
Efficient Processing of Range Queries in Main Memory

D I S S E R T A T I O N

zur Erlangung des akademischen Grades

Dr. rer. nat.
im Fach Informatik

eingereicht an der
Mathematisch-Naturwissenschaftlichen Fakultät

der Humboldt-Universität zu Berlin

von
M.Sc. Stefan Sprenger

Präsidentin der Humboldt-Universität zu Berlin:
Prof. Dr.-Ing. Dr. Sabine Kunst

Dekan der Mathematisch-Naturwissenschaftlichen Fakultät:
Prof. Dr. Elmar Kulke

Gutachter:
1. Prof. Dr.-Ing. Ulf Leser
2. Prof. Dr. Odej Kao
3. Prof. Dr.-Ing. Kai-Uwe Sattler

Tag der mündlichen Prüfung: 15. Februar 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dokumenten-Publikationsserver der Humboldt-Universität zu Berlin

https://core.ac.uk/display/188743348?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract

Over the last two decades, the hardware landscape has fundamentally changed, shaping the
architecture of modern database systems. First, main memory becomes a popular choice for
primary data storage, since current server machines can feature up to several terabytes of main
memory. Second, modern CPUs get tremendously parallel providing both data- and task-level
parallelism. They support SIMD instructions, which can simultaneously process multiple data
elements. Moreover, stand-alone CPUs host an ever increasing number of cores, which can be
considered as independent processing units. Recent many-core CPUs install up to 72 cores on
one chip.
Database systems employ index structures as means to accelerate search queries. Over the

last years, the research community has proposed many different in-memory approaches that
optimize cache misses instead of disk I/O, as opposed to disk-based systems, and make use
of the grown parallel capabilities of modern CPUs. However, these techniques mainly focus on
single-key lookups, but neglect equally important range queries. Range queries are an ubiquitous
operator in data management commonly used in numerous domains, such as genomic analysis,
sensor networks, or online analytical processing.
The main goal of this dissertation is thus to improve the capabilities of main-memory database

systems with regard to executing range queries. To this end, we first propose a cache-optimized,
updateable main-memory index structure, the cache-sensitive skip list, which targets the ex-
ecution of range queries on single database columns. Second, we study the performance of
multidimensional range queries on modern hardware, where data are stored in main memory
and processors support SIMD instructions and multi-threading. We re-evaluate a previous rule
of thumb suggesting that, on disk-based systems, scans outperform index structures for selec-
tivities of approximately 15-20% or more. To increase the practical relevance of our analysis, we
also contribute a novel benchmark consisting of several realistic multidimensional range queries
applied to real-world genomic data. Third, based on the outcomes of our experimental analysis,
we devise a novel, fast and space-efficient, main-memory based index structure, the BB-Tree,
which supports multidimensional range and point queries and provides a parallel search operator
that leverages the multi-threading capabilities of modern CPUs.

iii

Zusammenfassung

Innerhalb der letzten zwanzig Jahre haben sich die Hardwarekomponenten von Serversystemen
stark weiterentwickelt, wodurch die Architektur von modernen Datenbanksystemen entscheidend
geprägt wurde. Zum einen wird der Hauptspeicher als primärer Speicherort für Datenbanksys-
teme verwendet. Aktuelle Serversysteme sind mit bis zu einigen Terabytes an Hauptspeicher
ausgestattet, was durch steigende Kapazitäten und fallende Preise ermöglicht wird. Zum anderen
sind aktuelle Prozessoren höchst parallel. Sie unterstützen datenparallele SIMD-Instruktionen,
mit denen mehrere Werte mit einer Instruktion verarbeitet werden können, und installieren eine
immer größere Anzahl an Prozessorkernen auf einen Chip.
Datenbanksysteme verwenden Indexstrukturen, um Suchanfragen zu beschleunigen. Im Laufe

der letzten Jahre haben Forscher verschiedene Ansätze zur Indexierung von Datenbanktabellen
im Hauptspeicher entworfen. Hauptspeicherindexstrukturen versuchen möglichst häufig Daten
zu verwenden, die bereits im Zwischenspeicher der CPU vorrätig sind, anstatt, wie bei tra-
ditionellen Datenbanksystemen, die Zugriffe auf den externen Speicher zu optimieren. Die
meisten vorgeschlagenen Indexstrukturen für den Hauptspeicher beschränken sich jedoch auf
Punktabfragen und vernachlässigen die ebenso wichtigen Bereichsabfragen, die in zahlreichen
Anwendungen, wie in der Analyse von Genomdaten, Sensornetzwerken, oder analytischen Daten-
banksystemen, zum Einsatz kommen.
Diese Dissertation verfolgt als Hauptziel die Fähigkeiten von modernen Hauptspeicherdaten-

banksystemen im Ausführen von Bereichsabfragen zu verbessern. Dazu schlagen wir zunächst
die Cache-Sensitive Skip List, eine neue aktualisierbare Hauptspeicherindexstruktur, vor, die für
die Zwischenspeicher moderner Prozessoren optimiert ist und das Ausführen von Bereichsabfra-
gen auf einzelnen Datenbankspalten ermöglicht. Im zweiten Abschnitt analysieren wir die Per-
formanz von multidimensionalen Bereichsabfragen auf modernen Serverarchitekturen, bei de-
nen Daten im Hauptspeicher hinterlegt sind und Prozessoren über SIMD-Instruktionen und
Multithreading verfügen. Um die Relevanz unserer Experimente für praktische Anwendungen
zu erhöhen, schlagen wir zudem einen realistischen Benchmark für multidimensionale Bere-
ichsabfragen vor, der auf echten Genomdaten ausgeführt wird. Im letzten Abschnitt der Disser-
tation präsentieren wir den BB-Tree als neue, hochperformante und speichereffiziente Hauptspe-
icherindexstruktur. Der BB-Tree ermöglicht das Ausführen von multidimensionalen Bereichs-
und Punktabfragen und verfügt über einen parallelen Suchoperator, der mehrere Threads ver-
wenden kann, um die Performanz von Suchanfragen zu erhöhen.

v

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Definition and Contributions . 3
1.3 Outline . 5
1.4 Prior Publications . 6

2 Fundamentals 7
2.1 Terminology . 7
2.2 Multidimensional Access Methods . 8

2.2.1 Sequential Scan . 9
2.2.2 Point Access Methods (PAM) . 11
2.2.3 Spatial Access Methods (SAM) . 17

2.3 Index Structures on Modern Hardware . 23
2.3.1 Modern Memory Hierarchy . 23
2.3.2 Single Instruction Multiple Data (SIMD) 25
2.3.3 Multi-Core CPUs and Simultaneous Multithreading (SMT) 26

2.4 Genomic Multidimensional Range Query Benchmark (GMRQB) 28
2.4.1 Range Queries on Genomic Variant Data 29
2.4.2 Real-World Data Set . 30
2.4.3 Realistic Range Query Templates . 33

3 CSSL: Processing One-Dimensional Range Queries in Main Memory 35
3.1 Related Work . 36
3.2 Conventional Skip Lists . 37
3.3 Cache-Sensitive Skip Lists (CSSL) . 40

3.3.1 Memory Layout . 40
3.3.2 Search Algorithms and Updates . 42

3.4 Evaluation . 47
3.4.1 Experimental Setup . 47
3.4.2 Experimental Data and Workloads . 48
3.4.3 Range Queries . 49
3.4.4 Lookups . 52
3.4.5 Mixed Workloads . 53
3.4.6 Space Consumption . 53

3.5 Discussion . 54
3.6 Summary . 55

vii

Contents

4 An Analysis of Multidimensional Range Queries on Modern Hardware 57
4.1 Partitioning for Parallelization . 58
4.2 Vectorizing Range Queries . 61
4.3 Conservative Adaptation of Multidimensional Index Structures 63
4.4 Evaluation . 66

4.4.1 Experimental Setup . 67
4.4.2 Experimental Data and Workloads . 68
4.4.3 Impact of Multithreading and Vectorization 69
4.4.4 Synthetic Data . 71
4.4.5 Sensor Data from Hi-Tech Manufacturing Equipment 75
4.4.6 Genomic Variant Data . 75
4.4.7 Scalability . 76
4.4.8 Space Consumption . 77
4.4.9 Other Evaluation Platform . 78

4.5 Discussion . 79
4.6 Summary . 82

5 BB-Trees: Processing Multidimensional Range Queries in Main Memory 83
5.1 Data Organization . 85
5.2 Bubble Buckets . 90
5.3 Building and Reorganizing BB-Trees . 92
5.4 Low-Cardinality Dimensions . 94
5.5 Search Algorithms . 94
5.6 Parallel BB-Trees . 96
5.7 Evaluation . 98

5.7.1 Experimental Setup . 98
5.7.2 Experimental Data and Workloads . 99
5.7.3 Impact of Bubble Bucket Capacities . 101
5.7.4 Point Queries . 101
5.7.5 Range Queries . 102
5.7.6 Impact of Dimensionality . 106
5.7.7 Low-Cardinality Dimensions . 107
5.7.8 Insertions and Deletions . 108
5.7.9 Mixed Read/Write Workloads . 109
5.7.10 Scalability . 111
5.7.11 Space Consumption . 113

5.8 Discussion . 114
5.9 Summary . 115

6 Summary and Outlook 117
6.1 Summary . 117
6.2 Outlook . 118

Appendix A: Genomic Multidimensional Range Query Benchmark 123

viii

1 Introduction

1.1 Motivation
Since over forty years, a plethora of different applications and domains uses database sys-
tems [Codd 1970] to store and query very large amounts of data. For historical reasons, they
were originally designed for server machines equipped with single-core CPUs and large disks
holding all data. Main memories were solely used for buffering, because they were too small to
store complete data sets.
Over the last two decades, technological improvements enabled powerful changes in the hard-

ware landscape, shaping the architecture of modern database systems [Faerber et al. 2017;
Manegold et al. 2000; Boncz et al. 1999; Saecker et al. 2012]:

• Main memory becomes the number one choice for data storage. Today, single machines can
feature up to dozens of terabytes of main memory. Concurrently, cost are sharply dropping:
In 2017, the price for one megabyte of main memory fell below $0.011. As a consequence,
many databases can be completely kept in main memory. Even data processing tasks
previously distributed across large clusters to accelerate analysis of on-disk data, can now
be processed in the main memory of one machine [Rowstron et al. 2012].

• Modern CPUs implement the Single Instruction Multiple Data (SIMD) execution model [Flynn
1972], which allows to process multiple data elements with one instruction, enabling data-
level parallelism. They provide dedicated instruction sets, often available as intrinsic
functions, to execute vector operations on extra-wide registers.

• CPUs become tremendously parallel featuring a consistently increasing number of cores,
which resemble independent processing units with distinct instruction pipelines and caches.
As of today, many-core CPUs host more than seventy cores on one chip2. Moreover, simul-
taneous multithreading (SMT) increases the degree of parallelism by deploying multiple
virtual threads (typically two or four) onto one core. When combining SIMD with multi-
core parallelism and SMT, modern CPUs achieve degrees of parallelism competitive with
highly-parallel GPUs [Sprenger et al. 2018c].

As a consequence, over the last years, completely new competitors targeting deployments on
modern hardware entered the database market, e. g., MemSQL [Chen et al. 2016], Redis [Carlson
2013], or VoltDB [Stonebraker et al. 2013], but also established database vendors adapted to the

1Memory Prices 1957 to 2017, https://jcmit.net/memoryprice.htm, Last access: August 29, 2018.
2Intel R©Xeon PhiTMx200 Product Family Product Specifications, https://ark.intel.com/products/
series/92650/Intel-Xeon-Phi-x200-Product-Family, Last access: August 29, 2018.

1

https://jcmit.net/memoryprice.htm
https://ark.intel.com/products/series/92650/Intel-Xeon-Phi-x200-Product-Family
https://ark.intel.com/products/series/92650/Intel-Xeon-Phi-x200-Product-Family

1 Introduction

recent hardware trends, especially an in-memory data storage, e. g., Oracle TimesTen [Lahiri
et al. 2013], Microsoft SQL Server through Hekaton [Diaconu et al. 2013], or IBM DB2 with
BLU acceleration [Raman et al. 2013].
Users often query databases with workloads boiling down to either point or range queries [Heller-

stein et al. 1995]. While point queries retrieve a single tuple from a database table, typically to
confirm that a certain value exists, range queries specify selection predicates on one or several
columns and return subsets, which usually span multiple tuples. Range queries are an essential
part of many database workloads and widely used in numerous applications, such as:

• Genomics: Precision medicine analyzes the mutational landscape of entire populations,
subpopulations or disease cohorts to adjust the treatment of individual patients based on
known associations between the occurrences of certain genomic variants and the impact
of certain drugs [Lievre et al. 2006]. Genomic variants are described by a large number
of features (typically between fifteen and twenty), e. g., genomic location, phenotype, or
metadata of the person where the variant has been found.
Researchers load genomic variant data into database systems to search for variants of
interest with range predicates [Hakenberg et al. 2016]. For instance, a query may ask
for all variants found in the coding region of a certain gene of patients of a certain age
group; genes are defined by ranges of genomic locations. Another example application
are visualization tools, like genome browsers [Thorvaldsdóttir et al. 2013], which allow
an interactive navigation of complete (human) genomes. Users can visually scroll over
individual mutation profiles organized by their genomic location. As genomes are very
large, genome browsers apply range queries to narrow down the vast amount of data and
retrieve the subset relevant for the current location window.

• Internet of Things: Internet of things (IoT) resembles networks of interconnected
devices and vehicles equipped with sensors (or actuators) exchanging data with each
other [Gubbi et al. 2013]. As of today, IoT is employed in a wide range of different do-
mains in everyday life, such as: (1) Continuous glucose monitoring devices automatically
suspend insulin pumps to prevent hypoglycemia when detecting severe drops in blood glu-
cose [Choudhary et al. 2011]. (2) Wireless power metering plugs (or smart home devices)
provide insights into the energy consumption of (private) households [Jahn et al. 2010].
(3) Smart factories install large networks of sensors to monitor the health of components,
facilitating automatic detection of malfunctions [Ji et al. 2013]. Range queries play an
important role in the analysis of data collected by sensing devices [X. Li et al. 2003; Wang
et al. 2014; Wang et al. 2016]. For instance, search queries may ask for all observations
within certain ranges regarding features, like temperature, or light level.

• Online Analytical Processing: Online analytical processing (OLAP) targets a fast
execution of read-heavy, analytical workloads on historical data [Chaudhuri et al. 1997].
Example applications include (a) periodic reporting for sales, marketing or management
departments, (b) forecasting in supply chain management to meet future demands of
customers, or (c) budgeting. Typically, OLAP queries are executed on multidimensional
arrays, relational database systems or hybrid storages. OLAP workloads often involve

2

1.2 Problem Definition and Contributions

(multidimensional) range queries [Ho et al. 1997; Liang et al. 2000]. For instance, reporting
may ask for the sum of all sales within a certain time range, a certain price range and a
certain range of customers.

Range queries can be answered by sequential scans over complete data or dedicated index
structures. The benefits of scans are a sequential data access pattern, no additional space re-
quirements, and no build-up or maintenance cost. On the other side, index structures can prune
the data space, but require random accesses and are rather expensive to maintain. Scans are typ-
ically useful for search queries retrieving most parts of a data set (low selectivity), whereas index
structures are superior for search queries selecting few tuples (high selectivity). When generat-
ing execution plans, database systems employ access path selection to choose between full-table
scans and index probing based on the estimated selectivity of the individual query [Selinger
et al. 1979]
Over the last years, the research community has proposed many main-memory index struc-

tures that leverage the features of modern hardware [Hao Zhang et al. 2015]. They optimize
cache misses instead of disk I/O3 and make use of the grown parallel capabilities of modern
CPUs, e. g., ART [Leis et al. 2013], an adaptive radix tree, FAST [C. Kim et al. 2010], a
read-only search tree aligned to the cache hierarchy, or the Bw-tree [Levandoski et al. 2013],
a latch-free approach targeting concurrent query processing. However, previous works mainly
focused on achieving fast single-key lookups, but neglected range queries. Additionally, most of
them are restricted to one-dimensional data and cannot be applied to multidimensional domains.
Consequently, current main-memory database systems primarily rely on full-table scans to

evaluate range queries [Das et al. 2015], although scans are inadequate for highly selective work-
loads, because they lack pruning capabilities. Thus, there is a strong need for cache-optimized
index structures that provide an efficient range query operator tailored to the properties of
modern hardware and that are able to handle multidimensional workloads.

1.2 Problem Definition and Contributions
As main goal, this thesis aims to improve the capabilities of main-memory database sys-
tems [Plattner et al. 2011] with regard to executing (multidimensional) range queries. Many
different in-memory index structures have been proposed over the last years, yet none of them
supports range queries efficiently, because they require many random accesses to evaluate range
queries. In main memory, sequential access patterns are as important for search performance
as in disk-based systems. Reading data from consecutive memory locations utilizes prefetched
cache lines, since modern CPUs employ one block lookahead [Smith 1982] prefetching, and ef-
fectively reduces CPU cache and translation lookaside buffer (TLB) misses [Manegold et al.
2000].
We start with studying the processing of range queries on single database columns and sub-

sequently delve into the more complex multidimensional domain, where range queries consist of
multiple predicates specified on some, many or all dimensions of the data space. As main results,

3For in-memory database systems, Ailamaki et al. [Ailamaki et al. 1999] showed that fifty percent of workload
execution times are spent in stalls caused by cache misses.

3

1 Introduction

this thesis contributes novel, cache-optimized index structures to accelerate (multidimensional)
range queries in main-memory settings.
In particular, we make the following contributions.

Processing One-Dimensional Range Queries in Main Memory

Many index structures store data in a sorted order, which allows straightforward implemen-
tations of range queries: First search for the smallest matching element, and then process all
consecutive elements until the first mismatch occurs. With decreasing query selectivity and
increasing data set cardinality, range queries spend most of their execution time on the sec-
ond step, i. e., collecting matching data. Unfortunately, existing main-memory index structures
mainly optimize single-key lookups, the initial action of a range query, but neglect the second,
more time-consuming step. Typically, processing matching elements requires navigating tree
structures by chasing pointers via random accesses, which produces many CPU cache and TLB
misses, requiring data to be loaded from main memory into on-die caches, and ultimately leads
to a poor range query performance.
We devise and implement a novel main-memory index structure that employs a CPU-friendly

data layout enabling the range query operator to traverse over matching elements with an
almost-sequential data access pattern. We exploit SIMD instructions to further speed-up range
queries through data-level parallelism. In a comprehensive evaluation, we compare our approach
to multiple state-of-the-art main-memory index structures using different query workloads over
synthetic and real-world data sets.

Analysis of Multidimensional Range Queries on Modern Hardware

More than twenty years ago, Weber et al. [Weber et al. 1998] showed how the efficiency of
multidimensional access methods depends on the selectivity of queries. Their research was
conducted in the context of disk-based systems and was driven by the observation that random
accesses, as operated by index structures, are approximately five times slower than sequential
reads. They reported a selectivity threshold of approximately 15-20% after which sequential
scans outperform multidimensional index structures. Since then, this rule of thumb has been
used to select access paths when evaluating multidimensional range queries, completely ignoring
the advancements in hardware.
In an experimental analysis, we study the strengths and weaknesses of multidimensional access

methods when deployed on modern hardware, and evaluate whether the old selectivity threshold
of 15-20% still holds or should be updated. We first propose multiple techniques to adapt ex-
isting multidimensional index structures to modern hardware. Here, we focus on main-memory
storage, SIMD instructions, and multi-core CPUs. We apply the adaptation techniques to the
R∗-tree, the kd-tree, the VA-file, and a sequential scan. Furthermore, we design a realistic mul-
tidimensional range query benchmark executed on real-world data. In an extensive evaluation,
we investigate the approaches when executing synthetic and realistic multidimensional range
query workloads over synthetic and real-world data sets. We study the impact of various data
and workload characteristics, e. g., dimensionality, cardinality, and selectivity.

4

1.3 Outline

Processing Multidimensional Range Queries in Main Memory

Most existing multidimensional index structures were originally designed for disk-based systems
and do not take the memory hierarchy of modern server machines into account. As a conse-
quence, they show a poor cache efficiency when being stored in main memory. Moreover, their
search algorithms were built for single-core processors, neglecting the enormous parallel capa-
bilities of modern CPUs. Thus, most existing multidimensional index structures do not take
advantage of the features of modern hardware.
We propose and implement a novel general-purpose index structure that can efficiently process

multidimensional range and point query workloads on data stored in main memory. It employs
a cache-optimized data layout that enables an outstanding search efficiency on modern CPUs.
We also provide a parallel implementation of the range query operator, which utilizes multiple
threads. In contrast to many existing main-memory index structures, our approach does not
sacrifice write for read performance but offers efficient update operations. Using different work-
loads, e. g., range and point queries, mixed workloads, and realistic workloads, over different
data sets, e. g., uniformly distributed, clustered, and real world, we evaluate the performance of
our approach and compare it to various other state-of-the-art multidimensional index structures.

1.3 Outline

The remaining sections address the problems stated above.
Chapter 2 defines concepts and notations relevant for this thesis. It gives an overview over

multidimensional index structures and their various subclasses. It also studies techniques com-
monly used to adapt index structures to the features of modern hardware. Finally, it presents a
novel multidimensional range query benchmark, which we designed to facilitate realistic exper-
iments. The benchmark is executed on real-world data from the bioinformatics domain.
Chapter 3 presents a novel cache-optimized index structure to execute one-dimensional range

queries on single database columns. It is based on skip lists, but employs a fundamentally
different memory layout that is tailored to the characteristics of modern CPUs. Furthermore,
it applies SIMD instructions to accelerate range queries. We compare it with several state-of-
the-art main-memory index structures using synthetic and real-world data sets, and show that
it achieves the best range query performance across all evaluated data sets and workloads.
Chapter 4 studies the performance of multidimensional range queries on modern hardware.

We carefully adapt three popular multidimensional index structures and two scan flavors to
main-memory storage, SIMD instructions and multithreading. We investigate their respective
strengths and weaknesses using different synthetic and realistic partial- and complete-match
range query workloads on different synthetic and real-world data sets. We show that sequen-
tial scans can leverage the features of modern hardware better than multidimensional index
structures, which increases their relevance for main-memory database systems.
Chapter 5 proposes a novel, fast and space-efficient multidimensional index structure to

execute point and range query workloads in main memory. It employs a cache-optimized data
layout that takes cache lines into account, enables sequential data access, and can dynami-
cally ingest updates. Furthermore, it can utilize multithreading to speed-up search queries.

5

1 Introduction

We demonstrate that our approach outperforms other state-of-the-art multidimensional index
structures for complete- and partial-match range queries. It even beats a sequential scan up to
a query selectivity of 20%.
Chapter 6 summarizes the results of this dissertation and provides an outlook to future

work.

1.4 Prior Publications
Some chapters of this thesis are based on previous peer-reviewed publications.
Chapter 2 introduces the Genomic Multidimensional Range Query Benchmark (GMRQB),

which was previously published in [Sprenger et al. 2018b]. The roles of the authors were as
follows: Sprenger designed GMRQB and wrote the manuscript, which was revised by Schaefer
and Leser.
Chapter 3 presents the Cache-Sensitive Skip List (CSSL), which was previously published

in [Sprenger et al. 2016]. The authors’ roles can be assigned as follows: Sprenger designed,
implemented and evaluated CSSL and wrote the manuscript. Leser and Zeuch provided helpful
feedback on the concepts behind CSSL. Leser revised the manuscript.
Chapter 4 conducts an experimental analysis of the performance of multidimensional range

queries on modern hardware, which was previously published in [Sprenger et al. 2018b]. The
roles of the authors were as follows: Sprenger designed and implemented most parts of the
analysis. Schaefer implemented a main-memory variant of the VA-file and provided helpful
feedback on the design of the analysis and drafts of the manuscript. Leser provided extensive
feedback on the design of the analysis and revised the manuscript.
Chapter 5 introduces a novel main-memory based multidimensional index structure, the BB-

Tree, which is submitted for publication [Sprenger et al. 2018a]. The authors’ roles can be
assigned as follows: Sprenger designed, implemented and evaluated the BB-Tree and wrote the
manuscript. Schaefer and Leser provided helpful feedback on the concepts behind the BB-Tree
and drafts of the manuscript and reworked the manuscript.

6

2 Fundamentals

This chapter starts with introducing terminology and notations relevant for the remaining thesis
(see Section 2.1). In Section 2.2, we present popular means to processing multidimensional range
query workloads. Section 2.3 studies techniques for adapting index structures to the properties
of modern hardware; we focus on commonly available hardware features, such as main-memory
storage, Single Instruction Multiple Data (SIMD), and multithreading. Finally, Section 2.4
presents the Genomic Multidimensional Range Query Benchmark (GMRQB), a set of eight
realistic multidimensional range query templates to be executed on real-world genomic data.
We designed GMRQB to increase the practical relevance of our experimental results.

2.1 Terminology
This thesis studies the execution of range queries on data kept in main memory. To this end, we
propose novel cache-optimized index structures that leverage the properties of modern hardware.
We target one-dimensional and multidimensional range query workloads. While one-dimensional
range queries are processed on sets of keys resembling single columns of a database, multidi-
mensional range queries (MDRQ) are applied to sets of tuples, which resemble multiple or all
columns of a database. In this thesis, we focus on numerical data. When dealing with non-
numerical data, e. g., strings, we convert them into a numerical representation before indexing.
In the following chapters, we use the terms tuple, feature vector, and data object synonymously.
Similarly, we use the terms attribute, feature, and dimension synonymously.

Definition 1 (Data Set). A data set D = {t0, ti, ..., tn−1} is a collection of n tuples that share
the same attributes.

We consider only duplicate-free, homogeneous data sets, where all tuples feature the same
numerical attributes. Often, all attributes of a tuple belong to the same domain, for instance
[0, 1]. Consequently, the number of tuple attributes is derived from the dimensionality of the
data set. For instance, we consider a data set that holds tuples, each featuring three attributes,
to be three-dimensional. The cardinality of an attribute resembles the number of contained
distinct values across the entire data set. An attribute with a low (high) cardinality has few
(many) distinct values.
The index structures that we devise in this thesis do not require data sets to provide tuples

in a certain sort order. Especially for multidimensional data, that is not always even possible.

Definition 2 (Range Query). A range query RQ = {rp0, rpj , ..., rpm−1} for anm-dimensional
data set D consists of m range predicates. Each range predicate rpj = [lbj , ubj] is associated
with the respective attribute of D and is specified within the according domain. A tuple t ∈ D
matches RQ, iff all range predicates evaluate to true, i. e., ∀j : lbj ≤ t[j] ≤ ubj.

7

2 Fundamentals

First, depending on the data set D, range queries can be one-dimensional or multidimen-
sional. Second, MDRQ can be further divided into complete-match and partial-match range
queries [Robinson 1981]: Complete-match range queries specify predicates for all attributes of
a data set, whereas partial-match range queries specify predicates for only a subset. We model
partial-match range queries as complete-match range queries that use the predicate [−∞,+∞]
for all attributes that are not restricted.
Typically, range queries return either a list of all matching tuples or a list of the unique

identifiers (often called TIDs) of the matching tuples.

Definition 3 (Selectivity). The selectivity of a range query RQ against a data set D is defined
as the percentage of tuples from D that match RQ.

We consider queries that select only a small portion of a data set to have a high selectiv-
ity. In contrast, we consider queries that select a large portion of a data set to have a low
selectivity [Selinger et al. 1979].

Definition 4 (Lookup). A lookup (or point query) against a data set D asks if a certain tuple
is part of D. Alternatively, lookups can be considered as range queries that exclusively consist
of range predicates having identical lower and upper boundaries.

Since we consider only duplicate-free data sets, lookups always match one single tuple. Hence,
they have a selectivity of 1/n, where n equals the cardinality of D. Although lookups can be
implemented as range queries, most index structures provide a separate lookup operator that
exploits the unique characteristics of lookups, e. g., searching for an exact match instead of
comparing with greater than and less than.

Definition 5 (Access Method). (Data) access methods provide means to evaluate search
queries against data sets. They access a data set D and return the subset of D that matches the
query.

Access methods can be one-dimensional or multidimensional. One-dimensional access methods
provide means to evaluate search queries on single database columns. Multidimensional access
methods provide means to process search queries on some, many or all columns of a database. In
database systems, common access methods are sequential full-table scans and index structures.
While full-table scans compare each tuple of D with the given search query and therefore need to
access the complete data, index structures can apply pruning techniques that reduce the amount
of data to be investigated. The pruning capabilities of index structures come at the price of a
non-sequential access pattern. Hence, full-table scans are beneficial for low selectivities, where
most parts of the data set must be accessed and cannot be pruned anyway, and index structures
are superior for high selectivities.

2.2 Multidimensional Access Methods
Over the last decades, many different access methods have been proposed to execute search
operations, e. g., point queries, range queries, or similarity search, on multidimensional data

8

2.2 Multidimensional Access Methods

sets. According to [Gaede et al. 1998], multidimensional access methods can be divided into
point access methods (PAM), which store and search point objects, and spatial access methods
(SAM), which can also handle spatially-extended objects, e. g., polygons, or polyhedrons.
In this thesis, we strongly focus on range queries but also evaluate point queries, as these can

be considered as range queries specifying identical lower and upper boundaries. We do neither
study nor evaluate similarity search, which is mainly applied to high-dimensional data featuring
hundreds to thousands of dimensions [C. Böhm et al. 2001]. We thus do not consider techniques
targeting similarity search workloads, like MVP-trees [Bozkaya et al. 1999], VP-trees [Yianilos
1993], or M-trees [Ciaccia et al. 1997].
The following sections discuss access methods that can execute range queries on multidimen-

sional point data. We start with introducing the sequential scan as a baseline approach, and
then continue with studying dedicated multidimensional index structures (MDIS), both PAM
(see Section 2.2.2) and SAM (see Section 2.2.3).

2.2.1 Sequential Scan
A sequential scan (or full-table scan) always processes the entire data set to evaluate a query.
As opposed to index structures, scans do not require any additional data structure, which leads
to an ideal memory utilization but prohibits pruning of non-relevant tuples. When keeping data
in a flat array of length n and using four-byte floating-point values to implement m-dimensional
data objects, a sequential scan requires n ∗ (4 ∗m) bytes of memory for storage. For instance,
when handling a data set of one Million ten-dimensional objects, it requires approximately 38
megabytes (MB) of space.
Algorithm 1 presents the scan-based evaluation of MDRQ. It receives five input parameters:

(1) data_set holds the data that the range query is applied to, (2) n resembles the cardinality of
data_set, (3) m resembles the dimensionality of data_set and also equals the number of search
predicates, (4) lower defines the lower boundary of the range query, and (5) upper defines the
upper boundary. Using a for loop, the algorithm iterates over the data set held in a two-
dimensional array. For each tuple, data_set[i], it compares all m attributes with the according
predicates of the range query (see Lines 5-10). The algorithm allows early breaks from the inner
loop: As soon as an attribute of a tuple does not match the respective range predicate, the search
prunes all further steps and proceeds with the next tuple (see Line 8). If all predicates evaluate
to true, i. e., the tuple matches the query, the unique identifier of the tuple, here implicitly
defined by the array index i, is added to the result set (see Lines 11-13). Tuple identifiers may
also be stored in a separate array allowing individual values. Finally, the results are returned
(see Line 15).
Scans support insert operations very efficiently, because data do not need to be kept in any

particular order. Hence, inserts can be implemented by appending new tuples to the array
holding the data set. In turn, deletes can be implemented by replacing the to-be-deleted tuple
with the tuple stored at the tail of the data set, which effectively shortens the data set by one
position and avoids producing free space within the array.
The implementations of sequential scans are minimalist requiring only few lines of code.

They offer various starting points for optimizations. First, if statistics about selectivities of
single attributes were available, we could improve the early break capabilities by comparing

9

2 Fundamentals

Algorithm 1 Scan-based evaluation of multidimensional range queries.
data_set: The data set that the range query is applied to.

n: The cardinality of the data set.
m: The dimensionality of the data set.

lower : The lower boundary of the range query.
upper : The upper boundary of the range query.

1: function ScanRangeQuery(data_set, n,m, lower, upper)
2: results ← ∅
3: for i← 0 to n− 1 do
4: match ← true
5: for j← 0 to m− 1 do
6: if lower[j] > data_set[i][j] OR upper[j] < data_set[i][j] then
7: match ← false
8: break
9: end if

10: end for
11: if match then
12: results ← results ∪ {i}
13: end if
14: end for
15: return results
16: end function

attributes in the order of the estimated selectivities, i. e., attributes queried with high selectivities
are compared first. Second, we could use different implementations for partial-match and for
complete-match queries. This would allow to skip comparisons for dimensions not restricted by
a partial-match query. Third, researchers have proposed advanced scan variants optimized for
main-memory storage and modern central processing unit (CPU) architectures [Broneske et al.
2014; Broneske et al. 2017a; Y. Li et al. 2013], e. g., scans utilizing vectorized instructions [J.
Zhou et al. 2002; Willhalm et al. 2009; Willhalm et al. 2013; Polychroniou et al. 2015], scans on
compressed data [Y. Li et al. 2014; Lang et al. 2016; Holloway et al. 2007], or parallel scans [Qiao
et al. 2008]. In addition to the basic scan variant shown in Algorithm 1, we study vectorized
and multithreaded scan implementations in this thesis.

Assuming that data are stored in a dense array without any intermittent free space, scans
solely access consecutive memory locations, which is not only beneficial when processing data
stored on disk but also when applying range queries to data held in main memory. Sequential
scans effectively take advantage of prefetched cache lines and minimize the number of data
transfers by utilizing complete cache lines.

10

2.2 Multidimensional Access Methods

2.2.2 Point Access Methods (PAM)

Point access methods (PAM) store and search multidimensional point data by partitioning the
data space into multiple regions. Seeger and Kriegel [Seeger et al. 1990] classify PAM according
to three properties of the obtained regions: (a) regions are pairwise disjoint or not, (b) regions
are rectangular or not, and (c) the union of all regions covers the complete data space or not.
For instance, the Universal B-tree (UB-tree) does not partition data into rectangular regions,
but indexes the z-order of multidimensional points in a B-tree [Bayer 1997]. Most PAM, e. g.,
the kd-tree [Bentley 1975], the K-D-B-tree [Robinson 1981], or the quadtree [Finkel et al. 1974],
divide data into disjoint, rectangular regions that cover the complete data space.

kd-tree

Kd-trees [Bentley 1975] hierarchically organize m-dimensional data points in a binary search tree
and support different multidimensional search operations, e. g., point queries, range queries, or
similarity search [Sproull 1991]. Each node of a kd-tree holds exactly one data object. Inner
nodes are used to recursively partition the data space. Each inner node employs one of the
dimensions of the data space as delimiter (delimiter ∈ N; 0 ≤ delimiter < m): The left child tree
holds all points that have a smaller or equal value in the delimiter dimension, and the right child
tree contains the rest. Hence, inner nodes resemble (m−1)-dimensional axis-aligned hyperplanes.
By default, delimiter dimensions are chosen in a round-robin fashion, i. e., successive tree levels
employ successive dimensions as delimiter. Today, many major database systems use kd-trees
to index spatial data, e. g., PostgreSQL1, or SAP HANA2.
Figure 2.1 illustrates a kd-tree (shown on the right) that indexes six points from a two-

dimensional data space (shown on the left). The first tree level splits the data space on the first
dimension, age, and the second tree level on the second dimension, body weight. In general,
the shape of a kd-tree is determined by the order of the insertions. In this example, the data
objects could have been inserted in the following order: (31,120) (50,80) (20,100) (25,75) (40,90)
(57,65).
When implementing m-dimensional data objects with arrays of four-byte floating-point values,

storing the delimiter information in eight-bit integers, and running on a 64-bit architecture
featuring eight-byte pointers, a kd-tree requires 4 ∗m + 1 + 2 ∗ 8 bytes to store one node and
n ∗ (4 ∗m + 1 + 2 ∗ 8) bytes for a complete data set of n tuples. For instance, a kd-tree over
one Million ten-dimensional points requires approximately 54.36MB of memory space, which,
compared to the raw size of the data set, equals an index overhead of 16.21MB.
When executing MDRQ, the search algorithm recursively traverses the kd-tree from the root

to the leaf nodes. At each visited node, two actions are conducted. First, the stored data object
is added to the result set if it is contained in the query range. Second, the delimiter dimension
of the stored data object is compared with the corresponding dimension of the query object to

1PostgreSQL: Documentation: 10: 11.2. Index Types, https://www.postgresql.org/docs/current/
static/indexes-types.html, Last access: August 29, 2018.

