to be less 

than or equal to 1
1

2 2v v

T T
e e

c K K− −q q z z  in (6.20). Following the same procedure in 

Theorem 6.1, we can see that the feedback control law (6.21) is able to stabilize the 

nominal system (6.11) and thus, ,
ve→ →0z q 0  as . 

To prove the optimality, first we will prove that the cost function (6.23) is 

meaningful. From the proof of Theorem 6.1, we use the equation (6.16) and transform it 

to: 

 1

1

ˆ[ ( ) ]
ˆ( )

ˆ[( ) ]

v v v

v v v

v

T T
e e e e

T T T T
e e e rot

T T
e e

V c K c F G

c K c R F G

c F G R

−

−

= − + + + +

= − + − + +

= + + −

q q z q P

q q q z z z z P

q z P z

& Γ

ω

  

Here we still use eΓ  rather than e′Γ  since all we need is the inequality (6.20):

2

0 [ , ] ( )
ve rV k W≤ − ≤ −q z x& , where  is a positive definite function. 

Thus we have: 

 1ˆ[( ) ] ( )
v

T T
e e rot rc F G R W−+ + − ≤ −q z P z xω  (6.24) 

Comparing (6.24) with l in (6.23b) and using 2nβ ≥ , we can get: 

1ˆ( , , , , , ) 2 ( ) ( 2)( ) ( )
s v v v

T
e e e d d n r n e n e rot e n el q W K R Kβ β β −≥ + − + +q P x q q&ω ω ω ω ω  (6.25) 

The right-hand-side is a positive value. Therefore, the cost function Ja (6.22a) is a 

meaningful performance index. 

t → ∞

( )rW x
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To prove that the controller (6.21) minimizes the performance index (6.23), we 

denote the error controller as: 

' 1 ' 1
0 [ ( )] ( )

v ve n rot e n e e n rot e n eR K R Kβ β− −= − − + = + +q qω ωΓ Γ Γ  

If the controller can get minimum performance index value at , Theorem 

6.2 can be proved. 

Replace  with corresponding term in (6.23): 

{ }1

1

2

0

2

2 1

0

lim ( ) 4 [1 ( )] ( )

( ) 4 [1 ( )]
lim

ˆ[ 2 ( ( ) ) ]

s

s

v

t T
a n n e e rot et

n n e

tt T T T T
n e e n rot e rot e

J t c q t l R dt

t c q t

c F G R R dt

γ

γ

β β

β β

β β

−

−

→∞

→∞ −

′ ′= + − + +

 + − =  
 ′ ′+ − + + + + 

∫

∫

P

P

q z P z z

%

%

Γ Γ

Γ Γω

  

Inspect the terms inside the integration part: 

2 1

2 1 1 1
0 0

1 1
0 0

'

ˆ2 ( ( ) )
ˆ2 ( ( ) ) ( ) ( )

[ ( ) ]

2 [ [( ) ] ( )

v

v

v

T T T T
n e e n rot e rot

T T T T
n e e n rot n rot rot n rot

T T T
n n rot n rot

T T T
n e e e

c F G R R

c F G R R R R

R R

c F G H F G H

β β

β β β β

β β β

β

−

− − −

− −

′ ′− + + + +

= − + + + + − −

= − − + −

− + + + + − + +

q z P z z

q z P z z z z

z z z z z
q z P P z P% %

ω

ω

ω

Γ Γ

Γ Γ

Γ Γ

Γ 0 0

2 1
0 0

]

12 (1 ) ( )
2s v v

T
rot

T T T T
n e e e s n rot

R

d dc q c J R
dt dt

β β γ −

+

 = − − + + − + 
 

q q z z P P% %

Γ Γ

Γ Γ

 

Using the above equation in Ja and rearranging the terms lead to: 

1
0 000 0

[ ] 4 [1 (0)] [ ] [ ]T T T T
a n n es n s n s rott tt

J c q J J R dtβ γ β β β
∞−

= →∞=
= + − + − + ∫P P z z z z% % Γ Γ   

We have proved that (6.21) stabilizes the nominal system and . 

Hence the minimum value of Ja is only reached when , or e n eβ′ =Γ Γ . Theorem 

6.2 is thus proved. □ 

0 = 0Γ

0Γ

[ ] 0T
n s t

Jβ
→∞

=z z

0 = 0Γ
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6.2.3 Perturbed attitude control 

Before the lumped disturbance is introduced, we write Theorem 6.2 into the state 

space representation so that the following derivation can be simplified. 

