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ABSTRACT
The main contribution of this paper is to formulate a robust-adaptive and stable state-space
speed control strategy for DC motors. The linear-quadratic-integral (LQI) controller is utilized as
the baseline controller for optimal speed-regulation, accurate reference-tracking and elimina-
tion of steady-state fluctuations in the motor’s response. To reject the influence of modelling
errors, the LQI controller is augmented with a Lyapunov-based model reference adaptation sys-
tem (MRAS) that adaptively modulates the controller gains while maintaining the asymptotic
stability of the controller. To further enhance the system’s robustness against parametric uncer-
tainties, the adaptation gains of MRAS online gain-adjustment law are dynamically adjusted,
after every sampling interval, using smooth hyperbolic functions of motor’s speed-error. This
modification significantly improves the system’s response-speed and damping against oscilla-
tions, while ensuring its stability under all operating conditions. It dynamically re-configures the
control-input trajectory to enhance the system’s immunity against the detrimental effects of ran-
dom faults occurring in practical motorized systems such as bounded impulsive-disturbances,
modelling errors, and abrupt load–torque variations. The efficacy of the proposed control strat-
egy is validated by conducting credible hardware-in-the-loop experiments on QNET 2.0 DC
Motor Board. The experimental results successfully validate the superior tracking accuracy and
disturbance-rejection capability of theproposedcontrol strategyas compared toother controller
variants benchmarked in this article.
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1. Introduction

Owing to their size, cost-effectiveness, ease of con-
trol, and variable torque handling capability, the per-
manent magnet direct current (PMDC) motors are
widely favoured in industrial conveyor systems, hybrid
electric vehicles, unmanned aircrafts, rolling mills,
numerically controlled machine tools, robotic systems,
disk-drives, etc. [1,2]. However, there is a dire need for
optimal and noise-tolerant closed-loop controllers for
speed tracking in industrial servo applications requir-
ing high accuracy [3]. A plethora of speed control
mechanismshave beendevised anddiscussed in the sci-
entific literature. The proportional–integral (PI) con-
trollers are widely garnered as an industrial standard
for motor speed control applications. They are pre-
ferred due to their simple structure and reliable control
yield. Despite their benefits, the integer-order PI con-
troller lacks robustness to handle higher-order systems
[4,5]. Furthermore, constituting a well-tuned PI con-
troller is an ill-posed problem. The fractional-order
controllers have also been used to attain a flexible
speed control effort [6,7]. However, it is quite difficult

to select a trivial set of weighting factors in order to
satisfy the design constraints [8]. The slidingmode con-
trollers, despite their robustness, inevitably inject high-
frequency chattering in the actuator response [9,10].
The neural-fuzzy schemes generally require large train-
ing data or empirically defined elaborate rule-bases,
respectively, to realize a robust control system [11,12].
The model-based linear-quadratic-integral (LQI) con-
trollers are also preferred for speed control applications
because of their optimal control yield [13]. The LQI
controller introduces a weighted integral control term
that eliminates the steady-state errors and enables the
system to track time-varying trajectories [14]. How-
ever, unlike the conventional optimal regulators, the
integral damping introduced by LQI slows down the
system’s response, which deteriorates its asymptotic
convergence rate and the disturbance-attenuation capa-
bility for the same set of state- and control-weighting
matrices [15]. The numerical integration causes the
accumulation of noise which leads to actuator satura-
tion or wind-up. Moreover, the performance of state-
space controllers gets degraded by modelling errors

CONTACT Omer Saleem omer.saleem@nu.edu.pk Department of Electrical Engineering, National University of Computer and Emerging
Sciences, 852 B-Block, Faisal Town, Lahore 54000, Pakistan

© 2019 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted
use, distribution, and reproduction in any medium, provided the original work is properly cited.

http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/00051144.2019.1688508&domain=pdf&date_stamp=2019-12-04
http://orcid.org/0000-0003-2197-9302
mailto:omer.saleem@nu.edu.pk
http://creativecommons.org/licenses/by/4.0/


118 O. SALEEM ET AL.

[16,17]. The self-tuning adaptive linear controllers tend
to improve the robustness of dynamical systems against
the problems mentioned above [18]. These problems
have been addressed in the literature by utilizing state-
dependent Riccati Equation controllers [19], collabo-
rative controllers [20], hybrid self-tuning controllers
[21], and H∞ controllers [22], etc. However, apart
from being computationally expensive, these tech-
niques require perfectly identified system models to
yield promising results. Another robust approach to
address the aforementioned problems is the utilization
of model reference adaptive system (MRAS) that alters
the system’s performance by dynamically adjusting the
parameters of the closed-loop speed controller, after
every sampling interval [23,24]. The MRAS accom-
plishes this task by minimizing the error between the
outputs of the reference model and the actual system,
in real-time [25,26].