2KNN | SAP HANA Platform | SAP Help Portal, https://help.sap.com/viewer/
2cfbc5cf2bc14f028cfbe2a2bba60a50/1.0.12/en-US/f2440c6b3daa41dd8cc9fc5b64805a68.
html, Last access: August 29, 2018.

11

https://www.postgresql.org/docs/current/static/indexes-types.html
https://www.postgresql.org/docs/current/static/indexes-types.html
https://help.sap.com/viewer/2cfbc5cf2bc14f028cfbe2a2bba60a50/1.0.12/en-US/f2440c6b3daa41dd8cc9fc5b64805a68.html
https://help.sap.com/viewer/2cfbc5cf2bc14f028cfbe2a2bba60a50/1.0.12/en-US/f2440c6b3daa41dd8cc9fc5b64805a68.html
https://help.sap.com/viewer/2cfbc5cf2bc14f028cfbe2a2bba60a50/1.0.12/en-US/f2440c6b3daa41dd8cc9fc5b64805a68.html

2 Fundamentals

age (years)

bo
dy

 w
ei

gh
t (

kg
)

20 40 60

50
10

0
15

0

(25,75)

del=0

del=1(20,100) (50,80)

(31,120)

(40,90)(57,65)

Figure 2.1: A kd-tree (right) indexing six points from a two-dimensional data set (left).

determine which subtrees need to be taken to continue searching. Note that, unlike for point
queries, range queries usually have to visit multiple parallel subtrees of a kd-tree.
Traditionally, kd-trees can only be balanced3 by manually rebuilding the complete index

structure. However, there exist a number of variants that can keep a kd-tree always balanced,
often at the cost of more complicated update operations, e. g., the Bkd-tree [Procopiuc et al.
2003], the divided kd-tree [Kreveld et al. 1991], or the holey brick-tree [Lomet et al. 1990].
When inserting new data, the inner nodes are navigated to find a leaf. This leaf node will

become the parent node of the new node. No rebalancing operations, as in a B-tree, are needed.
When deleting data from a kd-tree, the inner nodes are navigated to find the node, X, that
holds the to-be-deleted object. If X is a leaf node, it can be removed. If X is an inner node,
two techniques can be used to perform the deletion. First, we could recreate the according part
of the kd-tree, while skipping X. Second, we could replace X with a replacement node, R, that
is chosen from the children of X. We could either choose the node from the right sub tree of X
having the minimal value in the delimiter dimension of X, or we could choose the node from the
left sub tree of X having the maximal value in the delimiter dimension of X. We would have to
delete R recursively.
Since the initial proposal by Bentley more than forty years ago, researchers have proposed

different kd-tree variants tailored to different needs. Adaptive kd-trees [Bentley et al. 1979] make
the partitioning of kd-trees more sensitive to the indexed data and relax the constraints of kd-
trees with regards to delimiter dimensions and splitting hyperplanes. Adaptive kd-trees store all
data objects in leaf nodes and choose delimiter dimensions such that the tree is balanced, which
can improve the worst case complexity of search operations but hinders dynamic updates. The

3Balanced search trees keep all leaves at the same depth.

12

2.2 Multidimensional Access Methods

K-D-B-tree [Robinson 1981], the Bkd-tree [Procopiuc et al. 2003], and the holy brick-tree [Lomet
et al. 1990] adapt the concepts of kd-trees to external memory. Zhou et al. [K. Zhou et al. 2008]
exploit graphic processors to build up kd-trees in parallel. Similarly, Choi et al. [Choi et al. 2010]
present parallel construction algorithms for multi-core CPUs. The extended kd-tree [Chang et
al. 1981] and the skD-tree [Khamayseh et al. 2007] are variants of the kd-tree that can handle
spatially-extended objects.
Traditional kd-trees are main-memory index structures by design, because they employ small

nodes holding only a single data object, and because they do not optimize for disk I/O. In this
thesis, we study the kd-tree and compare it to our own approach.

K-D-B-tree

K-D-B-trees [Robinson 1981] integrate the concepts of kd-trees and B+-trees [Comer 1979].
K-D-B-trees organize multidimensional point objects in a search tree, employing a partitioning
technique similar to kd-trees. However, they use inner nodes only for partitioning and store data
solely in leaves. As K-D-B-trees optimize for disk I/O, they tailor node sizes to disk block sizes,
allowing inner nodes to hold multiple delimiters and leaf nodes to keep multiple data objects.
The search engine Apache Lucene4 uses a variant of the K-D-B-tree5, the Bkd-tree [Procopiuc
et al. 2003], to index spatial data.
In the optimal case, when all nodes are completely occupied, K-D-B-trees require n/B disk

blocks of size B to store a data set of n tuples. In contrast, in the worst case, K-D-B-trees
require n/(B ∗ (f/B)) disk blocks, assuming that leaves are filled with at least f entries. Note
that, in contrast to B+-trees, K-D-B-tree typically do not guarantee a minimum node fill degree.
When executing search queries, K-D-B-trees navigate the inner nodes to determine those leaf

nodes that can possibly hold data objects satisfying the query. These leaf nodes are scanned to
find the true query results.
K-D-B-trees keep their search tree always balanced. They require rebalancing operations, such

as node splits, to cope with overflowing and underflowing nodes. In K-D-B-trees, rebalancing
operations can involve multiple paths between different leaf nodes and the root, recursively
splitting several nodes.
Similar to kd-trees, insertions are implemented by locating the leaf node that is responsible for

a new data object. If the leaf node has free space, the new data object is appended. Otherwise,
the node needs to be split. If no minimal requirements on node occupancy are specified (f = 0),
deletions can be implemented by removing the to-be-deleted object from the according leaf node.
Otherwise, multiple nodes have to be merged when underflows occur.
Researchers have presented several variants of the K-D-B-tree. The Bkd-tree [Procopiuc et al.

2003] is based on a static implementation of the K-D-B-tree. It achieves high space efficiency
at the cost of more complicated updates, which require to rebuild the entire index structure.
However, Bkd-trees strongly reduce the cost of such rebuilds by employing multiple instances

4Apache Lucene - Welcome to Apache Lucene, https://lucene.apache.org, Last access: August 29, 2018.
5Uses of Class org.apache.lucene.index.PointValues (Lucene 7.2.1 API), https://lucene.apache.org/
core/7_2_1/core/org/apache/lucene/index/class-use/PointValues.html, Last access: August
29, 2018.

13

https://lucene.apache.org
https://lucene.apache.org/core/7_2_1/core/org/apache/lucene/index/class-use/PointValues.html
https://lucene.apache.org/core/7_2_1/core/org/apache/lucene/index/class-use/PointValues.html

2 Fundamentals

of the static K-D-B-tree, where each instance indexes a different portion of the data. Conse-
quently, updates are implemented by periodically rebuilding a subset of these instances (instead
of rebuilding all instances). The hB-tree [Lomet et al. 1990] improves the insert algorithm of
the K-D-B-tree, which, in the worst case, has to consider multiple paths between different leaf
nodes and the root node when splitting nodes. In contrast, the hB-tree can restrict node splits
to a single path in the search tree.
K-D-B-trees target external memory as storage layer and are less beneficial when deployed in

main memory. Therefore, we do not consider K-D-B-trees in this thesis.

Quadtree

Quadtrees [Finkel et al. 1974] are very similar to kd-trees, but let inner nodes split the data
space in all dimensions, whereas kd-trees split in only one dimension. Originally, quadtrees were
proposed for two-dimensional data sets that are handled in four-ary search trees, recursively
splitting the data space into four subregions, but they can also be applied to higher dimen-
sionalities by increasing the fan out. Nodes can hold up to four entries, each representing a
subregion. If a subregion contains only one object, the node stores the data object in the corre-
sponding entry, without the need for a further tree level. Otherwise, it holds a pointer to a child
node at the next lower tree level, which is responsible for all objects of the subregion. Quadtrees
are included in PostgreSQL6.
The space requirements of quadtrees depend on the node occupancies. If most nodes are

completely occupied, quadtrees require similar amounts of space as kd-trees. However, if many
nodes contain only one data object, although they reserve space for four entries, quadtrees waste
a lot of memory space.
When executing MDRQ, quadtrees navigate the search tree to prune those regions that do

not contain any matching objects. In particular, at each node, the search algorithms compares
all four entries, i. e., subregions, with the query object. If an entry is a data object that satisfies
the range boundaries, it is added to the result set. Otherwise, it is ignored. If an entry is a
region object that intersects the range query object, the search algorithm visits the child node.
Otherwise, it is ignored.
Similar to kd-trees, the structure of quadtrees strongly depends on the insertion order.

Quadtrees do not guarantee to be balanced, but allow data objects to be stored at any tree
level. As unbalanced quadtrees can lead to a poor space utilization, it may be useful to period-
ically perform rebuilds.
Insertions are implemented by locating the node that is responsible for the region of the data

space that the new point belongs to. If the node has free space, the new point can be inserted
and the insertion procedure terminates. Otherwise the node needs to be split to allocate new
space. When deleting an object from a quadtree, we first locate the node that holds the object
and delete it there. If the node becomes empty, we can remove it including the reference from
the parent node. Note that a deletion of a single object may cause the removal of multiple
nodes.

6PostgreSQL: Documentation: 10: 11.2. Index Types, https://www.postgresql.org/docs/current/
static/indexes-types.html, Last access: August 29, 2018.

14

https://www.postgresql.org/docs/current/static/indexes-types.html
https://www.postgresql.org/docs/current/static/indexes-types.html

2.2 Multidimensional Access Methods

Figure 2.2: A PH-tree indexing the bitstrings of three two-dimensional points: (1, 8), (3, 8),
(3, 10). The bitstrings are: (0001, 1000), (0011, 1000), (0011, 1010). The figure is
taken from [Zäschke et al. 2014].

When increasing the fan out of inner nodes, quadtrees can handle more than two dimensions.
For instance, in an octree [Meagher 1982], inner nodes divide the data space into eight partitions,
which allows to handle three-dimensional point objects.
Quadtrees use a simple memory layout that can be easily adapted to main memory. However,

in this thesis, we consider kd-trees instead of quadtrees, because they show better support
for higher dimensionalities. Quadtrees typically become very inefficient for more than three
dimensions, because it is likely that many nodes remain sparsely filled, especially when data are
dynamically inserted.

PH-tree

The PATRICIA-hypercube-tree (PH-tree) [Zäschke et al. 2014] is a recent MDIS that merges
the concepts of quadtrees [Finkel et al. 1974] with prefix sharing [Morrison 1968] and bitstream
serialization [Germann et al. 2009] to achieve high space efficiency when stored in main memory.
Technically, PH-trees are radix trees that index the bitstrings of multidimensional data objects.
For the one-dimensional domain, where objects consist of single values, they hence resemble
binary PATRICIA-tries [Morrison 1968]. For the multidimensional domain, inner nodes of PH-
trees split the data space in all m dimensions, similar to quadtrees. Thus, nodes hold up to 2m
entries and the fan out of inner nodes equals 2m. PH-trees use an hypercube-based addressing
scheme when navigating inner nodes to efficiently find child nodes of interest.
As opposed to most previously discussed access methods, the structure of PH-trees does not

depend on the order of insertions, a property inherited from PATRICIA-tries. Furthermore, the
depth of the tree does not depend on the number of indexed objects, but on the length of the
indexed bitstrings. For instance, when using four-byte floating-point values to implement data
objects, the resulting PH-tree has a maximum depth of 32 and contains 232m leaf nodes at most.
Figure 2.2, which is taken from [Zäschke et al. 2014], illustrates an exemplary PH-tree indexing
three two-dimensional points.
Similar to PATRICIA-tries, PH-trees can apply compression techniques to increase their space

efficiency. When multiple bitstrings have identical prefixes, PH-trees merge redundant informa-
tion and store them only once. In the example from Figure 2.2, all points share the prefix 00 in

15

2 Fundamentals

the first dimension and the prefix 10 in the second, which allows the PH-tree to compress the
root node.
Executing a multidimensional range query over a PH-tree consists of two steps: (1) Use a

point query7 to search for the lower boundary of the range query. If the query succeeds, the
found entry resembles the smallest object matching the range query. Otherwise, we end up at a
node that is used as starting point for the second step. (2) All successive nodes need to be visited
to find the remaining objects satisfying the range boundaries. As for most access methods, the
complexity of this step correlates negatively with the selectivity of the query.
By default, PH-trees are unbalanced search trees. However, imbalances are limited, because

the depth of a PH-tree depends on the size of the data type used to implement data objects.
Update operations are implemented similarly to PATRICIA-tries and need to touch at most

two nodes, because PH-trees do not require rebalancing.
PH-trees belong to the tiny group of MDIS that are optimized to be stored in main memory.

However, they cannot be considered as general-purpose MDIS and are often outperformed by
traditional MDIS approaches [Wang et al. 2016], like R-trees, despite these approaches were
originally designed for disk storage. PH-trees excel for low-dimensional data sets, but show a
vastly decreasing space efficiency with an increasing dimensionality. In this thesis, we consider
the PH-tree for data sets that can be completely indexed in main memory, but we omit it for
experiments where the space requirements of the PH-tree exceed the memory capacities of our
evaluation machine.

VA-file

Vector approximation-files (VA-files) [Weber et al. 1998] combine the concepts of grid files [Niev-
ergelt et al. 1984] with partitioned hashing methods [Ullman 1988]. VA-files can be considered
as enhanced scans, because they can apply pruning techniques while employing a sequential
access pattern. According to hash functions chosen at initialization time, VA-files divide an m-
dimensional data space into 2b cells of equal size. Each cell is identified by a distinct encoding
of b bits that is used to approximate the contained data objects. Thus, all objects belonging to
the same cell share the same approximation value. VA-files manage data objects in an array,
which we call data_list. On top of that, they employ a list of all approximation values, which
we call approx_list.
As every approximation of a cell requires b bits, VA-files incur an indexing overhead of 2b ∗ b.

For instance, when using ten bits, the indexing overhead equals 1 KB, and when using 20 bits,
the indexing overhead equals 2.5MB. Therefore, the space efficiency of VA-files strongly depends
on how many bits are needed for approximation. In turn, the approximation length (b) should
be chosen depending on the size of the data set. When using the same cell capacity, large data
sets require more bits for approximation than small data sets. For instance, we would need
ten bits to partition one Million objects into cells of size 1, 000, whereas four Thousand objects
would require only two bits.
Executing MDRQ on VA-files requires multiple steps: (1) The lower and upper boundaries of

7The complexity of point queries depends on the number of investigated nodes, w, and the dimensionality of
the data space, m: O(w ∗ m).

16

2.2 Multidimensional Access Methods

the range query object are approximated using the encoding values of the cells of the data space
they belong to. (2) The search algorithm scans approx_list to determine the cells that intersect
the range query object. (3) The search algorithm scans data_list to find the true results.
By default, VA-files are bulk loaded with all data objects. Bulk loading is necessary, because

VA-files require knowledge about the distribution of the data to evenly distribute the data
objects among the cells. New objects can be inserted by first obtaining their approximation and
subsequently inserting them into data_list. Existing data can be deleted by first obtaining their
approximation and subsequently removing them from data_list. When inserting new objects
that follow a data distribution grossly different from the one initially used to determine the
hash functions, the partitioning becomes unsuitable. Thus, VA-files do not support updates
very efficiently.
Weber et al. [Weber et al. 2000] proposed a parallel variant of the VA-file that exploits networks

of workstations to accelerate search queries.
For historical reasons, as most MDIS, VA-files were originally designed for systems with small

main memories and large disks. They keep approximations in main memory, but manage data
objects on disk. However, on modern server machines, main memory capacities are much larger,
allowing to store both approximations and data in memory. Moreover, the sequential access
pattern of VA-files may lead to a high cache efficiency on modern CPUs, making it a good
choice for in-memory indexing. In our experiments, we consider the VA-file.

Space-filling curves

Space-filling curves present a radically different approach to multidimensional indexing than
the methods discussed in the previous sections [Sagan 2012]. A space-filling curve covers the
complete m-dimensional data space and maps it into the one-dimensional domain. They can
be used to transform multidimensional point objects into one-dimensional values, which can be
indexed with traditional one-dimensional index structures, like B-trees. Prominent examples
are the UB-tree [Bayer 1997] and z-ordering [Orenstein et al. 1984]. In most cases, space-filling
curves are a viable alternative for point queries, but lack efficiency for MDRQ, which are difficult
to transform into the one-dimensional domain [Gaede et al. 1998]. Especially partial-match range
queries are challenging, because most space-filling curves treat all dimensions identical. Due to
our strong focus on range queries, we do not consider techniques based on space-filling curves
in this thesis.

2.2.3 Spatial Access Methods (SAM)

Spatial access methods (SAM) store and search spatially-extended objects, like rectangles. They
typically use minimum bounding rectangles (MBR) to partition a data space into multiple
regions, which can be indexed with search trees. SAM are especially useful for geographical

17

2 Fundamentals

database systems, e. g., PostGIS8, Oracle Spatial9, SpatiaLite10, or SpaceBase11. Although
SAM can be used to handle multidimensional points [Kanth et al. 2002], they are typically less
efficient than PAM for such data.
As shown by Seeger and Kriegel [Seeger et al. 1988], SAM can be considered as PAM that apply

one of the following three techniques to add support for spatially-extended objects: (1) Over-
lapping regions allows indexing objects that are enclosed by multiple index regions, which is in
contrast to PAM dividing data objects into disjoint partitions. As a consequence, insert algo-
rithms must decide between multiple index buckets for storing an object. (2) Clipping prohibits
overlapping index regions, but divides a spatially-extended object into multiple simpler objects,
which are stored in one or multiple index buckets. (3) Transformation maps spatially-extended
objects into point objects of higher dimensionality that can be managed with PAM.
The following sections present selected SAM, namely the R-tree [Guttman 1984], the R∗-

tree [Beckmann et al. 1990] and the R+-tree [Sellis et al. 1987]. We also sketch SAM approaches
further away from our own research, e. g., the X-tree [Berchtold et al. 1996], or the M-tree [Ciac-
cia et al. 1997]. For a broader overview, we refer the interested reader to excellent surveys,
like [Gaede et al. 1998] or [C. Böhm et al. 2001].

R-tree

R-trees [Guttman 1984] manage spatially-extended objects in a balanced search tree. Inner
nodes recursively partition the data space by storing minimum bounding rectangles (MBR),
which define the minimal enclosure of all objects managed in the corresponding subtree. The
granularity of MBR increases with the depth of the tree. Multiple MBR of the same inner
node can possibly overlap, because R-trees apply the overlapping regions technique. However,
to maximize the pruning capabilities of the search algorithms, it is crucial that overlaps between
different MBR belonging to the same tree level are as small as possible. Otherwise, many
different paths (or sub trees) would need to be considered when evaluating a search query. Like
for most search trees, the structure of R-trees depends on the order of the insertions. R-trees
share multiple commonalities with B+-trees [Comer 1979]: (1) Data objects are exclusively
managed in leaf nodes, while inner nodes are only used for pruning. (2) The search tree is
height balanced, i. e., all leaf nodes are found at the same tree level. (3) The search tree is
designed to be stored on disk and therefore optimizes data transfers between external memory
and main memory. The sizes of the tree nodes are chosen depending on the sizes of the disk
blocks: One inner or leaf node fills an entire disk block. Today, R-trees are included in many

8PostGIS - Spatial and Geographic Objects for PostgreSQL, https://postgis.net/, Last access: August
29, 2018.

9Oracle Spatial and Graph, http://www.oracle.com/technetwork/database/options/
spatialandgraph/overview/index.html, Last access: August 29, 2018.

10SpatiaLite: SpatiaLite, https://www.gaia-gis.it/fossil/libspatialite/index, Last access: Au-
gust 29, 2018.

11Parallel Universe, http://www.paralleluniverse.co/spacebase/, Last access: August 29, 2018.

18

https://postgis.net/
http://www.oracle.com/technetwork/database/options/spatialandgraph/overview/index.html
http://www.oracle.com/technetwork/database/options/spatialandgraph/overview/index.html
https://www.gaia-gis.it/fossil/libspatialite/index
http://www.paralleluniverse.co/spacebase/

2.2 Multidimensional Access Methods

age (years)

bo
dy

 w
ei

gh
t (

kg
)

20 40 60

50
10

0
15

0

MBR 1
MBR 2

MBR 3

MBR 4

MBR 5

MBR 6

MBR 1 MBR 2

MBR 3 MBR 4

(20,100) (25,75) (31,120)

MBR 5 MBR 6

(40,90) (50,80) (57,65)

Figure 2.3: An R-tree (right) managing six points from a two-dimensional data set (left).

major database systems, e. g., MySQL12, PostgreSQL13, and Oracle14.
Figure 2.3 illustrates an R-tree indexing the same six two-dimensional points as the kd-tree

shown in Figure 2.1. In this example, inner nodes can hold up to two MBR and leaf nodes can
store up to two data objects.
In the following analysis of the space requirements of R-trees, we assume that inner nodes

and leaf nodes have the same capacity: Inner nodes hold up to k MBR and leaf nodes store
up to k data objects. MBR are defined by two m-dimensional vectors, one resembling the
lower left and another one resembling the upper right corner. Furthermore, we assume that the
implementation uses arrays of four-byte floating-point values for MBR and data objects. Hence,
one MBR requires 2 ∗ (m ∗ 4) bytes of space and one data object needs m ∗ 4 bytes of space.
An optimally-filled R-tree of height h has

∑h−1
i=0 k

i inner nodes and n/k leaf nodes. Overall, it
requires

∑h−1
i=0 k

i ∗ (k ∗ 2 ∗m ∗ 4) + (n/k) ∗ (k ∗m ∗ 4) bytes of space to manage n m-dimensional
data objects. For instance, when using a node capacity of k = 50 and managing one Million
ten-dimensional points in an R-tree of height 3, employing an R-tree induces an index overhead
of 47.88MB - 38.15MB = 9.73MB compared to the raw data set.
R-trees execute MDRQ by starting at the root node and hierarchically traversing the tree

down to the leaves. At each inner node, the algorithm intersects the query object with the
stored MBR to determine those subtrees that may include data objects matching the query; all

12MySQL :: MySQL 5.7 Reference Manual :: 11.5.9 Creating Spatial Indexes, https://dev.mysql.com/doc/
refman/5.7/en/creating-spatial-indexes.html, Last access: August 29, 2018.

13PostgreSQL: Documentation: 10: 37.14. Interfacing Extensions To Indexes, https://www.postgresql.
org/docs/current/static/xindex.html, Last access: August 29, 2018.

14Spatial Concepts, https://docs.oracle.com/html/A88805_01/sdo_intr.htm, Last access: August 29,
2018.

19

https://dev.mysql.com/doc/refman/5.7/en/creating-spatial-indexes.html
https://dev.mysql.com/doc/refman/5.7/en/creating-spatial-indexes.html
https://www.postgresql.org/docs/current/static/xindex.html
https://www.postgresql.org/docs/current/static/xindex.html
https://docs.oracle.com/html/A88805_01/sdo_intr.htm

2 Fundamentals

other subtrees are pruned. Whenever a leaf node is reached, all data objects contained in the
MDRQ search object are added to the result set.
R-trees are balanced search trees that keep all leaves at the same depth. When inserting or

deleting data, leaf nodes can overflow or underflow. Overflowing leaf nodes are split into two new
nodes and underflowing leaf nodes are merged with neighboring nodes. In general, rebalance
operations may involve multiple paths between different leaf nodes and the root node. R-trees
provide two heuristics for splitting overflowing nodes, which both aim at reducing the coverage
area of the new nodes:

• The linear split algorithm first determines those two objects, which have the largest dis-
tance, and assigns each object to one of the new nodes. Next, it distributes each of the
remaining objects to the node that requires the least area increase.

• The quadratic split algorithm first determines those two objects that would maximize the
MBR area when inserted into the same node. Each of these objects is added to one of the
two new nodes. Then, the remaining objects are assigned to the new nodes such that the
increase of the respective MBR area is minimized.

Over the last decades, various variants of the R-tree have been proposed. The R∗-tree [Beck-
mann et al. 1990] and the R+-tree [Sellis et al. 1987] are two popular R-tree variants aiming at
reducing MBR overlap. We discuss them in detail in the following sections. The P-tree [Jagadish
1990] uses polyhedral search regions and polyhedral bounding rectangles instead of rectangular
regions and MBR. Hilbert R-trees [Kamel et al. 1994] order data objects by their Hilbert curve
to improve the partitioning and respectively the coverage of MBR. X-trees [Berchtold et al. 1996]
are based on R-trees but target data of very high dimensionality, which are, for instance, found
in multimedia databases. Leutenegger et al. [Leutenegger et al. 1997] study different R-tree
packing variants, e. g., the Hilbert R-tree, and introduce a new approach, the sort-tile-recursive
algorithm. The CR-tree [K. Kim et al. 2001] compresses MBR to enable inner nodes to handle
more entries, which effectively increases the tree fan out. Priority R-trees [Arge et al. 2004]
use novel bulk-loading techniques to build asymptotically optimal R-trees. However, dynamic
updates deteriorate the query efficiency of these R-trees. Further bulk-insert approaches have
been presented [Arge et al. 2004; Qi et al. 2018].
Although R-trees were originally designed to be stored on disk, we can adapt them to main

memory. Instead of tailoring the sizes of the tree nodes to the sizes of disk pages, we could choose
node capacities based on the sizes of CPU cache lines, which improves cache line utilization and
reduces the number of data accesses.

R∗-tree

The R∗-tree [Beckmann et al. 1990] is a variant of the R-tree that aims to reduce the overlap
of MBR and improves the robustness towards different insertion orders. The R∗-tree uses the
same search and deletion algorithms as the original R-tree, but employs a fundamentally different
technique for handling overflowing nodes. Although R∗-trees typically drastically reduce MBR
overlap, they do not guarantee to prevent it and therefore belong to the group of SAM employing

20

2.2 Multidimensional Access Methods

overlapping regions. SQLite15 uses R∗-trees to index and search spatial data.
When a node overflows, the R∗-tree first aggressively reinserts parts of the entries (typically

around 30%), a technique called forced reinsert, which may postpone the necessary node split.
Forced reinserts move entries between neighboring nodes, effectively reducing overlap. Eventu-
ally, if the forced reinsertion also causes an overflow, the according node is split.
R∗-trees use none of the original split techniques, but propose a novel, more efficient but

also more complex approach to split overflowing nodes. While the linear and quadratic split
heuristics of the R-tree primarily aim to minimize the coverage (or area) of the new MBR, the
split technique of the R∗-tree follows multiple further goals associated with certain desirable
effects: (1) A minimal overlap between MBR at the same tree level (or granularity) reduces the
number of sub trees that need to be considered when evaluating search queries. (2) A minimal
margin of MBR leads to a more quadratic shape of the MBR that is especially preferable
for quadratic query rectangles. (3) An optimal space utilization reduces the tree height and
effectively minimizes the query cost. In particular, the R∗-tree chooses the dimension of the
data space as split axis for the objects of the overflowing node that minimizes the perimeters of
the new MBR.
The techniques of R∗-trees come at the cost of an higher insert complexity [Hoel et al. 1992],

but effectively reduce the coverage and overlap of the MBR typically resulting in a better search
performance. Theoretically, R∗-trees and regular R-trees have identical space requirements.
In practice, enabled by forced reinserts, R∗-trees often achieve a better space utilization than
R-trees [Beckmann et al. 1990].
In our experiments with MDRQ, we consider the R∗-tree as representative of SAM, because

it achieves a very high search and space efficiency. We adapt it to an in-memory storage by
tailoring the sizes of the nodes to the sizes of the cache lines.

R+-tree

The R+-tree [Sellis et al. 1987] is another popular R-tree variant. Similar to R∗-trees, R+-trees
aim to improve the search efficiency of R-trees by avoiding MBR overlap. Contrary to R∗-trees,
which strongly reduce overlap, R+-trees completely prevent overlap between MBR at the same
tree level. R+-trees divide data objects into disjoint partitions and therefore belong to the group
of SAM employing clipping.
When inserting data into an R+-tree, the insertion algorithm determines the number of MBR

(or leaf nodes) that the new object intersects with. If the new data object intersects with only
a single MBR, it can be directly inserted into the corresponding leaf node. Otherwise, the data
object is split into multiple non-overlapping sub-rectangles, which are inserted into different
leaves.
Depending on the concrete data set, R+-trees have higher space requirements than R-trees,

because they may need to store one data object in multiple leaf nodes.
The search algorithms of R+-trees and R-trees behave very similar. R+-trees decompose a

search object into disjoint sub-regions, which are evaluated on the search tree. When processing
MDRQ, R+-trees may need to consider less sub trees than R-trees, because MBR do not overlap.
15The SQLite R∗Tree Module, https://sqlite.org/rtree.html, Last access: August 29, 2018.

21

https://sqlite.org/rtree.html

2 Fundamentals

In the case of point queries, R+-trees must consider only one single search path, whereas R-trees,
in the case of MBR overlap, may need to follow multiple search paths.
R+-trees handle overflowing nodes similarly to regular R-trees. Though, splits of inner nodes

do not only affect upper tree levels, but may also propagate to lower tree levels. Downward
propagation of node splits is necessary, because R+-trees require that objects at lower tree
levels are completely covered (or enclosed) by their parent objects at upper tree levels. Thus,
when such a parent object gets split, the split must be recursively pushed down to the lower
tree levels.
R+-trees can be adapted to a main-memory storage using the same technique that we proposed

for R-trees, i. e., by tailoring the sizes of the tree nodes to the sizes of the cache lines. As the
benefits of R+-trees, which mainly apply to point queries, come at the cost of increased space
requirements, we do not consider them in this thesis.

Other Spatial Access Methods

In the following, we sketch other SAM approaches further away from our own research: (1) ap-
proaches for high-dimensional data, and (2) techniques targeting metric spaces.
In this thesis, we focus on multidimensional point data of low and moderate dimensionality

(between two and 100 dimensions). Motivated by multimedia database systems storing feature
vectors derived from objects, like images or videos, there exist different techniques to handle
data of very high dimensionality (up to thousands of dimensions) [C. Böhm et al. 2001]. X-
trees [Berchtold et al. 1996] are similar to R∗-trees but introduce super nodes, which are larger
than regular tree nodes and effectively reduce MBR overlap in the case of high-dimensional data
spaces. The Sphere/Rectangle-tree (SR-tree) [Katayama et al. 1997] is another SAM addressing
high-dimensional data that integrates the concepts of R∗-trees and similarity search-trees (SS-
trees) [White et al. 1996], which employ bounding spheres instead of bounding rectangles. SR-
trees specify regions by intersecting bounding spheres and bounding rectangles. Compared to
SS-trees, SR-trees typically achieve smaller regions (in terms of coverage) and also reduce the
overlap between different regions. Compared to R∗-trees, SR-trees are more efficient for high-
dimensional data spaces. The Telescope Vector-tree (TV-tree) [Lin et al. 1994] considers only
a subset of the dimensions of a data space for indexing and can therefore efficiently handle
high-dimensional data while requiring few space for the index. Though, various experiments
have shown that TV-trees are outperformed by other approaches, like X-trees [Berchtold et al.
1996].
Sometimes it is not feasible to transform data objects into features vectors, which makes

SAM, such as R-trees, R∗-trees, or R+-trees, useless. However, it may still be possible to derive
distances between different objects. For such cases, various MDIS have been proposed that
index the distances between the objects instead of the data objects themselves. The vantage
point-tree (VP-tree) [Uhlmann 1991; Yianilos 1993] is technically a binary search tree that
recursively partitions data objects by choosing one of the objects as pivot element and dividing
the remaining objects into two partitions depending on their distance to the pivot element. The
generalized hyperplane-tree (GH-tree) [Uhlmann 1991] is another SAM similar to the VP-tree.
It is also a binary search tree, but uses two pivot elements at each inner node, instead of only
one. Consequently, the left sub tree contains all objects that are closer to the left pivot element,

22

2.3 Index Structures on Modern Hardware

and the right sub tree holds all objects that are closer to the right pivot element. The geometric
near-neighbor access tree (GNAT) extends the concepts of GH-trees by using more than two
pivot elements at each inner node, which improves the search efficiency but also increases the
build cost. Another popular approach to indexing metric spaces is the paged metric tree (M-
tree) [Ciaccia et al. 1997], which is very similar to the VP-tree but explicitly targets settings,
where the complete index is stored in external memory.

2.3 Index Structures on Modern Hardware

Most index structures for database systems were originally designed for machines with single-core
CPUs, small main memory capacities and comparatively large disks. They provide only single-
threaded implementations and store the indexed data in the external memory. Main memory
is solely used for buffering disk accesses. For instance, VA-files manage their approximations in
main memory, but store data objects on disk.
This section studies how to adapt index structures to the features of current hardware archi-

tectures. We focus on (a) using main memory for exclusive data storage, (b) accelerating search
operators with SIMD instructions, and (c) exploiting the multithreading capabilities of modern
CPUs. Note that the term modern hardware includes further recent hardware trends, such as
high-speed networks [Rödiger et al. 2015], or highly-parallel co-processors, e. g., graphics pro-
cessing units (GPU) [Bakkum et al. 2010], or field-programmable gate arrays (FPGA) [Teubner
et al. 2013]. However, we restrict our research to hardware features available in server setups
commonly used for general-purpose computing.

2.3.1 Modern Memory Hierarchy

Today, main memories [Drepper 2007; Bryant et al. 2003] are large enough to entirely hold
most databases, turning it into the number one choice for data storage [Plattner et al. 2011].
Concurrently, the computing capabilities of processors have rapidly advanced, outpacing the
improvements in memory latency. Due to the increasing parallelism of modern CPUs, the bus
between the CPU caches and the main memory becomes a bottleneck [Manegold et al. 2000]
and must be taken into account when optimizing data accesses.
CPUs execute instructions, e. g., arithmetic operations, on data held in the registers installed

on the CPU. Thus, before the actual operation can be applied, the required data need to
be loaded from main memory. The basic unit for transfers between the processor and the
main memory are cache lines, which, today, typically consist of 64 bytes. The memory bus
induces a high access latency. To overcome this obstacle, modern CPUs feature a hierarchy of
different on-die caches. These cache hierarchies usually consist of three levels, that typically
hold the most-recently accessed cache lines [Drepper 2007], although other replacement policies
are possible.
Higher levels of the cache hierarchy contain subsets of data stored in lower levels. Hence,

the level 3 (L3) cache resembles a subset of the main memory, the level 2 (L2) cache resembles
a subset of the L3 cache, etc. When requesting a cache line, the processor first probes the
highest cache level (L1) and, if the cache does not contain the cache line, hierarchically moves

23

2 Fundamentals

CPU

Main Memory

Memory Bus

CL CL CL CL CL CL

Main Memory

Shared Last Level Cache (L3)

Core 0
RegistersRegisters

L1 Cache

L2 Cache

Core 1
RegistersRegisters

L1 Cache

L2 Cache

(a) CPU architecture.

Memory Layer Capacity Latency Bandwidth
(for random reads)

L1 Cache 32 KB 4-5 cycles 0.5 cycles per access

L2 Cache 256 KB 12 cycles 2 cycles per cache line

L3 Cache 8 MB 40 cycles 5 cycles per cache line

Main Memory terabytes 42 cycles 5.9ns per cache line
+ 51 ns

(b) Performance numbers.

Figure 2.4: Memory hierarchy of Intel Skylake CPUs (Source: https://www.7-cpu.com/
cpu/Skylake.html, Last access: August 29, 2018).

down to the lower levels. Accessing a cache line that is not featured in the last level cache
(LLC), which typically equals the L3 cache on current processors, requires a main memory
access to load the requested cache line via the memory bus into the CPU caches. Compared to
cache misses occurring at upper levels, LLC misses are the most expensive in terms of latency
(or performance). As a consequence, main-memory index structures aim to work as much as
possible on data held in on-die CPU caches. Figure 2.4a illustrates the memory hierarchy [Jacob
et al. 2010] of Intel’s Skylake microarchitecture, and Figure 2.4b provides according performance
numbers16.
Modern operating systems execute processes within a virtual address space for multiple rea-

sons, e. g., to separate individual processes from each other, and to unnoticedly swap memory
pages to disk when needed. For each process, an operating system manages the mappings be-
tween virtual memory addresses and physical memory pages in a page table that is stored in
main memory. When programs access data using a virtual address, for instance when navigating
a search tree, the memory management unit (MMU) scans the page table to find the physical
location. Modern CPUs accelerate address translation by integrating a translation lookaside
buffer (TLB). The TLB resembles a cache, storing the most-recent translations in a fast, low-
latency memory integrated on the die. Before accessing the page table, the MMU probes the
TLB and checks whether the requested virtual memory address has recently been translated. If
the address is found, a TLB hit occurs and the MMU can return the desired translation. If the
address is not found, a TLB miss occurs and the MMU must scan the page table stored in the
comparatively slow main memory.
When employing index structures in main memory, various aspects must be considered to

achieve high performance and fully leverage the capabilities of modern processors: (1) Navigation
of the index structure should access data held in higher, faster levels of the memory hierarchy as
often as possible. Especially, costly transfers between the main memory and the LLC need to be

16Source: https://www.7-cpu.com/cpu/Skylake.html, Last access: August 29, 2018.