In Section 6.2.2, it has been shown that controller 1ˆ( , , , , , )
s ve rot e e e d dR q −= − q P &Γ ω ω ω  

( )
ve eK+ qω  stabilizes the nominal system (6.11) with state space: 

 

where: 

3 3

1 1

1
2

1( ) [ ]
2

[ ( , , , , ) ( , , )] ( , )

v

s v

s v s v

T
e e

n r e e e

s e e e d d e e e s d d

A q I

J F q G q J H

×
×

− −

 − 
 
 = + 
 + + 

q

x q

q q P P%& &

ω

ω

ω ω ω ω ω ω

 

3 3 3 3[0 0 ]T T
n sB J −

× ×= , [ ]
s v

T T T
r e eq=x q z  

and at the same time minimizes the performance index (6.23): 

{ }1

2

0
ˆlim ( ) 4 [1 ( )] ( ( , , , , , ) )

s s v

t T
a n n e e e e d d e rot et

J t c q t l q R dt
γ

β β
−→∞

= + − + +∫P q P% & Γ Γω ω ω   

Using the expressions of ( , , , , ),
s ve e e d dF q q &ω ω ω  ( , , )

s ve e eG q q ω  and ( , )d dH &ω ω  in 

(6.10), we can rewrite l as: 

2 1

2 1
1

2

ˆ ˆ( , , , , , ) 2 [ ( ) ( ) ]

( ) ( )
s v v v

v v

T T
e e e d d n e e e e

T
n e e rot e e

T T
n r r n rot

T
n r r

l q c K F G

K R K

Q R
Q

β

β

β β

β

−

−

= − + + +

+ + +

= +

q P q q P

q q

x x z z
x x

&

@

ω ω ω ω ω

ω ω
 (6.26) 

where Q1 is selected to satisfy 1
ˆ2[ ( ) ( ) ]

v v

T T T
r r e e e eQ c K F G= − + + +x x q q Pω ω . In (6.25), l is 

proved to be a positive number, and , thus Q2 is a positive definite matrix. 

Based on (6.26), we rewrite the performance index as: 

( )r n r n eA B= +&x x Γ

2β ≥
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{ }
{ }

1

2

0

20

ˆlim ( ) 4 [1 ( )] ( ( , , , , , ) )

lim ( ( )) ( )

s s v

t T
a n n e e e e d d e rot et

t T T
r n r r e rot et

J t c q t l q R dt

D t Q R dt

γ
β β

β

−→∞

→∞

′ ′= + − + +

′ ′= + +

∫

∫

P q P

x x x

% &ω ω ω Γ Γ

Γ Γ

 (6.27) 

where . We can now state the result in Theorem 

6.2 in another way: 

Theorem 6.3: For the system without perturbation and defined under the assumption 6.1, 

the feedback control law: 
1ˆ( , , , , , ) ( )

s v ve n rot e e e d d e eR q Kβ −= − +q P q&ω ω ω ωΓ  (6.28) 

with the same update law as (6.13): 
ˆ [ ( , , , , ) ( , , ) ( , )] ( )

s v s v v

T
e e e d d e e e d d e eF q G q H Kγ= × + + +P q q q& & &ω ω ω ω ω ω ω  (6.29) 

where , stabilizes the nominal attitude control system: 

 (6.30) 

and minimizes the cost function: 

20
( ( )) ( )T T

a r n r r e rot etJ D t Q Rβ
∞

→∞
′ ′= + +∫x x x Γ Γ  (6.31) 

Now we return to the perturbed case when lumped disturbance  in (6.6) is 

introduced. The system (6.11) can be formulated as: 

1
2s v

T
e e eq = − q& ω  (6.32a) 

3 3
1[ ]
2v s ve e e eq I ×

×= +q q& ω  (6.32b) 

[ ( , , , , ) ( , , )] ( , )
s v s vs e e e d d e e e d d e nJ F q G q H= + + + +z q q P P d%& && ω ω ω ω ω ω Γ  (6.32c) 

1

2
( ( )) ( ) 4 [1 ( )]r n n esD t t c q t

γ
β β

−
= + −x P%

2nβ ≥

( )r n r n eA B= +&x x Γ

nd
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To stabilize the above perturbed system, we first rewrite it into the state space 

formulation with the system state vector [ ]
s v

T T T
r e eq=x q z : 

 (6.33) 

where 3 3

1 1

0.5

( ) 0.5[ ]

[ ]

v

s v

T
e e

n r e e e

s s

A q I

J F G J H

×
×

− −

 −
 

= + 
 + + 

q

x q
P P%

ω

ω , 
1

0
0n

s

B
J −

 
 =  
  

. 

Based on Theorem 6.3 and the indirect robust control Theorem 4.1, we have the 

following theorem: 

Theorem 6.4: Consider the perturbed attitude control system: 

 (6.34) 

If the lumped perturbation dn satisfies: 
2

0 2( ) T T
rot n r n r r n r rR Q Qβ β≤ <d x x x x x%  (6.35) 

where  ; rotR  satisfies (6.14a) with T
rot rot rotR R R=% % ; Q0 is a positive definite matrix 

and Q2 satisfies (6.26), the system (6.34) is asymptotically stable with the control law  

given in Theorem 6.3. 