This article synthesizes a robust multi-variable
model reference adaptive control scheme for DCmotor
speed control. Wherein, the LQI controller is used as a
reference model that provides the desired input–output
characteristics of the system. An asymptotically stable
parameter adjustment law is derived using the Lya-
punov theory [27]. The fixed gains of the parameter
adjustment lack robustness in compensating the exoge-
nous disturbances and parametric variations. A possi-
ble approach to solve this problem has been proposed
in [28]. In this technique, two different adaptation gain
matrices are defined for the parameter adjustment law,
such that, one matrix addresses the transient behaviour
and the other compensates the steady-state response.
The parameter adjustment law transits between the two
matrices based upon pre-defined switching criterion.
The abrupt gain transition caused by the binary switch-
ing phenomenon injects inevitable chattering in the
response.

The novel contribution of this article is the augmen-
tation of the MRAS’s parameter adjustment law with
an optimized self-tuning mechanism for the dynamic
adjustment of its adaptation gains. Each adaptation
gain of the parameter adjustment law is updated,
after every sampling interval, with the aid of indi-
vidual nonlinear hyperbolic functions that depend on
the instantaneous error in speed, eω. Each hyperbolic
function is pre-optimized offline using a well-defined
performance criterion associated with its respective
state-variable. Consequently, the error-dependent self-
tuning of adaptation gains speeds-up the transient-
recovery while continually suppressing the oscilla-
tions, overshoots, and steady-state fluctuations. This
setup avoids making a trade-off between the sys-
tem’s transient and steady-state performance. More-
over, the hyperbolic function offers a smooth tran-
sition between the varying adaptation gains under
unprecedented dynamic state variations, which effec-
tively inhibits the chattering in the response. The main

motivation for choosing the aforementioned adaptive
control architecture is to strengthen the controller’s
immunity against random faults encountered by prac-
tical DCmotor systems, such as un-modelled bounded
impulsive disturbances, random modelling errors, and
abrupt load–torque variations. The performance of the
proposed adaptive controller is compared with a well-
tuned PI controller as well as a conventional adaptive-
LQI controller with fixed adaptation gains. The hyper-
parameters of the above-mentioned controller-variants
are pre-calibrated via adaptive particle swam optimiza-
tion (APSO) algorithm [29]. Credible hardware experi-
ments are conducted onQNETDCMotor Board to val-
idate the superior speed-regulation, tracking accuracy,
disturbance-rejection, and modelling-error compensa-
tion capability of the proposed adaptive controller. The
proposed scheme cohesively amalgamates the charac-
teristics such as robustness, stability, time-optimality
and computational simplicity in a single framework.
This idea has not been explicitly attempted previously
in open literature.

The remaining paper is organized as follows. The
system description is presented in Section 2. The for-
mulation of the standard PI controller is discussed in
Section 3. The theoretical background of themodel ref-
erence adaptive LQI controller is discussed in Section
4. The synthesis of the proposed error-dependent non-
linear adaptive LQI controller is presented in Section
5. The optimization methodology of the controller
parameters is discussed in Section 6. The experi-
mental execution and corresponding results are sum-
marized in Section 7. The article is concluded in
Section 8.

2. System description

The state-space model of a linear dynamical system is
generally given by (1) and (2).

ẋ(t) = Ax(t) + Bu(t) (1)

y(t) = Cx(t) + Du(t) (2)

where x(t) is the state-vector, y(t) is the output-vector,
u(t) is the control-input signal, A is the system-matrix,
B is the input-matrix, C is the output-matrix, and D is
the feed-forward matrix. The state-variable regarding
the integral-of-error, ε, is also included in the conven-
tional state-space model of DC motor. This augmen-
tation aids in effectively eliminating the steady-state
fluctuations, inhibiting the overshoots, damping the
oscillations, and enabling the systems to track time-
varying reference trajectories. The error-integral term
is given by (3).

ε(t) =
∫ t

0
eω(τ)dτ (3)
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Table 1. Motor parameters.

Parameters Symbol Values

Armature resistance R 0.35�

Armature inductance L 25.0× 10−6 H
Damping constant Kd 72.0× 10−6 Ns/rad
Torque constant Km 0.0274 Nm/A
Back-EMF constant Ke 0.0297 V/(rad/s)
Motor inertia J 32.0× 10−6 kgm2

Coulomb friction Fc 0.0593 Nm
Rated speed N 3000 r.p.m
Output power Pout 63.0W
Control signal range uout ±24.0 V

such that,

eω(t) = ωref (t) − ω(t) (4)

where ωref is the reference speed of the motor, and ω is
the actual speed of the motor. The state-vector is given
by (5).

x(t) = [
i(t) ω(t) ε(t)

]T (5)

where i(t) is the armature current of the motor. The
motor voltage,Vm(t), acts as the control-input signal of
the motor. With the introduction of the auxiliary inte-
gral state-variable, the overall state-space model of the
DC motor for this research is given by (6), [13].