24

https://www.7-cpu.com/cpu/Skylake.html
https://www.7-cpu.com/cpu/Skylake.html
https://www.7-cpu.com/cpu/Skylake.html

2.3 Index Structures on Modern Hardware

avoided. (2) As data are always transferred at the granularity of cache lines, search algorithms
must utilize as much of a cache line’s content as possible to minimize data transfers. (3) The
evaluation of search queries should produce as few TLB misses as possible.
The most important technique to achieve high cache efficiency is employing data layouts that

enable search algorithms to sequentially traverse over the indexed data. When accessing a cache
line, modern processors also prefetch the successive cache line, a technique called one block
lookahead prefetching [Smith 1982]. A sequential access pattern makes use of the prefetched
cache line and therefore effectively prevents LLC and TLB misses. To this end, pointer-based
implementations of search trees can be linearized to reduce random accesses [Schlegel et al.
2009]. Furthermore, the data layout of index structures should be aligned to the sizes of cache
lines. For instance, search trees can adjust the capacity of their nodes to the sizes of the cache
lines [Rao et al. 1999], which maximizes cache line utilization and reduces the number of data
transfers.
In this thesis, we often compare different index structures with each other in terms of their

cache efficiency. For instance, we may investigate how many LLC misses are produced per exe-
cuted range query. To this end, modern CPUs provide hardware performance counters17, which
are dedicated registers installed on the processor that sample the occurrences of performance-
related events, like cache misses, cache accesses, or branch mispredictions. We use the Perfor-
mance Application Programming Interface (PAPI) [Mucci et al. 1999], which provides an uniform
interface to different CPU families, to obtain access to the hardware performance counters of
the evaluation machine.

2.3.2 Single Instruction Multiple Data (SIMD)

Single Instruction Multiple Data (SIMD) is an execution model, where one instruction is simul-
taneously applied to multiple data elements [Flynn 1972]. Modern processors implement SIMD
through vectorized instructions that are processed on dedicated, extra-wide registers. The de-
gree of parallelism (DOP) of SIMD instructions depends on how many data elements fit into
one SIMD register. For instance, a 32-byte SIMD register can hold eight four-byte values. In
general, when processing data for which k values fit into one register, SIMD offers a theoretical
speed-up of k. However, such optimal performance gains are rarely achieved in practice, be-
cause various other factors, like the memory bandwidth and the concrete vector instruction to
perform, play an important role [Polychroniou et al. 2015].
Developers can implement SIMD parallelism either by using intrinsic functions18 provided

by hardware vendors or by relying on automatic vectorization offered by modern compilers.
Intrinsic functions require low-level hardware knowledge, often result in complex code and are
specific to the underlying instruction set, impeding code deployments on arbitrary platforms.
Although compiler-based automatic vectorization has substantially improved over the last years,
manually-tuned intrinsics code is still more efficient and remains the number one choice when

17Intel R©Performance Counter Monitor - A better way to measure CPU utilization, https://www.intel.com/
software/pcm, Last access: August 29, 2018.

18Compilers, like GCC, provide highly-optimized implementations for low-level tasks, e. g., vector processing, or
floating-point operations, in the form of built-in intrinsic functions.

25

https://www.intel.com/software/pcm
https://www.intel.com/software/pcm

2 Fundamentals

desiring high performance [Sprenger et al. 2018c; Pohl et al. 2016]. Thus, the remaining work
uses SIMD intrinsics.
SIMD instructions have multiple requirements that must be met to obtain speed-ups:

• In general, SIMD parallelism prefers simple memory layouts that keep data elements,
which should be simultaneously processed, in consecutive memory locations. Otherwise
multiple load or store operations are needed to fill or read an entire SIMD register. Al-
though recent SIMD instruction sets feature gather and scatter operations [Polychroniou
et al. 2015], which can read from or write to non-consecutive memory locations, these are
limited to a small number of use cases and usually show inferior performance than when
working on consecutively-stored data, especially if the to-be-processed data elements are
part of different cache lines [Hofmann et al. 2014], as each cache line needs to be loaded
individually.

• SIMD instructions are restricted to simple control flows with few, if any, conditional
branches. Batch-style algorithms, like scans, benefit the most from vectorization.

• SIMD instructions are limited to simple data types. For instance, AVX intrinsics support
only integers, floats and doubles19.

Depending on the memory layout and the search algorithms, SIMD instructions can accelerate
the search operators of main-memory index structures. For instance, Zeuch et al. [Zeuch et al.
2014] proposed in-memory B-tree variants that use vectorized instructions to navigate the inner
tree nodes.

2.3.3 Multi-Core CPUs and Simultaneous Multithreading (SMT)

Until the mid 2000s, most processors featured only one single processing unit. Manufacturers
improved the computing power by placing a growing number of transistors on the die and by
increasing the clock rate of the CPU. However, at a certain point, the advancements in clock rates
slowed down due to physical limitations, which forced processor vendors to consider alternative
means to improve the performance. To this end, modern CPUs employ parallelization: They
install multiple almost-independent20 processing units, named cores, on the same chip. Cores
can concurrently execute processes and possess individual instruction pipelines and caches.
Figure 2.5 illustrates the evolution of server processors in terms of cores per CPU and clock

rate21, using the Intel Xeon family as example. Note the beginning of stagnating clock rates
in 2005 and the concurrent introduction of multi-core CPUs as means to further improve the
performance. Another interesting point in time is marked by the availability of the Intel Xeon
Phi many-core CPU, which targets traditional application areas of highly-parallel GPUs, as
stand-alone processor in 2016.
19Intel Intrinsics Guide, https://software.intel.com/sites/landingpage/IntrinsicsGuide/

#techs=AVX, Last access: August 29, 2018.
20Most multi-core CPUs feature a large LLC shared by all cores (see Figure 2.4a).
21Source: https://en.wikipedia.org/wiki/List_of_Intel_Xeon_microprocessors and https://

en.wikipedia.org/wiki/Xeon_Phi, Last access: August 29, 2018.

26

https://software.intel.com/sites/landingpage/IntrinsicsGuide/#techs=AVX
https://software.intel.com/sites/landingpage/IntrinsicsGuide/#techs=AVX
https://en.wikipedia.org/wiki/List_of_Intel_Xeon_microprocessors
https://en.wikipedia.org/wiki/Xeon_Phi
https://en.wikipedia.org/wiki/Xeon_Phi

2.3 Index Structures on Modern Hardware

1998 2000 2002 2004 2006 2008 2010 2012 2014 20160

10

20

30

40

50

60

70

80

1

2

3

4

5

Year

Co
re

s
pe

rC
PU

Cl
oc

k
ra

te
(G

H
z)

Figure 2.5: Evolution of Intel Xeon server CPUs (Source: https://en.wikipedia.
org/wiki/List_of_Intel_Xeon_microprocessors and https:
//en.wikipedia.org/wiki/Xeon_Phi, Last accesses: February 25, 2019).

In addition to multi-core processing, most current processors support simultaneous multi-
threading (SMT) that enables to handle multiple independent processes in the same pipeline.
Of course, physical CPU cores can still execute only one instruction at the same time. How-
ever, processors are able to dynamically switch between different contexts, which is useful when
processes stall, like in the case of unavailable resources. For instance, while a blocking pro-
cess waits for data to be loaded into the CPU caches, another process can be executed, which
prevents wasting the computing power of the CPU. SMT is mainly beneficial for frequently-
blocking, memory-bound processes. Recent Intel CPUs feature a proprietary implementation
of SMT, named hyperthreading. Typically, they allow to simultaneously run two hyperthreads,
also called virtual CPU cores, on one physical core.
In multi-socket machines, multiple (multi-core) CPUs share the same memory bus when ac-

cessing the main memory. While multi-channel memory may reduce the pressure on the memory
bus, they cannot hold up with the increasing parallel capabilities of modern CPUs. Non-uniform
memory access (NUMA) provides means to cope with such highly-parallel settings. It divides
all cores of a machine into NUMA groups, of which each group is assigned to a separate, local
region of the memory. In NUMA, processes can access data stored in the local memory region
very fast, whereas accesses to non-local regions, associated with other NUMA groups, are slower.
While increasing clock rates of single-core CPUs enabled performance boosts without requiring

changes to the software, nowadays programs must explicitly control the processing units of
multi-core CPUs to fully utilize the available computing capabilities. Multi-core CPUs require

27

https://en.wikipedia.org/wiki/List_of_Intel_Xeon_microprocessors
https://en.wikipedia.org/wiki/List_of_Intel_Xeon_microprocessors
https://en.wikipedia.org/wiki/Xeon_Phi
https://en.wikipedia.org/wiki/Xeon_Phi

2 Fundamentals

algorithms to divide (large) problems into independent subproblems that can be processed by
distinct threads in parallel, while requiring as little synchronization as possible. Although many
algorithms, like scans, can be easily parallelized, obtaining the perfect DOP is not always possible
and remains a challenge.
Database systems can accelerate search operations with multithreading using two approaches:

inter- and intra-query parallelism. Inter-query parallelism increases the throughput of large
batches of queries by executing multiple queries in parallel. Each query is processed by a sepa-
rate thread. Hence, it is best suited for online transaction processing, where queries are simple
and can typically be answered within a very short amount of time. In contrast, intra-query par-
allelism improves the performance of one particular query by processing it with multiple threads.
It is mainly beneficial for complex, long-running queries, like online analytical processing.
In the past, database systems have favored inter-query parallelism [Graefe 1990; Graefe 1994],

because server machines featured only few threads reducing the benefits of parallelizing individ-
ual queries. Furthermore, inter-query parallelism allows to re-use single-threaded implementa-
tions.
When taking the growing parallel capabilities of modern CPUs into account, which enable set-

tings with hundreds to thousands of hardware threads on one machine22, intra-query parallelism
becomes increasingly important to avoid wasting computing resources. Furthermore, with the
rise of big data analytics [Labrinidis et al. 2012; Hao Zhang et al. 2015], many database work-
loads are long running and read heavy, and would strongly benefit from intra-query parallelism
to reduce their execution times. As a consequence, modern index structures must explicitly
leverage multi-core CPUs and provide parallel search algorithms that can use multiple threads
to navigate the index.

2.4 Genomic Multidimensional Range Query Benchmark (GMRQB)
The strength of any empirical evaluation of index structures critically depends on the repre-
sentativeness of the data and the queries used. The performance of MDIS may strongly vary
for different data distributions, e. g., uniform, unimodal or multimodal clustered, clustered in
subspaces, etc., and different query workloads, e. g., hot-spot regions, partial- or complete-match
queries, low or high selectivities, etc. In the past, MDIS were mainly evaluated with synthetic
data or synthetic workloads, such as in [K. Kim et al. 2001], [Pagel et al. 1993], or [Wang et
al. 2016], with the obvious advantage of being able to influence many parameters of the data
and the workloads. Although some previous evaluations have used real-world data sets, to the
best of our knowledge, none of them has considered any real-world query workloads. Therefore,
in addition to experiments with synthetic data and workloads, we strive to also evaluate all
considered methods on real-world multidimensional data and workloads.
To this end, we create a novel multidimensional range query benchmark derived from the

analysis of genomic data. As motivated in the Introduction, genomic analysis heavily relies
on MDRQ to interactively study the variant profiles of complete disease cohorts and entire
populations. It represents a very interesting use case from a data management perspective,
22Current many-core CPUs can feature more than seventy cores. When adding four-way hyperthreading and

using four- or eight-socket settings, more than thousand threads per machine are possible.

28

2.4 Genomic Multidimensional Range Query Benchmark (GMRQB)

because continuous improvements in sequencing technology lead to an ever-growing amount of
genomic data available for research and analysis.
This section presents the Genomic Multidimensional Range Query Benchmark (GMRQB),

which consists of eight parameterized, partial-match and complete-match, realistic range queries
applied to a large set of real-world genomic variants derived from the 1000 Genomes Project [The
1000 Genomes Project Consortium 2015]. Data points are of moderate dimensionality (19
dimensions) and dimensions feature very different numbers of distinct values. The used data set
is publicly available23, which allows reproduction of our evaluation results and facilitates further
research on range queries.

2.4.1 Range Queries on Genomic Variant Data

A human genome consists of approximately three Billion base pairs (the DNA) structured in 23
chromosomes. When sequencing a human, i.e., experimentally determining its genome, these
three Billion base pairs are typically compared to a human reference genome, which models
a hypothetical normal human genome [International Human Genome Sequencing Consortium
2004]. Deviations from this reference are typically called genomic variants [The 1000 Genomes
Project Consortium 2012], or mutations if they affect the human in some negative sense, e. g.,
when a certain variant is associated with an increased risk for developing a certain disease. On
average, every human genome contains approximately four to five Million variants [The 1000
Genomes Project Consortium 2015]. Genomic variants are not distributed at random over the
genome, but certain genomic regions are more prone to contain variants than others. Within the
large field of genomic analysis, multiple application areas make use of MDRQ. In the following,
we describe two of them: precision medicine and genome browsers.

• The premise of precision medicine24 is to correlate an individual’s variant profile to his
or her susceptibility to diseases and treatments [Lievre et al. 2006]. An important part
of research in precision medicine is concerned with collecting large numbers of genomes
together with medical information about the individuals to integrate these different data
in databases. Using these databases, researchers routinely perform statistical analysis of
genomic variant profiles regarding commonalities and differences between individuals with
respect to health-related issues. For instance, researchers search for sets of variants sharing
certain characteristics, e. g., belonging to the same genomic region, being present in the
same class of diseases or a similar group of patients, being present in patients reacting in
the same way to medication, etc. These searches eventually boil down to MDRQ.

• Another application area of range queries in the context of genomic analysis are genome
browsers. Resembling the concepts of web browsers, genome browsers can be used to
interactively scroll over the variant profiles of complete genomes, region by region. Fig-
ure 2.6 shows a screenshot taken from a popular genome browser, the integrative genomics
viewer (IGV) [Thorvaldsdóttir et al. 2013]. In this screenshot, IGV visualizes all variants
of selected genomes found on chromosome 22 between positions 30,927,764 and 30,936,369.

23Data | 1000 Genomes, http://www.internationalgenome.org/data, Last access: August 29, 2018.
24See, for instance, https://allofus.nih.gov. Last access: August 29, 2018.

29

http://www.internationalgenome.org/data
https://allofus.nih.gov

2 Fundamentals

Figure 2.6: A screenshot taken from a genome browser, the integrative genomics viewer [Thor-
valdsdóttir et al. 2013].

Different shades of blue highlight genomic regions containing variants. Technically, genome
browsers use range queries to narrow down large sets of variants to the subsets relevant
for the visualized genomic region [H. Li 2011]. Genome browsers pose especially strong
requirements on the latency of range queries, because they must provide an interactive
interface to the application user.

2.4.2 Real-World Data Set
The 1000 Genomes Project has sequenced the entire genomes of 2,504 human individuals, also
called samples, from across the world to facilitate research in precision medicine and related
areas [The 1000 Genomes Project Consortium 2015]. The resulting data set is publicly available
and contains 84.4 Million variants grouped by individual and by genomic location. In addition
to sequencing data, the 1000 Genomes Project also provides meta data of the individuals, e. g.,
gender, and population.
For the GMRQ Benchmark, we integrate the genomic variant data with the meta data of the

samples. We obtain a data set25 featuring 19 dimensions:
25Our benchmark data set can be considered as a cross product between both data sources.

30

2.4 Genomic Multidimensional Range Query Benchmark (GMRQB)

• Chromosome holds the chromosome that the variant was found at, e. g., 22.

• Location provides the according position within the chromosome, e. g., 100,000.

• Quality resembles a quality score of the sequencing read, e. g., 1.0, providing information
about the accuracy of the used sequencing platform.

• Depth denotes the number of unique sequencing reads26, e. g., 30.

• Reference_genome holds the reference genome that was compared with the sample genome
to determine the genomic variant, a procedure called variant calling [Hwang et al. 2015].

• Variant_id provides the unique identifier of the variant.

• Allele_freq describes the relative frequency of the variant within the population, e. g., 1%.

• Similarly, allele_count provides the total number of occurrences of the variant within the
population, e. g., 100.

• Ref_base holds the nucleobase of the reference genome at the position of the variant, e. g.,
A.

• Alt_base provides the variant found in the sample genome, e. g., C. Besides single-nucleotide
polymorphisms (SNP), the data set also includes copy-number variations (CNV) and ge-
nomic insertions and deletions (INDEL). Therefore, this dimension contains more distinct
values than the number of possible nucleobases (four).

• Ancestral_allele provides allele data from organisms very close to that of humans. The
1000 Genomes Project integrates Ensembl Compara27, which provides the alleles from
different primates.

• Variant_type denotes the type of the variant, e. g., SNP, CNV, or INDEL.

• Sample_id provides the unique identifier of the sample. When combining variant_id and
sample_id, we can obtain an unique tuple identifier.

• Gender provides the gender of the individual. It holds two different values (male and
female) and is therefore solely queried with point queries (or range queries with identical
lower and upper boundaries).

• Population holds the population of the individual, e. g., Finland.

• Genotype provides genotype information, i. e., the two alleles carried by the sample genome.

• The 1000 Genomes Project has sequenced the genomes of multiple individuals that belong
to the same family. For such samples, family_id provides an unique identifier of the family
the individual belongs to.

26Next-generation sequencing technologies read each DNA base multiple times.
27Comparative Genomics, http://www.ensembl.org/info/genome/compara/index.html, Last access:

August 29, 2018.

31

http://www.ensembl.org/info/genome/compara/index.html

2 Fundamentals

Attribute Domain Distinct Values

chromosome [22,22] 1

location [16050100,18791500] 20,550

quality [100,100] 1

depth [301,91949] 19,538

reference_genome [398393985191641088,398393985191641088] 1

variant_id [1225,99992304] 63,883

allele_freq [0.0002,0.9998] 3,176

ref_base [25855900690415616,18445699537663164416] 540

alt_base [66030698359685120,18446499982128185344] 423

ancestral_allele [1476799971876405248,8591840045650935808] 3

ancestral_count [1,5008] 3,177

filter [4774679821152157696,4774679821152157696] 1

variant_type [310693982822727680,17548400192863076352] 3

sample_id [961370,99848200] 2,502

gender [1,2] 2

family_id [11118,94755104] 1,867

population [390559002771062784,17293700523312021504] 26

relationship [184136999010041856,17976799609858555904] 16

genotype [107920004023844864,18388100521530490880] 29

Table 2.1: The set of genomic variants used in this thesis consisting of ten Million tuples.

• Finally, relationship contains information about the role of the individual within the family,
if present, e. g., father, or child.

The 1000 Genomes Project provides variant data as Variant Call Format (VCF) files [Danecek
et al. 2011]. VCF is a text-based, tab-separated file format designed for the outcomes of variant
calling. As most MDIS store tuples as arrays of floats, we need to transform the data before
indexing. For numeric values, such a transformation is straightforward. However, attributes
originally provided as strings, i. e., reference_genome, ref_base, alt_base, ancestral_allele, fil-
ter, variant_type, population, relationship, and genotype, are more challenging. We transform
these attributes into floating-point values by hashing. Unfortunately, this transformation makes
range queries on these dimensions less meaningful.
Taking into account that our evaluation machine has only 32 gigabytes (GB) of main memory

and MDIS require some indexing overhead, we limit the data used in the experiments of this
thesis to ten Million tuples, which equals 724.79MB when stored with four-byte floats. These
tuples were extracted from the sequencing data for chromosome 22. Table 2.1 describes the
resulting data set. For each dimension, it provides the domain as a range of real numbers and
the number of contained distinct values.

32

2.4 Genomic Multidimensional Range Query Benchmark (GMRQB)

2.4.3 Realistic Range Query Templates

In collaboration with Bioinformaticians28, we designed the Genomic Multidimensional Range
Query Benchmark (GMRQB), a workload of eight realistic complete- and partial-match range
query templates, which are applied to the data set described in Section 2.4.2. In addition to the
eight query templates, we also provide a mixed workload consisting of all templates randomly
mixed together, which enables experiments with changing workload patterns. These range
queries retrieve specific subsets of genomic variants interesting for further analysis. They specify
range predicates on some, most, or all dimensions. Depending on the dimension, predicates may
either specify single points or ranges of different sizes. For instance, we always use a point
query for the dimension gender, yet always apply range predicates to the dimension location.
All queries of GMRQB restrict the genomic location, i. e., attributes chromosome and location.
Queries in the workload are templates that have to be instantiated with meaningful values. For

the genomic location, we use the RefSeq database29 to align genomic ranges to coding regions.
All other variables are filled using randomly-selected values found in the original data. Listing 2.1
shows Query Template 3 from GMRQB written as a SQL statement to ease readability30. Like
all query templates, it restricts the search to a certain genomic region defined by a chromosome
and a location range. Additionally, it retrieves only variants that were found in an individual of
a particular gender.

Listing 2.1: Query Template 3 of GMRQB.
1 SELECT * FROM variants
2 WHERE chromosome BETWEEN ? AND ?
3 AND location BETWEEN ? AND ?
4 AND gender = ?;

For each query template, Table 2.2 shows the average selectivity and the average number of
queried dimensions. Except Query Template 8, all query templates are partial-match queries.
For completeness, Appendix A provides all query templates.
The used data set has three disadvantages with regards to the evaluation of MDRQ:

• We had to use hashing to transform attributes originally stored as strings into floating-
point values. Unfortunately, such transformations prevent meaningful range queries on
these dimensions.

• Some dimensions, e. g., gender, or reference genome, have only very few distinct values.
Actually, range queries on these dimensions turn into point queries.

• Although the queries of the benchmark resemble a real-world interactive analysis of ge-
nomic variant data, these queries were not extracted from real applications. It would be

28We would like to thank the bioinformaticians from our working group, especially Yvonne Lichtblau, for their
valuable feedback on the design of the GMRQ Benchmark.

29RefSeq: NCBI Reference Sequence Database, https://www.ncbi.nlm.nih.gov/refseq/, Last access:
August 29, 2018.

30 Implementations of MDIS typically require multidimensional range queries to be specified as two vectors, where
the first (second) vector denotes the lower (upper) boundary of the range query.

33

https://www.ncbi.nlm.nih.gov/refseq/

2 Fundamentals

GMRQB Query Template Average Selectivity Average Number of Queried Dimensions

Query Template 1 10.76% (σ = 7.24%) 2 (σ = 0.0)

Query Template 2 2.19% (σ = 2.27%) 5 (σ = 0.0)

Query Template 3 5.36% (σ = 3.61%) 3 (σ = 0.0)

Query Template 4 0.22% (σ = 0.15%) 4 (σ = 0.0)

Query Template 5 0.20% (σ = 0.15%) 5 (σ = 0.0)

Query Template 6 0.11% (σ = 0.11%) 6 (σ = 0.0)

Query Template 7 0.05% (σ = 0.06%) 7 (σ = 0.0)

Query Template 8 0.00001% (σ = 0.00002%) 19 (σ = 0.0)

Mixed Workload 1.58% (σ = 3.58%) 5.81 (σ = 4.11)

Table 2.2: The query templates of the GMRQB.

very interesting to monitor workloads from researchers in, for instance, precision medicine
and add these queries to GMRQB.

34

3 CSSL: Processing One-Dimensional Range
Queries in Main Memory

This chapter addresses one-dimensional main-memory index structures, of which many have
been proposed over the last years, e. g., the adaptive radix tree (ART) [Leis et al. 2013], the fast
architecture sensitive search tree (FAST) [C. Kim et al. 2010], or the cache-sensitive B+-tree
(CSB+-tree) [Rao et al. 2000]. These are typically based on the concepts of traditional index
structures, e. g., B-trees [Bayer et al. 1972], radix trees [Morrison 1968], or hash tables [Garcia-
Molina et al. 2000], but adapt them to the needs of main-memory settings. Like disk-based index
structures, which optimize data transfers between external and main memory, in-memory index
structures aim to work as much as possible on data held in higher, faster levels of the memory
hierarchy when evaluating search queries, which boils down to optimizing CPU cache misses.
Such optimizations are motivated by analyses of Ailamaki et al. [Ailamaki et al. 1999], which
identified LLC misses as one of the major contributors to the runtimes of database workloads
on modern hardware.
Existing in-memory index structures mainly focus on achieving high lookup performance,

but neglect range queries, despite their numerous applications and use cases (see Introduction).
While most hash tables obviously lack pruning capabilities for range queries anyway, because
they do not store data in a sorted order, also many in-memory tree variants, such as ART or
CSB+, show poor search efficiency when executing range queries. Search trees keep data in
a sorted order and implement range queries by looking up the smallest matching element and
iterating over all consecutive elements until a mismatch occurs. Most in-memory approaches
optimize the first step of range queries, typically implemented as a lookup operation, but neglect
the second step, which often requires chasing many pointers with random accesses.
The major challenge to an efficient in-memory execution of range queries, especially for queries

with a moderate or a low selectivity, are random data accesses that induce cache misses and lead
to CPU stalls [Ailamaki et al. 1999]. Taking this observation into account, it is not surprising
that, in main memory, sequential full-table scans outperform tree-based index structures for
range queries with selectivities of approximately 1% or larger [Das et al. 2015].
In this chapter, we present the cache-sensitive skip lists (CSSL) as a novel main-memory

index structure based on conventional skip lists [Pugh 1990; Munro et al. 1992]. CSSL employ
a specific memory layout to take maximal advantage of the features of modern CPUs, e. g.,
multi-level cache hierarchies, SIMD instructions, and pipelined execution. They store data such
that the range query operator can almost-sequentially traverse over matching elements, which
exploits cache line prefetching and strongly reduces CPU cache and TLB misses. Moreover, the
used memory layout enables a vectorization of the range query algorithm.
The contributions of this chapter are as follows:

35

3 CSSL: Processing One-Dimensional Range Queries in Main Memory

• We propose the cache-sensitive skip list, a main-memory index structure offering efficient
execution of range queries.

• We show how to apply SIMD instructions to the range query operator of skip lists.

• We compare CSSL with other main-memory index structures using different workloads on
synthetic and real-world one-dimensional data sets.

The remainder of this chapter is organized as follows. In Section 3.1, we present work related to
CSSL. Section 3.2 introduces skip lists, the index structure that CSSL are based on. Section 3.3
presents the foundational concepts behind CSSL and describes algorithms for executing lookups
and range queries; we also show how to process updates. Section 3.4 compares CSSL with
state-of-the-art main-memory index structures and Section 3.5 summarizes this chapter.
Parts of this chapter have been previously published in [Sprenger et al. 2016].

3.1 Related Work
Although concepts like cache-aligned data layouts, index traversal with SIMD instructions, and
pointer elimination have been investigated before [C. Kim et al. 2010; Rao et al. 1999; Rao et al.
2000], to the best of our knowledge, we are the first to combine these to accelerate range queries
in one-dimensional main-memory index structures.
Skip lists [Pugh 1990] were proposed as a probabilistic alternative to B-trees [Bayer et al.

1972]. They have been applied to multiple areas and have been adapted to different purposes,
e.g., lock-free skip lists [Fomitchev et al. 2004], deterministic skip lists [Munro et al. 1992], or
concurrent skip lists [Herlihy et al. 2006]. In [Xie et al. 2016], Xie et al. present a parallel
skip list-based main-memory index, named PI, that processes batches of queries using multiple
threads. Skip lists are not only of interest for researchers, but also part of several modern
database management systems. The main-memory database system MemSQL [Chen et al.
2016] uses skip lists to implement secondary indexes1 and the key-value store Redis [Carlson
2013] employs them to manage sorted sets2. CSSL are based on deterministic skip lists [Munro
et al. 1992], but employ a cache-friendly data layout tailored to modern CPUs and beneficial
for the execution of range queries.
There are several other approaches addressing in-memory indexing [M. Böhm et al. 2011;

C. Kim et al. 2010; Kissinger et al. 2012; Leis et al. 2013; Rao et al. 1999; Rao et al. 2000],
yet few specifically target range queries. Cache-sensitive search trees (CSS-trees) [Rao et al.
1999] build a tree-based dictionary on top of a sorted array that is tailored to the properties of
the cache hierarchy, e. g., the sizes of the cache lines, and can be searched in logarithmic time.
CSS-trees are static by design and need to be completely rebuilt when ingesting updates. Rao
and Ross [Rao et al. 2000] introduce the CSB+-tree, a cache-conscious B+-tree [Comer 1979],
which minimizes pointer usage and reduces space consumption. As shown in Section 3.4, CSSL
outperform CSB+-trees significantly for all considered workloads.

1The Story Behind MemSQL’s Skiplist Indexes - MemSQL Blog, http://blog.memsql.com/
the-story-behind-memsqls-skiplist-indexes/, Last access: August 29, 2018.

2An introduction to Redis data types and abstractions - Redis, https://redis.io/topics/
data-types-intro, Last access: August 29, 2018.

36

http://blog.memsql.com/the-story-behind-memsqls-skiplist-indexes/
http://blog.memsql.com/the-story-behind-memsqls-skiplist-indexes/
https://redis.io/topics/data-types-intro
https://redis.io/topics/data-types-intro

3.2 Conventional Skip Lists

Masstree [Mao et al. 2012] is an in-memory database that employs a trie of B+-trees as index
structure. It supports keys of arbitrary length, which is useful when indexing strings. We do
not include Masstree in our evaluation, because its implementation is multithreaded, which
prevents a fair comparison. Instead, we consider an in-memory implementation of its base index
structure, the B+-tree, as competitor.
Zhang et al. [Huanchen Zhang et al. 2016] introduce a hybrid two-stage index that can be built

on top of existing index structures, like B-trees or skip lists. Interestingly, they also propose a
paged-based skip list implementation as example that is tailored to main memory. However, in
contrast to CSSL, it is completely static by design and does not exploit SIMD instructions.
ART [Leis et al. 2013] is a main-memory index structure based on radix trees. It employs

adaptive node sizes and makes use of advanced CPU features, like SIMD instructions, to enhance
the search performance. While ART achieves high lookup performance currently only superseded
by hash tables [Alvarez et al. 2015], its support for range queries is much less efficient since
these require traversing over the tree by chasing pointers. As shown in the evaluation, CSSL
significantly outperform ART for range queries. We assume that the results of our comparison
between CSSL and ART would carry over to other index structures based on prefix trees, such
as generalized prefix trees [M. Böhm et al. 2011] or KISS-trees [Kissinger et al. 2012].
Another recent data structure is FAST [C. Kim et al. 2010], a binary search tree tuned to

the underlying hardware by taking architecture parameters, like page and cache line sizes, into
account. It offers both thread- and data-level parallelism, the latter by using SIMD instructions.
Similar to CSSL, FAST does not need to access pointers when traversing the tree structure. How-
ever, FAST is optimized for lookup queries only, where it is clearly outperformed by ART [Leis
et al. 2013]. Therefore, we do not include it in our evaluation.
Schlegel et al. showed how to linearize k-ary search trees [Schlegel et al. 2009]. We use similar

techniques to adapt the fast lanes of CSSL to main memory.

3.2 Conventional Skip Lists

Skip lists are a probabilistic data structure similar to B-trees [Pugh 1990]. Skip lists consist of
multiple lanes of keys organized in a hierarchical fashion. At the highest level of granularity,
a skip list contains a linked list of all keys in a sorted order. On top of this data list, skip
lists maintain fast lanes at different levels. A fast lane at level i contains n ∗ pi elements on
average, where n is the number of stored keys and 0 < p < 1 is an input parameter. Originally,
skip lists are probabilistic data structures, because elements stored in higher lanes are randomly
chosen from those at lower lanes: Every element of fast lane i appears in fast lane i + 1 with
probability p. This scheme allows for efficient updates and inserts, yet makes the data structure
less predictable.
In our work, we use perfectly balanced skip lists [Munro et al. 1992], a deterministic variant

of skip lists. In perfectly balanced skip lists, the fast lane at level i + 1 contains every 1/p’th
element of the fast lane at level i. Accordingly, for p = 0.5, the fast lane at level i+ 1 contains
every second element of level i, in which case a skip list resembles a balanced binary search tree.
Figure 3.1 illustrates a balanced skip list over nine integer keys with two fast lanes for p = 0.5.
When executing lookups, the fast lanes are used to narrow down the segment of the data list

37

3 CSSL: Processing One-Dimensional Range Queries in Main Memory

Data List

Fast Lanes
Level 2

Level 1

1 2 3 4 5 6 7 8 9

1 3 5 7

5 9H
E
A
D

T
A
I
L

9

1

Figure 3.1: A balanced skip list that manages nine keys with two fast lanes. Each fast lane skips
over two elements (p = 1/2).

that may contain the searched element, which effectively prunes most parts of the data. For
instance, a search for key 6 would traverse the skip list shown in Figure 3.1 as follows. First, the
search algorithm obtains the first element of the highest fast lane at level 2 by using the head
element, which holds pointers to the first elements of each fast lane and the data list. Second,
the search traverses the fast lane element by element until an element is either equal to the
searched element, in which case the search can terminate, or greater than the searched key, in
which case the search continues with the next lower level. Here, the search stops at element 5
and moves down to the next fast lane at level 1. Fourth, steps two and three are recursively
repeated until the data list is reached. Fifth, the data list is scanned until the searched element
is found or proven to not exist. In this example, the search operator returns after scanning
elements 5 and 6 at the data list.
Input parameter p influences the density of the fast lanes. A small p value leads to sparse

fast lanes skipping over many elements, while a large p value induces dense fast lanes skipping
over only few elements. A fully-built balanced skip list for n keys contains log1/p(n) fast lanes
and requires 1/p comparisons per fast lane. Assuming that p is a constant value, searching for
a certain key requires log1/p(n) ∗ 1/p = O(log(n)) key comparisons in the worst case.
Besides single-key lookups, skip lists also support range queries very efficiently. Since the data

list and the fast lanes are kept in a sorted order, implementing a range query requires only two
steps: (1) Find the smallest element satisfying the queried range, which is similar to a lookup,
and (2) collect all subsequent elements until a mismatch occurs. We have chosen skip lists as
basic index structure for multiple reasons:

• Skip lists store data in a sorted order, which facilitates range queries.

• At all levels (or fast lanes) of a skip list, consecutive elements can be accessed in constant
time. As described in Section 3.3.2, we exploit this property in our implementation: Range
queries are evaluated using fast lanes, which effectively saves key comparisons.

• Skip lists are main-memory index structures by design, because they do not tailor nodes
to disk blocks, as for instance B+-trees.

38

3.2 Conventional Skip Lists

Listing 3.1: Fat nodes.
1 struct FatNode {
2 KEY_TYPE key;
3 std::string value;
4 FatNode* forward[MAX_HEIGHT];
5 };

• The implementation of a skip list is more simple in terms of code complexity than that of
other index structures. For instance, the developers behind MemSQL report that their skip
list implementation requires fifty times less lines of code than a typical B-tree implementa-
tion3. As described by Boncz et al. [Boncz et al. 2009], simple implementations potentially
allow sequential access patterns and facilitate various adaptations, e. g., optimizations for
cache efficiency.

• Although our focus lies on range queries, skip lists provide very efficient update operations,
because they do not require to deal with node overflows, as, for instance, a B-tree.