Proof: 

This theorem is an application of the Theorem 4.1 and can be proved using the 

similar procedure: 

For the optimal control problem, if  stabilizes (6.30) and at the same time 

minimizes (6.31), it must satisfy the following Hamilton-Jacobi-Bellman equation: 

2 [ ( ) ( ) ]
r

T T T
n r r e rot e x n r n r e tQ R V A B Vβ + + + = −x x x xΓ Γ Γ  (6.36) 

where ( ( )) min ( )
er aV t J t=x Γ , and  represent the partial derivative of  with 

respect to xr and t, respectively. When , based on Theorem 6.3, (6.30) is stabilized, 

( )r n r n e n nA B B= + +&x x dΓ

( ) ( ) ( )r n r n e r n n rA B B= + +&x x x d xΓ

2nβ ≥

eΓ

eΓ

,
rx tV V V

t → ∞
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and . Consequently, 0,e → → 0P&%ω . It can be proved that when , 

the system is stabilized, and . 

From (6.36), the steady state stationary condition becomes: 

2 ( )
r

T T T
e rot rot x n rR R V B+ = 0x% %Γ  (6.37) 

Equation (6.36) and (6.37) will be used to prove that  is a Lyapunov 

function for the perturbed robust control problem (6.34). 

2

[ ( ) ( ) ( ) ( )]

[ ( ) ( ) ] ( ) ( )

( ) ( )

r r

r r

r

T T
r n r n r e n r n r

T T
n r n r e n r n r

T T T
n r r e rot e n r n r

V V V A B B

V A B V B

Q R V Bβ

= = + +

= + +

= − − +

x x

x x

x

x x x x d x

x x x d x

x x x d x

& & Γ

Γ

Γ Γ

  

Here we applied (6.36). Recall T
rot rot rotR R R= % %  and use (6.37), the above equation 

can be written as: 

 2 2 ( )
r

T T T T T T
x r n r r e rot rot e e rot rot n rV V Q R R R Rβ= = − − −x x x d x& % % % %& Γ Γ Γ  

Using
2 2 2

02 ( ) ( )T T T
e rot rot n r rot n r rot e rot e n r rR R R R R Qβ− ≤ + ≤ +d x d x x x% % % % %Γ Γ Γ  leads to: 

2 0

2 2
2 0

2
min 2 0( )

r

T T T T T
x r n r r e rot rot e rot e n r r n r Q Q

n r

V V Q R R R Q

Q Q

β β β

β λ

−
= = − − + + = −

≤ − −

x x x x x x

x

& % % %& Γ Γ Γ
 

where  is the minimum eigenvalue of the matrix , which is positive 

definite using the condition (6.35). Thus, ( )rV W≤ − x  where ( )rW x  is a positive number. 

According to the Lyapunov stability theorem, there exists a neighborhood of 0, 

 for some  such that if xr enters , then  as . 

Furthermore,  cannot always stay outside . If  for all , then: 

2
min 2 00 0

2 2
min 2 0 min 2 00

( ) (0) ( ) ( )

( ) ( )

t t

r

t

h h

V t V V t d Q Q d

Q Q n d Q Q n t

τ λ τ

λ τ λ

− = ≤ − −

≤ − − ≤ − −

∫ ∫
∫

& x
  

0, 0ev → →q z t → ∞

0tV →

( )rV x

min 2 0( )Q Qλ − 2 0Q Q−

{ }:n r r hN n= <x x 0hn > nN r → 0x t → ∞

rx nN r hn≥x 0t >
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When , the Lyapunov function  will go to negative, which contradicts 

the assumption that  is always positive for the system (6.34) at all time. Therefore xr 

cannot always stay outside Nn. Once it enters Nn, it will converge to 0 as t evolves. □ 

Remark 6.1: In Theorem 6.4, the lumped disturbance is formulated inside the 

performance index. Since the controller (6.28) not only stabilizes the unperturbed system 

but also possesses certain optimality, we use its optimality to extend it to the disturbed 

system control. Parameter nβ  can be chosen to be any positive value no less than 2, and 

at the same time is required to satisfy the condition (6.35), which provides certain degree 

of freedom for the designer. In the following simulation section, we can design a 

relatively large nβ  to handle both flexible structure induced disturbance and input 

uncertainty. 
 

Combining Theorem 6.2 and Theorem 6.4, we have successfully designed the 

adaptive controller (6.21) with the update law (6.22), which can stabilize not only the 

unperturbed nominal system (6.11) with certain optimality (6.23), but also the perturbed 

system (6.7). Other tunable parameters include , , , and 

. These parameters are required to be positive definite and symmetric. 

6.3 Translational control law design: 

For the translational motion control, we use the indirect robust control method. As 

discussed in Chapter 3, the translational dynamic equations can be written in the state 

space representation (Eq. 5.1): 
d x x
dt

= &  (6.40a) 

t → ∞ V

V

1c∈R 3 3K ×∈R 3 3
1K ×∈R

6 6γ ×∈R
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d y y
dt

= &  (6.40b) 

d z z
dt

= &  (6.40c) 

2
3 3 2

2 2 2 2 2 22 2

2
(( ) ) (( ) )

x
d x rx y y x a
dt rr x y z r x y z

µ µ µ
ν ν ν= + + − − + +

+ + + + + +
& && && &  (6.40d) 

2
3

2 2 2 2

2
(( ) )

y
d y x x y y a
dt r x y z

µ
ν ν ν= − − + − +

+ + +
& && && &  (6.40e) 

3
2 2 2 2(( ) )

z
d z z a
dt r x y z

µ
= − +

+ + +
&  (6.40f) 

Recall that we introduced an augmented state sa as in (5.2) to absorb the biased 

terms. Then the state variables for the translational motion are chosen to be: 

TT T T
L L a LIs =  x r v r  (6.41) 

where  is the integral of the relative position vector  as in (5.10). The controller is 

defined as gas jet acceleration: . 

