36 research outputs found

    Scalable String and Suffix Sorting: Algorithms, Techniques, and Tools

    Get PDF
    This dissertation focuses on two fundamental sorting problems: string sorting and suffix sorting. The first part considers parallel string sorting on shared-memory multi-core machines, the second part external memory suffix sorting using the induced sorting principle, and the third part distributed external memory suffix sorting with a new distributed algorithmic big data framework named Thrill.Comment: 396 pages, dissertation, Karlsruher Instituts f\"ur Technologie (2018). arXiv admin note: text overlap with arXiv:1101.3448 by other author

    Scalable Architecture for Integrated Batch and Streaming Analysis of Big Data

    Get PDF
    Thesis (Ph.D.) - Indiana University, Computer Sciences, 2015As Big Data processing problems evolve, many modern applications demonstrate special characteristics. Data exists in the form of both large historical datasets and high-speed real-time streams, and many analysis pipelines require integrated parallel batch processing and stream processing. Despite the large size of the whole dataset, most analyses focus on specific subsets according to certain criteria. Correspondingly, integrated support for efficient queries and post- query analysis is required. To address the system-level requirements brought by such characteristics, this dissertation proposes a scalable architecture for integrated queries, batch analysis, and streaming analysis of Big Data in the cloud. We verify its effectiveness using a representative application domain - social media data analysis - and tackle related research challenges emerging from each module of the architecture by integrating and extending multiple state-of-the-art Big Data storage and processing systems. In the storage layer, we reveal that existing text indexing techniques do not work well for the unique queries of social data, which put constraints on both textual content and social context. To address this issue, we propose a flexible indexing framework over NoSQL databases to support fully customizable index structures, which can embed necessary social context information for efficient queries. The batch analysis module demonstrates that analysis workflows consist of multiple algorithms with different computation and communication patterns, which are suitable for different processing frameworks. To achieve efficient workflows, we build an integrated analysis stack based on YARN, and make novel use of customized indices in developing sophisticated analysis algorithms. In the streaming analysis module, the high-dimensional data representation of social media streams poses special challenges to the problem of parallel stream clustering. Due to the sparsity of the high-dimensional data, traditional synchronization method becomes expensive and severely impacts the scalability of the algorithm. Therefore, we design a novel strategy that broadcasts the incremental changes rather than the whole centroids of the clusters to achieve scalable parallel stream clustering algorithms. Performance tests using real applications show that our solutions for parallel data loading/indexing, queries, analysis tasks, and stream clustering all significantly outperform implementations using current state-of-the-art technologies

    Dynamic Queries for Visual Information Seeking

    Get PDF
    The capacity to incrementally adjust a query (with sliders, buttons, selections from a set of discrete attribute values, etc.) coupled with a visual display of results that are rapidly updated, dramatically changes the information seeking process. Dynamic queries on the chemical table of elements, computer directories, and a real estate database were built and tested in three separate exploratory experiments. Preliminary results show highly significant performance improvements and user enthusiasm more commonly seen with video games. Widespread application seems possible but research issues abound in the areas of: (1) graphic visualization design, (2) database and display algorithms, and (3) user interface requirements. Challenges include methods for rapidly displaying and changing many points, colors, and areas; multi-dimensional pointing and exploring using 6 degree of freedom input/output devices; incorporation of sound and visual display techniques that increase user comprehension; and integration with existing database systems. (Also cross-referenced as CAR-TR-655) (Also cross-referenced as SRC-TR-93-3) Original paper (September 1993), revised (January 1994