In the original paper [Pugh 1990], skip lists are implemented using fat nodes4 (see Listing 3.1),
also called towers. A fat node is a record that contains a key, a value and an array holding
pointers to the subsequent element for every fast lane and the data list. The advantage of this
approach is that all nodes are uniform, which simplifies the implementation. Furthermore, if
a key is found in an upper lane, the search can terminate as all instances of a key are kept in
the same record. On the other hand, such an implementation wastes memory space, because
it reserves space for O(n * m) pointers (given that m denotes the number of fast lane levels),
although most values in higher levels are padded with NULL.
Searching in skip lists using fat nodes involves chasing many pointers. Pointer-heavy mem-

ory layouts are suboptimal on modern CPUs, because they require search algorithms to jump
between non-contiguous parts of the allocated memory. Even when only searching the data list,
cache line utilization is suboptimal due to the fatness of keys. For instance, in a skip list that
stores four-byte integer keys and maintains five fast lanes on top of the data list, each node
requires 4 bytes + 6 * 8 bytes = 52 bytes of memory on a 64-bit CPU architecture (using eight-
byte pointers). Given that a cache line typically holds 64 bytes on current CPU architectures,
each navigation step fills almost an entire cache line although only a small part of it is used.
Usually, a traversal step just needs the key and one pointer to retrieve the subsequent element
on a certain fast lane, i.e., 4 bytes + 8 bytes = 12 bytes, which equals a cache line utilization of
12/64 = 18.75%.

3The Story Behind MemSQL’s Skiplist Indexes - MemSQL Blog, http://blog.memsql.com/
the-story-behind-memsqls-skiplist-indexes/, Last access: August 29, 2018.

4In practice, similar implementations are used. For instance, see the in-memory database system Redis: https:
//github.com/antirez/redis/blob/unstable/src/server.h#L795; Last access: August 29, 2018.

39

http://blog.memsql.com/the-story-behind-memsqls-skiplist-indexes/
http://blog.memsql.com/the-story-behind-memsqls-skiplist-indexes/
https://github.com/antirez/redis/blob/unstable/src/server.h#L795
https://github.com/antirez/redis/blob/unstable/src/server.h#L795

3 CSSL: Processing One-Dimensional Range Queries in Main Memory

Proxy Lane Array
Index

... 31 32
0

1 2 3 4 5 6 7 8 9 10
1 2 3 4 15

Data List

1 2 3 4 5 6 7 8 9 10 ... 31 32

25 29
Linearized Fast Lane Array

Level 2 2117951 13
0 1 2 3 4 5 6 7Rel. Index
0 1 2 3 4 5 6 7Abs. Index

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15Rel. Index

Level 1 3 5 7 91 11 13 15 17 19 21 23 25 27 29 31
8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23Abs. Index

lookup(7)

Figure 3.2: A CSSL managing 32 keys with two fast lanes (p = 1/2).

3.3 Cache-Sensitive Skip Lists (CSSL)
We present cache-sensitive skip lists (CSSL) as an alternative implementation for (deterministic)
balanced skip lists [Munro et al. 1992] that use a radically different memory layout leading to a
much higher search and space efficiency when deployed on current CPU architectures. The first
and most obvious idea is to linearize the fast lanes in a breadth-first order and manage them
as separate entities in a dedicated array, called linearized fast lane array. When navigating this
array, we can compute the positions of follow-up elements based on the current position and
parameter p, making pointers superfluous. Figure 3.2 illustrates a CSSL indexing every integer
from 1 to 32 with two fast lanes (p = 1/2). The red arrows visualize the traversal path, which
the search algorithm would take to find key 7.

3.3.1 Memory Layout

Since CSSL are based on balanced skip lists, given the number of keys (n) and the density of the
fast lanes (p), we can exactly predict the structure of the according fast lane hierarchy. CSSL
take that into account and allocate a certain amount of memory space for the linearized fast
lane array.
The underlying data list, which holds all data elements, is implemented as a linked list to

support updates. We introduce the proxy lane to connect the static fast lane array with the
dynamic data list. For each key of the lowest fast lane, the proxy lane maintains a pointer to
the corresponding object of the data list. Connections are implicit: The connection to the i-th
fast lane element can be found at index i− 1 of the proxy lane.

40

3.3 Cache-Sensitive Skip Lists (CSSL)

The memory layout of CSSL offers five main advantages when deployed on modern processors:

• Better Cache Line Utilization: The navigation of linearized fast lanes utilizes cache
lines better than the evaluation of fat nodes. We can always make use of entire cache lines
until we jump to a lower fast lane layer, which reduces the amount of data transferred
through the cache hierarchy. In the case of four-byte keys, 16 fast lane elements fit into
one 64-byte cache line, while a cache line of the same size can hold only one fat node of
a conventional skip list (assuming that the skip list contains more than two fast lanes).
CSSL have to access ((1/p)/16) ∗ m cache lines when traversing over the m fast lanes,
whereas regular skip lists need to read up to 1/p ∗m cache lines.

• Reduced Cache Misses: When navigating a fast lane, the search algorithm has to
compare up to 1/p elements with the search key. In CSSL, after the first element of a fast
lane has been loaded, the search algorithm accesses only consecutive memory locations,
which minimizes the number of CPU cache misses. In contrast, in a regular, pointer-based
skip list implementation using fat nodes, every comparison of a fast lane element with the
search key requires a random access leading to up to 1/p cache misses per fast lane.

• No Pointer Chasing: Pointer-heavy data structures, like linked lists, require the evalu-
ation of long chains of pointers for traversal. Every evaluation of a pointer (a) induces a
translation of the virtual into the physical memory address using the MMU, possibly pro-
ducing a TLB miss, and (b) loads data from a random memory location, possessing high
risk for CPU cache misses. The search algorithms of CSSL do not need to chase pointers,
but can utilize the linearized fast lane array. Only one pointer evaluation is needed, when
accessing the data list via the proxy lane, and up to 1/p pointers need to be followed when
traversing the data list.

• Improved Space Efficiency: CSSL require less space than regular skip lists. Let k
be the size of a key, r be the size of a pointer and m be the number of fast lanes. As
a fat node of a regular skip list reserves space for m + 1 pointers (m fast lanes and the
data list) in addition to the key, it requires m ∗ r + r + k bytes of memory. Overall, a
regular skip list has a space complexity of n ∗ (m ∗ r + r + k). In contrast, CSSL require∑m
i=1 p

i ∗ n ∗ k bytes of memory for the linearized fast lane array. The proxy lane and the
data list need n ∗ (r + k) bytes each. In total, that boils down to a space complexity of
2 ∗ n ∗ (r + k) +

∑m
i=1 p

i ∗ n ∗ k.

For instance, when storing one Million four-byte keys with ten fast lanes on a 64-bit
architecture (eight-byte pointers), regular skip lists using fat nodes require 87.74MB of
memory, whereas CSSL applying linearization need only 26.70MB.

• SIMD Instructions: As described in Section 2.3.2, SIMD instructions require data to
be stored in consecutive memory locations. CSSL’s memory layout fully satisfies this
requirement and enables a vectorization of the search algorithm. Given that s is the width
of a SIMD register and k is the size of a key, s/k fast lane elements can be compared in

41

3 CSSL: Processing One-Dimensional Range Queries in Main Memory

1 3 5 7

17 61Level 2

9

13951

Cache Line

... 31

Cache Line Cache Line

4139373533 ... 63

...1

Level 1

Array Index 0 1 2 3 4 15...

Array Index 16 17 18 19 20 31... 32 33 34 35 36 47...

Figure 3.3: The linearized fast lane array of a CSSL indexing all four-byte integers in {1, .., 64}
with two levels (p = 1/2). The fast lane array is aligned to 64-byte cache lines.

parallel. Modern CPUs usually feature SIMD registers having a size of 256 bits5, thus
eight four-byte integers can be processed with one instruction.
However, using SIMD instructions for the navigation of fast lanes would only be useful
for very sparse fast lanes (1/p > s/k), where many elements have to be compared at each
fast lane. As such a setting is rarely used in practice, we refrain from a vectorization
of this part of the search algorithm. Instead, as shown in Section 3.3.2, we apply SIMD
instructions to the range query operator of CSSL, which exploits the lowest fast lane to
iterate over elements matching the search object.

Besides these main concepts, we apply a number of further optimizations to fully exploit
modern CPUs:

• As illustrated in Figure 3.3, we always tailor the size of the fast lanes as multiples of the
CPU cache line size. This primarily affects the highest fast lane level and further increases
the cache line utilization of CSSL.

• In practice we observed that searching the highest fast lane is very expensive in terms of
CPU cycles if the number of fast lanes is restricted and the highest fast lane contains a
lot more than 1/p elements. In the worst case, we have to scan the entire highest fast
lane, while searching the remaining fast lanes never requires more than 1/p comparisons
per lane. Although caching helps, as the highest fast lane is frequently accessed, it still
remains challenging. Therefore, we accelerate searching the highest fast lane by using a
binary search instead of sticking to a sequential scan. The remaining fast lanes are still
scanned.

3.3.2 Search Algorithms and Updates
This section presents algorithms to execute lookups, range queries and updates in CSSL. The
shown algorithms work on four-byte integer keys. We start with describing lookups and sub-

5Introduction to Intel R©Advanced Vector Extensions, https://software.intel.com/en-us/articles/
introduction-to-intel-advanced-vector-extensions, Last access: August 29, 2018.

42

https://software.intel.com/en-us/articles/introduction-to-intel-advanced-vector-extensions
https://software.intel.com/en-us/articles/introduction-to-intel-advanced-vector-extensions

3.3 Cache-Sensitive Skip Lists (CSSL)

Algorithm 2 Lookup operator of CSSL.
key: The search key.

1: function Lookup(key)
2: pos ← BinarySearchTopFastLane(fast_lanes, key)
3: for level← MAX_LEVEL-1 to 1 do
4: rel_pos ← pos - start_pos[level]
5: while key ≥ fast_lanes[pos + 1] do
6: pos ← pos + 1
7: rel_pos ← rel_pos + 1
8: end while
9: if level = 1 then

10: break
11: end if
12: pos ← start_pos[level-1] + 1/p * rel_pos
13: end for
14: if key = fast_lanes[pos] or SearchViaProxy(pos - start_pos[1], key) then
15: return key
16: end if
17: return INT_MAX
18: end function

sequently delve into range queries. Finally, we also show how to process inserts and deletes in
CSSL.

Lookups

In database systems, lookups are typically used to verify that a certain key exists. Algorithm 2
shows the pseudocode of our lookup implementation. The linearized fast lane array is stored in
the variable fast_lanes. For each fast lane level, the array start_pos holds the first occupied
index within fast_lanes; the highest fast lane obviously starts at index 0. When navigating
the fast lanes, we use the helper variable pos to track the absolute position within the array,
and the helper variable rel_pos to track the relative position within the current fast lane level.
In particular, CSSL execute lookups as follows. First, the highest fast lane is processed with a

binary search (see Line 2). Second, the remaining fast lanes are hierarchically searched to narrow
down the segment of the data list that can hold the search key (see Lines 3-13). Here, we use a
sequential scan instead of a binary search, because we need to compare only 1/p elements (and
p is typically between 1/2 and 1/5). Third, if the lowest fast lane contains the searched element,
which happens on average at every 1/p-th search, the search key is immediately returned.
Otherwise the associated proxy node is loaded to access the corresponding elements of the data
list (see Lines 14-16). If the search key is neither part of the lowest fast lane nor found in the
data list, we return INT_MAX to indicate that the search key does not exist (see Line 17).

43

3 CSSL: Processing One-Dimensional Range Queries in Main Memory

Listing 3.2: Return value of the range query operator.
1 typedef struct {
2 _CSSL_Node* first_match, last_match;
3 size_t count;
4 } _CSSL_RangeSearchResult;

Range Queries

Range queries retrieve all keys satisfying specified lower and upper range boundaries. In
database systems, the results of range queries are often summarized by aggregate functions,
e. g., COUNT , SUM , MIN , or MAX. For instance, a medical researcher may be interested in
the number of genomic variants that have been found in a certain region of the genome, which
boils down to counting the results of a range query.
The range query operator of CSSL accepts range boundaries as input parameters and returns

pointers to the smallest and largest elements of the data list matching the query, which equals
a linked list that can be conveniently processed in downstream analysis. CSSL also return the
size of the result set, which resembles the COUNT aggregation. The range query operator
could be easily extended such that further pre-computed values of other aggregate functions are
returned. Listing 3.2 shows the return value.
Since CSSL store data in a sorted order, they implement range queries by looking up the

smallest matching key and iterating over all subsequent keys until a key larger than the upper
range boundary is found. In particular, the processing of range queries can be broken down
into two parts. First, we navigate the linearized fast lanes to retrieve the segment of the data
list that holds the smallest key within the query range. The implementation is very similar to
a lookup for the lower boundary, except that we are not restricted to exact matches but use
a greater or equal comparison. Second, once the smallest element has been found, the range
query operator jumps back to the lowest fast lane and, starting at the position where the lookup
in the previous step stopped, scans all elements using SIMD instructions to find the largest
element that satisfies the queried range. CSSL can process eight four-byte keys, e. g., integers,
or floating-point values, in parallel using AVX intrinsics.
Listing 3.3 shows how CSSL collect all keys satisfying a range query; we omit the lookup for

the first matching key and the computation of the result set size. SIMD intrinsics are highlighted
in bold.
We first propagate the upper_boundary to all eight lanes of a 256-bit SIMD register (see

Line 4). Then, we traverse over the lowest fast lane using SIMD instructions until we come
across a non-matching key (see Lines 7-20): We load eight elements, starting at index rel_pos
of the lowest fast lane, into a SIMD register (see Lines 10-11) and compare them with the search
key using greater than (see Line 13). If the comparison fails we can immediately abort and prune
further comparisons (see Lines 15-17). Once the segment of the data list featuring the largest
matching key has been found, we load the according proxy node (see Line 23) and determine
the exact results (see Lines 24-30), which are finally returned (see Line 31).

44

3.3 Cache-Sensitive Skip Lists (CSSL)

Listing 3.3: Collecting keys matching a range query.
1 _CSSL_RangeSearchResult result;
2 result.start = lookup(lower_boundary);
3 // store upper boundary in all lanes of a SIMD register
4 __m256 search = _mm256_castsi256_ps(_mm256_set1_epi32(upper_boundary));
5 // process the lowest fast lane to find the segment containing
6 // the largest key matching the range query object
7 while (rel_pos < level_items[1]) {
8 // load the current fast lane element and its successors into a
9 // SIMD register (rel_pos and pos are filled by the initial lookup)

10 __m256 compare = _mm256_castsi256_ps(_mm256_loadu_si256(
11 (__m256i const *) &fast_lanes[pos]));
12 // compare the current segment of the fast lane with the search key
13 __m256 res = _mm256_cmp_ps(search, compare, _CMP_GT_OQ);
14 // abort once a non-matching key has been found
15 if (_mm256_movemask_ps(res) < 0xff) {
16 break;
17 }
18 pos += 8;
19 rel_pos += 8;
20 }
21 // load the associated proxy node and determine which key of the
22 // current segment is the largest key satisfying the range boundaries
23 proxy = proxy_nodes[rel_pos];
24 result.end = proxy->pointers[1/p - 1];
25 for (size_t i=1; i < 1/p; i++) {
26 if (upper_boundary < proxy->keys[i]) {
27 result.end = proxy->pointers[i - 1];
28 break;
29 }
30 }
31 return result;

45

3 CSSL: Processing One-Dimensional Range Queries in Main Memory

Insertions and Deletions

Our implementation initializes a CSSL with a sorted set of keys, which resembles a bulk load.
Although we linearize the fast lanes and store them in a static array, leading to less flexibility
than a pointer-based implementation, CSSL are able to handle updates. In the following, we
describe techniques for inserting new keys, updating existing keys, and deleting keys.

Inserting keys

Directly ingesting new keys into the linearized fast lane array would, especially in the case of
large data sets, require lots of shift operations to preserve the sorted order. Therefore, insertions
leave the fast lanes untouched but are only applied to the data list, which is implemented as
a pointer-based linked list. We create a new node and add it at the appropriate position of
the data list. Once a certain number of keys have been inserted, we rebuild the fast lane array.
Hence, new keys are eventually reflected in the fast lane hierarchy. Although it may take a while
until updates are pushed to the fast lanes, new keys are instantly available for search. As shown
in Section 3.3.2, if a key has not been found in the lowest fast lane, the search algorithm moves
down to the data list and scans it until the key is found or proven to be non-existing.
Rebuilding the linearized fast lane array consists of four steps: (1) We allocate a new array of

size
∑m
i=1 p

i ∗ n that can hold m fast lanes. (2) We process the complete data list and add every
1/p-th key to the lowest fast lane. Concurrently, we build up the new proxy lane. (3) Recursively,
we build the fast lane hierarchy from the bottom up, adding every 1/p-th element from the fast
lane at level i to the fast lane at level i + 1. (4) We replace the previous fast lane array and
proxy lane with the new ones. Once replaced, we delete the old entities.
Periodic rebuilds of the static fast lane array allow CSSL to adapt to changes in the indexed

data. Rebuilds enable fast lanes to reflect the current data list and keep their pruning capabilities
despite updates. If we would only insert into the data list but never update the fast lanes, search
algorithms would have to do a lot of work at the data list. On the other hand, such rebuilds
come at the cost that they are invoked by insert operations, which block until the rebuild is
finished6. Therefore, the frequency of rebuilds has a strong impact on the insert performance of
CSSL. We identify a trade-off between the performance of inserts, which prefer seldom rebuilds,
and search queries, which favor frequent rebuilds.

Deleting keys

As opposed to insertions, we cannot delete keys from the data list but leave the fast lanes
untouched, because this could lead to invalid search results. Hence, before deleting a key from
the data list, we need to eliminate it from the fast lane array.
We cannot remove an element from a fast lane and shift all consecutive elements by one

position in the left direction, because this would be very expensive, especially when removing
from the beginning of a large fast lane. Instead, we replace the deleted fast lane element with
a copy of its successor, which can be conducted with one instruction. Alternatively, we could
also replace the removed entry with a special character indicating that the element has been

6In a multithreaded setting, we could handle rebuilds in the background with a worker thread.

46

3.4 Evaluation

deleted. However, that would introduce additional complexity to the search algorithm, while our
approach does not require any changes. Duplicate fast lane entries will be eventually removed
once the array gets rebuilt.
In the last step of a deletion, we remove the key from the data list by changing the forward

pointer of the preceding node to point to the successor of the to-be-removed node. Finally, the
node can be deleted.
Our approach to deleting elements from fast lanes may waste a lot of memory space, because

duplicates are not removed until the next rebuild happens. In the meantime, the space is not
used although it is allocated. In the worst case, when a CSSL gets deleted element by element,
the linearized fast lane array remains unchanged in terms of size, although the data list is
empty. To cope with such scenarios, we introduce an internal counter that tracks the number
of insertions and deletions that have occurred since the last rebuild. Once the counter exceeds
a certain threshold, a rebuild is triggered. The counter is reset after every rebuild.

Updating keys

Updates are implemented as an insertion followed by a deletion.

3.4 Evaluation
We compare CSSL with ART, CSB+-trees, and a binary search (BS) on a static array. The
binary search is the only competitor that is read only by design. We also include an open-source,
main-memory adapted variant of the B+-tree [Comer 1979] as baseline approach, though we note
that B+-trees were originally designed to be stored on disk.
We evaluate CSSL with two configurations to study the effects of dense and sparse fast lanes:

CSSL2 with p = 1/2 and CSSL5 with p = 1/5. In our implementation, we expose the number
of desired fast lanes as input parameter, which we set to a value close to the optimum that we
empirically determine. In the experiments, it is set to nine.
The next section describes the experimental setup. Subsequently, we investigate the per-

formance of range queries (see Section 3.4.3), the performance of lookup operations (see Sec-
tion 3.4.4), the performance of mixed range/lookup workloads (see Section 3.4.5), and the space
consumption (see Section 3.4.6) of the competitors.

3.4.1 Experimental Setup
Methodology

All experiments are single-threaded and measure the search throughput of the competitors, i. e.,
how many queries can be processed per second. Experiments are run three times; we present
the arithmetic mean.

Software

All competitors were implemented in C/C++ and compiled with GCC 4.8.4 using optimization
−O3. For ART and the CSB+-tree, we used implementations provided by the authors. For the

47

3 CSSL: Processing One-Dimensional Range Queries in Main Memory

B+-tree, we used a popular in-memory implementation7. For BS, we use our own implementation
that stores all data in a static array in a sorted order. Here, we implement range queries by first
looking up the smallest matching key with a binary search and then scanning over all subsequent
keys until a key larger than the upper boundary of the range query has been found. We use
PAPI8 to collect hardware performance counters and valgrind9 to measure space consumption.

Hardware

All experiments were run on a server machine equipped with a Intel Xeon E5-2620 CPU (2
GHz clock rate, 15MB L3 cache, 256-bit SIMD registers). The system features 32 GB of main
memory and uses Linux as operating system.

3.4.2 Experimental Data and Workloads

Synthetic Data

For synthetic data, we generate n four-byte integer keys with a dense and a sparse distribution.
For the dense distribution, every key in [1, n] is indexed; for the sparse distribution, n random
keys from [1, 231) are indexed. We generate range queries by selecting a random key from the
set of indexed elements as lower boundary and add the range size, e. g., 0.1% of n, 1% of n,
or 10% of n, to obtain the upper boundary. For a dense distribution, this results in ranges
covering |upper_boundary − lower_boundary| elements. For a sparse distribution, the queries
are created using the same technique, yet return less elements, which usually leads to higher
search throughput.

Real-World Data

We also obtained real-world data from the bioinformatics domain to study the performance of
the competitors when being confronted with a non-synthetic key distribution. Like the Genomic
Multidimensional Range Query Benchmark (see Section 2.4), we used genomic variant data from
the 1000 Genomes Project [The 1000 Genomes Project Consortium 2015] as data source. As
opposed to GMRQB, which targets multidimensional data and workloads, we here indexed only
one attribute, the genomic position of the variants. As some competitors show a poor space
efficiency quickly exceeding the available main memory, we do not index the complete genome
but only consider the first two chromosomes, which sums up to 13,571,394 genomic positions
(keys) in total.
For the experiments on real-world data, we generate ranges using the same technique as for

synthetic data.

7bpt: B+ Tree Implementation, http://www.amittai.com/prose/bpt.c, Last access: August 29, 2018.
8PAPI, http://icl.cs.utk.edu/papi, Last access: August 29, 2018.
9Valgrind Home, http://valgrind.org, Last access: August 29, 2018.

48

http://www.amittai.com/prose/bpt.c
http://icl.cs.utk.edu/papi
http://valgrind.org

3.4 Evaluation

CSS
L 5

CSS
L 2

ART
CSB

+ BS B
+

CSS
L 5

CSS
L 2

ART
CSB

+ BS B
+

CSS
L 5

CSS
L 2

ART
CSB

+ BS B
+

100

102

104

106

Th
ro

ug
hp

ut
(q

ue
rie

s/
se

co
nd

)
[lo

ga
rit

hm
ic

sc
al

e]
Dense Sparse

0.1 % range size 1 % range size 10 % range size

Figure 3.4: Range query throughput of the competitors on 16 Million four-byte synthetic integer
keys depending on the range size.

3.4.3 Range Queries

We investigate the performance of the competitors when processing range queries with varying
range sizes on synthetic and real-world data.

16 Million Synthetic Keys

Figure 3.4 shows the throughtput of the competitors when executing range queries of varying
sizes on 16 Million synthetic keys, which equals 61.04MB of raw data. Both CSSL configurations
outperform all other contestants for both key distributions and all evaluated range sizes.
In contrast to ART, CSB+, and B+, CSSL do not need to follow pointers when iterating over

keys matching a range query, but sequentially process data held in an array structure. Although
BS can make use of a sequential access pattern to evaluate range queries, like CSSL, BS has
to scan all keys within the query range, while CSSL exploit the lowest fast lane to reduce the
number of keys to compare. Furthermore, CSSL is the only competitor that applies SIMD
instructions to the range query operator, which provides an additional speed-up of between
two to three times. On average, CSSL5 is up to 16.8X faster (10.4X for sparse data) than the
second best competitor, BS, and outperforms the remaining approaches by up to four orders of
magnitude.
CSSL5 is faster than CSSL2, because fast lanes skip over five instead of two elements, reducing

the number of keys that need to be compared when searching for the range end (see Listing 3.3).
We also investigated various cache-related hardware performance counters (see Table 3.1),

which explain the superior range query performance of CSSL: (1) The range query operator
of CSSL exploits most prefetched cache lines, which leads to only few cache misses. (2) CSSL
achieve high cache line utilization requiring only few cache accesses (accesses equal the sum of
hits and misses). (3) Furthermore, CSSL rarely generate branch mispredictions, because they

49

3 CSSL: Processing One-Dimensional Range Queries in Main Memory

Performance Counter CSSL5 CSSL2 ART CSB+ BS B+

Dense
CPU Cycles 202k 661k 501M 27M 3.4M 1,070M
Branch Mispredictions 12 15 813k 46 13 1.4k
LLC Hits 8k 24k 1.3M 49k 21k 1.6k
LLC Misses 21 7.3k 2.7M 243k 7.4k 7.8M
TLB Misses 5 13 1.6M 99 24 381k

Sparse
CPU Cycles 5k 13k 4.5M 620k 59k 1,095M
Branch Mispredictions 13 16 16k 4.6k 13 832
LLC Hits 139 373 14k 364 325 1.8k
LLC Misses 23 165 28k 5.7k 278 7.4M
TLB Misses 3 5 19k 958 10 369k

Table 3.1: Hardware performance counters per range query (10 % range size) on 16 Million
four-byte integer keys.

process mainly consecutive positions of the fast lane array. This benefits the number of CPU
cycles needed to execute a range query.
In contrast, the tree-based approaches ART, CSB+ and B+ produce many LLC misses due to

random data accesses necessary for navigating their search trees. As expected, by eliminating
pointer accesses and taking the sizes of cache lines into account, the CSB+-tree achieves higher
cache efficiency than the B+-tree.

256 Million Synthetic Keys

In this experiment, we study the competitors when confronted with a larger number of keys.
We execute range queries of varying selectivity on 256 Million four-byte synthetic integer keys,
which equals a raw data set size of 976.56MB. We only show the performance of CSSL, ART,
and BS, because the space needs of both the CSB+-tree and the B+-tree exceeded the available
32GB of main memory.
As shown in Figure 3.5, also for large data set sizes, both variants of CSSL outperform all

remaining competitors. For both key distributions, CSSL are up to 11.5X faster than the second
best competitor BS.

Real-World Data

To increase the practical relevance of our experimental results, we also investigate the range
query performance of the competitors when being confronted with a non-synthetic key distri-
bution. We use variant data from the 1000 Genomes Project (see Section 3.4.1) and index
the genomic positions of all variants found on the first two chromosomes. This results in
n = 13, 571, 394 four-byte integer keys. As in the previous experiments, we evaluate range
queries of different selectivities (0.1%, 1%, and 10% of n). Figure 3.6 shows the results.

50

3.4 Evaluation

CSS
L 5

CSS
L 2

ART BS
CSS

L 5

CSS
L 2

ART BS
CSS

L 5

CSS
L 2

ART BS

100

102

104

Th
ro

ug
hp

ut
(q

ue
rie

s/
se

co
nd

)
[lo

ga
rit

hm
ic

sc
al

e]
Dense Sparse

0.1 % range size 1 % range size 10 % range size

Figure 3.5: Range query throughput of the competitors on 256 Million four-byte synthetic integer
keys depending on the range size.

CSS
L 5

CSS
L 2

ART
CSB

+ BS B
+

100

102

104

106

Th
ro

ug
hp

ut
(q

ue
rie

s/
se

co
nd

)
[lo

ga
rit

hm
ic

sc
al

e]

0.1% 1% 10%

Figure 3.6: Range query throughput on 13,571,394 four-byte integer keys obtained from real-
world genomic variant data depending on the range size.

Also for non-synthetic data, CSSL outperform all other competitors when executing range
queries. CSSL5 achieves the highest throughput and is followed by CSSL2, BS, CSB+, ART
and B+. While CSSL5 is up to 16.69X faster than BS for low selectivities (10% range size), it
is up to 11.52X faster than BS for high selectivities (0.1% range size). The performance gains
of CSSL over the other competitors increase with the number of matching keys.

51

3 CSSL: Processing One-Dimensional Range Queries in Main Memory

CSS
L 5

CSS
L 2

ART
CSB

+ BS B
+

2.5

5

7.5

10

12.5

Th
ro

ug
hp

ut
(M

qu
er

ies
/s

ec
on

d) Dense Sparse

Figure 3.7: Lookup throughput on 16 Million four-byte synthetic integer keys.

3.4.4 Lookups

Lookups are a common operation in database management systems and mainly needed to verify
the existence of a certain key. Although CSSL target the efficient execution of range queries,
they also provide an implementation of single-key lookups. Figure 3.7 shows the throughput of
the competitors when processing lookups on 16 Million four-byte synthetic integer keys. ART
achieves the best performance for both key distributions. Additionally, it is the only competitor
that can boost its search performance for dense keys, for instance by using lazy expansion [Leis
et al. 2013]; the remaining competitors show identical results for both distributions. CSSL
achieve the second best throughput and are closely followed by BS and CSB+. The B+-tree
shows the worst performance. In this experiment, ART is 4.4X faster than CSSL for dense keys,
and 2.4X faster than CSSL for sparse keys. When evaluating lookups, CSSL5 requires up to
five comparisons per fast lane, whereas CSSL2 needs only up to two comparisons. On the other
hand, as both configurations employ the same number of fast lanes, CSSL2 requires more work
at the highest fast lane level, which holds more entries than that of CSSL5. CSSL2 and CSSL5
show very similar results, because the differences in the fast lane granularity have only negligible
impact on the performance of lookups.
Table 3.2 presents cache-related hardware performance counters per lookup operation on 16

Million four-byte integer keys. When executing lookups, ART achieves high cache efficiency: It
follows most predicted branches and produces only few LLC misses. ART can evaluate lookups
with only few instructions, especially when dealing with dense keys, while the other competitors
need more computations resulting in a larger number of CPU cycles spent per lookup. CSSL
produce only few LLC and TLB misses, but require more cache accesses than ART. In summary,
though being optimized for range queries, CSSL are able to achieve a lookup throughput that
outperforms BS, CSB+ and B+ and is almost as fast as ART, especially in the case of sparse
keys.

52

3.4 Evaluation

Performance Counter CSSL5 CSSL2 ART CSB+ BS B+

Dense
CPU Cycles 927 956 209 1,068 1,036 5,889
Branch Mispredictions 9 13 0 1 12 12
LLC Hits 11 8 2 3 21 28
LLC Misses 5 8 2 5 9 39
TLB Misses 1 3 2 3 4 20

Sparse
CPU Cycles 926 951 383 1,054 1,029 5,789
Branch Mispredictions 9 13 0 3 12 12
LLC Hits 11 8 5 3 20 29
LLC Misses 5 8 3 4 10 38
TLB Misses 1 3 4 5 4 20

Table 3.2: Hardware performance counters per lookup on 16 Million four-byte integer keys.

3.4.5 Mixed Workloads
Many real-world applications execute neither only lookups nor only range queries, but apply a
mix of both. For instance, a medical researcher may be interested in a certain variant found
in a certain patient, which would require a lookup, as well as all variants of complete disease
cohorts, which would boil down to a range query.
We investigate the competitors when executing a mixed workload consisting of an equal

number of lookups and range queries. In particular, we generate a workload of one Million
queries, i.e., 500,000 lookups and 500,000 range queries, and execute it on 16 Million four-byte
integer keys. For range queries, we always use a range size of 500,000.
As shown in Figure 3.8, CSSL achieve the best performance for mixed lookup/range query

workloads and are followed by BS, CSB+, ART and B+. Although ART offers the best lookup
performance, CSSL are up to two orders of magnitude faster when running a workload that also
includes range queries.
Range queries involve tremendously more keys than single-key lookups, take more time to

execute and therefore have higher impact on the overall performance of mixed workloads with
equal numbers of range queries and lookups. The results of this experiment emphasize the need
for a fast range query implementation, even for applications that do not exclusively run range
queries.

3.4.6 Space Consumption
Figure 3.9 visualizes the space requirements of the competitors when storing 16 Million four-byte
integer keys. As observed in Section 3.4.4, ART is better suited for managing dense than sparse
data. For dense key distributions, ART requires the least amount of space and is followed by
BS and CSSL. The tree-based approaches B+ and CSB+ show the worst memory consumption.
For sparse key distributions, BS achieves the highest space efficiency and is followed by CSSL5

53

3 CSSL: Processing One-Dimensional Range Queries in Main Memory

CSS
L 5

CSS
L 2

ART
CSB

+ BS B
+

101

103

105

Th
ro

ug
hp

ut
(q

ue
rie

s/
se

co
nd

)
[lo

ga
rit

hm
ic

sc
al

e]
Dense Sparse

Figure 3.8: Throughput of a mixed workload consisting of 500,000 lookups and 500,000 range
queries when applied to 16 Million four-byte synthetic integer keys.

and ART. Again, B+ and CSB+ show the worst results. For 16 Million keys, CSSL2 requires
approximately 1.8 times more memory than CSSL5, because the fast lanes hold more entries.
Note that ART’s space efficiency would probably grow for keys larger than four bytes. Then,

ART is able to employ further optimization techniques, e.g., path compression, which are not
beneficial for small keys [Leis et al. 2013].

3.5 Discussion

The main idea of CSSL is the linearization of the fast lanes, which allows to pack all fast lane
entities into a dense array. The presented memory layout enables the search algorithms of skip
lists to use a sequential access pattern and allows the range query operator to exploit SIMD
instructions. However, the improved search performance comes at the cost of more complicated
updates. While inserting into a regular, pointer-based skip list with m fast lanes only requires
changing up to m pointers, CSSL need to periodically rebuild the complete fast lane hierarchy,
which blocks insert operations.
In this chapter, we only discussed the single-threaded case. However, driven by the rise of

multi-core CPUs (see Section 2.3.3), modern database systems often execute multiple queries
concurrently and therefore also need to access index structures simultaneously with multiple
threads. The current implementation of CSSL allows concurrent read access without requir-
ing any locks. Also, insert operations could be implemented lock-free10, as demonstrated by
Fomitchev and Ruppert [Fomitchev et al. 2004] for regular skip lists. However, the rebuild
operation would need to lock the fast lane array for a short amount of time when replacing it
with the new one. Also, the delete operation requires a write lock on the linearized fast lane
10Here, we refer to locks as used in parallel programming. Database people sometimes use the term latch to refer

to locks used in programming.

54

3.6 Summary

CSS
L 5

CSS
L 2

ART
CSB

+ BS B
+

1,000

2,000

Sp
ac

e
co

ns
um

pt
io

n
in

M
B

Dense Sparse

Figure 3.9: Space consumption for 16 Million four-byte integer keys.

array when updating the fast lane entries. In summary, we can adapt CSSL to a multithreaded
setting. However, the rebuild and delete operations would have to lock the complete fast lane
array, which will hurt their performance.
In our experiments, we only considered integers as data type for keys. Nonetheless, we could

easily adapt the implementation of CSSL to other key types that provide a lexicographical
order, e. g., long values, floating-point values, or even strings. Though, note that we use AVX
intrinsics, which support only integers and floating-point values, to vectorize the range query
operator. Therefore, for instance, when using CSSL to index sets of strings, we could not leverage
SIMD parallelism. Also consider the space efficiency of CSSL when handling more complex data
types. For instance, when indexing a set of strings with strongly varying sizes, CSSL determines
the size of the longest string and allocates that amount of space for each key wasting a lot of
space. For such data, other index structures, like main-memory optimized tries [Leis et al. 2013],
may be a better choice.

3.6 Summary

In this chapter, we presented the cache-sensitive skip lists (CSSL) as a cache-optimized approach
to processing one-dimensional range queries in main memory. We studied the foundational
concepts behind CSSL, discussed why we chose conventional skip lists as basis data structure,
and showed which steps are necessary to adapt their memory layout to modern CPUs. Moreover,
we introduced algorithms for executing search queries and described how to dynamically update
CSSL.
In a comprehensive evaluation, we compared CSSL with state-of-the-art main-memory index

structures. We showed that, regardless of the distribution or the cardinality of the data set,
CSSL clearly outperform all other competitors for range queries, sometimes by up to four orders
of magnitude. CSSL also provide fast lookups, where they are only outperformed by the recent

55

3 CSSL: Processing One-Dimensional Range Queries in Main Memory

ART index structure. Using a mixed lookup and range query workload, we emphasized the
importance of efficient range query implementations. For such workloads, CSSL also achieve
the best performance.
In the following chapters, we continue with studying the processing of range queries in main

memory, but delve into the more complex multidimensional domain.