The nominal nonlinear state-space equation for the spacecraft translational 

problem is written as: 
 (6.42) 

where 

LIr Lr

[ ]T
x y za a a=u

( ) ( )n nA B= +x x x x u&



 

81 

 

and 3 2
2 2 2 2

,
(( ) )

coeff bias coeff r
rr x y z

µ µ
= = − +

+ + +
i  

The input matrix 3 3 3 3 3 1 3 3[0 , ,0 ,0 ]T
nB I× × × ×= . 

In the presence of the input matrix uncertainty , the perturbed system 

becomes: 

= ( ) ( ) ( ) ( )n n nA B B h+ +&x x x x u x x u  (6.43) 

No disturbance vector ( )nd x  is included since in the indirect robust control 

design, the ( )nd x  only relates with rotational states. The indirect robust control theory as 

stated in Theorem 4.1 can be applied. Following the indirect robust control theorem, we 

can formulate an equivalent optimal control problem based on the perturbed system 

(6.43). For the nonlinear system 

( ) ( ) ( ( ) ( ) ) ( ) B( )n n n n nA B I B B A+  
= + + − = +  

 
v

v
u

x x x x u x x x x x&  (6.44) 

where B( ) [ ( ) ( ( ) ( ) )]n n nB I B B += −x x x x , find an optimal control law [ ]T T Tvu to 

minimize the cost function: 

22 2
max0

( ) 2T T T
trans transH Q R R dtρ

∞  + + ∫ v+ % % %x x x u u  (6.45) 

where transQ%  and transR%  are the weighting matrices. 

3 3 3 3 3 1 3 3

1 2 3 3 3

1 3 1 3 1 3

3 3 3 3 3 1 3 3

2

2
1 2 3

0 0 0
0

,
0 0 0

0 0 0

0 0 2 0 /
0 , 2 0 0 , 0

0 0 0 0 0 0

n
a

a

I
A A A

A

I

coeff bias s
A coeff A A

coeff

λ

ν ν ν
ν ν ν

× × × ×

×

× × ×

× × × ×

 
 
 =
 −
 
 
 −    
     = − − = − =     
     −     

& && &
&& & &

( )h x
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To use the indirect robust control method, the conditions (4.4-4.6) must be 

satisfied. We can choose 
22 2

max 0( ) 4 T
transH Rβ= %x x x  

where  is a predefined tunable constant number. 

Rewrite the performance index into a quadratic formulation: 

[ ]22
0 20

2
4

T
T trans trans

trans trans
R RR I Q dt

I
β

ρ

∞       + +          
∫ v

v

% %%% u
x x u  (6.46) 

We can then apply the θ-D technique by noting that 

22
0Q 2 4trans trans transR I Qβ = × +  

%%  and 2

2
R

T
trans trans

trans
R R

Iρ
 

=  
 

% %
. The closed-form 

optimal controller is then calculated by: 

1
0 1 2R B ( )[T T ( , ) T ( , )] ( ) ( ) 0 ( )

T
T T T T

trans L c L c LI cdt−   = − + θ + θ − − −    
∫v v

v
u

x x x r r r ri

 (6.47) 

where 0 1T , T ( , )θx  and 2T ( , )θx are solved from the θ-D algorithm. Note that only the u 

component in (6.47) is applied to the spacecraft control and  is just an auxiliary control 

variable.  and cv  are desired relative position and relative velocity in the LVLH frame. 

We can refer to (5.26) and (5.27) to find their expressions. 

0β

v

cr
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CHAPTER VII 

SIMULATION RESULTS AND ANALYSIS 

In this chapter, the effectiveness of the indirect robust control approach will be 

demonstrated through simulation results. In the simulation scenario, the pursuer 

spacecraft will be controlled to approach a free tumbling target. The pursuer and the 

target are assumed to be in the same low earth orbit with 400km perigee altitude. Orbit 

inclination is set to 45 degrees. The eccentricity is 0.1375. The argument of perigee and 

the right ascension of ascending node are all set to 0 degree [108]. 

7.1 Integrated indirect robust control simulation results 

First, we will design the controller by using the integrated indirect robust control 

method presented in Chapter 5. Initial conditions are given in Table 7.1 on the next page. 

