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Abstract

The prevalence of GPS-enabled mobile devices and wireless communication has given

rise to a wide range of location-based services (e.g. Foursquare, Google Maps). These

services support various types of queries related to the objects’ spatial locations. For

example, a user may want to find the five restaurants nearest to his location while visiting

an unfamiliar city. Since these services provide real-time response to people’s queries,

the efficiency of query processing is crucial for them.

In real-world applications, the movements of the objects are often constrained to un-

derlying paths such as spatial networks. In these circumstances, the distance between two

locations is measured by the length of the shortest path between them. As shortest path

distance is the metric for most query types in spatial networks, their query processing is

all network distance based. This makes the query processing in spatial networks quite

different from that in the Euclidean space. Thus the traditional algorithms designed for

the Euclidean space are not directly applicable. This thesis aims at supporting efficient

query processing in spatial networks. Specifically, it focuses on two research problems.

The first work in the thesis studies the efficient object query processing in spatial

networks. A novel graph partitioning based index, the Partition Tree, is proposed. It takes

account of both the network topologies and the object distribution. Based on the Partition

Tree, efficient algorithms are proposed for common types of queries in spatial networks

including shortest path query and k-NN query. Furthermore, a cost model is derived to

balance the cost of indexing and query efficiency.

The second work in the thesis studies the efficient trajectory query processing in spa-

tial networks. A trajectory is a record of moving history of an object and the trajectory

dataset contains rich information of specific moving patterns. To support efficient trajec-

tory query processing, the Partition Tree is modified to index trajectories in this work.

Then correspondent algorithms are proposed for trajectory queries in spatial networks.

Comprehensive experiments are conducted to verify the performance of the proposed
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approaches. The experimental results demonstrated that the proposed methods in this the-

sis have superior performance over the existing works.
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Chapter 1

Introduction

1.1 Motivation

An important way to picture the real world is to investigate its spatial and temporal at-

tributes. Since spatio-temporal databases were first designed in 1990’s, the modeling

and query of entities with their spatio-temporal information has always been of great in-

terest to the research community. Meanwhile, wireless communication technology and

location-aware devices are becoming indispensable in people’s lives. One example is the

proliferation of global positioning system and mobile phones. A recent survey suggests

that 91 percent of people on earth own a mobile phone till 2013. The development of

spatio-temporal database and rapid growth of location-awareness has given rise to a wide

range of real-world applications that model and analyze temporal-spatial information as-

sociated with objects in the dataset. These applications cover the needs of government,

business and academic parties. Representative areas of those applications include:

• Urban Planning: Each sensor, device, person, vehicle, building and street in the

urban areas is used as a component to sense the city dynamics to enable a city-wide

computing to tackle the challenges in urban areas so as to better serve the residents.

For example, as shown in Figure 1.1, human mobility history and points of interest

1
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FIGURE 1.1: Discovering Regions of Different Functions

(POIs) can be used to discover regions of different functions [58].

• Location-based Services : Location-based services provide value-added informa-

tion by considering the locations of the mobile users in order to give them cus-

tomized information [20]. Examples include listing and rating nearby restaurants,

and identifying friends’ locations on social media applications. Figure 1.2 gives a

list of some most widely used location-based services.

• Smart Route Recommendation Systems: Smart route recommendation systems

provide smart route recommendation by analyzing heterogeneous data (e.g. spatial

and textual data). For example, route recommendations are provided to users by

considering the current traffic status and local history trajectories at the same time.

• Group Organization: Clustering of moving objects identifies groups of moving

objects that travel together for a period of time. For example, finding the cars

that follow the same routes at the same time may be used for the organization of

carpooling.
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FIGURE 1.2: Applications with Location-based Services

The basic task of these applications is to address various spatial queries. Spatial

queries search the objects in the dataset by a set of spatial attributes. For example, a

user may invoke a nearest neighbor query to find the nearest restaurant when traveling in

an unfamiliar city. There are various types of spatial queries, of which the most represen-

tative ones are:

• k-NN Query: Given a query location q and a set of objects O, find the k objects

from O that are nearest to q.

• Range Query: Given a query location q and a set of objects O, find the spatial

objects of which the distances to q are within a specified range r.

• Spatial Join Query: Given two sets of spatial objects, find the pairs of objects

which satisfy a given predicate.

In many applications, the extent of the objects can be neglected so that each object

is seen as a point in the dataset. Therefore, the objects referred to in this thesis are all

point objects if not declared specifically. In addition, another important type of spatial
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FIGURE 1.3: GeoLife GPS Trajectories

data is trajectory. A trajectory is a series of locations recording the movement history of

an object. For example, Figure 1.3 shows the trajectories collected from the movements

of 182 users in Beijing during a period of over three years [65][64]. Trajectories convey

rich information to reason about the nature of the real world. For example, trajectories

generated by taxis of a city can be used to model the road conditions and the preference

of local drivers of this city. This makes trajectory query become another important type

of spatial queries. A trajectory query often retrieves the trajectories that satisfy a given

predicate. Representative types of trajectory queries [66] include:

• P-Query: Given a set of query locations Q, find the trajectories that satisfy the

specified spatio-temporal relationship to these query locations.

• R-Query: Given a spatio-temporal region R, find the trajectories passing by region

R.

• T-Query: Given a query trajectory T , find the trajectories that their distances to T

are within a threshold.
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In many real-world applications, a vast amount of data need to be processed to address

these spatial queries. This massive amount of data came with the prevailing of GPS, wire-

less communication enabled mobile devices and location-based services. For example,

there are 4 million of check-ins generated per day. However, the online nature of these

applications calls for real-time response to the users’ queries anytime, and there are often

a great number of queries invoked at the same time. Thus the efficiency of spatial query

processing is crucial for them.

Traditional approaches for spatial query processing utilize multi-dimensional index-

ing structures such as R-tree [17] and Grid File [35]. With these indexing structures,

correspondent query algorithms can access the spatial objects and prune search space ef-

ficiently. For example, some algorithms [43][19] adopt best-first or depth-first search with

the help of R-tree to retrieve the objects and prune the search space.

However these approaches are based on metrics in Euclidean space. In real world

applications, the movements of objects are often constrained to pre-defined paths that are

specified by underlying spatial networks (e.g. road networks). In this case, the distance

between two objects is decided by the shortest path between them, which makes the query

processing in spatial network quite different from that in Euclidean space. The shortest

path distance needs to be obtained through processing, while the Euclidean distance can

be obtained directly from the coordinates. Thus the cost of distance computation in spatial

network is much more expensive. For example, the classic solution to shortest path query

is Dijkstra’s algorithm [14]. It traverses the vertices of the network incrementally from

start point until reaching the target point and return the shortest path (distance). The

computation complexity of Dijkstra’s algorithm isO(m+n log n), where n is the number

of vertices and m is the number of edges. This is obviously not efficient enough for large

networks, since the location-based services need to deal with a large number of queries at

the same time and all queries need to be responded in real time.
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Because of the deficiency of online network expansion approaches like Dijkstra’s al-

gorithm, alternative approaches have been proposed to process queries in spatial networks.

These approaches typically conduct pre-computation on all pairs of vertices or a selected

set of vertices. Then they utilize these pre-computed information in their algorithms to

improve the query efficiency. Some of them are quite efficient but they also bring huge

cost of pre-processing time and indexing space. For example, the space cost of SILC,

one of the most well-known approaches for the shortest path queries, is over 24 GB for a

network with 1 million vertices.

Research Problem Motivated by this, this thesis aims at finding an indexing technique

for efficient query processing in spatial networks. This indexing should support efficient

processing of most common queries, such as shortest path queries , k-NN queries and

trajectories queries by locations. Meanwhile, the overhead of this indexing needs to be

moderate so that it is practical for large scale networks. Therefore the ultimate goal of the

work in the thesis is to find a good balance between indexing cost and query efficiency.

1.2 Key Challenges

In real world applications, there are many different types of spatial queries to be ad-

dressed. The most fundamental category of queries is to retrieve objects which are seen

as points in the search space. This is based on the assumption that the extent of an object is

insignificant compared with the scale of query space. In addition to point objects, another

important category of queries is to retrieve trajectories. A trajectory is a series of sample

points recording the moving history of an object. Compared with point objects, the met-

ric definition related to trajectories is more complicated. These two categories of queries

cover the most important spatial queries, so this thesis will focus on their processing:
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• Object Query Processing: The entities to be indexed and queried are single ob-

jects which are modeled as points in the spatial networks. The distance between

two objects is defined as the shortest path distance between them. So the most fun-

damental type of query is shortest path (distance) query. Another important type of

spatial query is k-NN query, which returns the k objects that are nearest the given

query location.

• Trajectory Query Processing: The entities to be indexed and queried are trajec-

tories. Each trajectory is a series of points recording the movements of an object.

Given a set of query locations, location-based trajectory queries return the trajecto-

ries that are nearest to the given query locations.

For each type of query mentioned above, efficient query processing algorithm need to

be designed. To achieve this goal, the following challenges are identified:

• Avoid large scale network expansion: Shortest path (distance) computation is the

basis of query processing in spatial networks. The existing works are either based

on computing network distances on-line, or utilizing the index structures. On-line

distance computation usually adopts Dijkstra’s algorithm. It retrieves the objects in

ascending order of their distances to the query location. But this performs poorly

when the objects are not densely distributed in the network because a large portion

of the network will be traversed. The algorithms based on indexing structures can

filter out a candidate set first during search. But the distance computation between

the query location and candidates still need to traverse the network if no alternative

solution is provided. So the first challenge is to avoid large scale network expansion.

This will reduce the cost of traversing the vertices caused by distance computation.

• Prune search space efficiently: Effective pruning of search space could help avoid
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unnecessary computing and reduce the cost of spatial query processing. In Eu-

clidean space, traditional algorithms utilize indexing structures like R-tree to re-

trieve objects and prune the search space. For example, the best-first algorithm [43]

and depth-first algorithm [19] for k-NN query are both based on R-tree. In spatial

networks, the metrics for such pruning technique are not valid anymore. Thus our

proposed indexing structure should support efficient search space pruning for query

processing as well.

• Control indexing cost: For real world applications, the efficiency of query pro-

cessing is crucial for their service quality but a moderate indexing cost is also very

important. Compared with on-line network expansion, the approaches based on in-

dexing structures like SILC [46][44] are quite efficient but they have a huge space

cost for indexing. Thus a good balance between indexing cost and query efficiency

needs to be reached . Specifically, what materialization strategy to take and how to

organize the materialized information is important.

1.3 Contributions

This thesis focuses on the processing of two categories of spatial queries, object query

processing and trajectory query processing. For each task, the proper indexing structure

and efficient algorithms for the query processing are investigated. Then extensive experi-

mental analysis is done and the performance is compared with state-of-the-art approaches

to verify the superiority of our proposed approach.

1.3.1 Object Query Processing in Spatial Networks

The first contribution of this thesis is that it developed an indexing and query processing

technique for efficient object search in spatial networks. Inspired by the observation that

certain vertices are more important for query processing, the vertices of the network are
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organized into a hierarchy through a series of graph partitioning processes. For each

subgraph, it pre-computes the distances necessary for the query processing rather than all-

pairs shortest paths for vertices of this subgraph. Then algorithms utilizing the partitioning

topology and pre-computed information are proposed for shortest path queries and k-NN

queries.

In real-life applications, the query probabilities are often related to the distribution

of objects (points of interest), since queries are often invoked around these objects. So

the areas that contain more objects are more worthy to be partitioned. This motivated

us to find a partitioning strategy efficient for query processing with a specific object set.