56

4 An Analysis of Multidimensional Range
Queries on Modern Hardware

Multidimensional range queries (MDRQ) are selection queries that specify query intervals for
some, many, or all dimensions of a multidimensional data space. They are a common part of
many database workloads, especially in the scientific community, and are used in various appli-
cations, such as genomic analysis [Thorvaldsdóttir et al. 2013], online analytical processing [Ho
et al. 1997; Liang et al. 2000], internet of things [X. Li et al. 2003], etc (see Introduction).
MDRQ can be answered either by sequential scans over the complete data or by dedicated
multidimensional index structures (MDIS).
In the context of traditional disk-based server machines, Weber et al. [Weber et al. 1998]

showed that a scan-based query evaluation outperforms MDIS when roughly 20% or more of
all data have to be visited, assuming that accesses of consecutive blocks (as in a scan) are at
least five times faster than random accesses (as necessary for most MDIS). Since then, this
threshold has been used as the basic rule of thumb for choosing access paths in MDRQ, while
completely ignoring the advancements in server hardware that occurred over the last years, like
large main-memory capacities or multi-core CPUs (see Section 2.3).
Thus, it is time to re-evaluate the performance of MDRQ on modern hardware architectures

to see whether the traditional selectivity-based rule of thumb for access path selection still holds
or should be updated. Our work is motivated by recent analyses of one-dimensional selection
queries, which showed that main-memory database systems strongly favor scanning [Das et al.
2015].
In this chapter, we conservatively adapt three popular MDIS to a parallel and in-memory

setting, namely (1) the R∗-tree [Beckmann et al. 1990], an R-tree [Guttman 1984] variant mini-
mizing overlap between different index regions, (2) the kd-tree [Bentley 1975], an index structure
already originally designed for in-memory computations, and (3) the VA-file [Weber et al. 1998],
which can be considered as a mixture between an MDIS and a sequential scan. Section 2.2
provides detailed descriptions of the approaches.
Our adaptation is conservative in the sense that we withstood the temptation to design new,

highly-tuned, parallel MDIS, because we want to study classical index structures, which are
employed by many mature database systems, e. g., SQLite uses R∗-trees1, PostgreSQL uses kd-
trees2, etc. Our main goal is to evaluate techniques, which can be applied to existing MDIS with
as few adaptations as possible, thus raising the practical relevance of our experimental results.
We compare the adapted variants of the MDIS to the performance of a parallel, in-memory,

scan-based implementation of MDRQ using real-world and synthetic analytical workloads over
1The SQLite R∗Tree Module, https://sqlite.org/rtree.html, Last access: August 29, 2018.
2PostgreSQL: Documentation: 10: 11.2. Index Types, https://www.postgresql.org/docs/current/
static/indexes-types.html, Last access: August 29, 2018.

57

https://sqlite.org/rtree.html
https://www.postgresql.org/docs/current/static/indexes-types.html
https://www.postgresql.org/docs/current/static/indexes-types.html

4 An Analysis of Multidimensional Range Queries on Modern Hardware

real-world and synthetic data sets of varying size, dimensionality, and skew. We employ only
basic parallelization schemes and refrain from using highly-tuned scan implementations, like the
recent BitWeaving [Y. Li et al. 2013] or the ELF approach [Broneske et al. 2017a].
This chapter makes four main contributions:

• We present two approaches to dividing a multidimensional data set into disjoint partitions
enabling a parallel evaluation of range queries.

• We describe a novel SIMD-based algorithm to compare tuples with MDRQ search objects,
which is a frequently-needed task in query evaluation.

• We conservatively adapt three popular MDIS and two scan flavors to main-memory stor-
age, SIMD instructions, and multi-core CPUs.

• We conduct a comprehensive evaluation to investigate whether the traditional selectivity
threshold [Weber et al. 1998] still holds on modern hardware architectures or should be
updated.

The remainder of this chapter is organized as follows. In the next section, we present two
techniques for partitioning multidimensional data sets and explain how to use them for the
parallelization of MDRQ. Section 4.2 shows how to vectorize the comparison of a MDRQ search
object, defined by a lower and a upper boundary, with a multidimensional tuple (or data ob-
ject). Section 4.3 presents our adaptations of three MDIS and two scan approaches to modern
hardware. In Section 4.4, we conduct a comprehensive evaluation of the performance of multi-
dimensional range queries in an in-memory, parallel setting applying synthetic and real-world
query workloads to synthetic and real-world data sets. Finally, Section 4.5 critically discusses
this chapter and Section 4.6 provides a summary.
Parts of this chapter have been previously published in [Sprenger et al. 2018b]3.

4.1 Partitioning for Parallelization
The execution of individual search queries can be parallelized using two techniques. We may
either (a) build one large index structure over the complete data set and parallelize the index
traversal or (b) create multiple index structures over subsets of the data and query these in
parallel.
Especially for hierarchical MDIS, like R∗-trees or kd-trees, a parallelization of the index traver-

sal would require solving a complex load balancing problem. The number of tree branches would
grow exponentially with the depth of the tree, creating over-provisioning in the upper levels and
under-provisioning in the lower levels. As a consequence, some threads might finish earlier than
others and would need to be reassigned to different tasks, requiring a barrier synchronization
after each tree level [Buluç et al. 2011; Yoo et al. 2005]. Furthermore, this strategy would
have to be tailored to each individual indexing approach individually, preventing an universal
parallelization technique that can be applied to MDIS not considered in this thesis. For these

3Sections 4.4.8 and 4.4.9 provide unpublished results.

58

4.1 Partitioning for Parallelization

reasons, such schemes are beyond the scope of our work, but have been explored, for instance,
in [Koudas et al. 1996] or [Schnitzer et al. 1999].
We parallelize the execution of MDRQ following the second scheme: We partition the data

and manage each partition in an individual instance of an index (or array in the case of a scan).
MDRQ are concurrently applied to each partition and results are concatenated to obtain the
final result set. This strategy has the advantage that it can be applied to any MDIS, not only
the ones considered here, because we essentially build a conventional MDIS for every partition.
Only the orchestration of the different MDIS, which does not require any synchronization, and
the result concatenation for obtaining the final result set have to be added. Furthermore, load
balancing is quite simple, because it only requires adapting the granularity of partitioning, which
may also suffice to adapt to the number of hardware threads available on a machine.
On the downside, this scheme performs many comparisons redundantly, because every partition-

wise MDIS has to cover the entire space. This prohibits the pruning of entire partitions (or MDIS
instances), which is a burden in the case of very high selectivities. In R∗-trees, every search
initially traverses similar layers, while in VA-files, multiple buckets with the same approximation
have to be scanned. Note, however, that this redundant work is performed in parallel.
In this section, we describe two different partitioning schemes, namely horizontal partitioning

and vertical partitioning, which are quite similar to row-based [Lemahieu et al. 2018] and column-
based [Stonebraker et al. 2005] data storage formats. Figure 4.1 illustrates the techniques when
dividing twenty five-dimensional tuples into five partitions.

Horizontal Partitioning

Horizontal partitioning divides a data set of n objects into p partitions. Each partition holds a
near-identical number of tuples, i. e., partition size ≈ n/p. To obtain a robust load balancing,
we assign tuples at random to partitions and set p = t given that t is the number of available
hardware threads (or virtual cores). Such a scheme is simple to implement and maintain, also
in the presence of inserts or updates4. The different partitions are treated as independent. For
MDIS, this means that actually p indexes are built, each covering one partition, which allows
using existing implementations without adaptation. For scans, this boils down to creating p
arrays, each holding the data of a particular partition.
At search time, each partition is processed by a distinct CPU thread that produces a partial

result containing all objects of the partition matching the search query. Once all threads have
finished, their partial results are concatenated by a main thread, responsible for orchestration,
to produce the overall result set. Horizontal partitioning is similar to Parallel VA-files [Weber
et al. 2000], except that here we target multithreading provided by modern CPUs instead of dis-
tributing queries among different physical machines. Also, many parallel database management
systems use similar schemes, like intra-operation parallelism or partitioned parallelism [Taniar
et al. 2008], to concurrently apply multiple instances of the same query to different subsets of
the data.

4Assuming that workloads follow certain known distributions, one could also consider assigning tuples to par-
titions such that an optimal load balancing is achieved, as, for instance, described in [Berchtold et al. 1997].
Such a scheme would have to be implemented individually for each approach considered. Again, we refrain
from applying such optimizations to keep our comparisons fair.

59

4 An Analysis of Multidimensional Range Queries on Modern Hardware

tuple

data set D
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19tid

dimension

Horizontal Partitioning

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

partition 0 partition 1 partition 2 partition 3 partition 4

Vertical Partitioning

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
partition 0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
partition 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
partition 2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
partition 3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
partition 4

Figure 4.1: Horizontal and vertical partitioning used to divide twenty five-dimensional tuples
into five partitions.

A major advantage of horizontal partitioning is its simplicity. If partitions are chosen at
random, no further data structures are necessary for managing the mappings between data
objects and partitions. The creation of the overall result set requires only concatenating the
partial results, incurring only minimal synchronization effort. At initialization time, the number
of partitions can be chosen freely to diminish the effect of stragglers, if suspected. At the
downside, horizontal partitioning uses entire tuples as basic unit of access: In all cases, whole
tuples have to be considered and must always be read completely into the CPU caches, even if
only a subset of all dimensions are queried, as in the case of partial-match MDRQ.

60

4.2 Vectorizing Range Queries

Vertical Partitioning

Vertical partitioning slices tuples along their dimensions, creating one partition for each dimen-
sion. Hence, the number of partitions p is fixed and depends on the dimensionality of the data
space, m. For query execution, an m-dimensional range query is split into m one-dimensional
range queries, which are executed in parallel by distinct threads. Accordingly, also the degree
of parallelism in this scheme is fixed at m.
Eventually, the one-dimensional results must be intersected to compute the final m-dimensional

result set, which is more complicated than concatenation as used in horizontal partitioning. In
our implementation, the processing of each partition creates a bitmask of size n that notes for
every tuple whether it matches the search object in this dimension or not. Once all m bitmasks
have been computed, we intersect them using a bitwise AND operation to determine the overall
bitmask, which reflects all dimensions. The intersection can be performed in parallel on different
chunks of the bitmasks. For modern hardware, different approaches to the intersection of sets
have been presented. Schlegel et al. [Schlegel et al. 2011] showed how to intersect sets with SIMD
instructions; however, their technique requires sets to be sorted. Tsirogiannis et al. [Tsirogiannis
et al. 2009] presented multithreaded algorithms for intersecting sorted and unsorted sets. We
also use a multithreaded approach, but can make use of efficient bit operators.
Clearly, vertical partitioning is only meaningful for scan-based MDRQ implementations, be-

cause MDIS would degenerate to one-dimensional indexes. The main advantage of vertical
partitioning is its built-in support for partial-match queries, because it accesses only those di-
mensions (or partitions) that are referred to in the query. For complete-match queries, it offers
no advantage over horizontal partitioning with regards to the amount of accessed data, because
all dimensions have to be accessed in both cases. It has the general disadvantage that it requires
large intermediate data structures, the bitmasks, and a complex technique to produce the final
result set, the intersection. It is also rather complicated to achieve a good load balancing when
m < t, since some threads remain idle, or m > t, because then not all partitions can be processed
concurrently, scanning some partitions after others. In both cases, one should start to chop the
partitions into subsets and parallelize the scan on this finer level of granularity. We do not tune
our implementation in such manners but stick to the simple scheme of assigning one thread to
each partition.

4.2 Vectorizing Range Queries

When evaluating range queries, both sequential scans and index structures need to compare
search objects, defined by a lower and an upper boundary, to tuples to determine matches. As
shown in Algorithm 3, this task is often implemented by iterating over all m dimensions of the
data space with a for loop and comparing the MDRQ search object to the tuple, dimension by
dimension. Clearly, this procedure can be sped up by aborting once a comparison fails. In this
section, we vectorize this fundamental operation to compare multiple dimensions simultaneously.
Obviously, the performance gains depend on the dimensionality of the data space: With a
growing number of dimensions the benefits increase.
Listing 4.1 presents a SIMD-based implementation of Algorithm 3 that uses AVX intrinsics.

61

4 An Analysis of Multidimensional Range Queries on Modern Hardware

Algorithm 3 Scalar comparison of an m-dimensional MDRQ search object with an m-
dimensional tuple.
lower_bound: The lower boundary of the MDRQ search object.
upper_bound: The upper boundary of the MDRQ search object.

tuple: The data object that is compared to the MDRQ search object.
m: The dimensionality of the data space.

1: function CompareMDRQWithTuple(lower_bound, upper_bound, tuple,m)
2: for dim← 0 to m− 1 do
3: if lower_bound[dim] > tuple[dim] OR upper_bound[dim] < tuple[dim] then
4: return false
5: end if
6: end for
7: return true
8: end function

Since AVX intrinsics work on 256-bit wide SIMD registers, the SIMD-based algorithm can
process eight dimensions with one comparison, assuming that search queries and tuples are
implemented as arrays of four-byte floating-point values.
In the beginning, the algorithm initializes SIMD registers and helper variables (see Lines 5-

6). We determine the number of to-be-executed SIMD comparisons in Line 7 and store it in
the variable compares. The dimensions are processed in chunks of eight (see Lines 8-20). If
the dimensionality of the data space is not divisible by eight, we process some dimensions in a
separate for loop using scalar instructions (see Lines 21-25).
The vectorized processing of dimension values works as follows: After loading chunks of eight

dimensions of the tuple, the query’s lower boundary and the query’s upper boundary into SIMD
registers, the algorithm compares the lower boundary (lower_reg) and the upper boundary
(upper_reg) to the tuple (data_reg) using SIMD instructions. SIMD-based comparisons return
bitmasks that indicate if a comparison, e. g., less or equal (_CMP_LE_OQ), was successful.
The results of the comparisons are stored in the variables mask_lower and mask_upper. If all
comparisons were successful, all bits are set to 1, which equals 0xFF in our case (see Line 17).
If a comparison failed, we can abort and prune further computations (see Line 18). Finally, if
the tuple matches the given search query in all dimensions, we return true (see Line 26).
The SIMD-based comparison of search objects with data objects provides a theoretical speed-

up of eight compared to the scalar variant. However, vectorization is only useful if the dimen-
sionality of the feature space is greater than or equals eight. Otherwise it does not enter the
SIMD-based for loop (see Lines 8-20), but automatically falls back to scalar instructions (see
Lines 21-25). Also, since the presented algorithm processes eight dimensions at the same time,
it is less flexible than the scalar variant with regards to early breaks5. Thus, the performance
benefits decrease for selective queries.

5As soon as the first mismatch occurs, further comparisons are pruned resulting in an early break.

62

4.3 Conservative Adaptation of Multidimensional Index Structures

Listing 4.1: Vectorized comparison of an m-dimensional MDRQ search object with an m-
dimensional tuple using AVX intrinsics.

1 bool CompareMDRQWithTuple(float[] lower_bound,
2 float[] upper_bound,
3 float[] tuple,
4 int m) {
5 __m256 lower_reg, upper_reg, search_reg, lower_res, upper_res;
6 int i, mask_lower, mask_upper, mask;
7 const int compares = (m / 8) * 8;
8 for (i = 0; i < compares; i += 8) {
9 lower_reg = _mm256_loadu_ps(&lower_bound[i]);

10 upper_reg = _mm256_loadu_ps(&upper_bound[i]);
11 data_reg = _mm256_loadu_ps(&tuple[i]);
12 lower_res = _mm256_cmp_ps(lower_reg, data_reg, _CMP_LE_OQ);
13 upper_res = _mm256_cmp_ps(upper_reg, data_reg, _CMP_GE_OQ);
14 mask_lower = _mm256_movemask_ps(lower_res);
15 mask_upper = _mm256_movemask_ps(upper_res);
16 mask = mask_lower & mask_upper;
17 if (mask < 0xFF) {
18 return false;
19 }
20 }
21 for (; i < m; ++i) {
22 if (tuple[i] < lower_bound[i] || tuple[i] > upper_bound[i]) {
23 return false;
24 }
25 }
26 return true;
27 }

4.3 Conservative Adaptation of Multidimensional Index Structures

In this section, we describe our conservative adaptations of the R∗-tree, the kd-tree, the VA-file,
and two scan flavors. In particular, we describe our changes to the original data structures
performed to adapt (1) to main-memory storage, (2) to the availability of multiple threads, and
(3) to SIMD instructions. As our evaluation focuses on analytical workloads, we only discuss
search algorithms. In all cases we tried to keep the original design and code untouched as much
as possible to allow a re-usage of existing, proven implementations to the largest possible degree.
Our overall strategy is to (a) keep the original storage layout but hold all blocks, e. g., inner and
leaf nodes, in main memory, (b) partition the data horizontally at random into almost-equally
sized chunks and build one MDIS per partition which work in parallel during the execution of
MDRQ, and (c) use SIMD instructions only for the most time-consuming operation, i.e., the
comparison of the tuples with the MDRQ search object.

63

4 An Analysis of Multidimensional Range Queries on Modern Hardware

R∗-tree

We base our implementation of the R∗-tree on the open-source library libspatialindex6 and
perform the following adaptations:

• Main Memory: We keep all nodes of the tree in main memory. We do not adjust the node
sizes to the sizes of disk blocks anymore, but choose node capacities such that inner and
leaf nodes are aligned with cache lines, which increases the cache line utilization of search
algorithms. To this end, we slightly change the default configuration of libspatialindex
from a capacity of 100 to 96 tuples (MBR) for leaf nodes (inner nodes), providing a
perfect alignment regardless of the dimensionality of the data set7. Note that we do not
further tailor the node sizes to the sizes of the CPU caches, like the last level cache (LLC),
because this did not offer any performance benefits in preliminary evaluations.

• Multithreading: We horizontally partition the data at random into almost-equally sized
partitions and build one R∗-tree instance per partition. When evaluating MDRQ, these
are searched in parallel with one thread per partition and the partial result sets are con-
catenated once all R∗-tree instances have finished their work. We choose the number
of partitions to be equal to the number of hardware threads available on the evaluation
machine. When only some of many partitions contain matches, some threads may fin-
ish earlier than others, a condition called execution skew [DeWitt et al. 1992]. However,
such cases seldomly occur in horizontal partitioning, because of the random assignment
of objects to partitions, and are more common in range partitioning [DeWitt et al. 1992].
Figure 4.2 illustrates the differences between sequentially querying a conventional R∗-tree
and executing a parallel MDRQ following our approach.

• SIMD: We use the SIMD-based algorithm from Listing 4.1 to compare MDRQ search
objects with tuples (MBR) stored in leaf nodes (inner nodes). Since libspatialindex works
with eight-byte double values, we can compare only four values (instead of eight) with one
SIMD instruction.

kd-tree

We implement a kd-tree from scratch following the original proposal by Bentley [Bentley 1975]
with the following adaptations to exploit modern hardware features:

• Main Memory: Kd-trees are already designed for main memory, thus no adaptations of
the data layout were necessary in this regard. As proposed in the original paper, all nodes
of a kd-tree store one data object. Hence, also leaf nodes hold only one object, prohibiting
adaptations to cache line sizes.

6libspatialindex - libspatialindex 1.8.0 documentation, https://libspatialindex.github.io/, Last ac-
cess: August 29, 2018.

7The used implementation stores dimension values as eight-byte double values. Hence, choosing a capacity that
is a multiple of eight always aligns nodes to 64-byte cache lines.

64

https://libspatialindex.github.io/

4.3 Conservative Adaptation of Multidimensional Index Structures

Old Hardware Modern Hardware
range_query(...)

ti
m

e ...

...
...

R*-tree

result set

range_query(...)

...

...
...

R*-tree
partition 1

...

...
...

R*-tree
partition p

...

forward query
to partitions

result set

concatenate
partition results

Figure 4.2: Single-threaded execution of an MDRQ on a conventional R∗-tree vs. parallel exe-
cution of an MDRQ on p instances of an R∗-tree, where each instance manages the
data of one partition (horizontal partitioning) and is searched with a distinct thread
(p threads in total).

• Multithreading: We adapt kd-trees to multithreading using the same approach as for
R*-trees.

• SIMD: We exploit SIMD instructions as shown in Listing 4.1 for intersecting MDRQ
search objects with the tuples stored in the nodes of the kd-tree.

VA-file

We also implement VA-files from scratch applying the following adaptations to the original
method [Weber et al. 1998]:

• Main Memory: All buckets are stored in main memory. The sizes of the buckets are
derived from the length of the approximations. Based on preliminary experiments, we use
two bits per dimension for the approximations with values roughly evenly dividing the
space, leading to buckets holding approximately n/(4m) tuples.

• Multithreading: As for all MDIS, we horizontally partition the data at random and
build one VA-file per partition. When evaluating queries, these partitions are concurrently
searched.

• SIMD: We use the algorithm from Listing 4.1 to compare MDRQ search objects with the
tuples from those buckets whose approximations intersect the approximated query.

65

4 An Analysis of Multidimensional Range Queries on Modern Hardware

Parallel Scan on Horizontally-Partitioned Data

For scanning horizontally-partitioned data, we use the following techniques:

• Main Memory: We partition the data objects into p partitions, which are kept in m-
dimensional arrays.

• Multithreading: These arrays are concurrently scanned using a multidimensional range
scan (see Section 2.2.1). The results are concatenated once all threads have finished their
work.

• SIMD: During the scan, every tuple is compared to the query object using SIMD instruc-
tions. We replace the inner loop of the multidimensional range scan (see Lines 4-13 from
Algorithm 1) with the vectorized algorithm shown in Listing 4.1.

Parallel Scan on Vertically-Partitioned Data

We implement the scanning of vertically-partitioned data as follows:

• Main Memory: We partition the data objects into m partitions, which are stored in
one-dimensional arrays, each holding the value of one dimension per tuple.

• Multithreading: When evaluating MDRQ, these arrays are concurrently searched with
one-dimensional range scans. For partial-match queries, only the dimensions addressed in
a query are accessed. Note that in this scheme the degree of parallelism of a MDRQ is
constrained by the number of dimensions restricted in the query. Each scan of a partition
creates one bitmask of length n. These bitmasks are concurrently intersected in t chunks
of equal size, where t equals the number of available threads.

• SIMD: In vertically-partitioned data, single dimensions of tuples are compared to single
dimensions of the MDRQ search object. Hence, the SIMD code from Listing 4.1 cannot
be applied. Instead, we apply SIMD instructions using the approach proposed by Zhou
and Ross [J. Zhou et al. 2002].

4.4 Evaluation
The objective of our evaluation is to investigate the performance of MDRQ on modern hardware.
To this end, we compare three MDIS and two scan variants, which we adapted as described in
Section 4.3, applying synthetic and real-world workloads to synthetic and real-world data sets.
Specifically, the experiments aim to answer the following questions:

• How much does each contestant benefit from modern hardware features, such as vector-
ization and multithreading (see Section 4.4.3)?
• Is the rule of thumb for choosing between index probing and scanning depending on the
query selectivity still valid on modern hardware (see Section 4.4.4 to Section 4.4.6)?

66

4.4 Evaluation

• What is the impact of data set characteristics, like dimensionality, cardinality, or skew,
and workload properties, like selectivity, or number of restricted dimensions, on the per-
formance of the competitors (see Section 4.4.4 to Section 4.4.6)?
• Can the parallel implementations of the contestants scale with the number of used threads
(see Section 4.4.7)?
• How efficient do the competitors utilize memory (see Section 4.4.8)?

4.4.1 Experimental Setup

Hardware

We execute all experiments on a server equipped with two Intel Xeon E5-2620 CPUs (2 GHz
clock rate, six cores, 12 hardware threads) and 32GB of RAM. In total, the machine features
12 cores and 24 hardware threads (or hyperthreads)8. The CPU supports AVX instructions
executed on 256-bit SIMD registers.
We also run the experiments on another hardware platform to show that our findings do not

depend on the used hardware architecture. The second evaluation machine features one Intel
i7-5930K CPU (3.5 GHz clock rate, six cores, 12 hardware threads, AVX instructions) and 32GB
of main memory.

Methodology

In all experiments, caches are warmed up. All data sets are inserted in random order. All
experiments measure the throughput, which is the number of operations, in our case MDRQ,
each contestant can execute per second. In most cases, we run query workloads consisting of
1,000 queries and measure the time ts each contestant needs to execute all queries. We divide
the number of executed queries by ts to get the average throughput.

Competitors

In our experiments, we consider the R∗-tree [Beckmann et al. 1990], the kd-tree [Bentley 1975],
the VA-file [Weber et al. 1998] and parallel scans over horizontally- and vertically-partitioned
data. All contestants are evaluated with and without multithreading and with and without
SIMD instructions. All MDIS employ horizontal partitioning, which allows to re-use single-
threaded search operators. Unless otherwise noted, we set p = t for horizontal partitioning to
exploit all available processing units (threads) and because we do not expect any stragglers that
would benefit from using p > t.

8As described in Section 2.3.3, modern Intel CPUs provide a proprietary implementation of simultaneous mul-
tithreading, called hyperthreading. Depending on the CPU family, each physical CPU core can typically
execute between two and four threads concurrently within one instruction pipeline.

67

4 An Analysis of Multidimensional Range Queries on Modern Hardware

Data Set n m Distinct Values per Dimension Raw Size (MB)

UNIFORM 10k 5 9,950 (avg) 0.19MB
100k 5 95,175 (avg) 1.91MB
1M 5 to 100 632,257 (avg) 19.07MB to 381.47MB
10M 5 999,956 (avg) 190.74MB

CLUSTERED 1M 5 632,047 (avg) 19.07MB

POWER 10k 3 10,000; 627; 698 0.11MB
100k 3 100,000; 2,089; 2,290 1.14MB
1M 3 1,000,000; 4,325; 4670 11.44MB
10M 3 9,875,681; 6,840; 7,634 114.44MB

GENOMIC 10M 19 See Section 2.4.2 724.79MB

Table 4.1: Data sets used in our experiments.

Software

All competitors were implemented in C++11 and were compiled with GCC 4.8 using the opti-
mization flag -O3. We use an open-source thread pool library9 to enable the reuse of POSIX
threads.

4.4.2 Experimental Data and Workloads

We evaluate MDRQ on four different data sets. For each data set, Table 4.1 provides the number
of data objects (n), the number of dimensions (m), the number of distinct values per dimension
(for synthetic data, we provide average values over all dimensions), and the raw data set size10.
All competitors implement data objects with four-byte floating-point values. Only the used
implementation of R∗-trees, libspatialindex, employs eight-byte double values. For the data sets
UNIFORM, CLUSTERED, and POWER, we use synthetic workloads consisting of randomly-
generated complete-match MDRQ. For GENOMIC, we execute realistic complete-match and
partial-match MDRQ from the benchmark described in Section 2.4.

Data Set UNIFORM

Synthetic data facilitates experiments with arbitrary cardinalities and dimensionalities. For
UNIFORM, we generate values uniformly-distributed at random within [0, 1].
For all experiments with UNIFORM, except those studying the impact of query selectivity

(see Section 4.4.4), we generate MDRQ by randomly selecting two data objects from the gen-
erated data and use those as lower and upper boundaries. This results in queries with varying
selectivities; we always provide the average selectivities.

9GitHub - vit-vit/CTPL: Modern and efficient C++ Thread Pool Library, https://github.com/vit-vit/
CTPL, Last access: August 29, 2018.

10The presented values equal the amount of memory space needed when implementing data objects as arrays of
four-byte floating-point values, i. e., it equals n ∗ m ∗ 4 bytes.

68

https://github.com/vit-vit/CTPL
https://github.com/vit-vit/CTPL

4.4 Evaluation

Data Set CLUSTERED

In contrast to the uniformly-distributed UNIFORM, the five-dimensional data set CLUSTERED
features between one and twenty clusters. For CLUSTERED, we use a data generator provided
by Müller et al. [Müller et al. 2009]. Within each cluster, data are uniformly distributed.
For CLUSTERED, we generate range query workloads using the same technique as for UNI-

FORM.

Data Set POWER

The real-world data set POWER is obtained from the DEBS 2012 challenge11. It contains mon-
itoring data (or events) recorded by hi-tech manufacturing equipment equipped with an embed-
ded PC and various sensors (Industrial IoT). As in previous studies using this data set [Wang
et al. 2016], we index three dimensions. The first dimension provides the time at which the
event was recorded and can therefore be considered as an almost-unique identifier. The second
and third dimension provide information about the power consumption of the monitored device.
As for the synthetic data, we generate MDRQ by randomly choosing two tuples from POWER

and use those as lower and upper boundaries.

Data Set GENOMIC

We index real-world genomic variant data provided by the 1000 Genomes Project. Using our
own data importer, we transform raw variant data into 19-dimensional data objects. Attributes
originally stored as strings, like the population of a sample, are transformed into floating-point
values by hashing. Section 2.4.2 provides a detailed description of all attributes including their
domain and their number of distinct values.
For GENOMIC, we evaluate eight realistic MDRQ templates designed in collaboration with

domain experts (see Section 2.4.3). We also consider a mixed workload that consists of all query
templates randomly mixed together.

4.4.3 Impact of Multithreading and Vectorization

Figure 4.3 shows the throughput of MDRQ with an average selectivity of 0.1% (σ = 0.002%)
when applied to one Million uniformly-distributed tuples of moderate dimensionality (twenty
dimensions) depending on the used modern hardware features. For all contestants, we evaluate
a single-threaded (baseline) implementation, a single-threaded implementation exploiting SIMD
instructions, a multithreaded implementation, and a multithreaded implementation using SIMD
instructions.

Multithreading

We compare the single-threaded to the multithreaded implementations (both without using
SIMD), where we used 24 software threads, which equals the number of hardware threads
11DEBS 2012 Grand Challenge: Manufacturing equipment - DEBS.org, http://debs.org/?p=38, Last access:

August 29, 2018.

69

http://debs.org/?p=38

4 An Analysis of Multidimensional Range Queries on Modern Hardware

R∗-tree kd-tree VA-file Scan (Hor. Part.) Scan (Vert. Part.)

101

102

Th
ro

ug
hp

ut
(q

ue
rie

s/
se

c)
[lo

ga
rit

hm
ic

sc
al

e]
Single-Threaded without SIMD Single-Threaded with SIMD
Multithreaded without SIMD Multithreaded with SIMD

Figure 4.3: Throughput when executing MDRQ with an average selectivity of 0.1% on one Mil-
lion twenty-dimensional tuples from UNIFORM depending on the used hardware
features.

available on the evaluation machine. Due to a dimensionality of m = 20, the scan with vertical
partitioning uses only twenty threads.
At first glance one would expect speed-ups almost as good as 24X, at least for the approaches

using horizontal partitioning. However, none of the contestants shows such performance gains.
On average, the competitors achieve speed-ups of up to 11.6 times. Apparently, performance
gains are bounded by the number of physical cores, which equals 12 on the evaluation ma-
chine. Hyper-threading [Saini et al. 2011] is only beneficial for applications, where threads are
frequently waiting for data to be loaded from the main memory into the CPU caches, making
memory accesses the bottleneck [Plattner 2009]; this is also described as blocking.
The workload considered here uses query selectivities of only 0.1%, which enables hierarchical

MDIS (R∗-tree and kd-tree) to efficiently prune large parts of the data space. Thus, they are
compute-bound. Even both scans and the VA-file are not memory-bound, because many early
breaks occur, leading to branch mispredictions and causing compute-intensive pipeline flushes.
See Section 4.4.7 for scalability experiments using lower query selectivities.

Vectorization

We study the impact of SIMD instructions on the performance of the competitors. Approaches
employing horizontal partitioning show almost no performance gains when applying vectoriza-
tion (only up to 1.4 times). While scalar variants of the search algorithms can prune comparisons
once the first mismatch occurred (early break), the vectorized counterpart of the same algorithm
has to process objects in chunks of eight dimensions, limiting the potential for early breaks. For
query workloads with a lower selectivity and therefore fewer mismatches (or early breaks), the
benefits from SIMD-based processing of horizontally-partitioned tuples increase, providing a
speed-up of up to three times.
Scans using vertical partitioning notably benefit from SIMD instructions, because both SIMD-

70

4.4 Evaluation

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

102

Dimensionality

Th
ro

ug
hp

ut
(q

ue
rie

s/
se

c)
[lo

ga
rit

hm
ic

sc
al

e]
R∗-tree kd-tree VA-file Scan (Hor. Part.) Scan (Vert. Part.)

Figure 4.4: Throughput when executing MDRQ with an average selectivity of 0.4% (five dimen-
sions) to 0.0002% (more than ten dimensions) on one Million tuples from UNIFORM
using 24 software threads depending on the dimensionality.

based and scalar variants of the search algorithms must consider all data and can neither apply
pruning nor use early breaks. Here, vectorization helps to strongly reduce the number of com-
parisons and leads to a speed-up of up to eight times on average.

Multithreading combined with Vectorization

Finally, we investigate the performance impact when applying both multithreading and vector-
ization. In this case, scans over vertically-partitioned data show the largest speed-ups compared
to a single-threaded scalar implementation (up to 50 times faster on average). The remaining
approaches, which all employ horizontal partitioning, benefit from multithreading but show very
small performance gains when using SIMD instructions on top. They achieve speed-ups of up to
14 times on average. All subsequent experiments investigate the competitors when using both
multithreading and vectorization.

4.4.4 Synthetic Data

The following experiments are conducted with synthetic data from UNIFORM and CLUS-
TERED.

Dimensionality

We measure the throughput of the contestants when applying MDRQ to one Million randomly-
generated tuples with five to 100 dimensions. Clearly, query selectivity increases with a growing
dimensionality. The average query selectivity equals 0.4% (σ = 1.1%) for five dimensions, 0.002%
(σ = 0.01%) for ten dimensions, and 0.0002% (σ = 0.00003%) for more than ten dimensions.
Figure 4.4 shows the results.

71

4 An Analysis of Multidimensional Range Queries on Modern Hardware

0 1 2 3 4 5 6 7 8 9 10 20 60 100
100

101

102

103

Query Selectivity (%)

Th
ro

ug
hp

ut
(q

ue
rie

s/
se

c)
[lo

ga
rit

hm
ic

sc
al

e]
R∗-tree kd-tree VA-file Scan (Hor. Part.) Scan (Vert. Part.)

Figure 4.5: Throughput when executing range queries on one Million five-dimensional tuples
from UNIFORM using 24 software threads depending on the query selectivity.

The kd-tree achieves the highest throughput among all contestants regardless of the dimen-
sionality. For up to 30 dimensions, the R∗-tree shows the second best performance. However,
with an increasing dimensionality, the search efficiency of the R∗-tree decreases, because its par-
titioning deteriorates, reducing its pruning power. For data sets with more than 30 dimensions,
the R∗-tree is outperformed by the VA-file, which is less affected by the dimensionality of the
data set. For high dimensionalities (more than 70 dimensions), the R∗-tree is even outperformed
by scans over vertically-partitioned data, although the average query selectivity is very high.
While the throughput of the parallel scan employing horizontal partitioning is independent

from the dimensionality of the data space, the performance of the scan using vertical partitioning
decreases when the dimensionality increases. In vertical partitioning, the number of partitions
depends on the dimensionality of the data space (p = m), whereas in horizontal partitioning
the number of partitions is chosen depending on the number of available hardware threads. In
particular, the performance of the scan using vertical partitioning decreases with an increasing
dimensionality of the data space, because a growing number of partial result sets need to be
managed and intersected when synchronizing the different threads.

Query Selectivity

We measure the throughput of all contestants when executing MDRQ on one Million randomly-
generated five-dimensional tuples following an uniform distribution depending on the query
selectivity. Figure 4.5 shows the results.
For queries with a very high selectivity (≤ 1%), the kd-tree shows the highest throughput

and is closely followed by the R∗-tree. For queries with a lower selectivity (> 1%), both parallel
scans as well as the VA-file show the best performance and clearly outperform the hierarchical
MDIS kd-tree and R∗-tree. In this experiment, both scan variants and the (non-hierarchical)
VA-file perform very similar.

72

4.4 Evaluation

104 105 106 107

101

102

103

104

Tuples

Th
ro

ug
hp

ut
(q

ue
rie

s/
se

c)
[lo

ga
rit

hm
ic

sc
al

e]
R∗-tree kd-tree VA-file Scan (Hor. Part.) Scan (Vert. Part.)

Figure 4.6: Throughput when executing range queries with an average selectivity of 0.4% on
five-dimensional tuples from UNIFORM using 24 software threads depending on the
size of the data set.

For multiple reasons, the throughput of all contestants decreases for less selective queries:

• In vertical partitioning, larger (partial) result sets need to be managed and synchronized,
requiring a costly intersection.

• In horizontal partitioning, approaches can prune less dimensions when comparing MDRQ
with tuples, resulting in fewer early breaks.

• Hierarchical MDIS (R∗-tree and kd-tree) cannot prune subtrees but must visit the vast
majority of the tree nodes, which requires lots of random accesses inducing cache misses.