⎡
⎣ i̇(t)

ω̇(t)
ε̇(t)

⎤
⎦ =

⎡
⎣

−R
L

−Ke
L 0

Km
J

−Kd
J 0

0 −1 0

⎤
⎦

⎡
⎣ i(t)

ω(t)
ε(t)

⎤
⎦

+
⎡
⎣

1
L
0
0

⎤
⎦Vm(t) +

⎡
⎣0
0
1

⎤
⎦ ωref (t) (6)

The motor parameters are identified in Table 1, [7].

3. Fixed-gain PI control scheme

The ubiquitous PI controller is a model-free control
mechanism that is generally employed as the standard
speed control scheme in the process control industry,
owing to its simple structure, resilience, and reliability
[30]. The control decisions are derived by computing
the weighted linear combination of the instantaneous
measurements of error and integral-of-error in the con-
trolled variable. The PI control law constituted for this
research is given by (7).

upi(t) = kP · eω(t) + kI · ε(t) (7)

where kP and kI represent the proportional gain and
integral-gain associated with the PI control law, respec-
tively. The proportional control term is responsible for
tracking the deviations of the response from the ref-
erence. It acts on the instantaneous value of error to
ensure convergence of the response to the set-point
value. The integral control term acts on the accumu-
lated value of error. It improves the damping of the
system by introducing a closed-loop pole at the origin.

This modification effectively attenuates the peak over-
shoots (or undershoots) and mitigates the steady-state
fluctuations by manipulating the magnitude and dura-
tion of error. A well-postulated PI controller offers rea-
sonable tracking accuracy and damping against oscil-
lations. Hence, in this research, the PI gains are opti-
mally selected using the APSO algorithm (discussed in
Section 6).

4. Adaptive optimal control architecture

This section provides the theoretical background of the
conventional LQI control schemes and its transforma-
tion into an adaptive-optimal controller by augmenting
it with MRAS.

4.1. Fixed-gain LQI controller

The state-feedback controller for a linear dynamical
system is implemented by minimizing an energy-like
quadratic performance index in order to generate opti-
mal control decisions [31]. As compared to the con-
ventional PI controllers, the LQI scheme includes the
auxiliary information regarding the state of motor’s
armature-current which re-configures the control pro-
cedure to deliver flexible correctional effort. The state-
feedback gain vector of the LQI controller, denoted as
Klqi, is calculated by using the expression in (8).

Klqi = R−1BTP (8)

The gain vector relocates the closed-loop poles of the
system to synthesize an optimal control trajectory. The
matrix, P, is a symmetric positive definite matrix that
is evaluated offline by solving the Algebraic Riccati
equation (ARE) [32], given by (9).

ATP + PA − PBR−1BTP + Q = 0 (9)

The quadratic cost function is expressed in (10).

Jlq =
∫ t

0
(xTQx + uTRu)dτ (10)

where Q and R are the state and control penalty
matrices, respectively. They are chosen such that;
Q = QT ≥ 0 and R = RT > 0. The penalty matrices
used in this work are given by (11).

Q =
⎡
⎣1 0 0
0 1 0
0 0 10

⎤
⎦ ,R = 10 (11)

Relatively larger weighting factors are selected for
the error-integral and control-input variable in order to
prevent the integral wind-up and the actuator satura-
tion, respectively. The optimal fixed-gain linear control
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law is given by (12).

u(t) = −Klqix(t) = − [
Ki Kω Kε

] ⎡
⎣ i(t)

ω(t)
ε(t)

⎤
⎦ (12)

The fixed state-feedback gain vector evaluated by using
the system description, given in the previous section, is
given in (13).

Klqi = [
Ki Kω Kε

] = [
1.062 0.275 1.883

]
(13)

4.2. Model reference adaptive LQI controller

The fixed-gain LQI controller lacks robustness against
the influences of modelling errors caused by faulty
identification, un-modelled intrinsic nonlinearities, or
environmental indeterminacies. Thus, it is retrofitted
with a stable online indirect MRAS [33]. The MRAS
adaptively modulates the state-feedback gains, as a
function of the gradient of error between the actual
closed-loop system and reference system, after every
sampling interval [34]. The adaptive self-tuning of
state-feedback gains enhances the robustness of the
system. It renders a significant improvement in the
system’s error-convergence rate while eliminating fluc-
tuations and overshoots (or undershoots), even in the
presence of bounded exogenous disturbances and para-
metric uncertainties. The reference model is imple-
mented in a 64-bit computer. It functions concurrently
with the actual system and generates control decisions
based on the actual state-feedback. The derivation of
the proposed model-reference Adaptive LQI (ALQI)
controller is presented as follows [28]. Consider the
linear system described by (14).