Since the efficiency of our query processing is influenced by both partitioning topology

and object distribution, a cost model is proposed to estimate these influences. Then a

cost-efficient graph partitioning is achieved by incorporating the evaluation of cost model

into the index construction.

To sum up, the following contributions are made in this part of work:

• We propose a hierarchical graph partitioning based index, the Partition Tree. It

organizes the vertices of a spatial network into a hierarchy through a series of graph

partitioning processes and associates pre-computed information with it to facilitate

efficient query processing.

• Based on the Partition Tree, a dynamic programming algorithm is proposed for

shortest path queries and a best-first algorithm for k-NN queries. These algorithms

utilize the Partition Tree to avoid extensive network expansion and process queries

efficiently.

• We propose a query-oriented optimization on top of the Partition Tree. This op-

timization uses a cost model to evaluate the influence of partitioning strategy on

query efficiency. Then it incorporates this cost model in index construction to

achieve a partitioning efficient for the query processing with a specific object set.
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1.3.2 Trajectory Query Processing in Spatial Networks

The second contribution of this thesis is that it extends the Partition Tree to support ef-

ficient trajectory query processing in spatial networks. It adopts the framework of the

indexing for object queries in the first work and adapt it to index trajectories. The follow-

ing contributions are made in this part of work:

• We propose an indexing method, the Partition Tree, for efficient trajectory query

processing in spatial networks. It organizes the vertices of a spatial network into

a hierarchy through a series of graph partitioning processes and associates pre-

computed distances and trajectory information with it to facilitate efficient query

processing.

• Based on Partition Tree, we propose efficient algorithms for trajectory distance

computation and k nearest trajectories query with a query location.

• We propose an incremental k nearest trajectory algorithm to retrieve the k nearest

trajectories with multiple query locations.

1.4 Thesis organization

The remainder of this thesis is organized as follows.

Chapter 2 introduces state-of-the-art techniques for spatial query processing, includ-

ing approaches for shortest path queries, object queries and trajectory queries.

Chapter 3 presents our indexing method, the Partition Tree, and query algorithms for

object search in spatial networks.

Chapter 4 extends our proposed index to support efficient trajectory query processing.

Chapter 5 gives concluding remarks.



Chapter 2

Literature Review

The prevalence of GPS-enabled mobile devices and wireless communication gave rise to

a wide range of location-based services (e.g. Foursquare, Google Maps). These services

require efficient processing of spatial queries such as k nearest neighbors queries and

range queries. In many applications, the movements of objects are constrained to spatial

networks (e.g. road networks). In this case, the distance between two objects is decided

by the shortest path distance rather than the Euclidean distance. So the query processing

in spatial networks requires different approaches from those in Euclidean space.

The spatial query processing in Euclidean space has been extensively studied [43][60]

[57][61]. As a counter part, the query processing in spatial networks has also been inves-

tigated in many works before.

The most important and fundamental type of query in spatial networks is shortest

path (distance) query. A plethora of techniques [55][18][46][49][24][26][16][6][40] have

been proposed to address it in past few decades, and some state-of-the-art approaches have

achieved great improvement over the traditional network expansion based algorithm.

Another important type of query is k nearest neighbors query. We will introduce some

state-of-the-art approaches [21][38][38][13][36][29][31] [32] [44].

Then we will investigate trajectory queries, especially the queries based on a given set

11
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of query locations [53] [4] [15] [52] [11] [50] [62].

Next we will present the existing works for each research issue, categorizing the main

approaches together with important research results in literatures.

2.1 Shortest Path Query Processing

Dijkstra’s Algorithm

The most classic solution for shortest path and distance query is Dijkstra’s algorithm, it is

first proposed by Edsger Dijkstra [14] [37]. It solves single-source shortest path query for

a graph with non-negative edge weights. Given a source vertex s, to compute the shortest

path distance between any vertex t to it, Dijkstra’s algorithm traverses the vertices of G in

ascending order of their distances from s until reaching target point t. Then the shortest

path from s to t is computed and returned. The traversing can be seen as a process to

produce a shortest path tree, in which nodes are added in order of their distances to source

vertex s. The computation complexity for Dijkstra’s algorithm is O(m + n log n), where

n is the number of vertices in graph, and m is the number of edges. For sparse graph, it

can be approximated as O(n log n).

Dijkstra’s algorithm is simple and elegant. It works well for small scale networks

but is quite inefficient for large networks. For example, for a large network with a huge

number of vertices, Dijkstra’s algorithm will traverse a large portion of the network when

two points are far apart from each other, which is a considerate computation cost.

A variant of Dijkstra’s algorithm is A* algorithm. The difference is that, while choos-

ing the next vertex to visit, it considers not only the vertices’ distances to s, but also

their expected distances to t, which are estimated by a heuristic function. Therefore it

combines the pieces of information that Dijkstras algorithm uses and the information that

Greedy Best-First-Search uses. Compared with Dijkstra’s algorithm, A* algorithm has a

better performance. But it is still not efficient enough.
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To overcome the deficiency of Dijkstra’s algorithm, various alternative approaches

have been proposed. These approaches pre-compute partial or all-pairs shortest paths for

vertices of the networks and utilize these pre-computed information to facilitate efficient

query processing. We categorize these approaches into three groups.

1. Vertex Importance based Indexing

The approaches in this group are based on the assumption that certain vertices in

the network are more important for shortest path query processing. So rather than

pre-computing and maintaining shortest path distances for all pairs of vertices, they

conduct pre-processing to a selected set of vertices which are more important in

terms of shortest path and distance computation. Representative approaches include

ATL [16], TNR [6] [7], Highway Hierarchies [45] and Contraction Hierarchies [40]

[41].

2. Graph Partitioning based Indexing

The approaches in this category [5][24][25][26] [51] focus on the topologies of

networks by hierarchical graph partitioning and pre-compute distances among cer-

tain boundary nodes generated by the partitions. Then they use these pre-computed

distances to facilitate efficient shortest path and distance query processing. Repre-

sentative approaches in this category include HEPV [24][25] and HiTi [26].

3. Spatial Coherence based Indexing

The approaches in this group pre-compute shortest paths and distances for all pairs

of vertices in the network and utilize their spatial coherent property to compress

these paths and distances. Spatial coherent property lies in the observation that if

vertices s and s′ are close to each other and vertices t and t′ are close to each other,

then the shortest path from s to t is likely to share vertices with that from s
′ to t′ .

Representative approaches of this group include Arc-labels [18][34] [54], Spatial
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Induced Linkage Cognizance (SILC) [46][44] and Path-Coherent Pairs Decompo-

sition (PCPD) [49][47].

Vertex Importance based Indexing

Goldberg and Harrelson proposed an shortest path algorithm called ALT [16]. It uses A*

search in combination with a lower bounding technique based on landmarks and triangle

inequality. It first selects a small set of vertices as landmarks, then pre-computes distances

between each vertex in the network and each landmark. With the pre-computed distances,

it easily derives lower bounds while conducting Dijkstra’s algorithm, thus achieving effi-

cient search space pruning. ALT improves the efficiency of shortest path query compared

to Dijkstra’s algorithm. But its performance is highly dependent on the selection of land-

marks. In some cases, it still need to traverse a large number of vertices during query

processing.

Transit Node Routing (TNR) [6] [7] is an indexing technique based on pre-processing

of a set of access nodes brought by imposing a grid on the spatial networks. It pre-

computes the distances from each vertex v to each access node of the cell that contains

v and distances between any pair of access nodes. With these pre-computed distances,

TNR can efficiently derive the distances between any pair of vertices in networks. The

performance of TNR depends highly on the granularity of the grid imposed on the spa-

tial network. A finer grid brings more efficiency of query processing but also generates

higher space cost, while sparser grid suffers from poorer efficiency but has a lower space

overhead.

Different from ALT and TNR, CH [40] [41] [45] imposes a total order to the vertices

in the networks in terms of their importance in query processing by a group of heuristic

methods. Then it adds shortcuts to eliminate less important vertices through a process

called contraction. Thus a CH graph is constructed by the end of contraction, it has the

added shortcuts but preserves the shortest paths of the original graph. To process shortest
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path query, CH conducts a variant of the bidirectional version of Dijkstra’s search, during

which it utilizes pre-computed distances to accelerate query processing. One disadvantage

of CH is that its performance highly depends on the orders of the vertices. Thus in the

worst case it has a O(n2) space cost for the shortcuts and O(n2 log n) time complexity for

shortest path searching.

Graph Partitioning based Indexing

Hierarchical Encoded Path (HEPV) [24][25] is an indexing method designed for shortest

path distance query processing based on graph partitioning. It partitions the network

into multiple fragments by a method called Spatial Partitioning Clustering (SPC) and

pushes up all border nodes to construct a more compact network at a higher level. This

fragmentation (partition) process is repeated to construct a network hierarchy. For the

network at each level, it pre-computes distances for all pair of vertices for each fragment

in this network. To compute shortest path distance, HEPV iteratively checks the network

at a higher level if target vertices are located in different fragments then use pre-computed

distances to derive the shortest path distance. The disadvantage of HEPV is its high space

cost since it pre-computes and stores all pairs of distances for each fragment at each level.

And when the levels of the hierarchy is large, the query efficiency of HEPV suffers a lot,

even worse than Dijkstra’s algorithm.

HiTi [26] is another indexing method based on graph partitioning. It constructs the

network hierarchy by iteratively partitioning each subgraph until the fragment is small

enough. Then for each subgraph in the hierarchy, it pre-computes shortest path distances

between each pair of boundary nodes. With these pre-computed distances, HiTi employs

a modified version of Dijkstra’s algorithm for efficient query processing. Compared to

HEPV, HiTi has a much smaller space cost, but its query processing efficiency is inferior

to HEPV.
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Spatial Coherence based Indexing

Arc labels [18][34] is an indexing method taking advantage of shortest path information

encoding. It first imposes an partitioning structure, such as grid, on the network. In

the preprocessing phase, for each edge (arc) a in the network, it tags the grid cells in

which their is at least one vertex that has a shortest path to it passes through a. Then

given any two vertices, a modified version of Dijkstra’s algorithm is adopted to void

visiting irrelevant edges by identifying the edges that doesn’t tag the cell that the target

vertex located in. Möhring [12] did an extension of this technique to multiple levels of

partitioning and studied the influence of different partitioning strategy on the performance

of this technique.

Spatially Induced Linkage Cognizance (SILC) [46][44] pre-computes distances for

all pairs of vertices in the spatial network. Then it stores these paths and distances in a

concise format by a quadtree-based encoding technique, which achieves a O(n1.5) space

cost. With these encoded path and distance information, for any pair of vertices, their

shortest path processing has the complexity of O(k log n), where k is the number of ver-

tices in the shortest path. SILC is also efficient for nearest neighbor queries as shown in

[44]. The disadvantage of SILC is that it incurs significant preprocessing time and space

consumption for large networks, so it might be not practical to some applications.

Path Coherent Pairs Decomposition (PCPD) [49][47] is similar to SILC. It also pre-

computes all pairs shortest path and distances of the network. Different from SILC, it

employs a concept of path-coherent pairs and pre-computes a set of path-coherent pairs,

such that any pair of vertices can be be covered by a unique path-coherent pair. During

query processing, it uses this path-coherent pair set to derive the shortest path. PCPD also

has an time complexity of O(k log n), where k is the number of vertices in the shortest

path. Sankaranarayanan and Samet [48] proposed a revised version of PCPD that can

handle approximate distance queries efficiently. The space overhead of PCPD is similar

with SILC, but the practical performance of PCPD is inferior to SILC in terms of query
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efficiency and pre-processing time.