While scans are less affected by query selectivities, hierarchical MDIS lose their pruning
power when dealing with moderate and low selectivities. On modern hardware, the threshold
after which MDIS are outperformed by scans is stupendously low, at a selectivity around 1%.
Hence, it is much lower than on disk-based systems, where MDIS show a superior performance
for selectivities of up to 20% [Weber et al. 1998].

Data Set Size

We measure the throughput when executing MDRQ with an average selectivity of 0.4% (σ =
1.1%) on five-dimensional tuples following an uniform distribution depending on the size of the
data set. Figure 4.6 shows the results.
As expected, when the number of tuples increases, the search throughput of all contestants

decreases, because a growing number of tuples match the query. Interestingly, both parallel
scans, especially the variant employing vertical partitioning, outperform MDIS for small data
sets consisting of up to 105 tuples, although the average selectivity of the queries evaluated
here is very high. MDIS are not worthwhile for such small amounts of data but suffer from

73

4 An Analysis of Multidimensional Range Queries on Modern Hardware

1 5 10 20

101

102

Clusters

Th
ro

ug
hp

ut
(q

ue
rie

s/
se

c)
[lo

ga
rit

hm
ic

sc
al

e]
R∗-tree kd-tree VA-file Scan (Hor. Part.) Scan (Vert. Part.)

Figure 4.7: Throughput when executing range queries with an average selectivity of 0.38% (one
cluster) to 27.40% (20 clusters) on one Million five-dimensional tuples from CLUS-
TERED using 24 software threads depending on the number of clusters.

the overhead induced by their index structure. When the data set size increases, the pruning
capabilities of MDIS pay off: MDIS can efficiently reduce the data space while the parallel scans
have to consider all tuples for query evaluation.

Clustered Data

We measure the throughput when applying MDRQ to one Million five-dimensional data ob-
jects from the data set CLUSTERED depending on the number of clusters. Recall that we
are generating MDRQ by randomly picking two existing tuples as range boundaries. Thus,
for CLUSTERED, one MDRQ may cross several clusters, which results in a decreasing query
selectivity as the number of clusters increases: one cluster induces an average selectivity of 0.4%
(σ = 0.9%), five clusters induce an average selectivity of 16.2% (σ = 19.1%), ten clusters induce
an average selectivity of 23.1% (σ = 21.9%), and 20 clusters induce an average selectivity of
27.4% (σ = 22.7%). Figure 4.7 shows the results of this experiment.
Note that the data set with one cluster is very similar to UNIFORM, because the data objects

are uniformly distributed across the entire data space. For that case, the R∗-tree and the kd-
tree achieve the best throughput among all competitors. When the number of clusters increases
(which also implies decreasing query selectivities), the performance of hierarchical MDIS, the
R∗-tree and the kd-tree, decreases. Regardless of the number of clusters, the performance of the
VA-file and both parallel scans remains almost the same.
We study whether the performance decrease of the MDIS is caused by the increase of the

query selectivity or by the increase of the number of clusters. For this purpose, we generate
range queries that retrieve only one single object, thus having an average selectivity of 0.0001%
(σ = 0%). Using this technique, we can ensure that the selectivities are the same for all instances
of CLUSTERED regardless of the number of featured clusters. When applying this workload,
all competitors show a very similar performance regardless of the number of clusters. Thus, their

74

4.4 Evaluation

104 105 106 107

100

101

102

103

104

Tuples

Th
ro

ug
hp

ut
(q

ue
rie

s/
se

c)
[lo

ga
rit

hm
ic

sc
al

e]
R∗-tree kd-tree VA-file Scan (Hor. Part.) Scan (Vert. Part.)

Figure 4.8: Throughput when executing range queries with an average selectivity of 11.12% on
three-dimensional tuples from POWER using 24 software threads depending on the
size of the data set.

performance is mainly affected by the query selectivities but not by the number of clusters.

4.4.5 Sensor Data from Hi-Tech Manufacturing Equipment

We measure the throughput of the contestants when applying MDRQ with an average selectivity
of 11.12% (σ = 13.43%) to the three-dimensional data set POWER. In contrast to Figure 4.6,
which shows the throughput for uniformly-distributed data, Figure 4.8 visualizes the throughput
of MDRQ on real-world data of varying size. This experiment confirms that the throughput of
all contestants decreases when the number of tuples increases. In contrast to the experiments on
synthetic data, the scan-based approaches always outperform the hierarchical MDIS regardless
of the data set size. However, this experiment executes queries that are less selective than
the ones applied to the synthetic data, as induced by the technique used to generate MDRQ
workloads, which mainly causes the performance differences.

4.4.6 Genomic Variant Data

The following experiments are conducted with real-world data from GENOMIC. We study
the contestants when executing the GMRQ Benchmark (see Section 2.4.3). Each template
is instantiated one hundred times. Figure 4.9 shows the results.
Both parallel scans outperform all considered MDIS for the Mixed Workload, Query Template

1, Query Template 2 and Query Template 3. For Query Templates 4 to 8, which retrieve only
few tuples and have a selectivity much below 1%, especially the kd-tree shows its strengths and
outperforms scanning. The VA-file performs similar as the scan with horizontal partitioning,
but is consistently outperformed by the scan with vertical partitioning.
As in Section 4.4.4, which studied the performance when executing MDRQ of varying selec-

tivities on uniformly-distributed data, scanning outperforms the MDIS for low and moderate

75

4 An Analysis of Multidimensional Range Queries on Modern Hardware

Query
Template 1

sel =
10.8%

Query
Template 3

sel =
5.4%

Query
Template 2

sel =
2.2%

Mixed
Workload

sel =
1.6%

Query
Template 4

sel =
0.2%

Query
Template 5

sel =
0.2%

Query
Template 6

sel =
0.1%

Query
Template 7

sel =
0.1%

Query
Template 8

sel =
0.00001%

100

101

102

Th
ro

ug
hp

ut
(q

ue
rie

s/
se

c)
[lo

ga
rit

hm
ic

sc
al

e]
R∗-tree kd-tree VA-file Scan (Horizontal Partitioning) Scan (Vertical Partitioning)

Figure 4.9: Throughput of the contestants when executing the GMRQB on ten Million 19-
dimensional tuples from GENOMIC using 24 software threads (the query templates
are ordered by average selectivity, from low (left) to high (right)).

selectivities. In both cases (synthetic and real-world data), the threshold after which scans are
superior to MDIS is at a query selectivity around 1%.
The Mixed Workload consists of all query templates randomly mixed together and has an

average selectivity of 1.58% (σ = 3.58%). For this workload, the parallel scan with vertical
partitioning achieves the highest throughput (7.45 queries/sec) and is followed by the parallel
scan employing horizontal partitioning (3.40 queries/sec), the VA-file (2.94 queries/sec), the R∗-
tree (2.43 queries/sec), and the kd-tree (1.97 queries/sec). For Query Template 1, which has the
lowest selectivity (on average 10.76%, σ = 7.24%) among all evaluated queries, both parallel scan
variants show the best performance and are followed by the VA-file, the R∗-tree, and the kd-tree.
For Query Template 8, which has the highest selectivity (on average 0.00001%, σ = 0.00002%),
the kd-tree achieves a throughput of 247.46 queries/sec. It is followed by the parallel scan with
vertical partitioning (7.44 queries/sec), the VA-file (6.22 queries/sec), the parallel scan with
horizontal partitioning (4.25 queries/sec), and the R∗-tree (3.52 queries/sec). Despite the high
selectivity, the R∗-tree cannot apply its pruning capabilities, because it is negatively affected by
the dimensionality of the data set, which leads to an inefficient partitioning.

4.4.7 Scalability

Using the Mixed Workload from GMRQB, we evaluate the scalability of all contestants depend-
ing on the number of used software threads. Note that the workload consists of partial- and
complete-match MDRQ that query 5.81 dimensions on average (σ = 4.11), which limits the
potential benefits from multithreading for vertical partitioning. Figure 4.10 shows the results.
For most contestants, the speed-up from multithreading is bounded by the number of physical
cores. Confirming a memory access bottleneck, only the R∗-tree and the kd-tree benefit from
using more software threads than available physical cores, because hierarchical MDIS require

76

4.4 Evaluation

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 470

2

4

6

8

Software Threads

Th
ro

ug
hp

ut
(q

ue
rie

s/
se

c)
R∗-tree kd-tree VA-file Scan (Hor. Part.) Scan (Vert. Part.)

Figure 4.10: Throughput of the contestants when applying the mixed workload from GMRQB
to ten Million 19-dimensional tuples from GENOMIC depending on the number of
used software threads.

UNIFORM CLUSTERED POWER GENOMIC
(n=10M, m=5) (n=1M, m=5) (n=10M, m=3) (n=10M, m=19)

R∗-tree 1,037MB 110MB 833MB 3,057MB

kd-tree 1,567MB 159MB 1,644MB 2,864MB

VA-file 2,804MB 284MB 2,882MB 4,140MB

Scan (Hor. Part.) 537MB 57MB 538MB 1,169MB

Scan (Vert. Part.) 547MB 57MB 540MB 1,169MB

Table 4.2: Space consumption of the competitors.

many random accesses when evaluating queries having a moderate or low selectivity. When
executing the mixed workload from GMRQB with one software thread, on average, R∗-trees
produce 20 Million LLC misses and kd-trees produce 16 Million LLC misses per executed query.
In contrast, VA-files produce two Million LLC misses and both parallel scans produce 800,000
LLC misses. Thus, hierarchical MDIS can gain additional performance from hyper-threading,
which helps to hide the latency of memory accesses to some degree. Using more software threads
than available virtual CPU cores (more than 24) does neither yield performance benefits nor
disadvantages.

4.4.8 Space Consumption

Figure 4.11 visualizes the memory consumption of each contestant depending on the data set and
Table 4.2 provides the according numbers. For horizontal partitioning, we build 24 instances
of an index or array, i. e., p = 24. For vertical partitioning, we create as many partitions
as dimensions present in the data set. We measure the combined space consumption of all
partitions. For UNIFORM, we show the memory consumption when storing ten Million five-

77

4 An Analysis of Multidimensional Range Queries on Modern Hardware

UNIFORM
(n=10M;m=5)

CLUSTERED
(n=1M;m=5)

POWER
(n=10M;m=3)

GENOMIC
(n=10M;m=19)

102

103

M
em

or
y

Us
ag

e
(M

B)
[lo

ga
rit

hm
ic

sc
al

e]
R∗-tree kd-tree VA-file Scan (Hor. Part.) Scan (Vert. Part.)

Figure 4.11: Memory usage of the competitors.

dimensional tuples. For CLUSTERED, we show the memory consumption when storing one
Million five-dimensional tuples featuring twenty clusters. For POWER, we show the memory
consumption when storing ten Million three-dimensional tuples. For GENOMIC, we show the
memory consumption when storing ten Million 19-dimensional tuples.
The used implementation of R∗-trees implements data objects with eight-byte double values,

while all remaining competitors use four-byte floating-point values. To enable a fair comparison,
we divide the measured memory usage of the R∗-tree by two and report the resulting value.
Please note that our VA-file implementation stores the approximation values in eight-bit integers
(the smallest available data type) although only two bits are needed (recall that we create four
partitions per dimension), thus wasting some memory space. The provided numbers take into
account that approximation values are implemented with two-bit values.
As expected, both scans need the least amount of memory, because they do not employ

additional data structures, like MDIS. Surprisingly, VA-files require much more space than
scans, induced by the storage of the approximations and information about the partitioning.
Comparing both hierarchical MDIS, R∗-trees achieve a higher space efficiency than kd-trees.
Only for GENOMIC, where the structure of the covering R∗-tree degenerates due to an inefficient
partitioning, kd-trees require less space than R∗-trees.

4.4.9 Other Evaluation Platform

We also ran the experiments on another hardware platform to show that our findings do not
depend on the used hardware architecture. We used a modern desktop machine that features
one Intel i7-5930K CPU (3.5 GHz clock rate, six cores, 12 virtual cores) and 32GB of main
memory. The CPU supports AVX instructions. The results on both hardware platforms are
very similar, which confirms that our findings carry over to other hardware settings.
As exemplary results for the experiments on the desktop machine, Figure 4.12 shows the

throughput when executing the query templates from GMRQB on ten Million 19-dimensional
tuples from GENOMIC. The query templates are instantiated with the same values as in Section

78

4.5 Discussion

Query
Template 1

sel =
10.8%

Query
Template 3

sel =
5.4%

Query
Template 2

sel =
2.2%

Mixed
Workload

sel =
1.6%

Query
Template 4

sel =
0.2%

Query
Template 5

sel =
0.2%

Query
Template 6

sel =
0.1%

Query
Template 7

sel =
0.1%

Query
Template 8

sel =
0.00001%

10−1

100

101

102

103

Th
ro

ug
hp

ut
(q

ue
rie

s/
se

c)
[lo

ga
rit

hm
ic

sc
al

e]
R∗-tree kd-tree VA-file Scan (Hor. Part.) Scan (Vert. Part.)

Figure 4.12: Throughput of the contestants on the desktop machine when applying the GMRQB
to ten Million 19-dimensional tuples from GENOMIC using 12 software threads (the
query templates are ordered by average selectivity, from low (left) to high (right)).

4.4.6. In contrast to the experiment on the primary evaluation machine, horizontal partitioning
uses only 12 software threads because the desktop machine features less virtual cores. Again,
the parallel scan with vertical partitioning achieves the highest throughput for queries with a
moderate to low selectivity (Mixed Workload and Query Templates 1-5). Only for queries with
a very high selectivity much below 1% (Query Templates 6-8), it is outperformed by the kd-tree.

4.5 Discussion

Our comparison of the two hierarchical, tree-based MDIS (the R∗-tree and the kd-tree), the
VA-file, and the two parallel scan variants after adapting them to the usage of main-memory
storage, multithreading and SIMD instructions yields a number of interesting observations. As
expected, MDIS in general excel for queries with very high selectivities as in such settings they
can prune substantial parts of the search space and have to compare only a few data objects
to the search object. The main goal of our study was to re-evaluate the break-even point at
which these advantages supersede the major disadvantage of MDIS, namely accesses to random
memory locations. Across various data sets, our experiments show that this point is surprisingly
low, at around 1% selectivity, and thus much lower than the conventional rule of thumb (20%),
which targeted IO-based index structures. Although similar findings have been reported for one-
dimensional range scans on modern hardware [Das et al. 2015], to the best of our knowledge,
we are the first to confirm these performance characteristics for the multidimensional domain.
Following the results of our study, scanning should be favored over indexing except for very

selective queries. For horizontal partitioning, highly-selective queries are fast anyway, because
many early breaks occur, which means that the absolute savings in time MDIS offer in such
settings are very small. On top, scan-based MDRQ are much easier to handle and to implement,

79

4 An Analysis of Multidimensional Range Queries on Modern Hardware

require no additional storage, are almost unaffected from the dimensionality of the data, lead to
simple and effective load balancing, and offer predictable runtimes, which is a major advantage
when it comes to orchestrating the various operations of a complex analytical query.
Although our study focused on the parallelization of search queries, the proposed partitioning

techniques can also be used to speed-up updates12, which either add new data or remove an
existing object. When inserting a new data object into a set of horizontally-partitioned data, we
randomly select one of the partitions and apply the insertion to it; the remaining partitions must
not be touched. In contrast, to add a new data object to a set of vertically-partitioned data, we
split the object among its dimensions and add each value to the corresponding partition, i. e.,
insertions affect all partitions. When removing an existing data object from a set of horizontally-
partitioned data, we pass the delete operation to all partitions. Concurrently, all partitions apply
the deletion to their data and remove the object if found. Similarly, to remove an object from
a set of vertically-partitioned data, we forward the delete operation to all partitions, which
concurrently process it on their data. Horizontal partitioning enables efficient updates, because
they involve only one partition13. In vertical partitioning, although updates always regard all
partitions, they are executed in parallel, thus also allowing for an efficient implementation.
There are also a number of further observations:

• Among the two hierarchical MDIS in our evaluation, the kd-tree clearly outperforms the
R∗-tree, which is not too much of a surprise as R∗-trees were originally designed to manage
spatial objects and not points as was the case here. In particular for data sets of mod-
erate and high dimensionality (we evaluated up to one hundred dimensions), kd-trees are
superior.

• In Section 4.4.4, we studied synthetic data sets with varying numbers of subspace clusters
and showed that the skewness of data does neither impact scans nor MDIS. Instead, query
selectivity is the primary factor affecting the performance of the competitors.

• The used R∗-tree implementation is the only competitor that stores data objects as arrays
of eight-byte values; all other contestants use four bytes per dimension. As less values
fit into one SIMD register, R∗-trees need to execute twice as much SIMD instructions
as the other competitors when searching (see Section 4.2). However, the implementation
of data objects has negligible impact on the search performance, because SIMD paral-
lelism does not provide huge performance benefits for horizontal partitioning anyway (see
Section 4.4.3).

• The efficiency of VA-files depends on the accuracy (or length) of the approximation values.
While more accurate approximations provide a more fine-grained partitioning increasing
pruning capabilities, they also need more bits for storage decreasing space efficiency. In our
evaluation, we used a pragmatically-chosen configuration for the approximation lengths

12We consider an update operation to affect only one data object; duplicates are not allowed.
13Note that deletions are passed to all partitions, because we do not maintain knowledge about which data

object is stored in which partition, yet the to-be-deleted object is stored in only one partition, allowing
efficient pruning in all other partitions.

80

4.5 Discussion

that balances pruning power with space utilization. Despite their pruning techniques, VA-
files offer almost no advantages when compared to scans. They appear to be a sensible
choice only for data with very high dimensionalities.

• When comparing the two scan methods, horizontal partitioning is preferable for complete-
match queries, whereas partial-match queries, especially when addressing only a few di-
mensions of the data space, are handled more efficiently by scans over vertically-partitioned
data.

However, when considering our results, one should always keep in mind that our adaptations
of the index structures and scans were rather conservative. We already sketched several ideas
how the different methods could be further improved to take full advantage of modern hardware:

• We could improve the comparisons of MDRQ search objects with data objects by re-
ordering the dimensions of the data space such that the dimensions, which are typically
queried with the highest selectivity, are compared first. That would facilitate early breaks,
allowing the pruning of (many) dimensions once a mismatch occurs. Selectivity-based
re-ordering of the dimensions can be applied to both MDIS and scan approaches and
is especially beneficial for high-dimensional data spaces, where one data object spans
multiple cache lines (when using four-byte floating-point values, a data object with more
than 16 dimensions spans multiple cache lines assuming 64-byte cache lines). In such
cases, it can reduce the number of accessed cache lines, effectively improving the search
performance. However, such an optimization requires knowledge about the current average
single-dimensional selectivities. Frequently-changing workloads would require frequent
reorganizations of the ordering of the dimensions, causing maintenance overhead.

• In the current scheme of vertical partitioning, we assign one software thread to each par-
tition for query processing. As the number of partitions depends on the dimensionality of
the data space, it is very likely that we do not obtain the perfect degree of parallelism, es-
pecially when a data space features less dimensions than threads available on a computing
machine. We could improve the resource utilization by introducing another partitioning
level. At the first level, vertical partitioning would work as usual: We create one partition
for each dimension of the data space. However, when more threads are available than di-
mensions featured in the data space, we assign multiple threads to each partition, allowing
a further partitioning of the one-dimensional partitions into different chunks, where each
chunk is processed by a distinct thread.

• Although main-memory capacities are considerably large these days, it remains important
to use as little space as possible for storage. We could improve the space efficiency of the
competitors by compressing data objects. Compression is especially useful for vertically-
partitioned data, as demonstrated by different schemes available for column stores [D. J.
Abadi et al. 2006; Raman et al. 2013; Stonebraker et al. 2005]. Depending on the concrete
data distribution, we might choose between multiple compression techniques [D. Abadi
et al. 2013]. We describe two examples.

81

4 An Analysis of Multidimensional Range Queries on Modern Hardware

Run-length encoding (RLE) compresses long runs of the same value. For instance, given
that the value 42 occurs 50 times in a row, the 50 instances of 42 are replaced by (42, 50).
RLE would be beneficial for dimensions containing many duplicate values, reducing these
to single representations. Another popular compression technique is dictionary encoding,
which maintains the different elements of a set in a dictionary and replaces the instances
of these values with references to the corresponding entries in the dictionary. Dictionary
encoding would be especially useful for dimensions with low cardinalities. Interestingly,
compression does not prohibit the usage of vectorized instructions, as shown by Willhalm
et al. for column scans [Willhalm et al. 2009].

• In this analysis, we used the original implementation of kd-trees as proposed in [Bentley
1975]. We may improve the cache line utilization of their search algorithms as follows.
Instead of storing data in both inner and leaf nodes, we might exclusively keep data
objects in leaf nodes, similar to K-D-B-trees [Robinson 1981]. Finally, we would align
the capacity of the nodes to the sizes of cache lines, an adaptation technique previously
applied to one-dimensional index structures [Rao et al. 2000].

4.6 Summary
In this chapter, we studied how to adapt the execution of MDRQ to current hardware archi-
tectures featuring large main-memory capacities and multi-core CPUs with SIMD instructions.
We proposed two techniques for dividing a multidimensional data set into multiple partitions,
namely horizontal and vertical partitioning. While horizontal partitioning offers more flexibil-
ity with regards to the granularity of the partitioning leading to a better resource utilization,
vertical partitioning is superior for partial-match MDRQ. We presented a novel SIMD-based
algorithm for comparing MDRQ search objects with data objects. The algorithm is beneficial
for data spaces with moderate to large dimensionalities and queries with low selectivities.
We conservatively applied these techniques to three index structures, namely the R∗-tree, the

kd-tree, and the VA-file, and two scan flavors. In a comprehensive evaluation, we compared
the competitors executing synthetic and real-world complete-match and partial-match MDRQ
workloads on synthetic and real-world data sets. We showed that, on current hardware archi-
tectures, scanning, which uses a sequential access pattern, outperforms MDIS probing, which
requires random accesses, for query selectivities of 1% or more. Our results are in contrast to pre-
vious rule of thumbs [Weber et al. 1998], which are only valid for traditional disk-based systems,
indicating that the selectivity threshold is at around 20%. Based on these findings, the next
chapter proposes a novel multidimensional index structure, the BB-Tree. The BB-Tree is de-
signed to be stored in main memory, provides a high cache efficiency due to an almost-sequential
access pattern, allows updates and exploits the parallel capabilities of modern processors.

82

5 BB-Trees: Processing Multidimensional
Range Queries in Main Memory

The experiments presented in the previous chapter demonstrated that neither multidimensional
index structures (MDIS) nor full-table scans can be considered as perfect means to executing
multidimensional range queries (MDRQ). Instead, like for single-column predicates [Das et al.
2015], database systems must choose access paths at query time depending on the concrete
selectivity of a MDRQ: Queries with high selectivities are evaluated with MDIS, and queries
with low selectivities are processed using scans.
In practice, selectivity-based access path selection has the main drawback that, at the time

of query evaluation, it requires accurate estimates of the number of matching tuples. Typ-
ically, database management systems estimate query selectivities using techniques, like his-
tograms [Kooi 1980; Poosala 1997] or sampling [Lipton et al. 1990]. Traditional histograms
designed for one-dimensional data are highly inaccurate when applied to multidimensional data
spaces, where dimensions can be correlated [Poosala et al. 1997]. Dedicated multidimensional
histogram techniques can better represent joint data distributions, but are expensive to build
and maintain [Chakrabarti et al. 2001]. On the other hand, sampling is not affected by the
dimensionality of the data, but requires large sample sizes to correctly reflect skewed data sets
incurring considerable performance overhead at query time. Therefrom, selectivity-based access
path selection is impractical when applying MDRQ to large sets of non-uniformly distributed
data.
The aim of research in MDIS is thus to create an index structure that can efficiently process

search queries of both high and low selectivity, making access path selection for MDRQ super-
fluous. Motivated by the recent changes in server hardware described in Section 2.3, the index
structure should be tailored to modern hardware architectures, show high space efficiency when
stored in main memory and leverage the parallel capabilities of modern CPUs. To support a
wide range of different applications, it should offer robustness towards different data character-
istics, e. g., cardinality, dimensionality, or skew, and perform gracefully in mixed read and write
workloads.
This chapter presents the BB-Tree, a novel fast and space-efficient MDIS supporting point

and range queries over multidimensional point data stored in main memory. Conceptually, BB-
Trees are almost-balanced k-ary search trees. Inner nodes recursively split the data space into
k partitions according to a delimiter dimension and k − 1 delimiter values, and leaf nodes are
responsible for storing data objects. When too many data points are inserted (or deleted) and
leaf nodes overflow (or underflow), the inner search tree (IST) is rebuilt to achieve a beneficial
balance regarding the depths of leaves. Search algorithms use the inner nodes to narrow down
the leaf nodes, which may hold objects matching the query object. These leaf nodes are evaluated
with a sequential scan to find the true results. Within this general and well-known layout, the

83

5 BB-Trees: Processing Multidimensional Range Queries in Main Memory

BB-Tree employs a number of novel techniques that yield its superior performance:

• As first contribution, BB-Trees introduce the bubble buckets (BB), which are elastic leaf
nodes that can efficiently handle strongly fluctuating node fill degrees and that strongly
reduce the frequency of rebalancing operations. BB automatically morph between different
representations depending on their number of stored data objects. We distinguish between
regular and super BB. Regular BB can hold up to bmax data objects and are implemented
with dynamic arrays. Super BB are composites and consist of a routing node and a set of
k regular BB. Hence, super BB locally add a further level to the tree, introducing slight
imbalance.
BB can dynamically grow and shrink: Overflowing regular BB let them morph into super
BB, and underflowing super BB let them morph back into regular BB. Both operations
leave the rest of the BB-Tree unchanged. Since overflows of regular BB create k new leaf
nodes, a BB can cater for a rather large number of inserts. BB increase the robustness
towards hammered inserts, i.e., series of insertions into the same small region of the space.
Here, BB significantly reduce the pressure on rebalancing and thus greatly improve the
performance of writes with only minimal influence on the query performance, due to a
locally slightly deeper tree.

• As second contribution, we adapt the capacities of inner nodes to the sizes of cache lines,
the basic unit of data transfers between main memory and on-die CPU caches. We always
choose the fan out of inner nodes, k, depending on how many delimiter values fit into one
cache line to improve cache line utilization. For instance, when implementing delimiter
values with four-byte floats and running on a machine with 64-byte cache lines, k is set to
17.
We store the inner nodes of the BB-Tree in a flat and immutable array to avoid pointer
chasing during search, to decrease random access patterns, and thus to reduce cache misses,
especially at the last cache level. Typically, such an optimization either makes the index
structure completely static [Schlegel et al. 2009; C. Kim et al. 2010] or raises the need
to maintain updates in delta stores [Levandoski et al. 2013; Plattner 2009]. In contrast,
the elasticity of BB enables BB-Trees to manage most changes in-place and allows to
process a large number of updates without requiring index rebuilds. Eliminating pointers
additionally increases space efficiency.

• Our third contribution is an efficient technique for the parallelization of MDIS queries,
which effectively avoids difficult-to-maintain data partitioning. In the parallel BB-Tree,
search queries are evaluated by first navigating the IST to determine all buckets that may
hold matching data objects. This step is performed by a single thread, as the tree, due to
its high fan out, is quite low even for very large data sets. In the next step, which strongly
dominates the runtime of queries as shown in Section 5.7.5, all qualifying BB are scanned
in parallel. The parallel BB-Tree can scale its performance with the number of physical
cores without requiring a complex load balancing scheme.

• In a comprehensive evaluation, we compare the BB-Tree to sequential and parallel scans

84

5.1 Data Organization

and to four popular MDIS, namely the recent PH-tree [Zäschke et al. 2014], and main-
memory adapted variants of the R∗-tree [Guttman 1984], the kd-tree [Bentley 1975], and
the VA-file [Weber et al. 1998]. We use different real and synthetic data sets of varying size
with dimensionalities between three and 100. We evaluate complete-match and partial-
match range and point queries. As opposed to Chapter 4, we also consider mixed read
and write workloads.

The remaining chapter is organized as follows. The next section covers the memory layout
and data organization of BB-Trees. Section 5.2 presents the concepts of elastic bubble buckets.
In Section 5.3, we describe how to efficiently rebuild the index after many inserts or deletions.
Section 5.4 describes the effects of low-cardinality dimensions. In Section 5.5, we show how
to execute point and range queries in BB-Trees. Section 5.6 introduces the parallel BB-Tree,
which leverages multiple threads to speed-up search queries. In Section 5.7, we compare BB-
Trees with other state-of-the-art MDIS using synthetic and realistic query workloads executed
over synthetic and real-world data sets. Finally, Section 5.8 critically discusses the advantages
and limitations of BB-Trees and Section 5.9 summarizes this chapter.

5.1 Data Organization
BB-Trees consist of two main components: the inner search tree (IST) and the set of leaf nodes.
The IST is a k-ary search tree, where each node recursively splits a m-dimensional data space
according to k−1 delimiter values into k disjoint subsets of almost-equal1 size. The granularity of
the partitioning increases with the depth of the tree. At the highest granularity, i. e., the lowest
tree level, the IST partitions the data space into regions, of which each is completely covered
by a leaf node. While the inner nodes are solely used for partitioning, leaf nodes keep the data
objects and are implemented as bubble buckets (BB). BB can dynamically expand and shrink
to cope with varying number of objects in the index region they represent. When searching,
the inner nodes are navigated to reduce the data space. Once all certainly irrelevant regions
(or BB) have been pruned, the remaining BB are scanned to determine the true query results.
Table 5.1 shows notations and input parameters frequently used in the following sections.
BB-Trees are almost balanced. While the IST is always perfectly balanced, BB are allowed to

introduce slight imbalance to the index structure when expanding to handle a growing amount of
objects. However, these imbalances are local and limited to one additional tree level to prevent
degeneration of the search tree. Section 5.2 provides further insights into the elasticity properties
of BB. The following sections describe in detail how BB-Trees manage multidimensional data
in main memory and study the advantages and limitations of their data layout.

Inner Search Tree

In BB-Trees, inner nodes recursively split the data space into k partitions, according to a
delimiter dimension, chosen from the data space, and k − 1 delimiter values, which belong to

1Dimensions with few distinct values, namely low-cardinality dimensions, or dimensions with high-frequency
values occurring many times, may hinder equal splits when used as delimiter and create slight imbalances in
partitioning.

85

5 BB-Trees: Processing Multidimensional Range Queries in Main Memory

Notation Description
n Cardinality of the data set.
m Dimensionality of the data set.
h Height of the search tree.
k Inner nodes split the space into k subparts according to a delimiter

dimension and k − 1 delimiter values.
t Number of available hardware threads (relevant for parallel BB-Trees).
Bmatch Number of bubble buckets that need to be scanned to evaluate a certain

range query.

Parameter Description
bmax Capacity of a regular bubble bucket.
Rsamples When reorganizing the index, we use Rsamples% of all data as samples.

Table 5.1: Frequently used notations and input parameters.

the domain of the delimiter dimension. The height of the IST, h, depends on the fan out of
the inner nodes and on the number of BB, but not on the dimensionality of the data space.
BB-Trees employ only as many tree levels as needed to distinguish between all BB. Assuming
that n data objects are perfectly distributed among n/bmax BB, i. e., each BB is completely
filled, h = logk(n/bmax).
All nodes of the same tree level use the same delimiter dimension, but can employ individual

delimiter values. BB-Trees choose delimiter dimensions in the order of their cardinalities, moving
dimensions with a large number of distinct values to the upper tree levels and dimensions with
a small number of distinct values to the lower tree levels. If h < m, low-cardinality dimensions,
which have low pruning power anyway, are kept out of the IST and are omitted for partitioning.
The structure of the IST offers several advantages in the context of main-memory database

systems:

• BB-Trees can store the delimiter dimensions and the delimiter values separately, which
enables a simple and space-efficient memory layout. As every node belonging to the same
tree level uses the same dimension for partitioning, BB-Trees can manage this information
in one array of length h, where entry i holds the i-th delimiter dimension. Furthermore,
BB-Trees can linearize the inner nodes, which is facilitated by the balancedness of the IST.
Technically, BB-Trees store the delimiter values of all inner nodes together in a single,
immutable array using a breadth-first order, similar to the linearized fast lane array of
CSSL (see Section 3.3), which eliminates pointers, strongly increases cache efficiency and
saves memory space.

When implementing the array of delimiter dimensions with one-byte integer values (sup-
porting up to 256 dimensions) and the array of delimiter values with four-byte floating-
point values, the space requirements of the IST boil down to h +

∑h
i=0 k

i ∗ 4 ∗ (k − 1)
bytes.

86

5.1 Data Organization

• Cache lines are the basic unit for transferring data between main memory and CPU caches.
By choosing an appropriate value for k, BB-Trees tailor the capacities of their inner nodes
to the individual cache line size of the CPU, which increases cache line utilization and thus
reduces the amount of data transferred through the cache hierarchy. For point queries or
highly-selective workloads, navigation of the IST accesses exactly one cache line at each
tree level. When implementing delimiter values with four-byte floating-point values, we
set k = 17, because k − 1 = 16 delimiter values perfectly fit into one 64-byte cache line.

• Searching the delimiter values of an inner node, as necessary during query evaluation, can
be efficiently implemented with a binary search. A binary search requires only log2(k− 1)
instead of (k−1) comparisons. When searching large arrays, a binary search accesses non-
consecutive memory locations with a random access pattern and produces many cache
misses. In our case, the binary search operates the delimiter values of inner nodes, which
are stored in a single cache line. Thus, using a binary search does not produce more cache
misses than searching the delimiter values with a sequential scan, but saves comparisons.

However, the structure of the IST has also certain drawbacks:

• For all nodes of the same tree level, BB-Trees always employ the same dimension as
delimiter. This increases space efficiency, but leads to less flexibility with regards to the
partitioning. Depending on the skew of and correlation between dimensions of a data set,
using different delimiter dimensions at the same tree level may provide a more balanced
partitioning.

• Equally splitting a subtree by one dimension is not always possible, which may lead to sub-
trees with different numbers of contained objects, thus causing slight imbalances. For in-
stance, low-cardinality dimensions prevent a partitioning of objects into k subsets of equal
size. Instead, we may consider multiple delimiter dimensions, similar to a quadtree [Finkel
et al. 1974].

• Storing all delimiter values in an immutable array hinders updates and requires a complete
rebuild when changing data. Frequent updates imply frequent rebuilds and lead to a poor
write performance. To overcome this limitation, BB-Trees introduce the concepts of BB,
which can, up to a certain point, dynamically expand and shrink to locally deal with data
updates without affecting the IST. As demonstrated in our evaluation (see Section 5.7),
rebuilding the array of delimiter values is a seldomly-needed operation in BB-Trees.

When considering these limitations, note that they are shared by most other updateable
MDIS. For instance, the structure of kd-trees strongly depends on the order of the insertions.
In the worst case, when all inserts are always applied to the left or right sub tree, kd-trees
degenerate to a linked list and lose all their pruning capabilities. The K-D-B-tree turns kd-
trees into balanced search trees, but these improvements come at the cost of complicated and
slow update operations, which need to handle node overflows, possibly affecting the entire index
structure.

87

5 BB-Trees: Processing Multidimensional Range Queries in Main Memory

Leaf Nodes

BB-Trees store all data objects in their leaf nodes implemented as bubble buckets. Ignoring the
elasticity of BB, every BB has a maximum capacity of bmax data objects. At query time, the
bucket capacity bmax determines the balance between the time spent in tree searching, which
results in pruning, and the time spent in evaluating the BB, which results in scanning.
A large BB capacity leads to leaf nodes storing more objects, which in turn requires less

inner nodes and thus a less deep tree. Such a structure is preferable for query workloads with
predominantly low selectivities: More work is put on scans, where the comparisons between the
data objects and the query object lead to many matches, and less time is spent in pruning which,
for low selectivities, is not effective anyway. On the other side, a small BB capacity results in
smaller leaf nodes but a deeper tree structure, which is beneficial for highly-selective queries as
more time is invested in successful pruning and less in scans producing almost no matches.