Four significant elastic modes are taken into account in the model for the flexible 

motion. Modal natural frequencies and damping coefficients are [40]: 

1 2 3 4

1 2 3 4

1.9 / , 4.1 / , 5.8 / , 6 /

0.08, 0.30, 0.60, 0.75
n n n nrad s rad s rad s rad sω ω ω ω

ζ ζ ζ ζ

= = = =

= = = =
 

Assume that the pursuer’s nominal moment of inertia is [40]: 

  

In the simulation, the actual parametric uncertainty on the moment of inertia is 

assumed to be: 

2

800 12 5
12 400 1.5
5 1.5 600

sJ kg m
 
 = ⋅ 
  
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1 2 3

2 4 5

3 5 6

0.2 (1,1) 0.3 (1, 2) 0.3 (1,3)
0.3 (2,1) 0.2 (2,2) 0.3 (2,3)
0.3 (3,1) 0.3 (3, 2) 0.2 (3,3)

s s s

s s s

s s s

r J r J r J
J r J r J r J

r J r J r J

× × × 
 ∆ = × × × 
 × × × 

  

where 1 2 6, , ,r r rL  are random numbers generated from standard normal distribution. 

When generating the random numbers, the actual pursuer moment of inertia, , 

must be kept positive definite. The coupling matrix in (3.11) is [40]: 

  

Coupling matrix uncertainty  is assumed to be 10% of the nominal value. The 

control input uncertainty is assumed to be 5% of the computed value. 

Table 7.1 Initial conditions of the simulation scenario 7.1 

Parameter Description Pursuer Spacecraft Target 

Initial relative position 
0Lr  in { }L  

0
50 / 2 0 50 / 2

T

L m =  r  

Initial relative velocity 
0Lv  in { }L  [ ]

0
0.5 0.5 0.5 /L m s= − −v  

Initial angular velocity represented in 
its own body frame [ ]

0
3 3 3 deg/T

s s=ω  [ ]
0

3 3 3 deg/T
t s=ω  

Initial attitude represented in Euler 
angles (3-1-3) 

[ ]1 2(0) (0) (0) Tψ φ ψΘ =  
  

Initial Generalize Modal Coordinate   N/A 

 

sJ J+ ∆

10 0.5 0.2
0.5 2 0
0.1 10.9 0.8
1 0.5 0.5

δ

 
 
 =
 
 
 

δ∆

30 30 30  
o o o 0 45 0

T
  

o

η 0 0 [0 0 0 0]T= =&η η



 

85 

To further demonstrate the robustness of the indirect robust control method, 

external torque due to the gravity gradient:  is included in the system 

simulation, where  is the gravitational constant, and  is the norm of the 

distance vector from Earth center of mass to the spacecraft body. 

The parameters in the uncertainty bounds are chosen to be , 2 42 10ρ = × , 

σ Ι=10 . 

According to the condition (4.6), the matrices Q% and in the cost function (5.23) 

are selected to be: 

[ ]( )

5 5 5 5 5 5

9 9 9

6 6 6

4 4 4 3 4 5

7 3 5

5 10 5 10 5 10 4 10 4 10 4 10
0
1 10 10 10

0.5
5 10 5 10 5 10
2 10 2 10 2 10 6 10 10 10
2 10 6 10 1 1 9 10

100,35,100,0.25,0.25,0.25

Q diag

R diag

  × × × × × ×
  
  
  
  = ×
  × × × 
  

× × × ×  
  × × ×  

=

L
L

L%
L

L

%

 

where the function  denotes the diagonal matrix. 

Relative position and velocity expressed in the target body frame are shown in Fig. 

7.1 and Fig. 7.2. The initial relative distance between the pursuer and the target is 50 

meters. It is required that the pursuer is driven to a relative position of [5,0,0] meters in 

the target body frame. As can be seen, after about 80 seconds, the relative distance 

reaches the desired one with steady state error less than 10 cm, and the relative velocity 

converges to zero, which indicates there is no relative translational motion between the 

pursuer and the target. The attitude tracking in terms of quaternion error is shown in Fig. 

7.3. Angular velocity tracking expressed in the virtual target body frame is shown in Fig. 

5

3
s s s

s

J
r
µ

= ×G R R

µ s sr = R

0.01β =

R%

( )diag i
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7.4. These results demonstrate that the pursuer’s attitude is synchronized with the virtual 

target’s attitude with a good tracking performance. Recall that the desired attitude is the 

assumed virtual target’s attitude obtained through rotating the actual target’s body frame 

by 180 degrees about its body  axis in order to align the two vehicle’s docking ports. 

 
Figure 7.1 Relative position in target body frame (Indirect Robust Control method) 

 

 

Figure 7.2 Relative velocity in target body frame (Indirect Robust Control method) 

t̂zb
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Figure 7.3 Quaternion error  (Indirect Robust Control method) 

 

 

Figure 7.4 Angular velocity (Indirect Robust Control method) 

eq
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As shown in Figs. 7.1-7.4, the spacecraft undergoes large and rapid translational 

and angular maneuvers. Without an effective control strategy, these maneuvers may incur 

flexible structure vibrations and deteriorate the attitude tracking performance. 

Figure 7.5 shows the result of flexible vibration suppression using the indirect 

robust controller. Among the four modal coordinates, it is obvious that is the dominant 

one. Thus, a four-mode representation of the flexible motion is a good approximation. 