Wu et al.[56] conducted an experimental evaluation on several state-of-the-art ap-

proaches for shortest path and distance query processing, including TNR, CH, SILC and

PCPD. They used a variety of real world road networks with up to twenty million vertices.

Their experimental results show that CH is the most space-economic technique compared

TNR, SILC and PCPD. In terms of query efficiency, CH also performs well and is only

inferior to SILC. SILC outperforms other techniques in computation time, but it incur

significant preprocessing time and space consumption.

2.2 k-NN Queries in Spatial Networks

Jensen et al. [21] first formalize the problem of k-NN search in road networks and pro-

pose a system prototype for such queries. They proposed graph representation to model

the road networks. Their shortest path distance between a query point and an object is

obtained by online calculation based on Dijkstra’s algorithm.

INE [38] incorporate Dijkstra’s algorithm to process k-NN queries. It incrementally

gets the nearest neighbors during network expansion and returns their distances to the

query point at the same time. But it suffers from poor performance when the objects are

not densely distributed in the network, since it will traverse a large portion of the network

to reach all nearest neighbors.

IER [38] integrates network expansion with Euclidean information. It uses Euclidean

distance to prune search space and filter out a candidate set, then computes the distance

of these candidates to get the k nearest neighbors.

LBC [13] improves INE by avoiding the visit of vertices that cannot lead to k near-

est neighbors utilizing an Euclidean heuristic function, and improves IER by avoiding

repeated visits to vertices that appear on the shortest paths to these nearest neighbors. Its
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drawback is the maintenance cost of multiple instances of heuristic search (wavefront), as

it requires k priority queues and maintaining them could be expensive.

SWH [36] improves LBC by utilizing a novel heuristic function and avoids the main-

tenance of multiple priority queues, thus is more memory-efficient than LBC.

The disadvantage of INE, IER, LBC and SWH is that they are all online network

expansion approaches based on Dijkstra’s algorithm, so their efficiency suffers for large

networks which make them inapplicable to real time applications.

Voronoi based Indexing [29] incorporates the concept of Voronoi regions to the query

processing in road networks. It partitions large road network into multiple Voronoi re-

gions, then pre-computes distances both within and across these regions. With these

preprocessing information along with Voronoi regions, it can quickly find the nearest

neighbors. The drawback of this approach is the high maintenance cost of Voronoi re-

gions.

ROAD [31] [32] recursively partitions a network into sub-networks and pre-computes

the distances between the boundary vertices of each sub-network. It also incorporates

Dijkstra’s algorithm, but is able to skip sub-networks without any object in it during k-

NN search. So it improves Dijkstra’s search in terms of computation time. But it still

performs poorly in large networks.

SILC [44] decouples the process of computing shortest path distances from that of

finding the nearest neighbors. It pre-computes and encodes shortest paths and distances

between all pair of vertices. It assumes the existence of a search hierarchy T for the object

set and use intersection of blocks to do distance computation during k-NN search. The

efficiency of this algorithm is superior compared to networks expansion approaches based

on Dijkstra’s algorithm, with a price of O(n1.5) space cost.
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2.3 Trajectory Query Processing

The wide adaptation of wireless communication and location-based services led to a great

amount of trajectory data recording the movement history of moving objects. This moti-

vates many research efforts processing and analyzing large-scale trajectory data, including

trajectory indexing [39] [9] [42] [12] , trajectory query processing [53] [4] [15] [52] [11]

[50] [62] and trajectory pattern mining [10] [23] [22] [63] [30].

Here we introduce some representative trajectory query processing methods most re-

lated to the work of this thesis.

C̆eikutė and Jensen [8] did an evaluation of the quality of routing services by com-

paring them with local driver behaviors. They concluded that the history trajectories of

local drivers hold great potential to significantly increase the quality of existing routing

services.

Yuan et al. [59] proposed an approach to mine smart driving directions from the his-

torical GPS trajectories of a large number of taxis. Their idea is to build a time-dependent

landmark graph and then perform a two-stage routing algorithm based on this graph to

find the practically fastest route.

Chen et al. [11] proposed an efficient approach to address trajectory queries based

on a set of locations. They defined a similarity function to evaluate how well a trajectory

connects the query locations and proposed k-BCT query based on it. Then an Incremental

k-NN based Algorithm(IKNN) is proposed to process this type of queries efficiently. But

the query processing is based on the assumption of Euclidean Space.

Shang et al. [50] investigate user oriented trajectory search for trip recommendation.

This query considers both textual domain and spatial domain. It assumes that each trajec-

tory has a set of textual attributes to describe its features. Then it proposes a spatial-textual

distance function to evaluate how well a trajectory satisfies the user’s query. A collabo-

rative searching approach conducts query processing in the spatial and textual domains
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alternatively. And a pair of upper and lower bounds are devised to constrain the searching

in the two domains.

[62] studied the query of activity trajectory, which associate spatial trajectories with

activity information. It proposed a hybrid grid index named GAT to process the queries

efficiently.

2.4 Summary

On-the-fly network expansion like Dijkstra’s algorithm has no extra space cost, but it

is inefficient for large networks. Full materialization approaches are quite efficient, but

the huge space cost makes them inapplicable for large networks. Partial materializa-

tion approaches have moderate space cost and query efficiency compared with previous

two groups of approaches. Their challenges lie in finding a materialization strategy that

achieves a balance between the space cost and the query efficiency. This motivated us to

develop an indexing technique that supports efficient query processing and has a moderate

space cost at the same time, so that it is scalable to large networks

Furthermore, although the approaches mentioned above have achieved great improve-

ment compared to classic network expansion based approaches, they merely considered

network topologies but not the data distribution. Actually the distribution of object set

often influences the query processing efficiency significantly. That motivated us to inves-

tigate an object set oriented indexing method. By combining distribution of object dataset

and network topologies into index construction, it provides a better trade-off between

space consumption and query efficiency.



Chapter 3

Efficient Object Query Processing in

Spatial Networks

3.1 Motivation

As stated in Chapter 1 and Chapter 2, shortest path queries and k-NN queries are the

most important queries in spatial networks. But the existing works are either not efficient

enough or bring in great space cost for indexing. This motivated us to develop an index

that supports efficient query processing and has a moderate space cost at the same time,

so that it is scalable to large networks.

3.2 Problem Settings

In this section, we present some important concepts and notations that will be used

throughout this paper.

Definition 1. Graph We model a spatial network as a connected planar graph G =

(V,E). V is the set of vertices in G, and E ⊆ V × V is the set of edges. Each edge is

assigned with a real-valued weight to represent the traveling cost of this edge.

21
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Definition 2. Shortest Path Query Given a graph G = (V,E), for a query pair s, t ∈

V , the shortest path between them is a series of edges SP (s, t) = {(v1, v2), (v2, v3), ..., (vx−1, vx)}

connecting them that has the minimum total length, where v1 = s, vx = t. The shortest

path distance between s and t is dist(s, t) =
∑x−1

i=1 w(vi, vi+1), where w(vi, vi+1) is the

weight of edge (vi, vi+1).

Definition 3. k-NN Query Given a spatial network G = (V,E), an object set O, a

query point q and a positive integer k, a k-NN query returns k objects from O that have

the smallest distances to query point q. Each object in object set O represents an object

(e.g. a specific type of facility) we are interested in. For simplicity, we assume that all

objects are located at vertices of the network.

A network can be divided into several parts through a process called graph partition-

ing:

Definition 4. Graph Partitioning Given a graph G = (V,E), a d-way partitioning

of the graph is to divide it into d subgraphs G1, G2, ..., Gd, such that (1) Gi = (Vi, Ei),

(2) ∪1≤i≤dVi = V , (3) For any two subgraphs Gi and Gj , i 6= j, Vi ∩ Vj = ∅, (3) For

∀u, v ∈ Vi, if (u, v) ∈ E, then (u, v) ∈ Ei.

Definition 5. Borders Assume that graphG is partitioned to subgraphsG1, G2, ..., Gk.

If there exists an edge (u, v), u ∈ Gi and v ∈ Gj, i 6= j, then u is a border of Gi and v is

a border of Gj . All borders of Gi form a border set B(Gi).

For example, in Figure 3.1, the original graph G is partitioned into two subgraphs G1

and G2. Since there are edges (v5, v10), (v5, v14), (v8, v15) connecting vertices of G1 and

G2, so G1 has borders {v5, v8} and G2 has borders {v10, v14, v15}.

3.3 Proposed Indexing Structure

In this section, we present our proposed index. From the definition of graph partitioning,

we have the following observation: Once a network is partitioned into a set of subgraphs,
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FIGURE 3.1: Hierarchical Graph Partitioning

the shortest path between vertices of two different subgraphs will pass by at least one

border of each subgraph. For example, in Figure 3.1, the shortest path between v7 and v12

will pass by one border of subgraph G4 and one border of G5. In this case, the borders

brought by partitioning become the important points in shortest path query processing.

This observation motivated us to develop a graph partitioning based index. It organizes

the vertices of a spatial network into a hierarchy and associates pre-computed information

with it to facilitate efficient spatial query processing.

3.3.1 Index Overview

Given a spatial network modeled as a graph G = (V,E), we build its Partition Tree

through following steps:

1. Conduct d-way partitioning to the graph in a hierarchical manner, until termination

condition is fulfilled (e.g. the number of vertices for each leaf subgraph is under a

threshold).
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FIGURE 3.2: Partition Tree

2. Use a tree structure to represent the partitioning hierarchy, such that each node in the

tree represents a subgraph in the hierarchy. Each internal (non-leaf) node represents

a subgraph that is partitioned into several subgraphs. And each leaf node represents

a subgraph that is not further partitioned.

3. For each tree node, we maintain its border set and a distance matrix recording pre-

computed distances related to the subgraph it represents.

• For each internal node, its distance matrix contains the distances between all

pairs of borders that belong to its child nodes.

• For each leaf node, its distance matrix contains the distances between each

pair of vertex and border that belongs to this subgraph.

For example, given the graph in Figure 3.1, we conduct hierarchical partitioning to

it until each leaf subgraph contains no more than 5 vertices. Original graph G is firstly

partitioned to two subgraphsG1 andG2. ThenG1 is further partitioned toG3 andG4 while

G2 is partitioned to G5 and G6. We use the Partition Tree in Figure 3.2 to represent this

partitioning hierarchy. Internal node G2 has two children G5 and G6. G5 has two borders

v10 and v14 while G6 has two borders v15 and v16. So the distance matrix of G2 contains

distances between each pair of these borders, as shown in Figure 3.2(a). Leaf node G6
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contains vertices v15, v16, v17, v18, v19 and two borders v15 and v16, so its distance matrix

contains distances between each vertex and these borders, as shown in Figure 3.2(b).

The tree structure and border sets record the partitioning topology of the spatial net-

work. Distance matrices record the pre-computed information for efficient query pro-

cessing. Therefore, with the Partition Tree, we encode partitioning topology and pre-

computed information of the graph at the same time. For the consideration of space cost,

we do not pre-compute and store shortest path information for all pairs of vertices. In fol-

lowing discussion, we will show that our indexing method is efficient enough for query

processing in spatial networks.