Delimiter Values

For a good search performance, it is crucial that the inner nodes allow to prune subtrees and
non-relevant BB as high in the tree as possible. To this end, BB-Trees choose their delimiter
dimensions in the order of the number of distinct values, assuming that dimensions with a high
cardinality offer high pruning power.
While all inner nodes of the same tree level use the same delimiter dimension, these nodes can

choose individual delimiter values. In the most common case, where the associated delimiter
dimension has more than k different values, inner nodes determine the delimiter values such
that each subtree contains a roughly equal number of objects. A special case occurs when low-
cardinality dimensions, which feature less than k different values, are used for partitioning. Such
dimensions do not allow to divide the objects into k sub trees of equal size (see Section 5.4).
Note that if the number of tree levels, h, is smaller than the dimensionality of the data set,

m, BB-Trees omit the dimensions with the smallest cardinalities in the IST. In practice, this
scenario is quite frequent due to the high fan out of BB-Trees, which makes the shape of the tree
rather flat even for very large data sets. As an example, assume a BB-Tree over one Billion data
objects, a fan out of k = 17, a BB capacity of bmax = 1, 000, and an average BB fill degree of
50%. Addressing the resulting two Million BB requires only six IST levels. Thus, low-cardinality
dimensions, which are anyway problematic in terms of their minor pruning capabilities, do not
clutter the search tree.
In the case that h is larger than m, we assign dimensions multiple times as delimiters in a

round-robin fashion. This scenario mainly occurs for large data sets with a low dimensionality.
Assuming k = 17, bmax = 1, 000, an average BB fill degree of 50%, and a three-dimensional data
space, the according BB-Tree can index up to 2, 456, 500 data objects without employing any
dimension multiple times as delimiter.

Example

Figure 5.1 illustrates a BB-Tree with an inner node fan out of k = 3, h = 2 levels of inner nodes,
and nine BB managing three-dimensional data objects (buckets 3 to 6 are not displayed). Each
BB can hold up to bmax = 4 data objects. Individual data objects are identified by unique TIDs.

88

5.1 Data Organization

0 321 0 21 0 321
bubble 0 bubble 1 bubble 2

del = 0

del = 1

3 7

4 6 2 5 5 8

0 321 0 21
bubble 7 bubble 8

...
1 1 3 2 1 2 3 3 2 1 3 8 8 9 9 9 8 8
2 2 1 2 5 5 6 9 7 8 7 8 6 6 7 9 9 9
2 1 3 8 3 3 2 2 5 3 1 1 3 8 2 8 3 1

48 25 8514
0 321

tids 0

42 21 12
0 21

tids 1

23 75 67 61
0 321

tids 2

66 5 7256
0 321

tids 7

63 9117
0 21

tids 8

13
3

3

2
5
1

38
3

3

9
9
8

...

Figure 5.1: A BB-Tree of height h = 2 with an inner node fan out of k = 3 and a BB capacity
of bmax = 4 managing n = 36 data objects of dimensionality m = 3; buckets 3 to 6
are omitted.

At the first tree level, the shown BB-Tree splits the data space into k = 3 partitions according
to delimiter dimension 0. All data objects having a value of 3 or less in dimension 0 are held in
the left subtree. All data objects having a value of 7 or less, but larger than 3, in dimension 0
are held in the middle subtree. All other data objects can be found in the right subtree. At the
next tree level, the data space is recursively split according to delimiter dimension 1. Note that
the shown BB-Tree uses only two out of the three dimensions of the data space as delimiter.
Given a fan out of k = 3, two tree levels are sufficient for distinguishing between nine BB.
Figure 5.2 illustrates the corresponding array storing the linearized IST. BB-Trees link the

linearized IST with the corresponding BB by maintaining an array of pointers, where entry i
references the i-th BB.

SIMD Instructions

Although processing inner nodes with Single Instruction Multiple Data (SIMD) sounds promising
at first glance, especially because the IST is linearized and packed into a dense array, we were
not able to obtain any performance benefits through SIMD parallelism. Compared to a binary
search, scanning inner nodes with SIMD instructions does not save many comparisons yet incurs
overhead. For instance, when employing 16 delimiter values (k = 17), which perfectly fit into one
64-byte cache line, a binary search requires log2(16) = 4 comparisons, whereas a SIMD search
using 256-bit registers needs two comparisons (or four comparisons if only 128-bit SIMD registers

89

5 BB-Trees: Processing Multidimensional Range Queries in Main Memory

array index
3 7 4 6 2 5 5 8
0 1 2 3 4 5 6 7

0 0 1 1 1 1 1 1 tree level

Logical representation Physical representation

Linearization3 7

4 6 2 5 5 8

Figure 5.2: The linearized storage of the inner search tree.

are available). These small savings in terms of comparisons are outweight by the overhead
induced by SIMD, especially data transfers between regular and vector registers [Broneske et al.
2017b], and the necessary scalar evaluation of the results of SIMD instructions.

5.2 Bubble Buckets

The previous section described BB-Trees as static index structures and omitted the treatment
of overflowing or underflowing leaf nodes. In the following, we lift this restriction and propose
two techniques to cope with changing data, namely bubble buckets, described in this section,
and index rebuilds, covered by the next section.
BB-Trees implement their leaf nodes as elastic bubble buckets (BB). We distinguish between

two types of BB, namely regular BB and super BB. Regular BB are implemented with a C++
std::vector, which is a dynamically growing and shrinking array, and take inserts up to their
maximum capacity of bmax data objects. Super BB locally increase the depth of the tree by one
additional level and contain k regular BB. As usual, super BB employ the dimension of their
data region, which features the largest number of distinct values, as delimiter, and choose the
k − 1 delimiter values such that the data objects are as evenly distributed among the child BB
as possible. An overflowing regular BB morphs into a super BB, and an underflowing super BB
morphs into a regular BB. In the following, we describe how BB-Trees implement insertions and
deletions.

Insertions

In the first step of an insertion, we traverse over the IST to determine the leaf node that is
responsible for the data space region that the to-be-inserted object belongs to. Depending on
the type and fill degree of the leaf node, insertions are handled differently (see Algorithm 4). If
the leaf node is a regular BB and has free space, we insert the data object and are done. If the
leaf node is a regular BB but has no free space, we morph the regular BB into a super BB and
insert the data object into the corresponding child BB. If the leaf node is a super BB and has
free space, we determine the appropriate child BB, which is a regular BB, and insert the object.
If the super BB, which has a maximum capacity of k ∗ bmax objects, is already completely filled,
we must reorganize the index as described in Section 5.3.

90

5.2 Bubble Buckets

Algorithm 4 Inserting an object into a bubble bucket.
data_object: The to-be-inserted data object.

bubble_bucket: The bubble bucket that the new object is inserted into.

1: function InsertObject(data_object, bubble_bucket)
2: if bubble_bucket.type == ’regular’ then
3: if bubble_bucket.full? then
4: bubble_bucket.morphIntoSuperBubbleBucket()
5: end if
6: bubble_bucket.insert(data_object)
7: else
8: bubble_bucket.insert(data_object)
9: if bubble_bucket.full? then

10: InvokeRebuild()
11: end if
12: end if
13: end function

BB-Trees can thus accommodate up to k ∗ bmax inserts into the same region, covered by one
BB, before the index needs a rebuild. If some of its data objects are removed during insert-
heavy workloads, this period gets even longer. Within this time, the IST of the BB-Tree remains
stable, and the depth of the search tree is locally increased by one level at most. To keep the
algorithms as simple as possible, we do not balance the size of the child nodes of a super BB,
which, in theory, could lead to cases where all inserts accumulate in one child node. This would
for instance happen when objects of an one-dimensional data set are inserted in a certain sort
order.

Deletions

Deletions work similar as insertions, but require less rebalancing, because BB-Trees do not
specify minimal fill degrees for regular BB. We first navigate the IST to determine the BB
responsible for the to-be-deleted object and remove it from the leaf node.
In the case of a regular BB, no further processing is performed. This implies that some leaf

nodes of a BB-Tree may become empty. However, due to the dynamic size of their implementa-
tion, the memory overhead is minimal. We nevertheless rebuild the index when more than 10%
of all BB are empty to get rid of superfluous inner nodes and reduce the height of the IST.
In contrast to regular BB, super BB can underflow. When removing a data object from a

super BB, the delete operator checks the total number of objects stored in the super BB. If the
number is smaller than p ∗ bmax, the super BB morphs into a regular BB. In the default setting,
we set p = 0.5 to prevent pathological cases of constantly morphing BB when the bmax-th object
is inserted and deleted iteratively.

91

5 BB-Trees: Processing Multidimensional Range Queries in Main Memory

super bubble node (former regular bubble node 2)

del = 0

del = 1

3 7

4 6 2 5 5 8

2 6 del = 2

0 321

3 2 1 3
9 7 8 7
2 5 5 1

7567
0 1

0 1

2 1
7 8
5 3

42
0

0

3
8
7

23 61
0 1

0 1

3 3
9 7
2 1

Figure 5.3: When inserting a new data object (3 8 7) with TID 42 into the BB-Tree from Figure
5.1, the regular BB 2 morphs into a super BB that contains k regular nodes and
partitions data objects according to dimension 2.

Example

Consider again the example from Figure 5.1. When we insert the data object (3 8 7) into the
BB-Tree, bucket 2 overflows and morphs into the super BB shown in Figure 5.3. Here, the
super BB chooses dimension 2 as delimiter to partition the data objects into k = 3 regular BB
according to the delimiter values 2 and 6.

5.3 Building and Reorganizing BB-Trees
Initially, BB-Trees consist of one regular BB and an empty IST, as no inner nodes are needed in
the case of a single leaf node. After bmax objects have been inserted, this regular BB overflows
and morphs into a super BB holding k regular BB, but still leaving the IST empty. With
(k − 1) ∗ bmax more inserts, this super BB also overflows and triggers a rebuild of the index,
creating the first level of inner nodes.
All operations on the BB-Tree, except for the very first, operate on a structure that was the

result of an index rebuild. A rebuild of the IST consists of the following four steps:

• In the first step, we determine how many regular BB are needed to manage the current
amount of indexed data, while leaving enough capacity for new inserts. From this number,

92

5.3 Building and Reorganizing BB-Trees

we also derive the necessary number of levels of inner nodes. By default, when rebuilding,
we set the number of BB to n/(10% ∗ bmax) allowing each leaf node to ingest further
90% ∗ bmax data objects until morphing into a super BB. This parameter may be changed
depending on the expected workload. For insert-heavy workloads, we recommend using a
low value that leads to seldom rebuilds enabling a high write performance, whereas read-
heavy workloads can benefit from a high value leading to frequent rebuilds and ensuring
that the IST always reflects the current data distribution.

• We randomly sample Rsamples ∗n data objects to obtain representatives of the whole data
set. By scanning the sampled data, we estimate the number of distinct values of each
dimension. The dimensions are sorted by their cardinality and assigned to the h levels
of the new IST in descending order. If h is larger than the dimensionality of the data
space, we assign dimensions multiple times in a round-robin fashion. For instance, when
indexing a two-dimensional data set, where the second dimension contains more distinct
values than the first one, with a BB-Tree of height five, we assign the dimensions to the
IST levels as follows: (1 0 1 0 1).

• We determine the delimiter values for the inner nodes, starting at the root node and
recursively working down to the lower tree levels. To this end, using the sample data, we
compute an equi-depth frequency histogram covering the values of the delimiter dimension
of the current level. We choose delimiter values such that each interval covers an almost-
equal number of objects. We use an efficient greedy assignment algorithm, processing the
values from left to right, and always find the next delimiter value such that approximately
1/k of the objects are covered by the current interval.
Note that, by using an equi-depth histogram, we can find partitions of almost-equal size
even in the case of dimensions, where some values occur with a higher frequency than
others. However, if the differences in the frequencies of the values are very large, we
inevitably end up with intervals of different size. Clearly, this procedure also fails for low-
cardinality dimensions containing less than k distinct values, as described in Section 5.4.

• In the last step of the rebuild, according to the derived IST, all data objects are inserted
into their new respective BB.

A periodic reorganization of the IST is mandatory to support updates, because BB-Trees store
the entire IST in an immutable array. However, index reorganization obviously is an expensive
operation. A random sample must be determined which is scanned multiple times, a new IST
is constructed, and data objects must be moved to their new location. We chose pragmatic and
fast methods for these steps, which come at certain drawbacks. First, splitting a subtree by one
dimension into intervals of equal size is not always possible, as in the case of low-cardinality
dimensions (see Section 5.4). Second, we globally assign dimensions to tree levels, which again
can lead to imbalances when dimensions are strongly correlated. Third, we compute the IST
structure only on a sample. If the sample is small, the tree is found quickly yet might not
optimally represent the data. Contrary, if the sample is large, building the tree needs more time
yet probably leads to a better tree structure.

93

5 BB-Trees: Processing Multidimensional Range Queries in Main Memory

We make two notes regarding these issues. First, they are shared by most other updateable
MDIS. For instance, the structure of kd-trees strongly depends on the order of the insertions.
The K-D-B-tree turns kd-trees into balanced search trees, but at the price of complicated and
slow update operations. Second, though we cannot give formal guarantees, for the data sets
we used in our evaluation, we never observed any notable imbalance. We are thus confident
that unbalanced BB-Trees with regions largely differing in terms of covered objects, which are
possible in theory, remain very rare in practice.

5.4 Low-Cardinality Dimensions

We consider a dimension of the data space to have a low cardinality, when its number of distinct
values is smaller than the fan out of the IST, k. Low-cardinality dimensions are common in
real-world data sets and challenge MDIS, because they make fine-grained partitions impossible
and hurt pruning power. The problem is less severe for the BB-Tree, because it sorts the
delimiter dimensions by their number of distinct values, which keeps low-cardinality dimensions
completely out of the IST, assuming that h < m and that the data set contains less than m− h
low-cardinality dimensions.
However, if a data set contains less than h dimensions having at least k distinct values, the

resulting BB-Tree would use at least one low-cardinality dimension as delimiter. In such cases
it is impossible to find distinct delimiter values, which split the data space into k subparts of
equal size.
Low-cardinality dimensions are less severe for the performance of insertions, which, when

navigating inner nodes with duplicate delimiter values, can randomly choose one of the child
nodes to proceed with. However, low-cardinality dimensions may hurt the performance of oper-
ations relying on the pruning capabilities of the IST. Range queries may need to consider more
child trees than when navigating inner nodes using high-cardinality dimensions for partitioning.
Even point queries and deletions may need to follow multiple parallel paths instead of having
to consider only one child tree.

5.5 Search Algorithms

BB-Trees support point queries and partial- and complete-match range queries. All search
queries have in common that they exploit the linearized IST to find those candidate BB that
may hold data objects matching the search query while pruning all others. The navigation of
the IST is followed by sequential scans over all candidate BB to determine the true results of the
query. Query evaluation may have to follow multiple parallel paths through the tree: Partial-
match range queries must consider k paths when an inner node splits on a dimension which is
not part of the query and have to follow multiple paths when the queried range intersects with
more than one subtree. Complete-match range queries have to consider multiple paths when the
queried range covers more than one subtree. Even point queries may need to consider multiple
paths when a low-cardinality dimension is used as delimiter.

94

5.5 Search Algorithms

Point Queries

Point queries (or lookups) are used to verify that a certain data object exists. If the object has
been found, BB-Trees return its TID. Otherwise, they return the value −1 to indicate that the
search was not successful.
When inner nodes do not feature any duplicate delimiter values, applying point queries to

the IST has a complexity of O(h ∗ log(k)), because they perform h times a binary search within
inner nodes holding k − 1 values. In such a case, navigation of the IST determines exactly
one candidate BB. When the BB-Tree uses low-cardinality dimensions for partitioning, up to
k search paths have to be followed per inner node, leading to a complexity of O(kh) for the
navigation of the IST. In such a case, multiple (or up to all) candidate BB have to be scanned.
Scanning one BB has a complexity of O(bmax ∗ m), because up to bmax objects have to be
considered, each requiring up to m comparisons.
In the best case, the navigation of the IST determines only one candidate BB and the searched

object is stored at the first position of the candidate BB, leading to a complexity of O(h∗log(k)+
m), because the query evaluation terminates once the searched object has been found. In the
average case, the navigation of the IST determines one candidate BB and the search algorithm
has to scan half of the entries of the candidate BB, leading to a complexity of O(h ∗ log(k) +
bmax ∗m). Even searching for a non-existing object has a complexity of O(h∗ log(k)+ bmax ∗m),
when only one candidate BB has to be considered, as non-existence can be confirmed once the
complete BB is scanned. In the worst case, when searching for a non-existing data object and
when the navigation of the IST does not prune any BB, the evaluation of a point query has a
complexity of O(n), because every candidate BB has to be completely investigated.

Range Queries

Multidimensional range queries (MDRQ) specify predicates for some, many or all dimensions of a
multidimensional data space. MDRQ can be either complete-match or partial-match: Complete-
match MDRQ specify predicates for all dimensions of the data space, whereas partial-match
MDRQ specify predicates for a subset of the dimensions. Compared to point queries, range
queries may involve much more data objects. The range query operator of BB-Trees returns the
TIDs of the objects satisfying the range boundaries of the search object (or an empty set if no
object matches the query).
When the evaluation of a range query on the IST can prune all but one BB, it has a complexity

of O(h ∗ log(k)). On the other hand, when applying a range query to the IST cannot prune any
BB, but must follow all search paths, it has a complexity of O(kh).
In the best case, when range queries have to scan only one candidate BB, their overall com-

plexity boils down to O(h ∗ log(k) + bmax ∗ m). The best case can only occur, when at most
bmax of all data objects match a query, which requires a highly-selective query object, assuming
that n is much larger than bmax. The average case complexity strongly depends on the expected
average query selectivity. Assuming that the navigation of the IST must follow half of all search
paths and returns Bmatch candidate BB, its complexity is O(kh + Bmatch ∗ bmax ∗ m). In the
worst case, all candidate BB must be considered, which leads to the same worst case complexity
as for point queries: O(n).

95

5 BB-Trees: Processing Multidimensional Range Queries in Main Memory

Compared to point queries, range queries are typically less selective, which increases the
probability of multiple candidate BB. On the other hand, low selectivities make scans more
attractive as more of their comparisons actually lead to matches, without requiring any tree
navigation in between.
Determining an optimal BB capacity would only be possible if all queries had the same, a-

priori known selectivity across the entire data space, an assumption that is rather impractical. In
practice, every setting of bmax implements an expectation on the average selectivities of queries
in the future workload. In our evaluation, we show that our default value leads to a performance
that is almost on-par with MDIS specialized in point queries, while clearly outperforming all
competitors for range queries.

5.6 Parallel BB-Trees

As described in Section 2.3.3, hardware manufacturers install an ever growing number of cores on
one CPU to accelerate performance through concurrent execution of instructions. Index struc-
tures should provide multithreaded search operators to fully leverage the parallel capabilities of
modern processors.
To this end, we propose the parallel BB-Tree as a parallel implementation of regular BB-Trees.

It uses multiple threads to execute search queries, yet relies on the same algorithms as the single-
threaded BB-Tree for insertions, updates and deletions. Recall that BB-Trees execute search
queries in two phases: In the first step, they navigate the IST to obtain candidate leaf nodes,
which are scanned in the second step. Obviously, both steps cannot be executed concurrently,
as the scan depends on the results of the traversal over the IST. Instead, each phase must be
parallelized individually.
Navigation of the IST with multiple threads is very complicated, because it would need a

barrier synchronization after each tree level [Buluç et al. 2011; Yoo et al. 2005]. At the same
time, there is only little performance to gain as the runtime of a search query is strongly
dominated by the scan of the candidate BB, as shown in Section 5.7.5.
In contrast, the second phase, which scans all candidate BB to find the search results, can be

easily parallelized. Let Bmatch denote the number of candidate BB that have been determined
by traversing over the IST (super BB are considered as multiple BB), and let t equal the
number of threads available on the machine. If Bmatch ≥ t, we divide the set of candidate
BB into Bmatch/t partitions2, where each partition contains one or multiple BB. Each partition
is processed by a distinct thread using the same algorithm as in the regular, single-threaded
BB-Tree. If Bmatch = t, we obtain the perfect degree of parallelism. If Bmatch < t, we assign
multiple threads to single candidate BB to avoid wasting computing resources. To this end,
we split the data objects of a single candidate BB into multiple chunks, and scan each chunk
with a distinct thread. The search results of individual threads are concatenated once they are
finished.

2If Bmatch cannot be divided by t, one thread has to do slightly less work than the others, creating a small
imbalance. For instance, given that the navigation of the IST determined five candidate BB and three threads
are available, two threads would have to scan two candidate BB while one thread would have to process only
one candidate BB. However, the effects of such imbalances are rarely, if at all, observable in practice.

96

5.6 Parallel BB-Trees

0 21
bubble 0 bubble 1

del = 0

del = 1

3 7

4 6 2 5 5 8

0 321 0 21
bubble 7 bubble 8

...
1 2 3 8 8 9 9 9 8 8
5 5 6 8 6 6 7 9 9 9

0 321

1 1 3 2
2 2 1 2
2 1 3 8 3 3 2 1 3 8 2 8 3 1

48 25 8514
0 321

tids 0

42 21 12
0 21

tids 1

66 5 7256
0 321

tids 7

63 9117
0 21

tids 8

13
3

3

2
5
1

38
3

3

9
9
8

...

thread 0 thread 1 thread 2

bubble 2
0 321

3 2 1 3
9 7 8 7
2 5 3 1

23 75 67 61
0 321

tids 2

P
h
a
se

 2
(m

u
lt

i-
th

re
a
d
e
d
)

P
h
a
se

 1
(s

in
g
le

-t
h
re

a
d
e
d
)

Figure 5.4: Parallel execution of an exemplary range query, defined by the lower boundary
[1, 0, 3] and the upper boundary [3, 7, 6], using three threads.

Figure 5.4 illustrates the execution of range queries in a parallel BB-Tree. The search query
retrieves all data objects that satisfy the lower boundary [1, 0, 3] and the upper boundary [3, 7, 6].
In this example, the first, single-threaded phase of the query execution determines that BB 0, 1
and 2 may hold data objects matching the range boundaries (the search path is marked in red).
In the second, multithreaded phase, these candidate BB are searched concurrently with one CPU
thread per bucket assuming that our imaginary machine features three threads (Bmatch = t).

Our parallelization approach yields very good scalability. We can easily split the scan over
the candidate BB into sub tasks of almost-equal complexity, which are processed by distinct
threads, enabling a perfect utilization of the available computing resources. Moreover, stragglers
are avoided, because every thread scans an almost-identical amount of data. At the downside,
we do not parallelize the entire evaluation of search queries, but still traverse over the IST with
a single thread. However, navigation of the IST requires much less time than the scan over the
candidate BB and therefore has negligible effects on scalability.

97

5 BB-Trees: Processing Multidimensional Range Queries in Main Memory

5.7 Evaluation

We compare BB-Trees with state-of-the-art approaches to general-purpose indexing of multi-
dimensional data by executing synthetic and real-world query workloads over synthetic and
real-world data sets. Specifically, we aim to answer the following questions:

• Does the performance of BB-Trees depend on data- or workload-specific characteristics,
e. g., data dimensionality, data skew, or query selectivity (see Sections 5.7.4 to 5.7.6)?

• How do BB-Trees perform on mixed workloads that contain both read and write operations
(see Section 5.7.9)?

• What is the effect of parallelization (see Section 5.7.10)?

• How efficient do BB-Trees utilize memory space (see Section 5.7.11)?

5.7.1 Experimental Setup

Hardware

We executed all experiments on a server equipped with two Intel Xeon E5-2620 CPUs (2 GHz
clock rate, 64-byte cache lines, six cores, 12 hardware threads) and 32GB of RAM. In total,
the machine features 12 cores and 24 hardware threads. Most experiments are single-threaded;
Section 5.7.10 investigates parallel BB-Trees and therefore makes use of multiple threads.

Methodology

In our evaluation, data for all competitors are completely kept in main memory. All MDIS are
built using single-tuple inserts, with data sets inserted in random order; only VA-files require
a bulk insert. All experiments measure the average execution time of an operation, e. g., range
query. We run experiments three times and present the arithmetic mean.

Competitors

We compare the BB-Tree with multiple approaches to general-purpose multidimensional index-
ing: the kd-tree [Bentley 1975], the PH-tree [Zäschke et al. 2014], the R∗-tree [Beckmann et al.
1990], the VA-file [Weber et al. 1998] and the sequential scan [Sprenger et al. 2018b]. Section
2.2 provides a detailed description of the competitors.
For the R∗-tree, we used an open-source implementation3 and mostly relied on the default

configuration; we only adjusted the node capacities such that the nodes are aligned to cache
lines (see Section 4.3). For the PH-tree, we used the publicly available C++ implementation
shared by the authors4. For the kd-tree, the VA-file and the sequential scan, we used our own
implementations based on the original publications (see Chapter 4 for details).

3libspatialindex - libspatialindex 1.8.0 documentation, https://libspatialindex.github.io/, Last ac-
cess: August 29, 2018.

4tzaeschke/phtree-1, https://github.com/tzaeschke/phtree-1, Last access: August 29, 2018.

98

https://libspatialindex.github.io/
https://github.com/tzaeschke/phtree-1

5.7 Evaluation

Most contestants use four-byte floating-point values to manage dimension data, including the
BB-Tree. The R∗-tree implementation uses eight-byte floating-point values; the PH-tree imple-
mentation uses eight-byte integer values. The usage of larger data types for the implementation
of data objects affects both search and space efficiency: (1) Less dimension values fit into one
cache line, requiring more cache lines to be accessed increasing the probability for cache misses,
and (2) more memory space is occupied by the index structure. Section 5.7.11 studies the mem-
ory utilization of the competitors; for fairness, we provide results assuming that all approaches
were using four-byte values to implement data objects.
We evaluated BB-Trees with an inner node fan out of k = 17, because k − 1 = 16 four-byte

floating-point values fit into one cache line of the evaluation machine. Based on the observa-
tions described in Section 5.7.3, we empirically set the BB capacity to bmax = 2, 500. When
reorganizing the index, we use Rsamples = 10% of all data as samples to estimate the current
data distribution.

Software

All software was implemented in C++ and was compiled with GCC using optimization flag
-O3. We measured hardware performance counters with PAPI5 and space consumption with
valgrind6. For the parallel BB-Tree, we used an open-source thread pool library7 to enable reuse
of POSIX threads.

5.7.2 Experimental Data and Workloads

We evaluate the competitors on four different data sets, which are almost identical to the ones
used in Chapter 4; for CLUSTERED, we here use a larger data set size. Table 5.2 provides the
number of data objects (n), the dimensionality (m), the number of distinct values per dimension
(for UNIFORM and CLUSTERED, we provide average values for the complete data space), and
the raw size of each data set.
We primarily evaluate synthetic workloads. Unless noted otherwise, we generate synthetic

range queries by randomly choosing two objects from the data set and, for each dimension, we
use the minimum value of both objects as lower boundary and the maximum value as upper
boundary. For GENOMIC, we also consider the realistic range query workload described in
Section 2.4, consisting of several MDRQ templates of varying selectivity.

Data Set UNIFORM

Synthetic data facilitates experiments with arbitrary data set sizes, dimensionalities and query
selectivities. We generate uniformly distributed objects within the domain [0, 1].

5PAPI, http://icl.cs.utk.edu/papi/, Last access: August 29, 2018.
6Valgrind Home, http://valgrind.org/, Last access: August 29, 2018.
7vit-vit/CTPL: Modern and efficient C++ Thread Pool Library, https://github.com/vit-vit/CTPL, Last
access: August 29, 2018.

99

http://icl.cs.utk.edu/papi/
http://valgrind.org/
https://github.com/vit-vit/CTPL

5 BB-Trees: Processing Multidimensional Range Queries in Main Memory

Data Set n m Distinct Values Raw Size
per Dimension

UNIFORM 10k 5 10k (average) 0.2MB
100k 5 95k (average) 1.9MB
1M 5 632k (average) 19.1MB

10M 5 to 100 1M (average) 190.7MB to 3,814.7MB

CLUSTERED 10k 5 10k (average) 0.2MB
100k 5 95k (average) 1.9MB
1M 5 632k (average) 19.1MB

10M 5 1M (average) 190.7MB

POWER 10k 3 10k; 1k; 1k 0.1MB
100k 3 100k; 2k; 2k 1.1MB
1M 3 1M; 4k; 5k 11.4MB

10M 3 10M; 6k; 8k 114.4MB

GENOMIC 10k to 10M 19 see 2.4.2 0.7MB to 724.8MB

Table 5.2: Data sets used in our experiments.

Data Set CLUSTERED

We evaluate the performance of BB-Trees when confronted with non-uniform data distributions
using the five-dimensional data set CLUSTERED. Using a generator provided by Müller et
al. [Müller et al. 2009], CLUSTERED was created within the same domain as UNIFORM, i. e.,
[0, 1], but features up to twenty clusters. Within each cluster, data are uniformly distributed.

Data Set POWER

The real-world data set POWER is obtained from the DEBS 2012 challenge8 and resembles
sensor data of hi-tech manufacturing equipment. As in previous studies using this data set for
evaluations [Wang et al. 2016], we index three dimensions.

Data Set GENOMIC

The data set GENOMIC consists of real-world genomic variant data obtained from the 1000
Genomes Project [The 1000 Genomes Project Consortium 2015]. Section 2.4.2 provides a de-
tailed description. Raw variation data are transformed into 19-dimensional data objects. At-
tributes originally stored as strings, like the population of a sample, are transformed into floating-
point values by hashing. In our experiments, we apply the eight different MDRQ templates as
well as the mixed workload from GMRQB to the data set GENOMIC. The templates are in-

8DEBS 2012 Grand Challenge: Manufacturing equipment - DEBS.org, http://debs.org/?p=38, Last access:
August 29, 2018.

100

http://debs.org/?p=38

5.7 Evaluation

stantiated with concrete values obtained from the 1000 Genomes Project data. The average
query selectivities of the instantiated templates range from 10.76% (low) to 0.00001% (high).

5.7.3 Impact of Bubble Bucket Capacities

The capacity of BB, as defined by bmax, controls the ratio between index probing (navigation
of IST) and scanning (evaluation of leaf nodes) when searching in BB-Trees. While small BB
put more work on index probing, large BB increase the time spent on scanning. As shown in
previous work [Weber et al. 1998; Sprenger et al. 2018b], index probing is beneficial for highly-
selective queries and scanning is superior for less selective workloads. We study the impact of
different configurations of bmax on the performance of range queries with varying selectivities
(1%, 10%, and 20%) when applied to ten Million five-dimensional data objects from UNIFORM
and CLUSTERED. Our goal is to find a pragmatic configuration for BB capacities providing
a robust performance for a wide range of query selectivities and data distributions. Figure 5.5
shows the results.
For uniformly-distributed data, this experiment confirms that small (large) capacities are

beneficial for highly (less) selective queries. While small BB capacities are more efficient than
large BB capacities for queries with an average selectivity of 1%, they become less efficient with
increasing query selectivity (10% and 20%). For the selectivities considered here, BB with a
maximum capacity of 2,500 objects provide the best performance. Clustered data lead to a
less optimal partitioning, which lessens the pruning power of the IST and puts more work on
scanning. As a result, small BB capacities become less efficient, even for small selectivities,
because less BB can be pruned. Also for clustered data, BB with a maximum capacity of 2,500
objects provide either the best performance or are on a par with other configurations. Taking
the results of this experiment into account, we set bmax = 2, 500 for all following experiments.

5.7.4 Point Queries

Figure 5.6 shows the average execution time of point queries for the four data sets depending
on the number of data objects (n). We provide the average execution time of n point queries
retrieving randomly-chosen, existing objects. Note that, when indexing 104 data objects, BB-
Trees do not employ inner nodes, but manage all objects within one super BB consisting of
k = 17 regular BB each holding up to bmax = 2, 500 objects.
In general, the point query performance of the BB-Tree is very similar to that of the other tree-

based PAM considered here, the kd-tree and the PH-tree. For UNIFORM, the BB-Tree requires
8.76µs on average per point query, the kd-tree requires 10.91µs, and the PH-tree needs 4.8µs;
for CLUSTERED, the BB-Tree requires 10.27µs on average per point query, the kd-tree needs
10.46µs, and the PH-tree requires 4.81µs; for POWER, the BB-Tree takes 9.81µs on average
per point query, the kd-tree requires 8.7µs, and the PH-tree needs 2.33µs; for GENOMIC, the
BB-Tree requires 29.34µs on average per point query, the kd-tree needs 18.70µs, and the PH-tree
requires 13.42µs (note that the space requirements of the PH-tree exceeded the available 32GB
of main memory for more than 105 tuples from GENOMIC).
BB-Trees clearly outperform R∗-trees, VA-files and sequential scans for all data sets, often by

multiple orders of magnitude. For the largest instance of GENOMIC, consisting of 107 objects,

101

5 BB-Trees: Processing Multidimensional Range Queries in Main Memory

UNIFORM
(sel =1%)

UNIFORM
(sel =10%)

UNIFORM
(sel =20%)

CLUSTERED
(sel =1%)

CLUSTERED
(sel =10%)

CLUSTERED
(sel =20%)

102

103

Av
er

ag
e

Ex
ec

ut
io

n
Ti

m
e

(m
s)

[lo
ga

rit
hm

ic
sc

al
e]

bmax = 500 bmax = 1000 bmax = 2500
bmax = 5000 bmax = 7500 bmax = 10000

Figure 5.5: Performance of BB-Trees with different BB capacities (Bmax) when executing range
queries with varying selectivities (1%, 10%, and 20%) on ten Million data objects
from UNIFORM and CLUSTERED.

the lowest level of the IST contains duplicate delimiter values, caused by highly-correlated
dimensions, which require lookup operations to scan multiple candidate BB, resulting in minor
performance drops. This experiment shows that the search (and space) efficiency of the PH-tree
decreases with an increasing dimensionality, because the fan out of its search tree depends on the
dimensionality of the data space. We also investigated searching for non-existing points (data not
shown). While the R∗-tree, the kd-tree and the PH-tree can apply pruning to efficiently handle
such workloads, the performance of the BB-Tree, the VA-file and the scan is worse than when
searching for existing points. In particular, BB-Trees show a performance decrease of 43.29%
on average, because they need to scan the entire candidate BB to verify the nonexistence of a
certain point.

5.7.5 Range Queries

Figure 5.7 shows the average execution time of synthetic range queries that were generated
by randomly choosing two objects from the data set and using these as range boundaries.
Depending on the distribution and size of the data set, the obtained ranges have a different
average selectivity; UNIFORM: 0.4% (σ = 0.9%), CLUSTERED: 19.8% (σ = 19.7%), POWER:
12.6% (σ = 13.1%), GENOMIC: 0.2% (σ = 0.2%). For CLUSTERED, one range query may
involve multiple clusters, therefore average selectivities are higher than for UNIFORM, although
both data sets have an identical size and both are generated within the domain [0, 1].
The BB-Tree achieves the best overall performance and outperforms all other contestants.