The vibration diminishes to a small level after about 150 seconds. 

Figure 7.6 demonstrates the control accelerations and control torques. The initial 

control efforts are relatively large in order to drive the spacecraft to the desired position 

and attitude quickly. They decrease rapidly after the desired position and attitude are 

achieved. Small oscillating accelerations and torques are maintained as seen in Fig. 7.6 

because tracking the tumbling target and suppressing flexible structure vibration require 

continuous control efforts. 

 

Figure 7.5 Generalized modal coordinates of flexible motion (Indirect Robust Control 
method) 

1η
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Figure 7.6 Control accelerations and control torques (Indirect Robust Control method) 

7.2 Inverse optimal adaptive control simulation results 

In this section, we employ the IOAC method combined with the indirect robust 

control method presented in Chapter 6, and compare its performance with respect to the 

indirect robust controller in Section 7.1. 

Since the flexible deformation is considered as disturbance to the rotational 

motion, coupling matrix  is not involved in the rotational motion controller design. The 

control input uncertainty is assumed to be 5% of the computed value. To make the result 

comparable with the ones in Section 7.1, gravity gradient disturbance torque is also added 

to the simulation. 

During the rotational controller design, design parameters are: 3 30.255nK I ×= , 

1 3 3200K I ×= , , , 5
6 63 10 Iγ ×= × . 

Initial moment of inertia estimation for the pursuer spacecraft is assumed to be: 

δ

24.6c = 2nβ =
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0

100 10 10
ˆ 10 100 2

10 2 100
sJ

 
 =  
  

  

while the actual moment of inertia remains:   

In the translational controller design, since we follow the indirect robust control 

method, the same parameters are adapted: , 2 42 10ρ = × . The weights which are 

put on the translational system parameters are the same as the ones used in the indirect 

robust control method: 
5 5 5 5 5 5

4 4 4

5 10 5 10 5 10 4 10 4 10 4 10
0.5

0 2 10 2 10 2 10transQ diag
  × × × × × ×

= ×    × × ×  

…%   

([100 35 100])transR diag=%   

Since we are using the same scenario with the same system parameters, and the 

translational tracking control is based on the same indirect robust control law, the relative 

position and velocity tracking as shown in Fig. 7.7 and 7.8 are similar to the ones in Fig. 

7.1 and Fig. 7.2. Negligible relative translational motion can be observed after 200 

seconds of settling time. In Fig. 7.9, the control acceleration time history shows small 

oscillation during the steady state in order to maintain the position tracking since the 

target is a free tumbling one and the docking distance is not 0.  

2

800 12 5
12 400 1.5
5 1.5 600

sJ kg m
 
 = ⋅ 
  

0.01β =
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Figure 7.7 Relative position in target body frame (IOAC method) 

 

 

Figure 7.8 Relative velocity in target body frame (IOAC method) 
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Figure 7.9 Control accelerations (IOAC method) 

Attitude tracking in terms of quaternion error is shown in Fig. 7.10. Angular 

velocity tracking expressed in the virtual target body frame is shown in Fig. 7.11. These 

two figures illustrate that, by using conventional IOAC method, the pursuer and target 

attitude are synchronized more quickly than the results in Fig. 7.3 and Fig. 7.4. 

However, fast attitude tracking excites the flexible deformation more significantly. 

The generalized modal coordinate time history is given in Fig. 7.12. Since the flexible 

deformation is not actively suppressed by formulating it into the state space and is 

considered as merely disturbance to the rigid spacecraft rotational system, its magnitude 

is almost 10 times larger than the one in Fig. 7.5. Attitude tracking control torque is 

shown in Fig. 7.13. Initial control torque is relatively large in order to drive the spacecraft 

to the desired attitude quickly, which can be seen from the quaternion error and angular 

velocity tracking. Compared with the results in Fig. 7.6, the trade-off for fast attitude 

tracking is the more oscillations in the control torque. 
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Figure 7.10 Quaternion error eq  (IOAC method) 

 

 

Figure 7.11 Angular velocity (IOAC method) 
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Figure 7.12 Generalized modal coordinates of flexible motion (IOAC method) 

 

 

Figure 7.13 Control torque (IOAC method) 
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Figure 7.14 and Fig. 7.15 demonstrate the behavior of spacecraft moment of 

inertia estimation error . Simulation time is 1500 seconds. As stated in [42], 

in the case of lack of excitation, the convergence of the parameter estimate to a constant 

value is always achieved, but it does not need to converge to the actual parameter value. 

In our simulation, the steady state estimation error for the diagonal term does not 

converge to zero. Nevertheless, the system is still stabilized under the adaptive controller. 

 
Figure 7.14 Moment of inertia estimation error (off-diagonal) 

ˆ
s s sJ J J= −%
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Figure 7.15 Moment of inertia estimation error (diagonal) 

7.3 Integrated indirect robust control simulation with different initial conditions 

To demonstrate the effectiveness of the integrated indirect robust control method, 

different initial conditions of the target and pursuer angular velocities are used in the 

simulation. 