Note that, although the previous introduced HEPV [24][25] and HiTi[26] are also

graph partitioning based methods, the graph partitioning conducted here is totally differ-

ent. HEPV partitions the network into multiple fragments and pushes up all border nodes

to construct a higher level graph. This process is repeated until the graph at the highest

level is compact enough. On the other hand, HiTi pushes up the cut edges and shortcut

edges between borders of each subgraph to construct a higher level graph. Different from

them, our partitioning process adopts a top-down strategy. Each subgraph is partitioned

into multiple subgraphs at a lower level. Furthermore, because of the difference of the

partitioning strategies, different pre-computing methods are conducted here. In the fol-

lowing discussion, we can see that the space cost of our index is superior to HEPV and

HiTi.

3.3.2 Index Construction

For the consideration of query efficiency and space cost, the goal of our partitioning is

to generate equal-sized subgraphs and minimize the number of borders at the same time.

One classic solution for graph partitioning is Kernighan-Lin algorithm [28], it firstly parti-

tions the graph into two parts randomly and then refines the partitioning by greedy swaps.
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Kernighan-Lin algorithm is straightforward but the O(n3) complexity makes it inappli-

cable for large networks. In this work, we adopt a heuristic graph partitioning algorithm

with O(n) time complexity named multilevel graph partitioning [27]. It firstly converts

the original graph into a much smaller graph through a series of processes called coars-

ening. Then partitioning is conducted on this coarsened graph with just a few hundred

vertices, so approach like Kernighan-Lin algorithm [28] is efficient enough. Finally the

partitioning is projected back to original graph and refined.

Given a graph G, we first partition G into d subgraphs. And then each subgraph is

further partitioned in the same way. We repeat this process until the termination condition

(e.g. each leaf subgraph contains no more than τ vertices) is fulfilled. Then we use

Dijkstra’s algorithm to conduct computation for distance matrix of each subgraph.

Now we take a look at the space cost of the Partition Tree. Given a graph with n

vertices, we conduct d-way hierarchical partitioning to generate a balanced tree structure.

Thus each subgraph at level i contains n/di vertices. According to the
√
n-Separator

Theorem [33], the partitioning of a subgraph at level i generates O(
√
n/di) borders,

which are shared by its children at level i + 1. So the size of distance matrix for internal

nodes at level i is O(n/di). Since there are di nodes at level i, the total size of distances

matrices for nodes at level i is O(n). The height of the partition tree h is very small

compared to n, so the total size of distance matrices for non-leaf nodes isO(n). Assuming

each leaf subgraph contains τ vertices, its number of borders is O(
√
τ). So the size of the

distance matrix for a leaf node is O(τ
√
τ). Since there are n/τ leaf nodes, then the total

size of distance matrices for all leaf nodes is O(
√
τn). When τ is much smaller than n,

the total space cost for all leaf nodes is O(n).
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3.4 Query Processing

In this section, we present our query processing algorithms based on Partition Tree. For

shortest path queries, we propose a dynamic programming algorithm utilizing precom-

puted distances to avoid large-scale network expansion. For k-NN queries, we propose a

best-first algorithm which utilizes dynamic programming algorithm to compute distance

bounds efficiently.

3.4.1 Shortest Path Query Processing

As mentioned in section IV, once a network is partitioned into a set of subgraphs, the

shortest path between vertices of two different subgraphs has the following property:

Lemma 1: For any two vertices s and t of different subgraphs Gs and Gt, the shortest

path between s and t contains at least one border of Gs(resp. Gt).

For example, in Figure 3.1, vertices v7 and v12 belong to different subgraphs G4 and

G5 respectively. The shortest path from v7 to v12 is (v7, v6, v8, v15, v14). v8 is a border of

G4 and v14 is a border of G5. Lemma 1 is prominent, so we skip the proof of it.

This property can be generalized to hierarchical partitioning. As shown in Figure 3.3,

the graph G is hierarchically partitioned, such that vertices s and t reside in different leaf

subgraphs Gs and Gt. From Lemma 1 we know that the shortest path between s and t

contains at least one border of Gt, so their distance is decided by:

dist(s, t) = min
bi∈B(Gt)

(dist(s, bi) + dist(bi, t)) (3.1)

Since Gt belongs to the higher level subgraph Gt−1 in the partitioning hierarchy, if

s is not in Gt−1 , the shortest path will also contain at least one border of Gt−1. So the

distance between s and bi is decided by:

dist(s, bi) = min
bi−1∈B(Gt−1)

(dist(s, bi−1) + dist(bi−1, bi)) (3.2)
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FIGURE 3.3: Shortest Path Decomposition

This indicates that we can use a dynamic programming algorithm to compute the

distance between vertices of different subgraphs. Suppose s and t are in leaf subgraphs

Gx
s andGy

t respectively and their lowest common ancestor isG0
s (G0

t ), the parent hierarchy

fromGx
s toG0

s isGx
s ,Gx−1

s , ...,G1
s,G

0
s and the parent hierarchy fromGy

t toG0
t isGy

t ,G
y−1
t ,

..., G1
t , G

0
t . Then Gx

s , ..., G
1
s, G

1
t , ..., G

y
t form a search hierarchy of shortest path between

s and t, and the shortest path will pass by at least one border of each subgraph in this

hierarchy. We can decompose the distance computation according to this search hierarchy

and get the total distance by iteratively processing calculation according to equations (3.1)

and (3.2).

For example in Figure 3.1, v7 and v12 are in different leaf subgraphs G4 and G5. And

they have the lowest common ancestor G0 in the Partition Tree. So the search hierarchy

of shortest path between v7 and v12 is G4, G1, G2, G5. Since G5 has two borders v10 and

v14, dist(v7, v12) is decided by the minimum value of dist(v7, v10) + dist(v10, v12) and

dist(v7, v14) + dist(v14, v12). Likewise, dist(v7, v10) and dist(v7, v14) can be decided by

distances from v7 to the borders of the higher level subgraph G2. We keep processing in

this way until the distance to v12 is obtained, as shown in Figure 3.4.

Note that during dynamic programming, the decomposed distances that are directly

used can be classified into three categories.
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In the first category, the distance is between a vertex and a border of its resident leaf

subgraph. Since each leaf-node maintains a distance matrix recording distances between

each pair of vertex and border. So distances in this category can be obtained directly from

the matrix of a leaf subgraph. For example in Figure 3.4, the distance between v7 and v6

can be obtained from distance the matrix of G4.

In the second category, the distance is between a border of a subgraph and a border

of its parent subgraph. Each non-leaf node maintains a distance matrix recording the

distances between all pairs of borders belonging to its child nodes. So the distances in

this category can be obtained from the distance matrix of an internal node. For example

in Figure 3.4, the distance between v6 and v8 can be obtained from the distance matrix of

G1.

In the third category, the distance is between two borders belonging to two sibling

subgraphs respectively. The distance between them can also be obtained from the distance

matrix of the parent node of these two subgraphs. For example in Figure 3.4, the distance

between v5 and v14 can be obtained from distance matrix of G0.

So all the distances directly used in shortest path decomposition can be obtained from

distance matrices associated with Partition Tree.

So far the dynamic programming algorithm returns the distance between s and t and

also a subset of the shortest path between them, SP ′(s, t) = {v1, v2, ..., vi, vi+1, ..., vm},

such that v1 = s, vm = t and other vertices are all borders of subgraphs in the search

hierarchy from s to t. Then we can get the whole shortest path by inserting necessary

vertices between each pair of adjacent vertices of the subpath.

For each pair of adjacent vertices vi and vi+1 in the subpath already got, if there is no

edge between them, we will find the vertex between them in the shortest path and insert

it as follows.

1. If vi and vi+1 are the borders of different leaf subgraphs, we check the distance

matrix of their lowest common ancestor to find if there exists a border vx, such that
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FIGURE 3.4: Dynamic Programming Algorithm

dist(vi, vi+1) = dist(vi, vx) + dist(vx, vi+1). If there is, we insert this border to

the subpath between vi and vi+1. Otherwise, we check the ancestors of the lowest

common ancestor until finding such a border to insert.

2. If vi and vi+1 are the borders of the same leaf subgraph, the shortest path between

them may include non-border vertices. First we will check the distance matrix

of this leaf subgraph to find if there exists one non-border vertex vx, such that

dist(vi, vi+1) = dist(vi, vx) + dist(vx, vi+1). If there is, we insert this vertex to

the subpath between vi and vi+1. Otherwise, we check the distance matrices of the

ancestors of this leaf node as talked before until finding a vertex to insert.

3. If one of vi and vi+1, e.g. vi, is non-border, they will be in the same leaf subgraph.

We will check the distance matrix of the leaf subgraph to find if there exists a border

vx such that dist(vi, vi+1) = dist(vi, vx) + dist(vx, vi+1). If there is, we insert

this border to the subpath between vi and vi+1. Otherwise, this means the shortest

path between vi and vi+1 only contains vertices inside the leaf subgraph. Then

we will check the neighbors of vi to find a neighbor vx satisfying dist(vi, vi+1) =

dist(vi, vx) + dist(vx, vi+1) and put it between vi and vi+1 in the subpath.



3.4 QUERY PROCESSING 31

For each adjacent pair of vertices in the subset of shortest path between s and t, we will

process the insertion as discussed above until the whole shortest path is generated.

To sum up, given a graph and its Partition Tree, to get the shortest path between s and

t, we take different approaches according to their locations.

Local Search

If s and t are in the same leaf subgraph, we use Dijkstra’s algorithm to get the shortest

path. Since the size of leaf subgraphs is small, the efficiency is guaranteed.

Global Search

If s and t are in different leaf subgraphs, we decompose the shortest path between them

into several parts divided by a series of borders according to the partition hierarchy and

then use dynamic programming algorithm to get the shortest path .

For local search, the time complexity of Dijkstra’s algorithm is O(τ log(τ)), where

τ is the number of vertices in leaf subgraphs. For global search, the cost of dynamic

programming algorithm is decided by the number of borders. If the search hierarchy from

s to t is {Gx
s , ..., G

1
s, G

1
t , ..., G

y
t }, the border sets of these subgraphs are noted as Bh1 , Bh2 ,

...,Bhx+y , where |Bhi | = ρi, then the computation cost can be denoted as
∑x+y−1

i=1 ρi ·ρi+1.

To return the shortest path between s and t, the complexity is O(l +
∑x+y−1

i=1 ρi · ρi+1)

where l is the number of vertices in the shortest path.

3.4.2 k-NN Query Processing

Given a spatial network G = (V,E), an object set O, a query point q and a positive

integer k, a k-NN query returns k objects from O that have the smallest distances to the

query point q. An advantage of the Partition Tree is that it also supports efficient distance
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computation between a vertex and a subgraph. Based on this we propose a best-first

algorithm for k-NN query.

First we give the definition of distance between a vertex v and a subgraph Gx:

1. If v is in the subgraph Gx, dist(v,Gx) = 0

2. If v is not in the subgraph Gx, then

dist(v,Gx) = min
bi∈B(Gx)

dist(v, bi)

If v is not in subgraph Gx, we use the dynamic programming algorithm similarly

as discussed above to compute their distance. The only difference here is that the dy-

namic processing stops at the borders of target subgraph rather than a particular vertex

inside it. For example, the distance between v7 and G5 is decided by minimum value of

dist(v7, v10) and dist(v7, v14), as shown in Figure 3.4.

Next we will show how to use this point-subgraph distance to prune search space

efficiently during k-NN search. Our k-NN query algorithm is based on the following

properties:

Lemma 2: Given a subgraph Gx of graph G and a vertex v /∈ Gx, for any vertex u in

Gx, the inequation dist(v, u) ≥ dist(v,Gx) holds true.