ẋ(t) = Ax(t) + Bu(t) (14)

The objective is to construct a stable control law such
that the response of the controlled system imitates that
of the reference system, given by (15).

ẋref (t) = Aref xref (t) (15)

The proposed linear adaptive control law is given by
(16).

u(t) = −Kcx(t) (16)

where Kc is the adaptive state-feedback gain vector
that is adjusted online with respect to variations in the
state-trajectories. The closed-loop representation of the
actual as well as the reference system can be expressed
according to (17) and (18).

ẋ(t) = (A − BKc)x(t) (17)

ẋref (t) = (A − BK̂c)xref (t) (18)

where K̂c is the adaptive state-feedback gain vector of
the reference model. The difference between the actual

states and the reference states is given by (19).

e(t) = x(t) − xref (t) (19)

The error equation presented in (19) aids in decid-
ing the convergence rate of the adaptation mechanism.
The time-derivative of the error equation yields the
expression in (20).

ė(t) = ẋ(t) − x ·
ref (t) = Ax(t) + Bu(t) − Aref xref (t)

(20)
The error-derivative equation is simplified by the
simultaneous addition and subtraction of the term,
Aref x(t), on the right-hand side of equation (20). The
simplified expression is shown in (21).

ė(t) = Aref e(t) + ϕ(Kc − K̂c) (21)

where,

ϕ = −Bx(t)T (22)

The simplified error-derivative expression in (21)
assumes that the conditions required for accurate
model-tracking are perfectly satisfied. The next step is
to derive a stable online adaptive adjustment law for
the state-feedback gain vector, Kc. For this purpose, a
quadratic Lyapunov function, given by (23), is utilized.

G(e,Kc) = 1
2
[βe(t)TPe(t) + (Kc − K̂c)

T
(Kc − K̂c)]

(23)
where β and P are both positive definite matrices. The
function, G(e,Kc), is also positive semi-definite. The
matrix β is denoted as the adaptation-gain matrix. It
decides as to how quickly does the error, e(t), converge
to zero for the given Lyapunov adaptation mechanism.
The matrix P is evaluated using the equation given by
(24).

AT
ref P + PAref = −Q (24)

The Qmatrix is already identified in (11). If Aref is sta-
ble then there always exists a pair of positive definite
matrices, P andQ, following the aforementionedmath-
ematical property. In order to deduce the authenticity
of the selected Lyapunov function, its time-derivative is
computed. The expression is given by (25).

Ġ = −1
2
βe(t)TQe(t) + (Kc − K̂c)

T(K̇c + βϕTPe(t))
(25)

Now, if the state-feedback gain-adjustment law is
chosen to be the expression in (26).

K̇c = −βϕTPe(t) (26)

Then, the time-derivative of the Lyapunov function, Ġ,
will always be negative-definite. This assertion implies
that the error, e(t), will eventually converge to zero. Sub-
stituting the expression for ϕ in the gain-adjustment
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law provides the expression in (27).

K̇c = βx(t)BTPe(t) (27)

All the states of the system, x(t), aremeasurable. Inte-
grating both sides of expression (27) provides an itera-
tive adaptationmechanism for the dynamic adjustment
of the state-feedback gain vector, given by (28).

Kc(t) = Kc(t − 1) + Ts(βx(t − 1)BTPe(t − 1)) (28)

where Ts is the sampling interval of the system. In this
research, the closed-loop system obtained by applying
the LQI controller on the mathematical model of the
DC motor is used as the reference model, in order
to implement the proposed adaptive controller. The
closed-loop reference model is shown in (29).

ẋref (t) = (A − BKlqi)xref (t) (29)

The vector Klqi, identified in (13), is used as the ini-
tial state-feedback gain vector of the gain-adjustment
law in (28). The formulated ALQI controller alters
the state-feedback gains after every sampling inter-
val, based on the real-time state-variations and error-
dynamics of the closed-loop system. The standard
ALQI control law is given by (30).

ualqi(t) = −Kc(t)x(t)

= − [
Ki(t) Kω(t) Kε(t)

] ⎡
⎣ i(t)

ω(t)
ε(t)

⎤
⎦ (30)

The quantitative information of all the parameters in
the expression of adaptive gain vector,Kc(t), is available
except for the adaptation-gain matrix, β . The matrix β

has to be carefully selected by the designer based on
some performance-criterion. As discussed earlier, β is
a diagonal matrix as shown in (31).

β =
⎡
⎣βi 0 0
0 βω 0
0 0 βε

⎤
⎦ (31)

The gains, β i, βω, and βε , directly affect the flexi-
bility and the error convergence rate of the parameter
adjustment law given in (28). A trivial set of adap-
tation gains are meta-heuristically selected via APSO
algorithm in this research. The selection methodology
of β is presented in Section 6.