Table 7.2 Different initial conditions  

Parameter Description Pursuer Spacecraft Target 

Initial angular velocity represented in 
its own body frame [ ]

0
1 5 1 deg/T

s s= −ω  
0

2 4 7 deg/
T

t s = − ω  

 

No other initial values are changed. In order to compare the simulation results, we 

did not change any design parameters or any weighting matrices. Controller performance 

is demonstrated by the following figures. 
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Figure 7.16 Relative position in target body frame (Indirect Robust Control method 

with different initial conditions) 

 

 
Figure 7.17 Relative velocity in target body frame (Indirect Robust Control method 

with different initial conditions) 
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Figure 7.18 Quaternion error eq  (Indirect Robust Control method with different initial 

conditions) 

 

 
Figure 7.19 Angular velocities (Indirect Robust Control method with different initial 

conditions) 
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Compared with Fig. 7.1 and Fig. 7.2, the translational motion demonstrated in Fig. 

7.16 and Fig. 7.17 changes greatly. Although coupling between the rotational motion and 

translational motion of the pursuer spacecraft is negligible, the change in the target 

angular velocity changes the desired position since the target is free tumbling and the 

docking distance is nonzero and results in different translational behavior. Translational 

motion converges to the steady state in about 100 seconds and steady state error is less 

than 10 centimeters. 

As shown in Fig. 7.18 and Fig. 7.19, even though initial angular velocities are 

changed greatly, and angular maneuvers are relatively large and rapid, the rotational 

tracking performance is still satisfying. 

 

 
Figure 7.20 Generalized modal coordinates (Indirect Robust Control method with 

different initial conditions) 
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Figure 7.21 Control accelerations and control torques (Indirect Robust Control method 

with different initial conditions) 

Figure 7.20 shows the flexible structure deformation suppression performance. As 

can be seen from the figure, the vibration diminishes quickly to small values after only a 

few seconds regardless of the large initial angular velocity error. 

Figure 7.21 demonstrates the control accelerations and control torques. Compared 

with Fig. 7.6, the control torque is increased in Fig. 7.21 due to the change in the initial 

angular velocity error. Similar to the previous simulations, large initial control is applied 

to drive the system to the steady state quickly. Small oscillations are seen in the 

spacecraft control acceleration to maintain the desired relative position, while control 

torque converges to zero during the steady state. 

7.4 Simulation results comparison and discussions 

In Section 7.1, the controller design follows the indirect robust control method. In 

Section 7.2 the controller design is based on the inverse optimal adaptive control 
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technique. From the simulation results in Sections 7.1 and 7.2, the comparison between 

these two methods can be summarized in the following aspects: 

1) Design strategy: the indirect robust control is designed via the combination of the 

robust control with the optimal control formulation such that both robust stability 

and optimality can be guaranteed. The uncertainty bounds are formulated into a 

modified cost function with a quadratic form such that the θ-D method can be 

applied to obtain a closed-form feedback control law. Since the robust control 

strategy and uncertainty bounds are used, the design may be conservative.  

To alleviate the conservative design, the inverse optimal adaptive control (IOAC) 

method is employed as the second strategy for comparison. In the IOAC method, 

the adaptive strategy is first used to design an adaptive controller and estimate the 

moment of inertia, which is the main uncertain parameter affecting the control 

accuracy.  Then this adaptive controller can be shown to be robust to the bounded 

uncertainties, and to be the solution to an optimal control problem with a derived 

meaningful cost function. 

Both methods are based on the optimal control formulation. The indirect robust 

control method solves the robust control problem “indirectly” by solving a 

modified optimal control problem. But when dealing with the optimal control 

problem, a physically meaningful cost function is designed a priori, whereas the 

IOAC method indirectly derives a cost function from an adaptive control law and 

the physical meaning of the cost function is not explicit. The simulation results 

demonstrate each method’s advantages and disadvantages. 

2) Tracking error: both methods can guarantee the spacecraft to asymptotically 

approach the desired position and attitude. 
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3) Convergence speed: Since the translational part is the same in both these two 

simulations, we only compare convergence speed of the rotational motion.  The 

settling time in Section 7.1 is around 300 seconds while the one in Section 7.2 is 

less than 100 seconds. But considering the average proximity operation time, both 

results are acceptable. 

4) Required control torque: As analyzed in the previous two sections, the initial 

control acceleration and torque are relatively large in order to drive the system to 

the required position and attitude in a relatively short time. Required control 

torque in Section 7.1 is at the same magnitude as in Section 7.2.  

5) Design Complexity: 

On one hand, in Chapter 5, by using the indirect robust control design scheme, a 

sequential design procedure has been established. The control of translational 

motion, rotational motion, and flexible deformation are formulated in a unified 

framework, and the controller design is based on transforming robust control of 

the overall dynamic system into an equivalent optimal control problem. By using 

the θ-D optimal control method, a closed-form feedback solution can be obtained. 