Lemma 3: Given a subgraph Gx of graph G and a vertex v /∈ Gx, for any child

subgraph Gy of Gx, the inequation dist(v,Gy) ≥ dist(v,Gx) holds true.

Lemma 2 and Lemma 3 indicate that if the distance between a subgraph and the query

point is larger than those of the candidates, there is no need to search the points inside

this subgraph. Thus we can use this point-subgraph distance to prune search space in

k-NN search. Algorithm 1 gives the illustration of our best-first k-NN algorithm. It uses

a priority queue Q to maintain the distances of the subgraphs or objects that have been

computed. Then it always selects the element with the smallest distance fromQ to process

next.
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Algorithm 1: best-first k-NN search
1: Input:

query point q,

required number of neighbors k,

object set O,

network G and its Partition Tree T

2: Output: result set R

3: priority queue Q = φ

4: R = φ

5: Q = {(T.root, 0)} ;

6: while |R| < k and Q is not empty do

7: e = Q.dequeue();

8: if e is an object then

9: insert e into R;

10: else

11: // e is a subgraph

12: for each c in e.children() do

13: put 〈c, dist(q, c)〉 into Q;

For example in Figure 3.1, given the network G, its Partition Tree T , an object set

O = {o1, o2, o3, o4, o5} and a query point v7, to process 2-NN query, best-first algorithm

works in following way:

(1) Initialize the priority queue Q with the root of Partition Tree, Q = {(G0, 0)}.

(2) G0 is dequeued, its children G1 and G2 are put into priority queue,

Q = {(G1, 0), (G2, 15)}.

(3) G1 is dequeued, its children G3 and G4 are put into priority queue,

Q = {(G4, 0), (G3, 11), (G2, 15)}.
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(4) Leaf subgraph G4 is dequeued, its contained object o1 is put into priority queue,

Q = {(o1, 10), (G3, 11), (G2, 15)}.

(5) o1 is dequeued, Q = {(G3, 11), (G2, 15)}, R = {(o1, 10)}.

(6) Leaf subgraph G3 is dequeued, its contained object o2 is put into priority queue,

Q = {(o2, 11), (G2, 15)}.

(7) o2 is dequeued, Q = {(G2, 15)}, R = {(o1, 10), (o2, 11)}.

Then o1 and o2 are returned for 2-NN query at point v7.

3.5 Query-oriented Optimization

In previous discussion, we only consider the Partition Tree under the assumption of bal-

anced partitioning. The complexity analysis in section V suggests that the performance

of the Partition Tree is influenced by the partitioning strategy taken during construction.

Meanwhile, we have the observation that there is no need of further partitioning for ar-

eas where few queries happen, since it won’t influence the performance that much. But

for areas queries happen frequently, it is worthy to do further partitioning. And the query

probabilities are often related to the distribution of objects, since queries are often invoked

around objects of interest. This motivated us to find a partitioning efficient for query pro-

cessing by taking advantage of network topology and object distribution. To achieve this,

we develop a cost model to estimate influence of partitioning and object distribution on

query efficiency.

3.5.1 Cost Model

Given a leaf subgraph P in the partitioning hierarchy, we consider the cost of distance

computation since it is the most fundamental operation in our query processing. For

any point s in P and an arbitrary point t, the distance computation between them takes

different approaches according to where t locates. If t is in P , we see it as a local search
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and use LC(P ) to represent its cost. If t is not in P , we see it as a global search and use

GC(P ) to represent its cost. Assuming Pr(P ) and Pr(P ) are the probabilities of these

two situations, the expected cost of distance computation between s and t is:

EC(P ) = Pr(P ) · LC(P ) + Pr(P ) ·GC(P )

For local search, it takes Dijkstra’s algorithm. So cost LC(P ) can be estimated as

O(τ log(τ)), τ is the number of vertices in P .

For global search, it takes dynamic programming algorithm. If the search hierarchy

from s to t is {Gx
s , ..., G

1
s, G

1
t , ..., G

y
t }, the border sets of these subgraphs are denoted as

Bh1 , Bh2 , ..., Bhx+y , where |Bhi | = ρi, then cost GC(P ) can be estimated as
∑x+y−1

i=1 ρi ·

ρi+1.

Now we consider how the expected cost changes if P is further partitioned. Assuming

P is partitioned to subgraphs P1 and P2, both the cost of local search and that of global

search are changed.

For local search, if s and t are both in subgraph P1, it uses Dijkstra’s algorithm and

the cost is O(τ1 log(τ1)), where τ1 is the number of vertices in P1. Similarly, when s and

t are in P2, the cost can be estimated as O(τ2 log(τ2)). When s and t are in P1 and P2

respectively, it uses dynamic programming algorithm and the cost is ρ1 · ρ2, where ρ1 and

ρ2 are the number of borders for P1 and P2. We use Pr(P1|P ) (resp. Pr(P2|P )) to denote

the probability of a vertex resides in P1 (resp. P2) in the context of P . The probabilities

for the three cases of distance computation discussed above are Pr2(P1|P ), Pr2(P2|P )

and 2Pr(P1|P )Pr(P2|P ). So the change of values for LC(P ) after partitioning is:

∆LC(P ) = Pr2(P1|P ) · τ1 log(τ1)

+ Pr2(P2|P ) · τ2 log(τ2)

+ 2Pr(P1|P )Pr(P2|P ) · ρ1 · ρ2

− τ log(τ)

(3.3)



36 OBJECT QUERY PROCESSING

For global search, it still takes dynamic programming algorithm to do distance com-

putation. But the search hierarchy is one layer higher since it contains a subgraph between

s and P . If s locates in P1, the increased value of cost GC(P ) can be estimated as ρ1 · ρ,

where ρ1 is the number of borders for P1 and ρ is the number of borders for P . Similarly,

if s locates in P2, the increased value of cost GC(P ) can be estimated as ρ2 · ρ. The

probabilities of these two cases are Pr(P1|P ) and Pr(P2|P ) respectively. So the change

of values for GC(P ) is:

∆GC(P ) = Pr(P1|P ) · ρ1ρ+ Pr(P2|P ) · ρ2ρ (3.4)

Therefore we get the total change of expected cost for distance computation when a

leaf subgraph P is partitioned:

∆EC = Pr(P ) ·∆LC(P ) + Pr(P ) ·∆GC(P ) (3.5)

The probabilities used here are decided by the distribution of objects in different sub-

graphs. Therefore this cost model takes account of both partitioning topology and object

distribution. Note that here we only use bisection in discussion, but it can be easily

adapted to k-way partitioning.

3.5.2 Cost-efficient Graph Partitioning

The value of the cost function for subgraph P estimates the expected cost of distance

computation for any point in it. The changed value of cost function when P is further par-

titioned indicates the influence of further partitioning to the performance of the Partition

Tree. Thus we can use it as an evaluation condition in the graph partitioning process.

During the construction of Partition Tree for graph G, for each leaf subgraph P , we

evaluate ∆EC(P ) when P is further partitioned. To better evaluate the change, we use

the percentage growth of ∆EC(P ), namely ∆EC(P )/∆EC(Pf ), where Pf is father of

P . We set up a threshold value ξ for evaluation.
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If ∆EC(P ) > 0, it means the expected cost of distance computation is increasing

with further partitioning. The partitioning should stops at current level.

If ∆EC(P ) < 0, but ∆EC(P )/∆EC(Pf ) < ξ, it means the decreasing rate of the

expected cost is not prominent. The partitioning should stops at current level.

If ∆EC(P ) < 0, ∆EC(P )/∆EC(Pf ) > ξ, then partitioning is continued.

By conducting this evaluation, we achieve a partitioning efficient for query processing

with a given objects distribution.

3.6 Experiments

In this section, we present the experimental evaluation of our proposed index and algo-

rithms in terms of query efficiency and indexing cost.

3.6.1 Experiments setup

Environment and Competitors

For shortest path queries, we compared our algorithm with Dijkstra’s algorithm [14] and

CH [40][41], since Dijkstra’s algorithm is the most classic solution for shortest path

queries and CH is one well-known state-of-the-art approach that has great overall per-

formance while incurring minimal cost of space and pre-computation. For k-NN queries,

we compared our algorithm with IER [38] and INE [38]. All approaches were imple-

mented with C++, and we adopted implementation of CH from [1]. All experiments were

run on a 64-bit windows machine with Intel 3.40GHz CPU and a 16GB RAM.

Datasets and Query Sets

We used four real-world networks obtained from [3], each of which is a part of the road

network of US. Table 3.1 lists the characteristics of these four networks. And Figure 3.5
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TABLE 3.1: Dataset Characteristics

Name Region Number of Vertices Number of Edges

NY New York 264,346 733,846

COL Colorado 435,666 1,057,066

FLA Florida 1,070,376 2,712,798

CAL California 1,890,815 4,657,742

shows the distribution of these networks. In addition, we used a real world POI set of

California obtained from [2] with 105,725 points of interest as the object set.

For shortest path queries, we generated 10 query setsQ1,Q2, ...,Q10 for each network,

of which each query is a pair of vertices naming the start point s and the end point t. Each

query set contains 100 queries randomly selected from vertices of the network. For the ith

query set Qi, the length (i.e. number of vertices) of shortest path of each query is between

[(i− 1)l, il], where l is obtained by dividing the maximum length for all shortest paths in

the network by 10. So the length of shortest path for each query pair in Qi is larger than

that in Qi−1.

The POI set is used in evaluation of k-NN queries and query-oriented optimization.

To evaluate the efficiency of k-NN queries, we randomly selected 1000 points from ver-

tices as query points. To evaluate the performance of query-oriented optimization for

distance and shortest path queries, we generate 10 query sets Q1, Q2, ..., Q10 similarly as

mentioned above except that the queries are generated from POI set.
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FIGURE 3.5: Network Distribution

3.6.2 Evaluation Results

Shortest Path Queries

We tested our shortest path algorithm on four networks mentioned above and compared it

with two competitor techniques, Dijkstra’s algorithm and CH. For each network, we run

the queries in ten query sets and get the average running time of each query set. Figures

3.6 show the efficiency comparison between these three approaches. We can see that

our algorithm (PTree) outperforms Dijkstra’s algorithm and CH in experiments on every

network. This corresponds with the fact that our dynamic programming algorithm avoids

large-scale network expansion incurred in Dijkstra’a algorithm and CH.

From Figure 3.6(a) to 3.6(d), the number of vertices in each network is increasing.

We can see that the efficiency of our dynamic programming algorithm doesn’t suffer with
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(a) NY (b) COL

(c) FLA (d) CAL

FIGURE 3.6: Efficiency of Shortest Path Queries

this increasing trend. This demonstrates that our algorithm is scalable to large networks.

For each network, from Q1 to Q10, the number of vertices in the shortest path between

queries in it is increasing. The average time cost of Dijkstra’s algorithm is increasing at

a high rate from Q1 to Q10, since the vertices to be traversed during network expansion

is increasing. CH also has a increasing trend for processing time from Q1 to Q10, but

the increasing rate is much smaller than Dijkstra’s algorithm. Different from these two

techniques, the efficiency of our algorithm is not necessarily increasing with the length

of shortest path, since it is related to the number of borders and layers of subgraphs to be
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FIGURE 3.7: Efficiency of k-NN Queries

processed during dynamic programming.

k-NN Queries

We tested our best-first algorithm on network of California and compared it with IER and

INE, varying the query parameter k from 1 to 25 at the same time. Figure 3.7 shows the

efficiency comparison of these three approaches. We can see that our best-first algorithm

(PTree) outperforms IER and INE, since it prunes the search space effectively to avoid

unnecessary network expansion.