5. Nonlinear self-tuningmodel-reference
adaptive LQI controller

The performance of the practical dynamical systems
is prone to be degraded under the influence of para-
metric uncertainties and external disturbances. Thus,
using fixed adaptation gains in the parameter adjust-
ment law is irrational. During transient conditions, the

adaptation gains are required to adapt quickly to track
and compensate the abrupt deviations occurring in the
state-variables in real-time. Thus, the variation-rates
of speed and current gains are inflated and integral-
damping response is depressed in order to stiffen the
control effort during transient conditions. On the con-
trary, the state-feedback gains are required to change
very gently during the steady-state conditions in order
to avoid any overshoots or oscillations in the response.
Hence, in steady-state, a smaller adaptation gain is
preferable for the speed and current gains to render a
softer control effort, while enhancing the sensitivity of
integral gain to strengthen the damping phenomenon.
The aforementioned characteristics offer rapid transits
in the response with enhanced damping against oscilla-
tions while minimizing the control energy expenditure,
even in the presence of bounded exogenous distur-
bances.

This rationale can be used to devise simple pre-
defined analytical rules that capture the variations in eω
signal to dynamically adjust the adaptation gains after
every sampling interval. In this research, a practica-
ble and computationally efficient solution is presented
in the form of nonlinear scaling functions of eω for
online modification of adaptation gains. A plethora of
nonlinear scaling functions have been proposed in the
literature, each offering its distinct attributes [35,36]. In
this research, the Hyperbolic Secant Functions (HSFs)
of eω are used to adaptivelymodulate the weighting fac-
tors of β . The waveform of HSF is smooth, bounded,
symmetrical, and differentiable [20]. Correspondingly,
the smooth transition of adaptation gains with respect
to the variations in eω renders superior damping and
negligible oscillations in the response under rapidly
changing operating conditions [14].Moreover, the con-
trol effort can be further harnessed by appropriately
selecting the nonlinearity-index of the function. This
feature enhances the flexibility of the Lyapunov param-
eter adjustment law, which enables the controller to
exhibit a relatively faster error-convergence rate and
stronger damping against exogenous disturbances. The
HSFs employed for the nonlinear self-tuning of the
three adaptation gains are provided in (32)–(34).

βi(eω) = βi,max − (βi,max − βi,min)

×
(
sech

(
αi × eω(t)

ωref

))
(32)

βω(eω) = βω,max − (βω,max − βω,min)

×
(
sech

(
αω × eω(t)

ωref

))
(33)

βε(eω) = βε,max − (βε,max − βε,min)

×
(
1 − sech

(
αε × eω(t)

ωref

))
(34)
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Figure 1. Nonlinear self-tuning model reference adaptive LQI (NALQI) control scheme.

where αi, αω, and αε , are the nonlinearity-indices of the
HSFs of β i, βω, and βε , respectively. The upper and
lower bounds of each functions are decided by βx ,max
and βx ,min, respectively. The block diagram of the pro-
posed adaptive control scheme is shown in Figure 1.
The upper bounds, lower bounds, and nonlinearity-
indices are meta-heuristically selected using the APSO
algorithm. The HSFs of β i and βω increase nonlin-
early with respect to error. The HSF of βε decreases
nonlinearly with error, which allows for a stronger inte-
gral control action during the steady-state, and vice
versa. Consequently, the response exhibits minimum-
time transient recovery with stronger damping against
oscillations. The updated matrix of error-dependent
nonlinear self-tuning adaptation gains is represented
according to (35).

β̄ =
⎡
⎣βi(eω) 0 0

0 βω(eω) 0
0 0 βε(eω)

⎤
⎦ (35)

The updated parameter adjustment law is given by (36).

K̄c(t) = K̄c(t − 1) + Ts(β̄x(t − 1)BTPe(t − 1)) (36)

The vector Klqi, identified in (13), is used as the ini-
tial state-feedback gain of the gain-adjustment law in
(36). Hence, the Nonlinear Self-tuning Adaptive LQI
(NALQI) control law is given by (37).

unalqi(t) = −K̄c(t)x(t)

= − [
K̄i(t) K̄ω(t) K̄ε(t)

] ⎡
⎣ i(t)

ω(t)
ε(t)

⎤
⎦ (37)

6. Parameter optimization

The PSO algorithm is a stochastic parameter optimiza-
tion technique that initializes with a random popu-
lation of potential candidate solutions, known as the
“particles” [37]. It searches the population to acquire the
global best solution. Each particle has a position and
velocity. The mathematical expressions of the velocity
(Yi) and position (Xi) of the kth particle for jth iteration

are given in (38) and (39), respectively [38].