On the other hand, in Chapter 6, due to the high design complexity of the inverse 

optimal adaptive control (IOAC) method, the translational control design and the 

rotational control design are separated. The IOAC method is used only in the 

rotational control part because the parameter uncertainty and disturbance mostly 

exist in the rotational motion. The IOAC design process is relatively more 

complicated because it involves the direct Lyapunov design process [56, 59, 102], 

and the proper Lyapunov function and controller with certain formulation need to 

be found. For systems with high nonlinearities, coupling dynamics, and high 



 

103 

dimensions, it is very difficult to do so. 

The indirect robust control method modifies the original cost function by 

augmenting it with the uncertainty bounds and formulating it into a quadratic cost 

function, which makes the optimal control problem easier to solve. In addition, 

the θ-D method facilitates the closed-form feedback control design and design 

complexity is greatly reduced. But we have to realize that when dealing with 

parametric uncertainties, the indirect robust control method may be conservative 

by estimating the overall bounds of disturbance and uncertainty. No adaptive 

technique is utilized to actively deal with the parameter uncertainty. 

As to the IOAC method, it follows the classical direct Lyapunov method to design 

the nominal adaptive control law, and then follows the inverse optimal control 

strategy to show optimality. By designing the parameter update law, it explicitly 

handles the parametric uncertainties and achieves both robustness for the 

disturbance and adaptiveness for the parametric uncertainty. The simulation 

results with IOAC also demonstrate better rotational motion control performance 

than the results using the indirect robust control method. As a trade-off, the 

parameter estimation or update law designs greatly increases the design 

complexity, and can be rather difficult in applying IOAC to more complex 

problems when flexible deformation is present. 
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CHAPTER VIII 

CONCLUSION 

Robust control of spacecraft proximity operation is investigated in this 

dissertation. The translational motion, rotational motion, and induced flexible 

deformation are all addressed in one unified optimal control framework. Two new control 

design schemes are proposed and tested by simulations. First, a novel design method 

named indirect robust control technique is introduced. By making use of the relationship 

between the stabilization and optimal control, both robustness and optimality can be 

achieved. Combining with the θ-D optimal control technique, the integrated indirect 

robust control method can be used to solve a wide range of highly nonlinear, high-

dimensional robust control problems with approximate closed-form solution. Second, an 

inverse optimal adaptive control method is combined with the indirect robust control 

method to better handle parametric uncertainties using the adaptive control capability. Six 

degrees of freedom simulation results demonstrated the capability of these two control 

methods in spacecraft proximity operations. To summarize the dissertation, the following 

conclusions were drawn based upon the design processes: 

1) By analyzing the spacecraft translational motion, rotational motion and flexible 

deformation caused by large maneuvers, a unified formulation of control of these 

spacecraft dynamic motions is shown to be effective in handling the coupling and 

simplifying the design process. However, the overall system dynamics are high-

dimensional (containing 25 system states) and highly nonlinear, which makes the 

control design a challenging work. The two optimal control based robust and 
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adaptive control techniques are shown to be able to solve this challenging 

spacecraft control problem. 

2) By exploring the inner relationship of the robust stabilization problem and the 

optimal control problem, i.e. the Lyapunov function guaranteeing closed-loop 

stability is in fact the solution to the steady-state HJB equation for the optimal-

controlled nominal system with a modified cost function including uncertainty 

bounds, the robust control problem can be transformed into an equivalent optimal 

control problem. The greatest benefit is that both stabilization and performance 

can be both achieved. 

3) To avoid the difficulty of directly solving the HJB equation in order to obtain the 

feedback solution to the transformed optimal control problem, the θ-D optimal 

control method is used along with the indirect robust control method to solve the 

high-dimensional and nonlinear spacecraft proximity control problem. Closed-

form solution is obtained by virtue of a perturbation method. Compared with the 

traditional optimal control method, solving the HJB equation numerically is 

avoided. Thus, the new controller does not require intensive computational load 

and facilitates onboard implementation. 

4) The inverse optimal adaptive control method is used to alleviate the 

conservativeness of the indirect robust control method based on direct estimation 

of unknown system parameters. When combined with the indirect robust control 

method, it achieves the robust, adaptive, and optimal characteristics. As a trade-

off, since the inverse optimal adaptive control technique aims at finding an 

analytical solution, the design complexity is thus increased and the physical 

meaning of the derived cost function may not be straightforward. 
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5) Computer simulations are conducted to demonstrate the effectiveness of the 

proposed control techniques. A typical scenario in spacecraft proximity operation 

is investigated, where the pursuer spacecraft is required to synchronize its attitude 

and keep a constant relative docking distance with respect to a free tumbling non-

cooperative target. Their docking ports are required to face each other during the 

simulation process. Controllers are designed with both the indirect robust control 

method and the inverse optimal adaptive control method. Simulation results show 

that both controllers demonstrate satisfying performance. While the indirect 

robust control method shows advantages in design simplicity and online 

implementation, the inverse optimal adaptive control method exhibits faster 

attitude control response in the presence of the moment of inertia uncertainty. 
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