Effect of Tree Height

This set of experiments evaluate the performance of baseline index (vertex-balanced Par-

tition Tree) in terms of level of the partitioning hierarchy. We tested the performance of

the Partition Tree with tree height varying from 6 to 8. Figure 3.8 shows the performance

comparison for shortest path queries and k-NN queries. We can see that the performances

of the Partition Tree for shortest path queries and k-NN queries both suffer when tree

height is increasing from 6 to 8. This is because the dynamic programming algorithm
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(a) Shortest Path Queries (b) k-NN Queries (c) Space Cost

FIGURE 3.8: Effect of Tree Height

(a) Shortest Path Queries (b) k-NN Queries

FIGURE 3.9: Query-oriented Optimization

involves more borders in computation when the height is increasing. Figure 3.8(c) shows

that the space cost of indexing is decreasing when tree height is increasing from 6 to 8.

This is because the number of vertices in leaf nodes is decreasing so the space cost for

distance matrices is reduced.

Query-oriented Optimization

We tested the performance of our query-oriented optimization on road network and POI

set of California. Figure 3.9 shows the performance comparison of the baseline index and
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(a) Space (b) Time

FIGURE 3.10: Evaluation of Indexing Cost

the query-oriented optimization. For the baseline index, we set the tree height to be 6,

which is proved to have the best performance in the previous set of experiments. We can

see that the query-oriented optimization improves the efficiency of shortest path queries

and k-NN queries. Meanwhile this optimization also reduces the space cost of index, as

shown in Figure 3.9(a).

Cost of Indexing

We tested the indexing cost of the Partition Tree on four networks and compared it with

that of CH. Figure 3.10(a) shows the space cost of the Partition Tree (baseline) and CH

on various networks. From the results we can see that the Partition Tree’s space cost is

comparable to CH, which has minimal space cost among all existing works. Meanwhile

from the results on network of California, we can see that the query-oriented optimization

reduces the space cost of the baseline index. Figure 3.10(b) shows the time cost for in-

dexing construction of the Partition Tree and CH. The time cost of Partition Tree is higher

CH. This is because the preprocessing of CH is mostly local shortest path computation

while the Partition Tree involves a lot of global shortest path computation as well.
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3.7 Summary

In this chapter, we propose a hierarchical graph partitioning based index named Partition

Tree. It organizes the vertices of the network into a hierarchy through a series of graph

partitioning processes and maintains a matrix recording pre-computed distances for each

node in the tree structure. For shortest path queries, we propose a dynamic programming

algorithm utilizing the partitioning topology and pre-computed distances, thus to keep

network expansion in a small scale. For k-NN queries, we propose a best-first search

algorithm. It utilizes the Partition Tree to compute lower bounds efficiently during search

space pruning. To achieve a partitioning efficient for query processing with a given object

distribution, we propose a query-oriented optimization on top of the Partition Tree. In

this optimization, we develop a cost model to evaluate the influence of partitioning on

query efficiency and use it to find the cost-efficient partitioning. We tested our index and

query algorithms on four datasets and compared the performance with the state-of-the-

art approaches. The experimental results show that the efficiency of the Partition Tree

outperforms CH and Dijkstra’s algorithm for shortest path queries, and outperforms IER

and INE for k-NN queries. The space cost of the Partition Tree is comparable to that of

CH, which has smallest space cost among all previous works. These results demonstrate

that the Partition Tree is scalable to large-scale networks. Further experiments also show

that our query-oriented optimization improves the performance of the baseline Partition

Tree in terms of the query efficiency and the space cost for indexing.



Chapter 4

Efficient Trajectory Query Processing

in Spatial Networks

4.1 Motivation

The ubiquity of GPS-embedded mobile devices and wireless communication has made

it convenient for people to record their geographical positions with time stamps anytime

anywhere. For instance, GPS devices equipped with the vehicles are able to record their

detailed moving history. Another example is that people can log in and update their loca-

tions and activities on location-based services such as Foursquare and Twitter. One typical

form of these spatio-temporal data is trajectory, which represents the history movements

of a moving object. Such data carry rich information of the moving patterns of the ob-

jects in the real world, which makes trajectory analysis is a valuable issue in the area of

spatio-temporal database. Representative research problems include efficient trajectory

query processing[53] [4] [15] [52] [11] [50] [62] and trajectory pattern mining [10] [23]

[22] [63] [30].

An important type of trajectory queries is searching trajectories by locations, aiming

to find the trajectories ”nearest” to all query locations. Here we define these queries as

45
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(aggregate) k nearest trajectories query. Given a set of query locations, k nearest trajecto-

ries query asks for the k trajectories from the dataset that have least aggregate distances to

the query locations. This type of query are useful in many real world application scenar-

ios. Imagine you are a tourist traveling in an unfamiliar city and you have several places

of interest to visit, how can you decide the best route to visit these places. One solution is

to find the shortest path connecting these places. But in real scenarios shortest path may

not be favorable due to the practical factors such as road conditions or traffic flows. Some

works [8] have shown that the routing quality can be improved by using history trajecto-

ries. Therefore, a more practical and favorable solution is to find the most popular path

using the trajectories of past travelers. Since there are considerable large quantity of tra-

jectories and they are considered to be good choices tested by people before and naturally

preferred than unfamiliar paths. In this case, k nearest trajectories query becomes one of

the most important query types for smart routing service providers like Foursquare.

Meanwhile, to address trajectory queries, the service providers often need to process

massive quantity of data since trajectory data are accumulating constantly at a high rate

due to the large number of moving objects and the widespread of location-based services.

With this great volume of trajectory data, the efficiency of query processing is important,

as most applications need to respond to users’ queries in real time.

Most existing works are based on the assumption of Euclidean metrics [11] [62].

However in real application scenarios, the movements of objects are often constrained

to pre-defined underlying networks. In this case, the indexing and query algorithms pro-

posed for Euclidean space cannot be directly used. So in this work we explore the efficient

trajectory query processing in spatial networks. Here we define the distance between a

trajectory and a query location set as the sum distance of the trajectory to each query lo-

cation. This is based on the assumption that if all the locations to visit are well separated

and the deviation cost from each location is acceptable, people always tend to go back

to the original path. And the assumption of well separated query locations can be easily
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guaranteed by combining close query locations to one point in preprocessing.

In spatial networks, the distance between two points is decided by the shortest path

between them. Therefore, the metric for trajectory query processing is bases on shortest

path distance computation. Traditional algorithm for shortest path (distance) computation

is Dijkstra’s algorithm. It traverses the vertices of the network incrementally until the

shortest path (distance) has been found. But the network expansion is expensive when the

network is large and especially when the trajectory points are not densely distributed. So

alternative approach need to be proposed to enhance the query efficiency.

To support efficient processing of location-based trajectory queries, we identify the

following challenges to address:

1. Quickly filter out a set of promising candidate trajectories while avoiding large scale

network expansion.

2. Compute distance between trajectories and query locations efficiently and avoid

repeated computation.

3. Schedule the searches from different query locations and prune search space effi-

ciently.

To address these challenges, we modified the indexing structure proposed above, the

Partition Tree, to index the trajectories in spatial networks. It organizes the vertices in the

network into a hierarchy through a series of graph partitioning process. Then information

of trajectories are associated with this tree structure to facilitate efficient query processing.

Based on the Partition Tree, efficient algorithms are proposed for k nearest trajectory

query with a single query location and trajectory distance computation. As for k nearest

trajectory search with multiple query locations, an incremental algorithm is proposed to

utilize these two fundamental algorithms and prune search space effectively.
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4.2 Problem Settings

4.2.1 Spatial Networks

In this work, road networks are modeled as connected and undirected planar graphs G(V,

E). V is the set of all vertices, and E is the set of all edges. Each edge is assigned with

a weight to represent the length of the edge. Given a path P connecting several vertices

(v1, v2, ..., vn), the length of path P is the sum of edge weights between each pair of

adjacent vertices. The path with the least length connecting two vertices is called the

shortest path. Given two locations on road networks, the network distance is the length

the shortest path between them. Here, we assume all locations of interest, including the

query locations, are vertices on road networks for sake of simplicity.

4.2.2 Trajectory

A trajectory is a serious of sample points picturing the movements of an object. Here,

we assume the sample points have all been aligned to the vertices of the graph. There

are some map-matching algorithms to do this preprocessing, but it is not the focus of our

work. So given the previous assumption, a trajectory τ can be seen as a path connecting

a series of vertices (p1, p2, ..., pn) on the graph.

4.2.3 Query Definition

On road networksN , the distance between a point q and a point p is defined as the shortest

path distance between them:

Dist(q, p) = SPDist(q, p)

Distance between a query location q and a trajectory τ = (p1, p2, ..., pn):

Dist(q, τ) = min
pi∈τ

Dist(q, pi)
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Distance between a set of query locations Q = {q1, q2, ..., qm} and a trajectory τ =

(p1, p2, ..., pn):

Dist(Q, τ) =
∑
qi∈Q

Dist(qi, τ)

Note that this distance definition is based on the assumption that the shortest path

from the trajectory to each query location and the reverse shortest path is the same. For

simplicity, we only considered undirected graph in our work. Therefore, this distance

assumption holds true.

Based on these distance definitions, we propose the Aggregate k Nearest Trajectories

Query:

Definition 1. Aggregate k Nearest Trajectories Query Given a set of trajectories

T = {τ1, τ2, ..., τn}, and a set of query locations Q = {q1, q2, ..., qm}, the k Nearest

Trajectories Query asks for the trajectory subset T ′ containing k trajectories that have

least distances from the query set Q:

Dist(Q, τi)τi∈T ′ ≤ Dist(Q, τj)τj∈T−T ′

For example in Figure 4.1, in the spatial network, given the query set Q = {v2, v17},

and the trajectory set T = {τ1, τ2, τ3}, the result of nearest trajectory query (k = 1) is τ1,

because Dist(Q, τ1) = 11 is smaller than that of τ2 and τ3.

4.3 Baseline Algorithm

First, we propose the baseline algorithm for k Nearest Trajectories Queries based on the

well-known Dijkstra’s algorithm. Assume no additional information is provided, the near-

est neighboring trajectories can only be obtained by traversing the vertices of the network
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FIGURE 4.1: Trajectory Query in Spatial Networks

incrementally. We made a modification on Dijkstra’s algorithms, during expansion for

each vertex, we check the trajectories passing by it to update the candidate trajectory set

and check the lower and upper bounds to terminate the searching. The baseline algorithm

is demonstrated in Algorithm 2.

In the Incremental Network Expansion based algorithm:

1. From each query location qi ∈ Q, browsing wavefronts are expanded in turn.

Similar to Dijkstra’s algorithm, for expansion starting at qi, it select the vertex, denoted

as v, with the minimum distance from qi to visit (line 4, 5) .

2. Then we check each trajectory τ passing by current vertex v:

(1) If trajectory τ has not been scanned by wavefront from qi before, label it as scanned

by qi (line 8).

(2) If trajectory τ is scanned by all query locations inQ by now, the distanceDist(Q, τ)
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can be obtained. Then τ is put into the candidate set Cfull−scanned (line 10). Otherwise,

put τ in candidate set Cpart−scanned if it has not been placed in Cpart−scanned (line 12). So

Cfull−scanned contains the trajectories that has been fully scanned by all query locations.