Vj+1
k = wYj

k + c1r1(Pk − Xj
k) + c2r2(Pg − Xj

k)

(38)

Xj+1
k = Xj

k + Yj
k (39)

where c1, c2 are the cognitive-coefficients having val-
ues 2.08 and 2.06, respectively, r1, r2 are random real-
numbers between 0 and 1, and w is the inertia-weight.
The cognitive coefficients are selected via trial-and-
error to ensure that their sum is greater than 4 [29]. The
values of both r1 and r2 are randomly selected as 0.19.
The fitness of each particle is evaluated and compared
with the existing best-fit particles, also known as “local-
best” (Pk). The particle with the highest fitness-value
recorded so far is chosen as the new value of Pk. The
particle with the best fitness value among all the par-
ticles in the population is chosen as the “global-best”
(Pg). The function used to vary w in this research is
given by (40), [29].

w = wo − Pg
Pk

(40)

where wo is the initial value of inertia weight and is
selected as 1.4 in this research [29]. As the optimization
process progresses, the values of Pg and Pk converge to
a similar value. If the particles are farther away from
the global-best solution, Pk is much greater than Pg and
hence, the ratio of Pg/Pk is less than one. Consequently,
w retains a large value and supports global-searching.
As the particles get closer to Pg , the ratio continues
to increase and w continues to decrease, enhancing
the local-searching and thus, yielding a relatively faster
convergence rate. The value of jmax in this research is
100. The quadratic cost function, shown in (41), is used
to optimally select the gains of the conventional PI con-
troller so it may offer the best control effort in transient
as well as steady-state conditions.

J1 = (Mp)
2 + (ts)2 +

∫ t

0
(eω(τ))2dτ (41)

The fixed weighting factors of β (for ALQI con-
troller) as well as the nonlinearity-indices of the HSFs
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Table 2. Optimized values of controller parameters.

Controller Parameter Optimized value Range Iterations

PI kP 0.76 [0, 2] 44
kI 1.84 [0, 2] 62

ALQI β i 1.2 [0, 10] 78
βω 4.2 [0, 10] 80
βε 2.5 [0, 10] 91

NALQI β i ,max 2.3 [0, 10] 85
β i ,min 0.9 [0, 10] 55
βω ,max 6.2 [0, 10] 87
βω ,min 1.2 [0, 10] 62
βε ,max 3.2 [0, 10] 68
βε ,min 0.8 [0, 10] 48

αi 2.6 [0, 10] 72
αω 8.8 [0, 10] 79
αε 42.5 [0, 50] 87

Figure 2. Iterative optimization of PI controller parameters.

(for NALQI controller) are also optimized using the
cost function given in (41), since they compensate
the nonlinear characteristics of the response in tran-
sient as well as steady-state conditions. The system
undergoes abrupt state-variations during transient con-
ditions; therefore, the objective for the response is to
quickly converge to reference [39]. Hence, the follow-
ing cost function is minimized to optimize the related
bounds (βi,max, βω,max, and βε,min) in the adaptation-
gain HSFs of NALQI controller.

Jtr = (ts)2 + (tr)2 +
∫ t

0
τ |eω(τ)|dτ (42)

where tr is the time taken by the system to reach within
±10% of the reference speed and ts is the time-taken
for the system to settle within ±5% of the reference
speed. The cost function in (42) yields minimum-time
transient recovery. During steady-state conditions, the
system dynamics change gently. The objective is to
attenuate the overshoots, undershoots, oscillations and

steady-state fluctuations [39]. Hence, the following cost
function is minimized to optimize the related bounds
(βi,min, βω,min, and βε,max) in the adaptation-gain HSFs
of NALQI controller.

Jss = (Mp)
2 +

∫ t

0
(eω(τ))2dτ (43)

whereMp is the peak-magnitude (overshoot or under-
shoot) incurred in the system’s response during start-
up or upon the application of external disturbance. An
initial population of 100 particles is chosen for the opti-
mal selection of each parameter. The selected values of
the parameters, the range of search-space, and the num-
ber of iterations required to converge them to the Pg
value, are provided in Table 2. The iterative parame-
ter optimization history and convergence pattern of PI,
ALQI, and NALQI controller is graphically illustrated
in Figures 2–4, respectively. Based on the optimized
values of the nonlinearity-indices, the waveforms of
nonlinear adaptation-gain functions are illustrated in
Figure 5.

7. Experimental evaluation

This section presents experimental test-cases and their
corresponding results to validate the efficacy of the
proposed control scheme. The hardware-in-the-loop
experiments are conducted on theQNET 2.0DCMotor
Board [40].