    Efficient Distance-based Query Processing in Spatial Networks

    Get PDF

    On indexing highly dynamic multidimensional datasets for interactive analytics

    Get PDF
    Orientador : Prof. Dr. Luis Carlos Erpen de BonaTese (doutorado) - Universidade Federal do Paraná, Setor de Ciências Exatas, Programa de Pós-Graduação em Informática. Defesa: Curitiba, 15/04/2016Inclui referências : f. 77-91Área de concentração : Ciência da computaçãoResumo: Indexação de dados multidimensionais tem sido extensivamente pesquisada nas últimas décadas. Neste trabalho, um novo workload OLAP identificado no Facebook é apresentado, caracterizado por (a) alta dinamicidade e dimensionalidade, (b) escala e (c) interatividade e simplicidade de consultas, inadequado para os SGBDs OLAP e técnicas de indexação de dados multidimensionais atuais. Baseado nesse caso de uso, uma nova estratégia de indexação e organização de dados multidimensionais para SGBDs em memória chamada Granular Partitioning é proposta. Essa técnica extende a visão tradicional de partitionamento em banco de dados, particionando por intervalo todas as dimensões do conjunto de dados e formando pequenos blocos que armazenam dados de forma não coordenada e esparsa. Desta forma, é possível atingir altas taxas de ingestão de dados sem manter estrutura auxiliar alguma de indexação. Este trabalho também descreve como um SGBD OLAP capaz de suportar um modelo de dados composto por cubos, dimensões e métricas, além de operações como roll-ups, drill-downs e slice and dice (filtros) eficientes pode ser construído com base nessa nova técnica de organização de dados. Com objetivo de validar experimentalmente a técnica apresentada, este trabalho apresenta o Cubrick, um novo SGBD OLAP em memória distribuída e otimizada para a execução de consultas analíticas baseado em Granular Partitioning, escritas desde a primeira linha de código para este trabalho. Finalmente, os resultados de uma avaliação experimental extensiva contendo conjuntos de dados e consultas coletadas de projetos pilotos que utilizam Cubrick é apresentada; em seguida, é mostrado que a escala desejada pode ser alcançada caso os dados sejam organizados de acordo com o Granular Partitioning e o projeto seja focado em simplicidade, ingerindo milhões de registros por segundo continuamente de uxos de dados em tempo real, e concorrentemente executando consultas com latência inferior a 1 segundo.Abstrct: Indexing multidimensional data has been an active focus of research in the last few decades. In this work, we present a new type of OLAP workload found at Facebook and characterized by (a) high dynamicity and dimensionality, (b) scale and (c) interactivity and simplicity of queries, that is unsuited for most current OLAP DBMSs and multidimensional indexing techniques. To address this use case, we propose a novel multidimensional data organization and indexing strategy for in-memory DBMSs called Granular Partitioning. This technique extends the traditional view of database partitioning by range partitioning every dimension of the dataset and organizing the data within small containers in an unordered and sparse fashion, in such a way to provide high ingestion rates and indexed access through every dimension without maintaining any auxiliary data structures. We also describe how an OLAP DBMS able to support a multidimensional data model composed of cubes, dimensions and metrics and operations such as roll-up, drill-down as well as efficient slice and dice filtering) can be built on top of this new data organization technique. In order to experimentally validate the described technique we present Cubrick, a new in-memory distributed OLAP DBMS for interactive analytics based on Granular Partitioning we have written from the ground up at Facebook. Finally, we present results from a thorough experimental evaluation that leveraged datasets and queries collected from a few pilot Cubrick deployments. We show that by properly organizing the dataset according to Granular Partitioning and focusing the design on simplicity, we are able to achieve the target scale and store tens of terabytes of in-memory data, continuously ingest millions of records per second from realtime data streams and still execute sub-second queries

    Digital Image Access & Retrieval

    Get PDF
    The 33th Annual Clinic on Library Applications of Data Processing, held at the University of Illinois at Urbana-Champaign in March of 1996, addressed the theme of "Digital Image Access & Retrieval." The papers from this conference cover a wide range of topics concerning digital imaging technology for visual resource collections. Papers covered three general areas: (1) systems, planning, and implementation; (2) automatic and semi-automatic indexing; and (3) preservation with the bulk of the conference focusing on indexing and retrieval.published or submitted for publicatio

    Efficient Processing of Range Queries in Main Memory

    Get PDF
    Datenbanksysteme verwenden Indexstrukturen, um Suchanfragen zu beschleunigen. Im Laufe der letzten Jahre haben Forscher verschiedene Ansätze zur Indexierung von Datenbanktabellen im Hauptspeicher entworfen. Hauptspeicherindexstrukturen versuchen möglichst häufig Daten zu verwenden, die bereits im Zwischenspeicher der CPU vorrätig sind, anstatt, wie bei traditionellen Datenbanksystemen, die Zugriffe auf den externen Speicher zu optimieren. Die meisten vorgeschlagenen Indexstrukturen für den Hauptspeicher beschränken sich jedoch auf Punktabfragen und vernachlässigen die ebenso wichtigen Bereichsabfragen, die in zahlreichen Anwendungen, wie in der Analyse von Genomdaten, Sensornetzwerken, oder analytischen Datenbanksystemen, zum Einsatz kommen. Diese Dissertation verfolgt als Hauptziel die Fähigkeiten von modernen Hauptspeicherdatenbanksystemen im Ausführen von Bereichsabfragen zu verbessern. Dazu schlagen wir zunächst die Cache-Sensitive Skip List, eine neue aktualisierbare Hauptspeicherindexstruktur, vor, die für die Zwischenspeicher moderner Prozessoren optimiert ist und das Ausführen von Bereichsabfragen auf einzelnen Datenbankspalten ermöglicht. Im zweiten Abschnitt analysieren wir die Performanz von multidimensionalen Bereichsabfragen auf modernen Serverarchitekturen, bei denen Daten im Hauptspeicher hinterlegt sind und Prozessoren über SIMD-Instruktionen und Multithreading verfügen. Um die Relevanz unserer Experimente für praktische Anwendungen zu erhöhen, schlagen wir zudem einen realistischen Benchmark für multidimensionale Bereichsabfragen vor, der auf echten Genomdaten ausgeführt wird. Im letzten Abschnitt der Dissertation präsentieren wir den BB-Tree als neue, hochperformante und speichereffziente Hauptspeicherindexstruktur. Der BB-Tree ermöglicht das Ausführen von multidimensionalen Bereichs- und Punktabfragen und verfügt über einen parallelen Suchoperator, der mehrere Threads verwenden kann, um die Performanz von Suchanfragen zu erhöhen.Database systems employ index structures as means to accelerate search queries. Over the last years, the research community has proposed many different in-memory approaches that optimize cache misses instead of disk I/O, as opposed to disk-based systems, and make use of the grown parallel capabilities of modern CPUs. However, these techniques mainly focus on single-key lookups, but neglect equally important range queries. Range queries are an ubiquitous operator in data management commonly used in numerous domains, such as genomic analysis, sensor networks, or online analytical processing. The main goal of this dissertation is thus to improve the capabilities of main-memory database systems with regard to executing range queries. To this end, we first propose a cache-optimized, updateable main-memory index structure, the cache-sensitive skip list, which targets the execution of range queries on single database columns. Second, we study the performance of multidimensional range queries on modern hardware, where data are stored in main memory and processors support SIMD instructions and multi-threading. We re-evaluate a previous rule of thumb suggesting that, on disk-based systems, scans outperform index structures for selectivities of approximately 15-20% or more. To increase the practical relevance of our analysis, we also contribute a novel benchmark consisting of several realistic multidimensional range queries applied to real- world genomic data. Third, based on the outcomes of our experimental analysis, we devise a novel, fast and space-effcient, main-memory based index structure, the BB- Tree, which supports multidimensional range and point queries and provides a parallel search operator that leverages the multi-threading capabilities of modern CPUs