And Cpart−scanned contains the trajectories that are only scanned by some query locations

in Q.

3. Then global upper bound and lower bound are updated according to the current

expansion status and candidate trajectory sets (line 14):

Let C ′ be the subset of Cfull−scanned that contains the k trajectories with the minimum

distances, thus a global upper bound for all fully scanned trajectories can be obtained by:

UB = max
τi∈C′

Dist(Q, τi)

For each trajectory τ in Cpart−scanned, it is scanned by some query locations but not

all location in Q, a lower bound of the distance between τ and Q is obtained by:

LB(Dist(Q, τ)) =
∑
qi∈Qs

Dist(qi, τ) +
∑
qi∈Qn

d(qi)

Here, Qs is the set of query locations from which the wavefronts have scanned trajec-

tory τ . And Qn represents the set of query locations from which the wavefronts have not

scanned R. For each qi in Qn, d(qi) is the shortest path length of the current wavefront

from it.
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Algorithm 2: Incremental Network Expansion based k Nearest Trajectory Search
1: Input:

Q - Query location set,

k - Required number of trajectories,

2: Output: R - result set

3: LB =∞, UB =∞

4: while true do

5: for each qi ∈ Q do

6: v ← expand(qi);

7: for each trajectory τ passing by v do

8: if τ.scan(qi) = false then

9: τ.scan(qi) = true;

10: if τ.scan(q) = true, ∀q ∈ Q then

11: Get dist(Q, τ), and put τ in the candidate set Cfull−scanned

12: else

13: Put τ in the candidate set Cpart−scanned

14: Update global lower bound LB and upper bound UB

15: if LB > UB then

16: R← k minimum values in Cfull−scanned

17: return result set R
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Thus the global lower bound for all partly scanned and non-scanned trajectories is:

LB = min
τi∈Cpart−scanned

LB(Dist(Q, τi))

4. Compare LB and UB:

(1) If LB > UB, it means the distances for all partly-scanned and non-scanned trajec-

tories are larger than the trajectories already found, the search can be terminated. Return

C
′ as result set R (line 17).

(2) If LB < UB, keep on network expansion.

The disadvantage of this baseline algorithm is that the cost of network expansion is

going to be huge if the trajectories are not densely distributed in the network, since it

will traverse a large portion of the network. Therefore alternative approach need to be

proposed to better address the trajectory query processing in spatial networks.

4.4 Proposed Indexing Structure

Form previous discussion, we can see that the simple network expansion based algorithm

is not efficient enough. Therefore we want to utilize pre-computation and indexing strat-

egy to facilitate efficient trajectory query processing.

In Chapter 3, we studied efficient object query processing and proposed an indexing

structure called the Partition Tree, which supports efficient shortest path (distance) com-

putation and k nearest neighbor search. These algorithms address query processing with

point data, namely each object to be considered is a single point in the network. Since
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each trajectory is seen as a series of vertexes in the network, one solution to process tra-

jectory query processing is to index all the trajectory points, vertexes that has trajectories

passing by, and then conduct search to these trajectory points. Once a nearest neighbor

point is obtained, the trajectories passing by it are labeled as candidates.

The disadvantage of this approach is that the point search may not find trajectories

effectively. For example, the k nearest neighbor points could belong to the same trajec-

tory, in which case only one trajectory is returned. Furthermore, this approach does not

consider the global trajectory information with respect to multiple query locations. When

a trajectory is already scanned by most of the query locations, it has more potential to be

one of the target trajectories. For these trajectories, they should be evaluated with high

priorities, such as efficient lower bound computation.

Motivated by this, we modified the Partition Tree to index trajectories. The minimum

element to be indexed and processed is a trajectory segment. Similar as before, the Par-

tition Tree organizes the vertices of the network into a tree structure through a series of

graph partitioning process and maintains pre-computed information in distance matrices.

Meanwhile, global trajectory information and segmentation information are maintained

in a collection of auxiliary structures associated with the Partition Tree .

First, we present some important terms and definitions used here:

Definition 2. Graph Partitioning Given a graph G = (V,E), a d-way partitioning

of the graph is to divide it into d subgraphs G1, G2, ..., Gd, such that (1) Gi = (Vi, Ei),

(2) ∪1≤i≤kVi = V , (3) For any two subgraphs Gi and Gj , i 6= j, Vi ∩ Vj = ∅, (3) For

∀u, v ∈ Vi, if (u, v) ∈ E, then (u, v) ∈ Ei.

Definition 3. Borders Assume graph G is partitioned to subgraphs G1, G2, ..., Gd, if

there exists an edge (u, v), u ∈ Gi and v ∈ Gj, i 6= j, then u is a border of Gi and v is a

border of Gj . All borders of Gi form a border set B(Gi).
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FIGURE 4.2: Hierarchical Graph Partitioning

Definition 4. Trajectory Segment Assume graph G is partitioned to d subgraphs

G1, G2, ..., Gd, then a trajectory τ in the graph is divided into r segments if its vertices

reside in r different subgraphs, and all vertices that belong to the same subgraph form a

trajectory segment.

Next, we will give a detailed introduction of our proposed indexing technique, the

Partition Tree, including the following components:

Partition Tree

To construct the Partition Tree, we conduct graph partitioning to the spatial network

hierarchically until the size of the leaf subgraph is small enough. Then we use a tree

structure to represent the partition hierarchy, such that each node in the tree represent a

subgraph.

For example, given the graph in Figure 4.2, we conduct hierarchical partitioning to
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it until each leaf subgraph contains no more than 5 vertices. First the original graph G

is partitioned to two subgraphs G1 and G2. Then G1 is further partitioned to G3 and G4

while G2 is partitioned to G5 and G6. We use the Partition Tree in Figure 4.3 to represent

this partitioning hierarchy.

Distance Matrix

For each tree node, we maintain its border set and a distance matrix recording pre-

computed distances related to these borders:

• For each internal node, its distance matrix contains the distances between all pairs

of borders that belong to its child nodes.
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• For each leaf node, its distance matrix contains the distances between each pair of

vertex and border that belongs to this subgraph.

For example, internal node G2 has two children G5 and G6. G5 has two borders v10

and v14 while G6 has two borders v15 and v16. So the distance matrix of G2 contains dis-

tances between each pair of these borders, as shown in Figure 4.3. Leaf node G6 contains

vertices v15, v16, v17, v18, v19 and two borders v15 and v16, so its distance matrix contains

distances between each vertex and these borders, as shown in Figure 4.3.

Trajectory Segment List

For each leaf node, we maintain the trajectories passing by it in a trajectory segment

list. For example, in the Parition Tree shown in Figure 4.2, leaf subgraph G4 has two

trajectories passing by it, τ2 and τ3. So the trajectory segment list of it consists of two

segments τ21 = {v7, v6, v8} and τ31 = {v9, v8}. Trajectory τ3 pass by three leaf subgraphs

and is divided into three segments τ31 = {v9, v8}, τ32 = {v15}, τ33 = {v14, v13}.

Trajectory Bitmap

Trajectory Bitmap maintains the global information for trajectories in the Partition

Tree. The bitmap is a m by d matrix of bool values, here m is the number of trajectories

and d is the number of leaf subgraphs. For a trajectory τx, if it passes by leaf subgraphGy,

the value of the [x, y]-th element in the bitmap is true, otherwise is false. For example,

for the partitioned graph in Figure 4.2, trajectory τ1 passes by subgraph G3, so the value

referred by them in Trajectory Bitmap is 1 (true) as shown in Figure 4.3.
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4.5 Query Processing

In this section, we will present how to address trajectories query processing efficiently,

specifically k nearest trajectories query with multiple query locations. To start with, we

will introduce two fundamental algorithms for trajectory distance computation and trajec-

tory query with a single query location. Then based on these algorithms, we will elaborate

how to process k nearest trajectories query with multiple query locations.

4.5.1 Trajectory Distance Computation

Distance computation is the fundamental operation for spatial query processing. In spatial

networks, the distance between two point is decided by the shortest path between them.

Traditional algorithm like Dijkstra’s algorithm is based on network expansion and not

efficient enough. To support efficient distance computation, we propose a Partition Tree

based algorithm as shown Algorithm 3.

It uses a priority queue to maintain the elements(subgraphs) and their distances to q.

And it always choose the element with the minimum distance to process next. Note that

the definition of the distance between a subgraph and a vertex is the same as that in Chap-

ter 3.

Meanwhile, the distance computation between a trajectory segment τs and query lo-

cation q is defined as:

Dist(q, τs) = min
pi∈τs

Dist(q, pi)
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Algorithm 3: Distance Computation between query location q and trajectory τ

1: Input:

q - query location,

τ - trajectory,

P - the Partition Tree

2: Output: Dist(q, τ)

3: LB =∞, UB =∞

4: Priority queue Q = φ

5: Put (P.root, 0) into priority queue Q ;

6: while Q is not empty do

7: e = Q.dequeue();

8: LB = Q.mindist();

9: if e is leaf node then

10: τs ← segment of τ in leafnode e

11: if UB > Dist(q, τs) then

12: UB = Dist(q, τs);

13: else

14: for each child node c of node e do

15: if c contains any segments of τ then

16: put (c,Dist(q, c)) into Q;

17: if UB < LB then

18: return Dist(q, τ) = UB;
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Note that the distance computation, including distance between a subgraph and the

query location and distance between a trajectory segment and the query location, is con-

ducted by the dynamic programming algorithm described in section 3.4 of Chapter 3.

First the algorithm puts the root of the Partition Tree into the priority queue (line 5).

Then it will dequeue the first element in the priority queue and update the lower bound

LB (line 7, 8). If it is a leaf node, then the distance between the trajectory segment τs

of τ and q is computed. If this distance is lower than the upper bound UB, UB will be

updated (line 12). Now it will check the lower bound and upper bound, if UB < LB,

the search is terminated(line 18). Otherwise, it will dequeue next element in the priority

queue and keep processing.

4.5.2 k Nearest Trajectories Query

The simplest case of aggregate k nearest trajectories query is when there is only one

single query location, namely k nearest trajectories to query location q. Based on the

distance computation algorithm proposed above and our indexing structure, we propose

an best-first algorithm as shown Algorithm 4.

It also uses a priority queue to maintain the elements(subgraphs) and choose the ele-

ment with the minimum distance to process next during trajectory search. Meanwhile it

uses a global lower bound and upper bound to decide whether to terminate the searching.

The global lower bound represents the lower bound of distances between all un-scanned

trajectories and q, which is the distance of the minimum element in Q. The global upper

bound represent the upper bound of distances of the scanned trajectories, which can be

obtained by the k-th minimum value of all distances between candidate trajectories to q.
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Algorithm 4: k nearest trajectories to query location q
1: Input:

q - query location,

k - required number of trajectories,

T - trajectory set,

P - Partition Tree

2: Output: R - result set

3: Result set R = φ, candidate set C = φ

4: LB =∞, UB =∞

5: Q = {(T.root, 0)} ;

6: while |R| < k and Q is not empty do

7: e = Q.dequeue();

8: LB = Q.mindist();

9: if e is leaf node then

10: for each trajectory segment τs in leafnode e do

11: put (τs, Dist(τs, q)) in candidate set C;

12: UB = C.kmindist();

13: if UB < LB then

14: return R← the k trajectories in C with minimum values;

15: else

16: for each child node c of node e do

17: if c contains any trajectory segments then

18: put (c, dist(q, c)) into Q;

First, the root of the Partition Tree is put into the priority queueQ. Then the algorithm

dequeues the minimum element e in Q (line 7) and update the global lower bound(line 8).