7.1. Experimental setup

The QNET 2.0 DC Motor Control Board, shown in
Figure 6, is used to experimentally test the proposed
controller’s performance in real-time [41]. The QNET
2.0 DC Motor Board consists of a permanent mag-
net DC motor that is equipped with a tachometer
and current sensor to measure the real-time variations
in rotational-speed and the armature-current of the
motor, respectively. The motor is actuated via a ded-
icated on-board bidirectional pulse-width-modulated
motor driver circuit. The motor shaft is coupled to an
inertial disc of mass 0.15 kg. The experimental setup
is integrated with a LABVIEW based graphical user
interface (GUI) that aids in recording and visualizing

Figure 3. Iterative optimization of adaptation gains in ALQI control law.
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Figure 4. Iterative optimization of adaptation gain functions in NALQI control law.

Figure 5. Waveforms of nonlinear adaptation gain functions.

the motor’s speed response [42]. The NI-ELVIS II
board acts as a serial-communication bridge between
the motor and the GUI [43]. The GUI and the control
software are implemented in a 64-bit embedded com-
puter. The control software serially acquires the sensor
measurements and serially transmits the appropriate
voltage control commands to the motor driver circuit
at 9600 bps. The acquired data is sampled at 1000Hz.

7.2. Tests and results

To better appraise the benefits of the proposed NALQI
controller, its performance is benchmarked against the
conventional ALQI controller and a well-tuned PI con-
troller. Five unique test-cases are used to analyse the

reference-tracking capability, impulsive disturbance-
rejection capability, and robustness against modelling
errors of each controller.

(A) Speed-regulation: The time-domain performance
of the closed-loop control system is analysed by
applying a step input signal of 125.0 rad/s. The
step-reference tracking response of each controller
is graphically illustrated in Figure 7. The response
clearly validates the time-optimality of the NALQI
control scheme.

(B) Trajectory-tracking: The trajectory tracking per-
formance of the system is assessed by apply-
ing a time-varying ramp signal. The signal oscil-
lates between 25.0 and 125.0 rad/s at a frequency
of 0.4Hz. The corresponding trajectory track-
ing response of each controller is illustrated in
Figure 8.

(C) Impulsive-disturbance rejection: The immunity
of the control scheme against exogenous distur-
bances is tested by externally injecting an addi-
tive and subtractive bounded impulsive signal,
also known as the “dither” signal, directly in the
control-input signal. The dither signal has a mag-
nitude of± 5.0V and a duration of 8.0ms. The
dither signal application perturbs the steady-state
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Figure 6. QNET DC motor control trainer.

Figure 7. Speed-regulation response with respect to (a) PI controller, (b) ALQI controller, and (c) NALQI controller.
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Figure 8. Ramp-trajectory tracking response with respect to (a) PI controller, (b) ALQI controller, and (c) NALQI controller.

response of the system by introducing transients
in it. The resulting disturbance-rejection response
of each controller is illustrated in Figure 9.

(D) Variable load–torque compensation: The robust-
ness of the control scheme against changing
load–torques is studied by coupling the primary
DC motor with another identical motor (mini-
generator), as shown in Figures 10 and 11. At
t = 2.5 s, a resistor of 100� is connected across
the output terminals of the coupled generator in
order to abruptly increase the load–torque across
the primary motor, which perturbs the motor’s
steady-state response. The load–torque compen-
sation capability of each controller is graphically
illustrated in Figure 12.

(E)Modelling-error attenuation:The controller’s capa-
bility to compensate for the influence ofmodelling

errors is analysed by introducing a step-increment
in the armature resistance, R, of the motor. The
motor is started normally. At t = 2.5 s, a 1.0�

resistor is connected in series with one of the
primary-motor’s terminals and hence, the R. This
is done by moving the position of switch from
A to B, as shown in Figure 13. The modelling
error attenuation response of each controller is
illustrated in Figure 14.

7.3. Quantitative analysis

Acomprehensive comparative performance assessment
of the experimental results is summarized in Table 3.
The performance is analysed in term of tr, ts, absolute
value of Mp, transient-recovery time (trec), and the
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Figure 9. Disturbance-rejection response with respect to (a) PI controller, (b) ALQI controller, and (c) NALQI controller.

Figure 10. Schematic of experimental setup for introducing load–torque variations.

root-mean-squared value of steady-state fluctuations
(Ess) in the time-domain response. The consolidated
quantitative performance analysis derived from the
numerical data recorded in Table 3 is as follows. The
percentage-improvement contributed by NALQI con-
troller in the time-domain performance parameters is
calculated by considering the corresponding parame-
ters of PI controller as the reference.

In test A, the PI controller converges slowly to
the reference after the initial start-up and manifests
substantial fluctuations after convergence. The ALQI
controller converges relatively quickly to the reference
while suppressing the steady-state fluctuations. How-
ever, it shows an overshoot of 13.5 rad/s. The NALQI
controller demonstrates the fastest transient-response
without rendering any oscillations or overshoots in the
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Figure 12. Variable load–torque compensation responsewith respect to (a) PI controller, (b) ALQI controller, and (c) NALQI controller.