    Bridging the gap between algorithmic and learned index structures

    Get PDF
    Index structures such as B-trees and bloom filters are the well-established petrol engines of database systems. However, these structures do not fully exploit patterns in data distribution. To address this, researchers have suggested using machine learning models as electric engines that can entirely replace index structures. Such a paradigm shift in data system design, however, opens many unsolved design challenges. More research is needed to understand the theoretical guarantees and design efficient support for insertion and deletion. In this thesis, we adopt a different position: index algorithms are good enough, and instead of going back to the drawing board to fit data systems with learned models, we should develop lightweight hybrid engines that build on the benefits of both algorithmic and learned index structures. The indexes that we suggest provide the theoretical performance guarantees and updatability of algorithmic indexes while using position prediction models to leverage the data distributions and thereby improve the performance of the index structure. We investigate the potential for minimal modifications to algorithmic indexes such that they can leverage data distribution similar to how learned indexes work. In this regard, we propose and explore the use of helping models that boost classical index performance using techniques from machine learning. Our suggested approach inherits performance guarantees from its algorithmic baseline index, but at the same time it considers the data distribution to improve performance considerably. We study single-dimensional range indexes, spatial indexes, and stream indexing, and show that the suggested approach results in range indexes that outperform the algorithmic indexes and have comparable performance to the read-only, fully learned indexes and hence can be reliably used as a default index structure in a database engine. Besides, we consider the updatability of the indexes and suggest solutions for updating the index, notably when the data distribution drastically changes over time (e.g., for indexing data streams). In particular, we propose a specific learning-augmented index for indexing a sliding window with timestamps in a data stream. Additionally, we highlight the limitations of learned indexes for low-latency lookup on real- world data distributions. To tackle this issue, we suggest adding an algorithmic enhancement layer to a learned model to correct the prediction error with a small memory latency. This approach enables efficient modelling of the data distribution and resolves the local biases of a learned model at the cost of roughly one memory lookup.Open Acces

    Multi-scale data storage schemes for spatial information systems

    Get PDF
    This thesis documents a research project that has led to the design and prototype implementation of several data storage schemes suited to the efficient multi-scale representation of integrated spatial data. Spatial information systems will benefit from having data models which allow for data to be viewed and analysed at various levels of detail, while the integration of data from different sources will lead to a more accurate representation of reality. The work has addressed two specific problems. The first concerns the design of an integrated multi-scale data model suited for use within Geographical Information Systems. This has led to the development of two data models, each of which allow for the integration of terrain data and topographic data at multiple levels of detail. The models are based on a combination of adapted versions of three previous data structures, namely, the constrained Delaunay pyramid, the line generalisation tree and the fixed grid. The second specific problem addressed in this thesis has been the development of an integrated multi-scale 3-D geological data model, for use within a Geoscientific Information System. This has resulted in a data storage scheme which enables the integration of terrain data, geological outcrop data and borehole data at various levels of detail. The thesis also presents details of prototype database implementations of each of the new data storage schemes. These implementations have served to demonstrate the feasibility and benefits of an integrated multi-scale approach. The research has also brought to light some areas that will need further research before fully functional systems are produced. The final chapter contains, in addition to conclusions made as a result of the research to date, a summary of some of these areas that require future work
    corecore