If e represents a leaf subgraph, then for trajectory segment τs in it, the algorithm calculate
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the distance Dist(q, τs) and put (τs, Dist(τs, q)) into candidate set C. Then it update the

global upper bound UB(line 12). If UB < LB by now, the search is terminated (line 14).

If e represents a non-leaf subgraph, then for each child node c, if it contains any trajectory

segments, the algorithm will put (c, dist(q, c)) into Q.

4.5.3 Aggregate k Nearest Trajectories Query

Given a set of trajectories T = {τ1, τ2, ..., τn}, and a set of query locationsQ = {q1, q2, ..., qm},

to find the k nearest trajectories to Q.

1. For each query location qi, retrieve the λ nearest trajectories and put them into

candidate set Ci:

C1 = {τ 11 , τ 21 , ..., τλ1 }

C2 = {τ 12 , τ 22 , ..., τλ2 }

...

Cm = {τ 1m, τ 2m, ..., τλm}

Then the trajectories scanned by all query locations form a candidate set Cs:

Cs = C1 ∩ C2 ∩ ... ∩ Cm

For each trajectory τx in Cs, its distance to each query location qi is known. Thus we

can get Dist(Q, τx). If Cs contains no less than k trajectories, let C ′ be the set containing

the k trajectories with the minimum distances, we can have an upper bound:
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UB = max
τi∈C′

Dist(Q, τi)

And all partly scanned trajectories form a candidate set Cp:

Cp = C1 ∪ C2 ∪ ... ∪ Cm − Cs

For each trajectory τx inside it, the lower bound of its distances to Q is:

LB(Dist(Q, τx)) =
∑
τx∈Ci

Dist(qi, τx) +
∑
τx /∈Ci

Dist(qi, τ
λ
i )

Then the lower bound for all partly scanned trajectories and non-scanned trajectories

is:

LB = min
τi∈Cp

LB(Dist(Q, τi))

This is because the lower bound for all non-scanned trajectories is:

LBn =
∑
qi∈Q

Dist(qi, τ
λ
i )

It is surely larger than LB of the partly scanned trajectories.
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Algorithm 5: k nearest trajectories to query location q
1: Input:

Q - query location set,

k - required number of trajectories,

T - trajectory set

2: Output: R - result set

3: Result set R = φ

4: Candidate set Cs = φ

5: Candidate set Cp = φ

6: LB =∞, UB =∞

7: λ = k,∆ = k

8: while true do

9: for each query location qi in Q do

10: Ci ← λ-NN(qi);

11: Cs ← C1 ∩ C2 ∩ ... ∩ Cm;

12: if |C| > k then

13: compute UB for all fully scanned trajectories;

14: compute LBn for all non-scanned trajectories;

15: if UB < LB then

16: break;

17: λ = λ+ ∆;

18: return R;

2. Compare LBn and UB: (1) If LB > UB, it means the nearest trajectories are

contained in Cs, the search can be terminated. (2) If LB < UB, increase λ by ∆λ.

Note that λ and the incremental element ∆ are both initiated as k (line 7). Other
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FIGURE 4.4: Trajectory Distribution

values can be assigned to them. In the experiments, the assigned value k results in the

performance as good as we expected.

4.6 Experiments

4.6.1 Experiments Setup

We conduct our experiments on the road network of New York obtained from [3], which

contains 264,346 vertices and 733,846 edges. since there is no real life trajectory dataset

available for New York, synthetic trajectory data were used. Figure 4.4 shows the dis-

tribution of the synthetic trajectory dataset. All approaches were implemented with C++

and all experiments were run on a 64-bit windows machine with Intel 3.40GHz CPU and

a 16GB RAM.
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TABLE 4.1: Parameter Settings

parameter values

k - required number of trajectories 5, 10, 15, 20, 25

|Q| - number of query locations 2, 3, 4, 5, 6, 7, 8

|T | - trajectory dataset scale 6k, 7k, 8k, 9k, 10k

Each trajectory τ in the experiments is represented as a sequence of vertexes τ =

{v1, ..., vm}, where m is the length of the trajectory. In addition, for each vertex vi in the

road network, we maintain a trajectory list Li = {τ1, ..., τm} such that each trajectory in

Li passes by vi.

To evaluate the performance of the baseline algorithm and PTree based algorithm, we

randomly generated 1000 query sets and get the average processing time. The parameter

settings and default values are summarized in Table 4.1. The main metric we adopt for

measuring the performance is the query processing time since it represents how efficient

each query is addressed. Meanwhile, we evaluate the space cost of indexing as it is the

major concern for indexing here.

4.6.2 Evaluation Results

Different Number of Query Locations

In the first set of experiments, we investigate the effect of number of query locations (|Q|)

on the query efficiency. In real life application scenarios, the number of query locations

is relatively small as users seldom put in tens of locations in a query at the same time, so

it is practical to assume that |Q| is smaller than 10. In this set of experiments, we set |Q|
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FIGURE 4.5: Effect of |Q|

to range from 2 to 8. Meanwhile we fix the required number of trajectories (k) to 10 and

number of trajectories in the dataset (|T |) to 8,000. For each value of |Q|, we evaluate

1000 queries randomly generated and get the average processing time and the results are

shown in Figure 4.5. We can see that the processing time of our proposed algorithm

based on Partion Tree (PTree) is superior to the baseline algorithm. When the number of

query locations is increasing from 2 to 8, the efficiency of the baseline algorithm suffers

dramatically while the Partition Tree based algorithm preserves its efficiency.

Different Number of Required Trajectories

In the second set of experiments, we evaluate the effect of required number of trajectories

(k) on the query efficiency. We set k to range from 5 to 25. The number of query locations

is fixed at 5 and the trajectory dataset size at 8,000. Similarly as before for each value

of k, we evaluate 1000 queries and get the average processing time and the result is
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FIGURE 4.6: Effect of k

shown in Figure 4.6. When k is increasing from 5 to 25, the performance of the baseline

algorithm suffers greatly. On the other hand, our Partition Tree based algorithm preserves

its efficiency for different k.

Different Scale of Trajectory Dataset

In this set of experiments, we investigate the scalability of our proposed indexing and

algorithms on different trajectory dataset. We evaluate the performance of our algorithms

with the trajectory number ranging from 6,000 to 10,000. The number of query locations

(|Q|) is fixed at 4 and the required number of trajectories (k) is fixed at 10. The experi-

ments result is shown in Figure 4.7. The result demonstrates that our algorithm is scalable

when the number of trajectories is increasing. Note that since the New York road network

is relatively small since it only has 264,346 vertexes, 10,000 is a large number for trajec-

tories. Form the result it is safe to conclude that our algorithm is scalable to larger road

networks and trajectory dataset.
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FIGURE 4.7: Effect of |T |

FIGURE 4.8: Space Cost of Indexing
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Indexing Cost

In addition of processing time, we also evaluate the space cost of indexing. Figure 4.8

shows the indexing cost with the number of trajectories ranging from 6,000 to 10,000.

The space cost increases at a low rate when the number of trajectories is increasing. But

for dataset with up to 10,000 trajectories, the space cost is still under 60 MB. This means

that the Partition Tree is applicable to large scale networks, and much more space efficient

compared with other indexing technique such like SILC [46][44].

4.7 Summary

In this chapter, we investigate efficient trajectory query processing in spatial networks.

We proposed an indexing technique, the Partition Tree, for trajectories in spatial net-

works. It organizes the vertexes of the network into a hierarchy through a series of graph

partitioning process. Then pre-computed distances and global trajectory information are

associated with this hierarchy to facilitate efficient query processing. For the most chal-

lenging type of trajectory queries, k nearest trajectories query, we propose an incremental

k nearest trajectory algorithm that avoids large scale network expansion and prunes the

search space efficiently. We conducted extensive experiments on real world dataset. And

the experimental results demonstrate that our proposed algorithm has superior perfor-

mance over the baseline algorithm and is scalable to large trajectory dataset. Meanwhile,

the indexing cost is low so that it is applicable for large networks and trajectory dataset.
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Conclusions

As a frontier study, this thesis investigated the efficient query processing in spatial net-

works. Specifically, it focuses on two major categories of spatial queries: the object

queries and the trajectory queries. As mentioned in Chapter 1, three key challenges are

identified for efficient query processing in spatial networks:

• Avoid large scale network expansion: Shortest path distance (network distance)

computation is the basis of query processing in spatial networks. Most existing

works are based on either computing network distance between the query location

and an object on-line, or utilizing the index structures. On-line distance computa-

tion usually adopts Dijkstra’s algorithm, which retrieves the objects in ascending

order of their distances to the query location. But this performs poorly when the

objects are not densely distributed in the network because a large portion of the net-

work will be traversed. The algorithms based on indexing structures can filter out

a candidate set first during search. But the distance computation between the query

location and candidates still need to traverse the network if no alternative solution is

provided. So large scale network expansion should be avoided to assure the query

71
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efficiency for spatial networks.

• Prune search space efficiently: In Euclidean space, traditional algorithms utilize

indexing structure like R-tree to retrieve the objects and prune the search space. For

example, the depth-first algorithm [43] and best-first algorithm [19] for k-NN query

are both based on R-tree. They take advantage of metrics based on R-tree to order

and prune the search tree. In spatial networks, the metrics for such pruning power

should be carefully designed. The indexing structure we propose should support

efficient search space pruning and distance computation at the same time.

• Control indexing cost: For the real-world applications, the efficiency of query

processing is crucial for their service quality but a moderate indexing cost is also

very important. Compared with non-line network expansion, approaches based on

indexing structures like SILC [46][44] are quite efficient but they have a huge space

cost for indexing. There is a trade-off between indexing cost and query efficiency.

Thus, what materialization strategy to take and how to organize the materialized

information is important.

The approach of this thesis towards these challenges is to propose an indexing tech-

nique that takes advantage of the network topologies and utilizes the pre-computation

efficiently. The proposed indexing structure, the Partition Tree, organizes the vertexes

of the network into a hierarchy through s series of graph partitioning. Meanwhile, pre-

computed distances and global object (trajectory) information are associated with this

hierarchy to facilitate efficient query processing. Based on this indexing technique, the

challenges are addressed as follows:

• To avoid large scale network expansion, an efficient dynamic programming algo-

rithm is proposed for shortest path and distance query processing. This algorithm

takes advantage of the pre-computed distances associated with each node in the tree
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structure. It only processes the important vertexes with respect to the searching hi-

erarchy and all the distances needed are already pre-computed, thus it doesn’t need

to conduct network expansion to get the shortest path distance.

• To prune the search space efficiently, the search process is organized by utilizing the

indexing structure. Best first algorithms are proposed for the nearest object search

and trajectory search. Upper and lower bounds are carefully designed to prune the

search space effectively and efficiently.

• To control the space cost of indexing, the network is organized into a hierarchy and

the pre-computation is only conducted to vertexes important for the query process-

ing. The complexity analysis shows that this cost is much smaller than all-pairs pre-

computation. Meanwhile, the experimental results also suggest that the proposed

indexing technique has small space consumption and is scalable to large networks

and dataset.

For each work, extensive experiments are conducted to demonstrate the performance

of our proposed approach. These experiments show that the proposed indexing method

and algorithms have superior performance over state-of-the-art approaches and are scal-

able to large scale networks.
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