Figure 11. Motor-generator coupling to analyse load–torque
variations.

response. It shows 70.6% improvement in ts and 43.2%
reduction in Ess as compared to PI controller.

In test B, the conventional PI controller lags the
reference trajectory by 0.10 s. The ALQI controller
shows relatively faster convergence rate. The NALQI

Figure 13. Schematic of experimental setup to introducemod-
elling error in R.

controller transits to the reference in minimum time
and tracks it with relatively higher accuracy. It shows
68.4% improvement in ts and 59.2% reduction in Ess as
compared to PI controller.

In test C, the PI controller converges very slowly
to the reference after recovering from the distur-
bance and contributes large peaks of 43.6 rad/s in the
response. The ALQI controller converges in a relatively
shorter time-span as well as a smallerMp. The NALQI
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Figure 14. Modelling-error attenuation response with respect to (a) PI controller, (b) ALQI controller, and (c) NALQI controller.

Table 3. Summary of experimental results.

Test Controller tr (s) ts (s) |Mp| (rad/s) trec (s) Ess (rad/s)

PI 0.252 0.428 – – 1.32
A ALQI 0.074 0.224 13.54 – 1.08

NAQI 0.068 0.126 – – 0.75

B PI 0.191 0.468 – – 4.17
ALQI 0.072 0.240 11.89 – 2.52
NAQI 0.078 0.148 – – 1.70

C PI – – 43.64 0.292 1.37
ALQI – – 38.47 0.142 1.05
NAQI – – 24.70 0.088 0.81

D PI – – 41.96 0.926 1.28
ALQI – – 35.72 0.678 0.98
NAQI – – 24.85 0.494 0.82

E PI – – 44.23 0.488 1.35
ALQI – – 39.27 0.312 1.08
NAQI – – 33.18 0.204 0.78
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controller exhibits rapid transits with superior damp-
ing. It shows 69.9% and 43.4% improvement in trec
and Mp, respectively, as compared to the fixed-gain PI
controller.

In test D, the PI controller recovers slowly from
the large peak-undershoot induced by the abrupt
load–torque variation. The ALQI controller converges
in relatively lesser time while slightly depressing the
peak-undershoot. The NALQI controller shows the
most time-optimal effort. It significantly attenuates the
magnitude of undershoot andmanifest minimum-time
transient recovery. It shows 46.7% improvement in trec
and 40.7% reduction in the Mp as compared to PI
controller.

In test E, the PI controller takes a significantly long
time and a large peak-undershoot to compensate for
the effect of modelling error. The ALQI controller
shows considerable improvement but induces oscil-
lations in the response. The NALQI controller takes
minimum-time to reject and recover from the elec-
trical damping. It shows 58.2% improvement in trec
and 25.0% reduction in the Mp as compared to PI
controller.

In all of the test-cases discussed earlier, the con-
ventional fixed-gain PI controller demonstrates poor
transient and steady-state response. The ALQI con-
troller shows mediocre improvement in time-domain
performance. The superior position-regulation, track-
ing accuracy, and disturbance-rejection capability of
the NALQI controller clearly validate its efficacy for
motor control applications. The enhanced robustness of
NALQI controller is attributed to the nonlinear-scaling
of adaptation gains which improve the efficiency of
the online gain-adjustment law to quickly respond to
unprecedented parametric variations.

8. Conclusion

This paper presents a methodical approach to syn-
thesize a robust and optimal multivariable model-
reference adaptive control scheme to enhance the speed
control performance of a PMDC motor, even under
the influence of bounded exogenous disturbances and
parametric variations. The Lyapunov’s stability theory
is used to derive a stable parameter adaptation law for
the online adjustment of the state-feedback gains of the
LQI controller. The adaptation gains of the Lyapunov
parameter adaptation law are dynamically adjusted
with the aid of secant-hyperbolic functions that directly
capture the variations in eω. The online nonlinear scal-
ing of the adaptation gains serves to adaptively manip-
ulate the control-input profile which enhances the flex-
ibility of the controller to efficiently respond to real-
time variations in state-dynamics. This modification
speeds up the transient response, eliminates the steady-
state fluctuations, and significantly improves the sys-
tem’s immunity against parametric uncertainties, while

maintaining the asymptotic stability of the controller
under every operating condition. The efficacy of the
proposed adaptive controller is justified via credible
“hardware-in-the-loop” experiments. The experimen-
tal results of the proposed controller exhibit rapid tran-
sits with improved damping and minimal steady-state
error in the system’s response, even under the influence
of bounded exogenous disturbances. These observa-
tions clearly validate the superior robustness and time-
optimality of the proposed controller. The NALQI con-
troller does not put recursive computational burden on
the embedded computer which makes it practical for
real-time motor speed control applications. In future,
intelligent adaptation mechanisms can be investigated
for flexible and efficient online adjustment of adapta-
tion gains.
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