For the uniform distribution, the R∗-tree shows a range query performance similar to that of
the BB-Tree. For GENOMIC, kd-trees are almost as fast as BB-Trees. We omit the PH-tree for
all MDRQ experiments on GENOMIC, because the range query operator of the implementation

102

5.7 Evaluation

104 105 106 107

101

102

103

104

105

Data Objects

Av
er

ag
e

Ex
ec

ut
io

n
Ti

m
e

(µ
s)

[lo
ga

rit
hm

ic
sc

al
e]

BB-Tree kd-tree PH-tree
R∗-tree VA-file Scan

(a) UNIFORM (m=5)

104 105 106 107

101

102

103

104

105

Data Objects

BB-Tree kd-tree PH-tree
R∗-tree VA-file Scan

(b) CLUSTERED (m=5)

104 105 106 107
100

102

104

Data Objects

Av
er

ag
e

Ex
ec

ut
io

n
Ti

m
e

(µ
s)

[lo
ga

rit
hm

ic
sc

al
e]

BB-Tree kd-tree PH-tree
R∗-tree VA-file Scan

(c) POWER (m=3)

104 105 106 107

101

103

105

107

Data Objects

BB-Tree kd-tree PH-tree
R∗-tree VA-file Scan

(d) GENOMIC (m=19)

Figure 5.6: Performance of point queries on the different data sets depending on the number of
data objects.

given by the authors crashed with a runtime error.
Figure 5.8 presents the average execution time of the eight MDRQ templates and the mixed

workload from GMRQB when applied to ten Million data objects from GENOMIC. Also for
this realistic range query workload, BB-Trees achieve the best MDRQ performance. Only for
Query Template 8, which resembles a point query as it selects a single data object on average,
kd-trees beat BB-Trees.
Figure 5.9 presents the performance of the competitors when applying MDRQ of varying

selectivity to ten Million data objects from UNIFORM. We omit the kd-tree because its range
query performance decreases severely for less selective queries, which would make the figure

103

5 BB-Trees: Processing Multidimensional Range Queries in Main Memory

104 105 106 10710−1

100

101

102

103

Data Objects

Av
er

ag
e

Ex
ec

ut
io

n
Ti

m
e

(m
s)

[lo
ga

rit
hm

ic
sc

al
e]

BB-Tree kd-tree PH-tree
R∗-tree VA-file Scan

(a) UNIFORM (m=5)

104 105 106 10710−1

101

103

105

107

Data Objects

BB-Tree kd-tree PH-tree
R∗-tree VA-file Scan

(b) CLUSTERED (m=5)

104 105 106 107
10−1

101

103

105

Data Objects

Av
er

ag
e

Ex
ec

ut
io

n
Ti

m
e

(m
s)

[lo
ga

rit
hm

ic
sc

al
e]

BB-Tree kd-tree PH-tree
R∗-tree VA-file Scan

(c) POWER (m=3)

104 105 106 107

100

101

102

103

Data Objects

BB-Tree kd-tree R∗-tree
VA-file Scan

(d) GENOMIC (m=19)

Figure 5.7: Performance of synthetic range queries on the different data sets depending on the
number of data objects. Average query selectivities are as follows: UNIFORM: 0.4%
(σ = 0.9%), CLUSTERED: 19.8% (σ = 19.7%), POWER: 12.6% (σ = 13.1%),
GENOMIC: 0.2% (σ = 0.2%).

very hard to read, despite the logarithmic scale of the y axis. For instance, in this experiment,
the kd-tree requires 3,075s on average to execute a range query with a selectivity of 20%, while
BB-Tree needs only 879ms.
The BB-Tree outperforms the kd-tree, the PH-tree, the R∗-tree and the VA-file regardless of

the query selectivity. It also beats the sequential scan for queries with a selectivity of up to
20%. For less selective queries (≥ 30%), the performance of BB-Trees remains close to that of

104

5.7 Evaluation

Query
Template 1
(sel =

10.76%)

Query
Template 3
(sel =
5.36%)

Query
Template 2
(sel =
2.19%)

Mixed
Workload
(sel =
1.58%)

Query
Template 4
(sel =
0.22%)

Query
Template 5
(sel =
0.20%)

Query
Template 6
(sel =
0.11%)

Query
Template 7
(sel =
0.05%)

Query
Template 8
(sel =

0.00001%)

100

102

104

106

Av
er

ag
e

Ex
ec

ut
io

n
Ti

m
e

(m
s)

[lo
ga

rit
hm

ic
sc

al
e]

BB-Tree kd-tree R∗-tree VA-file Scan

Figure 5.8: Performance of the Genomic Multidimensional Range Query Benchmark when exe-
cuted on ten Million 19-dimensional data objects from GENOMIC. Query templates
are ordered by selectivity, from low (left) to high (right).

1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 100

102

103

104

105

Query Selectivity (%)

Av
er

ag
e

Ex
ec

ut
io

n
Ti

m
e

(m
s)

[lo
ga

rit
hm

ic
sc

al
e]

BB-Tree PH-tree R∗-tree VA-file Scan

Figure 5.9: Performance of range queries on ten Million data objects from UNIFORM (five
dimensions) depending on query selectivity. We omitted the kd-tree.

scans.
For different query selectivities, Table 5.3 presents the time BB-Trees spent on the navigation

of the IST and on the scanning of the BB when applying range queries to ten Million five-
dimensional data objects from UNIFORM. The results confirm that the second step of the
range query algorithm, the scanning of the BB, strongly dominates the first step, the navigation
of the IST, in terms of runtime.
We also compare the competitors in terms of their cache efficiency. We study important

cache-related performance metrics, such as number of occurred last level cache (LLC) accesses,

105

5 BB-Trees: Processing Multidimensional Range Queries in Main Memory

Query Selectivity Navigation of IST Scanning of BB Ratio IST/BB

1% 10ms 100ms 1:10

5% 20ms 320ms 1:16

10% 40ms 530ms 1:13

20% 70ms 1,030ms 1:15

50% 120ms 2,030ms 1:17

100% 160ms 2,990ms 1:19

Table 5.3: Time spent on navigation of the IST and scanning of the BB when executing range
queries of varying selectivity on ten Million five-dimensional objects from UNIFORM.

BB-Tree kd-tree PH-tree R∗-tree VA-file Scan

CPU Cycles 164M 8,306M 1,908M 252M 2,934M 1,582M

LLC Accesses 1.0M 824M 1.2M 2.5M 1.8M 0.5M

LLC Misses 0.7M 0.9M 0.8M 0.5M 1.6M 0.3M

TLB Misses 0.3M 1.0M 0.3M 0.3M 0.2M 0.1M

Branch Mispredictions 0.1M 0.7M 3M 0.2M 10M 7M

Table 5.4: Performance counters per range query with a selectivity of 1% when applied to ten
Million objects from UNIFORM (five dimensions).

number of produced LLC misses, and number of generated translation lookaside buffer (TLB)
misses, but also investigate the number of spent CPU cycles and number of occurred branch
mispredictions. Table 5.4 presents the performance counters for the competitors when executing
range queries with an average selectivity of 1% on ten Million five-dimensional data objects from
UNIFORM.
Enabled by their sequential access pattern, scans produce only few LLC accesses, LLC misses

and TLB misses, thus showing high cache efficiency. BB-Trees, which sequentially access their
BB but navigate their IST with random accesses, produce twice as much LLC and TLB misses
as scans. However, as opposed to most other competitors, BB-Trees follow most predicted
branches, leading to few instruction pipeline flushes and benefiting the number of executed
CPU cycles.

5.7.6 Impact of Dimensionality

Most MDIS, especially spatial access methods, tend to become less efficient with an increas-
ing dimensionality of the data space (see Section 4.4.4) [C. Böhm et al. 2001]. We measure
the performance of point and range queries executed on ten Million data objects from UNI-
FORM depending on dimensionality. For this experiment, we generate range queries with an
average selectivity of 1% (σ = 0.7%). With a growing dimensionality, this results in very low
single-dimension selectivities posing serious challenges to MDIS because pruning becomes less
useful. For instance, for MDRQ with an overall selectivity of 1% on 100-dimensional uniformly

106

5.7 Evaluation

10 20 30 40 50 60 70 80 90 100
10−2

10−1

100

101

102

Dimensions

Av
er

ag
e

Ex
ec

ut
io

n
Ti

m
e

(m
s)

[lo
ga

rit
hm

ic
sc

al
e]

BB-Tree kd-tree PH-tree
R∗-tree VA-file Scan

(a) Point Queries

10 20 30 40 50 60 70 80 90 100

103

104

105

Dimensions

BB-Tree kd-tree PH-tree
R∗-tree VA-file Scan

(b) Range Queries

Figure 5.10: Performance of point and range queries (average selectivity = 1%, σ = 0.7%) when
applied to ten Million uniformly distributed data objects depending on dimension-
ality.

distributed data, single-dimension selectivities are approximately 95.50%. Figure 5.10 shows
runtimes for dimensionalities between ten and 100. Note that the space requirements of the
PH-tree exceeded the available 32GB of main memory for dimensionalities higher than ten.
Similarly, the R∗-tree ran out of space for 100 dimensions.
When evaluating point queries, all methods except the R∗-tree are mostly unaffected by the

dimensionality of the data. For range queries, all methods behave similar and show a search
performance degradation roughly proportional to the dimensionality of the data space. This
experiment shows that BB-Trees are rather robust towards varying dimensionalities. In all
considered cases, BB-Trees are either the best approach or achieve a performance very close to
the fastest competitor.

5.7.7 Low-Cardinality Dimensions
Low-cardinality dimensions are challenging for BB-Trees because they make it impossible to find
k different delimiter values, which limits the pruning power of the IST. We first study this effect
using range queries applied to ten Million five-dimensional data objects from UNIFORM with
different moderately low cardinalities for all dimensions. Results are shown in Figure 5.11. At
these cardinalities, none of the competitors is affected severely as the differences only correspond
to the different query selectivities. Note that in the cases of eight and 16 distinct values per
dimension, the data space includes duplicate data objects which are not supported by the PH-
tree; therefore, we omit this method in this experiment.
We also performed an experiment with extremely low cardinalities (between two and 12)

yet used data of higher dimensionality. Figure 5.12 shows the performance of range queries
when applied to ten Million 50-dimensional objects from UNIFORM. The PH-tree had to be

107

5 BB-Trees: Processing Multidimensional Range Queries in Main Memory

8 (2.4%) 12 (1.3%) 16 (0.8%) 32 (0.6%) 64 (0.8%)

102

103

104

105

Distinct Values per Dimension (Average Selectivity)

Av
er

ag
e

Ex
ec

ut
io

n
Ti

m
e

(m
s)

[lo
ga

rit
hm

ic
sc

al
e]

BB-Tree kd-tree PH-tree R∗-tree VA-file Scan

Figure 5.11: Performance of synthetic range queries with a varying selectivity executed on ten
Million five-dimensional data objects from UNIFORM depending on the number of
distinct values per dimension.

omitted because it produced incorrect results. Induced by the high dimensionality, queries had
an average selectivity of 0.00002% (σ = 0.0%). This experiment shows that the pruning power
of all MDIS drops considerably for lower cardinalities, whereas scans and VA-files are much less
effected. Though, for such low cardinalities other approaches, like bitmaps [Chan et al. 1998],
are probably a better choice anyway.

5.7.8 Insertions and Deletions
Figure 5.13 presents the average time a contestant needs to ingest an object into its data. The
measured times include the reorganizations of the BB-Tree9. We do not insert entire data
sets at once (bulk inserts), but load data object by data object. Therefore, this experiment
does not include the VA-file, which supports only bulk inserts, because it requires to know the
data distribution at initialization time. For instances of GENOMIC containing more than one
Million data objects, the space requirements of the PH-tree exceeded the available 32GB of
main memory. The sequential scan, which implements inserts by appending new objects to a
dynamic array, achieves the highest insert performance, because it does not need to deal with
node overflows, like the R∗-tree, or index reorganizations, like the BB-Tree. BB-Trees show the
second best insert performance outperforming kd-trees, PH-trees and R∗-trees.
BB-Trees offer very fast inserts, as these need to (1) traverse the IST to locate the responsible

BB, which can be performed very efficiently10, and to (2) append the new data object to the
corresponding array, similar to the scan. Thus, BB-Trees perform better than kd-trees, which
need to chase many pointers when searching for the leaf node that becomes the parent object

9In a production environment, we would advise to handle reorganizations in background jobs executed by
separate threads, which strongly increases the write performance.

10See Table 5.3 for runtimes of the evaluation of range queries on the IST; insertions are even faster as they boil
down to point queries.

108

5.7 Evaluation

2 4 8 12

102

103

104

Distinct Values per Dimension

Av
er

ag
e

Ex
ec

ut
io

n
Ti

m
e

(m
s)

[lo
ga

rit
hm

ic
sc

al
e]

BB-Tree kd-tree R∗-tree VA-file Scan

Figure 5.12: Performance of synthetic range queries with an average selectivity of 0.00002%
(σ = 0.0%) executed on ten Million 50-dimensional data objects from UNIFORM
depending on the number of distinct values per dimension; PH-tree is omitted.

of the new node. The concept of elastic BB effectively reduces the frequency of rebalancing
operations. When dynamically inserting ten Million data objects, regardless of the data set,
BB-Trees needed only three reorganizations, which took 6.55s on average (σ = 8.75s). Smaller
data sets require even less rebuilds.
Figure 5.14 shows the average execution time of deletes when removing an entire data set

point by point. Note that the sizes of the indexes steadily decrease during the runtime of the
experiment the more deletions have been processed. While the first delete operation is applied
to n objects, the last delete operation must consider only one single object. The reported
execution times of the BB-Tree include reorganizations that where conducted when more than
10% of all BB became empty. The used implementation of the PH-tree did not provide a delete
operator. The delete performance of BB-Trees correlates with their point query performance,
because they first execute a point query to obtain the BB holding the to-be-deleted-object. Once
determined, they can remove the object from the respective leaf node. In this experiment, BB-
Trees outperform all other competitors, even scans, except for the largest instance of GENOMIC.

5.7.9 Mixed Read/Write Workloads
Most real-life applications initialize databases with a bulk insert before applying search queries.
Once built, inserts and deletes rarely happen. This experiment studies the contestants when
running such workloads on 19-dimensional objects from GENOMIC. We exclude the VA-file,
because it does not support single-tuple inserts or deletions. The vast majority of the data are
inserted at the beginning of the workload, simulating a bulk insert. We consider ten Million data
objects, of which we first insert 9,999,900. Subsequently, we run 100 inserts, 100 deletes, 2,800
point queries and 7,000 range queries in random order. For inserts, we use the remaining data
objects, which were not bulk loaded. For point queries and deletes, we randomly choose existing
data objects from the data set. This may result in point queries asking for non-existing data

109

5 BB-Trees: Processing Multidimensional Range Queries in Main Memory

104 105 106 107

100

101

102

Data Objects

Av
er

ag
e

Ex
ec

ut
io

n
Ti

m
e

(µ
s)

[lo
ga

rit
hm

ic
sc

al
e]

BB-Tree kd-tree PH-tree
R∗-tree Scan

(a) UNIFORM (m=5)

104 105 106 107

100

101

102

Data Objects

BB-Tree kd-tree PH-tree
R∗-tree Scan

(b) CLUSTERED (m=5)

104 105 106 107

100

101

102

Data Objects

Av
er

ag
e

Ex
ec

ut
io

n
Ti

m
e

(µ
s)

[lo
ga

rit
hm

ic
sc

al
e]

BB-Tree kd-tree PH-tree
R∗-tree Scan

(c) POWER (m=3)

104 105 106 107

100

101

102

Data Objects

BB-Tree kd-tree PH-tree
R∗-tree Scan

(d) GENOMIC (m=19)

Figure 5.13: Performance of insert operations on the different data sets depending on the number
of data objects.

objects, because they were previously deleted. For range queries, we use the Mixed Workload
from GMRQB, which has an average selectivity of 1.58% (σ = 3.58%) and consists of different
query templates randomly mixed together, resembling a constantly changing query pattern.
Once again the PH-tree ran out of memory and was excluded.
The box plot in Figure 5.15 summarizes the execution times excluding the bulk insert. Ta-

ble 5.5 shows the runtime of the bulk insert and provides the average, minimum and maximum
execution time of the remaining 10,000 queries. The BB-Tree achieves the highest performance
in all cases. Only for the initial bulk insert, it is outperformed by the scan. The results of

110

5.7 Evaluation

104 105 106 107

101

102

103

Data Objects

Av
er

ag
e

Ex
ec

ut
io

n
Ti

m
e

(µ
s)

[lo
ga

rit
hm

ic
sc

al
e]

BB-Tree kd-tree R∗-tree
VA-file Scan

(a) UNIFORM (m=5)

104 105 106 107

101

102

103

104

Data Objects

BB-Tree kd-tree R∗-tree
VA-file Scan

(b) CLUSTERED (m=5)

104 105 106 107

101

102

103

104

Data Objects

Av
er

ag
e

Ex
ec

ut
io

n
Ti

m
e

(µ
s)

[lo
ga

rit
hm

ic
sc

al
e]

BB-Tree kd-tree R∗-tree
VA-file Scan

(c) POWER (m=3)

104 105 106 107

101

102

103

104

105

Data Objects

BB-Tree kd-tree R∗-tree
VA-file Scan

(d) GENOMIC (m=19)

Figure 5.14: Performance of delete operations on the different data sets depending on the number
of data objects.

this experiment prove that BB-Trees provide an high search performance without sacrificing
insertions or deletions. On average, BB-Trees are 3.08X faster than the second best competitor,
the sequential scan.

5.7.10 Scalability

Since modern CPUs provide an ever growing number of cores, it is important that multithreaded
applications can scale their performance with an increasing degree of parallelism. This ex-

111

5 BB-Trees: Processing Multidimensional Range Queries in Main Memory

Bulk Insert (s) Average/Minimum/Maximum execution time (ms)

BB-Tree 54.7s 262.66ms / 0.005ms / 1,866.73ms

kd-tree 236.7s 128,735.5ms / 0.011ms / 4,842,752ms

PH-tree Ran out of memory.

R∗-tree 2,316s 2,735.16ms / 0.008ms / 7,735.76ms

VA-file Does not support single-tuple inserts or deletes.

Scan 7.8s 809.83ms / 0.002ms / 3,117.46ms

Table 5.5: (1) Total execution time of the bulk insert and (2) average, minimum and maximum
execution time of the remaining queries, both read and write operations, of the mixed
workload.

BB-Tree kd-tree R∗-tree Scan
101

103

105

107

109

95th perc.75th perc.
median

25th perc.
5th perc.

Ex
ec

ut
io

n
tim

e
(µ

s)
[lo

ga
rit

hm
ic

sc
al

e]

Figure 5.15: Execution times of the mixed workload consisting of inserts, deletes, point and
range queries executed in random order (bulk insert is not included). The PH-
tree ran out of memory. The VA-file was excluded, because it does not support
single-tuple inserts.

periment studies the behavior of parallel BB-Trees when applying the Mixed Workload from
GMRQB to ten Million objects from GENOMIC. We compare the runtimes to that of a single-
threaded BB-Tree and a single-threaded sequential scan. We also consider a parallel scan,
which (1) divides the data objects into t partitions, (2) concurrently scans each partition with
one thread, and (3) concatenates the results of the individual partitions to obtain the total result
set.
As shown in Figure 5.16, the performance of the parallel BB-Tree improves with the number

of used threads up to a barrier established by the number of available physical cores (twelve
on our evaluation machine). When using more threads than physical cores, the processor relies
on hyper-threading, which provides only few benefits for the mostly compute-bound BB-Tree.
Hyper-threading is mainly useful for memory-bound applications, like the scan, because it can
hide memory latencies [Bulpin et al. 2004; Tian et al. 2003]. Using moderately more threads
than supported by the hardware (24 on our evaluation machine), does neither provide benefits
nor disadvantages. The scan (10.9X speed-up) benefits more from multithreading than the

112

5.7 Evaluation

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47

102

103

Hyperthreading Oversubscription

Software Threads

Av
er

ag
e

Ex
ec

ut
io

n
Ti

m
e

(m
s)

[lo
ga

rit
hm

ic
sc

al
e]

Single-threaded BB-Tree Parallel BB-Tree
Single-threaded Scan Parallel Scan

0

5

10

Speedup BB-Tree

Speedup Scan

Pa
ra

lle
liz

at
io

n
Sp

ee
du

p

Figure 5.16: Performance of the Mixed Workload from GMRQB with an average selectivity of
1.58% (σ = 3.58%) when applied to ten Million data objects from GENOMIC
depending on the number of used software threads.

BB-Tree (5.5X speedup), because (a) the parallel scan can leverage hyper-threading and (b)
scan-based MDRQ can be fully parallelized while BB-Trees must navigate the IST with a single
thread. Nonetheless, the parallel search operator of BB-Trees still outperforms parallel scans
regardless of the number of used threads.

5.7.11 Space Consumption

Especially in main-memory settings, it is important that index structures are as space efficient
as possible. Figure 5.17 shows the space consumption of the contestants when holding ten
Million data objects from the four data sets used in the evaluation. For GENOMIC, we omit
the PH-tree, because it required more than the available 32GB of main memory, caused by
its inefficiency for high dimensionalities. To enable a fair comparison, we report the space
consumption of R∗-trees and PH-trees as if they were using four-byte values to implement data
objects. The BB-Tree offers the highest space efficiency among all index structures, showing the
smallest space overhead over the sequential scan. For UNIFORM, BB-Trees require 614.42MB
more memory than scans; for CLUSTERED, BB-Trees require 618.1MB more memory than
scans; for POWER, BB-Trees require 546.13MB more memory than scans; and for GENOMIC,
BB-Trees require 547.78MB more memory than scans. On average, for storing the four data sets,
BB-Trees require 305.31MB less memory than kd-trees; BB-Trees require 160MB less memory
than PH-trees; BB-Trees require 1,036.81MB less memory than R∗-trees; and BB-Trees require
1,280.17MB less memory than VA-files.
BB are implemented with dynamic arrays, using C++’s std::vector, which strongly reduces

the waste of memory space in the case of sparsely-filled BB. When using BB capacities larger
than the one considered here (bmax = 2, 500), the BB-Tree could further improve its space
usage, employing an IST that is less deep and therefore contains less nodes. However, these

113

5 BB-Trees: Processing Multidimensional Range Queries in Main Memory

UNIFORM (m=5) CLUSTERED (m=5) POWER (m=3) GENOMIC (m=19)
0

1,000

2,000

3,000

4,000

Sp
ac

e
Co

ns
um

pt
io

n
(M

B)

BB-Tree kd-tree PH-tree R∗-tree VA-file Seq. Scan

Figure 5.17: Space consumption of the competitors when storing ten Million data objects from
the four data sets used in our evaluation.

improvements would come at the cost of decreased search performance for highly-selective query
workloads.

5.8 Discussion
One of the foundational concepts behind BB-Trees are the elastic bubble buckets (BB), which
(1) strongly reduce the pressure on rebuilding the linearized inner search tree (IST), (2) allow
to instantly ingest changes into the index, and (3) increase the robustness towards hammered
inserts. BB-Trees are designed for modern hardware architectures and show several advantages
when deployed in main-memory settings:

• High Cache Efficiency: As shown in Table 5.4, BB-Trees are almost as cache efficient as
sequential scans. Multiple properties of BB-Trees enable this behavior. First, inner nodes
are tailored to cache line sizes, which offers high cache line utilization and reduces the
number of data accesses when traversing the search tree. Second, BB-Trees use an almost-
sequential access pattern to navigate their IST and evaluate BB with scans. Sequential
data accesses utilize prefetched cache lines and strongly reduce cache and TLB misses.

• High Space Efficiency: Compared to the other MDIS considered in our evaluation,
BB-Trees have low space requirements, adding only some indexing overhead. On top of
raw data, which are kept in elastic BB, BB-Trees employ a k-ary search tree for pruning.
The IST is typically very wide, as its fan out is tailored to the sizes of the cache lines.
Moreover, BB-Trees linearize the entire IST and store all inner nodes together in one dense
array, which eliminates pointers and further improves memory utilization.

• Robustness: BB-Trees are robust towards the dimensionality of the data space, as shown
in Section 5.7.6. Foremost, the structure of the IST does not depend on the number of
dimensions. The width of the tree depends on the sizes of the cache lines and the height

114

5.9 Summary

of the tree depends on the number of BB (or number of indexed data objects). Note that
BB are evaluated with sequential scans making use of early breaks, which are likely to
occur in high-dimensional data spaces.

• Efficient Parallelization Scheme: When searching in BB-Trees, the navigation of the
IST is typically very fast, whereas the evaluation of the BB dominates the execution time
of a query (see Section 5.7.5). As BB are processed with sequential scans, we can easily
parallelize large parts of the search without introducing complex load balancing schemes,
like, for instance, needed when concurrently traversing a tree structure [Yoo et al. 2005].
The performance of the parallel BB-Tree scales with the number of available physical cores
(see Section 5.7.10).

Although BB-Trees represent a viable solution for a wide range of different applications, we
also identify some limitations, which may be addressed in future work:

• The IST must be updated to reflect the current data distribution when super BB overflow
or too many empty regular BB exist. Although the elasticity property of BB ensures
that such rebalancing operations are seldom, the rebuild of the static array holding the
linearized IST remains an expensive operation that, depending on the number of indexed
data objects, can easily take several seconds and blocks insert or delete operations. For
that reason, it is critical for write-heavy applications desiring a low update latency. Instead
of handling the rebuild within the update operation causing the underflow or overflow, one
could periodically rebuild the index in a background job executed by a separate thread,
even if no BB has yet overflown or underflown. However, that raises a new challenge,
namely finding a balanced rebuild frequency.

• Data sets with extremely correlated dimensions challenge the pruning power of BB-Trees,
because they increase the probability that the IST contains duplicate delimiter values.
In such cases, BB-Trees can prune less BB resulting in higher query execution times.
However, also most other MDIS are negatively affected by correlated dimensions, as shown
in Section 5.7.7.

• Different query selectivities call for different BB capacities: While high query selectivities
are better handled in BB-Trees with small BB, low query selectivities are processed faster
in BB-Trees with large BB. Instead of pinning the BB capacity to a constant value for the
complete life cycle of a BB-Tree, one could periodically adapt the sizes of the leaf nodes to
the current workload, which is especially useful for very high or very low query selectivities.
However, such adaptations require statistics about the current query selectivities and are
only useful for slowly-changing workload patterns.

5.9 Summary
In this chapter, we presented BB-Trees as a fast and space-efficient MDIS for storing and query-
ing multidimensional point data in main memory. BB-Trees support point queries, complete-
and partial-match range queries, while allowing dynamic updates. We compared BB-Trees

115

5 BB-Trees: Processing Multidimensional Range Queries in Main Memory

with state-of-the-art MDIS applying different synthetic and real-world workloads to different
synthetic and real-world data sets with three to 100 dimensions. BB-Trees outperform all con-
sidered MDIS in executing range queries. Only for very low selectivities of 30% or more they are
beaten by sequential scans. BB-Trees execute point queries almost as fast as the best competi-
tor, the PH-tree; for high dimensionalities they even provide the best performance. BB-Trees
also achieve the best insert and delete performance among all MDIS. Moreover, we presented a
parallel variant that can scale its performance with the number of available CPU cores. In sum-
mary, BB-Trees combine high query and space efficiency with a pronounced robustness towards
a wide range of data and workloads.

116

6 Summary and Outlook

6.1 Summary

In this thesis, we studied indexing for one-dimensional and multidimensional range queries on
modern hardware architectures. We proposed two novel index structures, namely cache-sensitive
skip lists (CSSL) aiming at one-dimensional domains and BB-Trees targeting multidimensional
data spaces. Both index structures are designed for hardware features commonly available
on modern server machines, especially large main-memory capacities, SIMD instructions and
multithreading. In comprehensive evaluations, we compared CSSL and BB-Trees to state-of-
the-art competitors.
Chapter 2 introduced fundamental terminologies and concepts relevant for this thesis. We

provided an overview of popular multidimensional access methods offering search operators for
MDRQ. We also discussed important features of modern server machines and showed how index
structures can leverage these characteristics to improve performance. We proposed the Genomic
Multidimensional Range Query Benchmark, which consists of eight realistic MDRQ templates
that are applied to real-world genomic data.
Chapter 3 proposed CSSL as novel index structure for processing one-dimensional range

queries in main memory and on modern CPUs. We showed how to adapt the memory layout
of regular skip lists to the cache hierarchies of modern CPUs, strongly improving the cache
efficiency of their range query operator. We also described how to exploit SIMD instructions
to further speed-up the execution of range queries in skip lists. We compared CSSL to several
state-of-the-art main-memory index structures. Using different data sets and workloads, we
demonstrated the superiority of CSSL’s range query operator in main-memory settings.
Chapter 4 studied the performance of traditional index structures for multidimensional range

queries when deployed on modern hardware. We followed two techniques to partition a multi-
dimensional data set, enabling parallel range query operators to process individual partitions
with distinct threads, and introduced a SIMD-parallel algorithm for comparing an MDRQ search
object to a multidimensional point object. Using these techniques, we conservatively adapted
three popular index structures, namely the R∗-tree, the kd-tree, and the VA-file, and two scan
flavors to the characteristics of modern server machines. A comprehensive evaluation indicated
that the performance ratio between index probing and scanning changes when moving from
traditional disk-based machines to current hardware architectures, as sequential scans become
more efficient.
Chapter 5 presented BB-Trees as fast and space-efficient means to processing multidimen-

sional point and range queries. Motivated by the observations described in Chapter 4, BB-Trees
use a CPU-friendly memory layout that enables a mostly-sequential access pattern when evalu-
ating typical queries, which maximizes cache line utilization and reduces cache misses. BB-Trees

117

6 Summary and Outlook

show high robustness towards a wide range of different data and workloads, e. g., moderate and
high dimensionalities (we evaluated up to 100 dimensions), low-cardinality dimensions, partial-
and complete-match queries, etc. We also proposed a multithreaded variant that can leverage
the parallel capabilities of modern CPUs to accelerate search queries. We compared BB-Trees
to state-of-the-art multidimensional index structures and successfully demonstrated that BB-
Trees achieve an outstanding range query performance, provide a fast point query operator, can
efficiently ingest updates, and can accelerate the performance of their parallel search operator
proportional to the number of available physical cores.

6.2 Outlook
We identify multiple future research directions based on the results of this thesis.

BB-Trees: Dynamic Adaptation of Bubble Bucket Capacities

In BB-Trees, the capacity of leaf nodes controls the ratio between navigation of the search
tree, i. e., pruning, and scanning when evaluating search queries. Large bubble buckets (BB) are
beneficial for low query selectivities, whereas small BB are preferable for high query selectivities.
In Chapter 5, we empirically determined a BB capacity that offers high robustness towards a
wide range of workloads and used it for all experiments. However, for very high or very low
selectivities, a smaller or larger BB capacity could provide higher search efficiency. Instead of
sticking to the same BB capacity for the entire lifetime of a BB-Tree, we could periodically
adapt the capacities to the observed average selectivity of the current workload. In the optimal
case, this adaptation is conducted immediately once the workload changes.
First, we would need to gain knowledge about the selectivities of the most recently processed

search queries. To this end, we could extend the range query operator of BB-Trees such that it
monitors the selectivities, defined by the size of the result set divided by the cardinality of the
data set, at the end of the query evaluation without introducing much additional complexity.
Second, we would need to decide when to change the BB capacities. As rebuilds need to rewrite
the index anyway, we could integrate the adaptation into the reorganization operator. However,
rebuilds are only invoked by update operations. To also enable adaptation in the case of read-
heavy workloads, we would need to ensure that the reorganization is invoked periodically, even
when no updates are performed. For instance, we might rebuild the index every 10, 000-th
read or write operation. To avoid the situation, where rebuilds triggered by search queries halt
the database system, we could handle reorganization in background jobs executed by separate
threads.

BB-Trees: Dynamic Adaptation of Delimiter Dimensions

By default, BB-Trees choose their delimiter dimensions in the order of the cardinalities when
building the inner search tree (IST). Dimensions with many distinct values are moved to the
upper tree levels and dimensions with few distinct values are moved to the lower tree levels.
Consider a scenario where a m-dimensional data set is indexed by an IST of height h < m,
i. e., the search tree splits in h of the m dimensions. If a BB-Tree is primarily queried with

118

6.2 Outlook

workloads of partial-match MDRQ, where queries restrict less than m dimensions, the perfor-
mance of the index crucially depends on the selection of its h delimiter dimensions, because
any dimension constrained in the workload but not used in the index leads to a loss of pruning
opportunities. If the particular selection of the queried dimensions changes over time, it would
be highly beneficial to restructure the MDIS from time to time by adapting to the currently
hot dimensions. Such scenarios are not uncommon in practice and occur, for instance, when
different (interactive) analysis processes subsequently work on the data, where each process gen-
erates series of queries for a particular purpose, leading to a particular selection of dimensions
in queries [Thorvaldsdóttir et al. 2013].
When rebuilding the IST, instead of only considering characteristics of the data, we may also

take the current workload into account, moving dimensions queried often with a high selectivity
to the upper tree levels and dimensions queried rarely and with a low selectivity to the lower
tree levels. To this end, we would need to maintain statistics about the usage frequencies
and the average selectivities that each dimension is queried with. Usage frequencies could be
easily obtained by maintaining a counter for each dimension of the indexed data space, which is
incremented whenever the dimension is restricted by a search query. Determining the average
selectivities for single dimensions is more complicated, because, for each executed range query,
we would need to split the m-dimensional MDRQ search object into m selection predicates and
apply these to single dimensions of the data space. However, this step could be handled during
index rebuilds by considering only the most recent queries, which minimizes the impact on the
query evaluation (we still need to monitor the search objects), but increases the cost of the
reorganization operator. Though, recall that we could speed-up this procedure by considering
samples, which are instantiated anyway when rebuilding, instead of utilizing the entire data.
An adaptation of the delimiter dimensions to the recent query workload is promising, but

there are also limitations. First, ordering the delimiter dimensions by their workload selectivity
and usage frequency is only beneficial for BB-Trees, where less than m dimensions are used
as delimiter. It does not provide any advantage in pruning leaf nodes for BB-Trees having a
height larger than or equal to the dimensionality of the data space. Second, the benefits of an
adaptation to the recent workload are the higher the more stable the running workload is and the
more drastic it changes, when it changes. Third, although rebuilds of the IST are periodically
invoked, they may not always represent the perfect point in time to perform the adaptation.
Ideally, the delimiter dimensions are adapted whenever the workload pattern changes. However,
a fast and efficient detection (or prediction) of workload changes is very challenging [Holze
et al. 2007]. Fourth, though sampling reduces the complexity of determining single-dimension
selectivities, our adaptation approach would still add overhead to the rebuild operator.

CSSL and BB-Trees: Cost Models

Database management systems require precise estimations of the cost of individual operators to
choose between different execution plans when optimizing query performance [Manegold et al.
2002; Jarke et al. 1984]. To enable an integration of CSSL and BB-Trees into fully-fledged
main-memory database systems, we must provide accurate cost models that can predict the
performance of their query operators depending on a given search object. While traditional
database systems optimize disk accesses, modern database systems aim to work as much as

119

6 Summary and Outlook

possible on data held on the CPU, hence reducing LLC misses requiring accesses to the main
memory. Depending on the underlying hardware (cache sizes, cache replacement policies, etc.)
and previous search requests, an access of a cache line may either produce a costly cache miss
or be served from on-die caches. Thus, when proposing cost models for main-memory index
structures, we should use the number of accessed cache lines as fundamental cost measure,
providing an upper limit for the LLC miss rate. In the following, we sketch how we would
design a cost model for the range query operators of CSSL and BB-Trees.
In CSSL, a range query navigates the skip list hierarchy to find the segment of the data list

containing the smallest key satisfying the search object. Once this segment is determined, the
search algorithm scans over the lowest fast lane to locate the segment of the data list holding
the largest matching key. Given that keys are implemented with four-byte values, 16 keys fit
into one cache line. Hence, assuming that each fast lane skips over less than 16 keys, which is
very common in practice, the initial traversal over the h fast lanes accesses h cache lines at most
(one cache line per fast lane level). Given that r keys satisfy the query object, processing the
lowest fast lane accesses r/16 cache lines at most. In addition, the search algorithm visits two
elements of the data list (the smallest and largest matching keys), which additionally loads two
cache lines. Thus, in CSSL, the cost of a range query could be approximated with h+ r/16 + 2
cache line accesses. Of course, this cost formula would have to be verified through experiments
with different data distributions and different query workloads.
In BB-Trees, predicting the cost of a range query is more complicated, as its performance

strongly depends on how many candidate BB need to be scanned to find the true results (Bmatch).
Bmatch critically depends on the structure of the IST, i. e., the delimiter dimensions and values,
and the query object. When implementing data objects with four-byte values, 16 dimension
values fit into one 64-byte cache line. Given that BB have a maximum capacity of Bmax m-
dimensional objects, scanning a BB accesses Bmax ∗ m/16 cache lines at most. As BB may
morph into super BB, consisting of up to k regular BB, we must also consider how many of
the Bmatch candidate BB are super BB. Thus, when deriving a cost model for BB-Trees, we
must consider multiple properties: (1) The number of candidate BB (Bmatch), which depends
on the concrete IST and is the major challenge for accurate cost estimation, (2) the number
of candidate BB that are super BB (Bmatch_super), (3) the BB capacity (Bmax), and (4) the
dimensionality of the data space (m). The total cost of a range query therefore boils down to
roughly ((Bmatch−Bmatch_super) + (Bmatch_super ∗ k)) ∗ (Bmax ∗m/16) cache line accesses. This
cost formula would also have to be validated through comprehensive experiments.

BB-Trees: Nearest-Neighbor Search

This thesis focused on the processing of range queries in main memory. We proposed BB-Trees
as a novel multidimensional index structure supporting range and point queries. In future work,
we intend to extend the capabilities of BB-Trees with regards to executing nearest-neighbor (NN)
search queries, which is another popular query type frequently applied to multidimensional data.
NN queries retrieve the point that is closest to a given search object, which is a point itself.

NN queries use metrics, e. g., euclidean distance, to define the distance between two points in
the data space. While NN queries retrieve the point closest to a search object, k-nearest neighbor
(k-NN) search retrieves the k points that are closest to a given search object. Interestingly, NN

120

6.2 Outlook

queries can be also used for finding the object most similar to a search object when defining
similarity as an inverse of the distance function, assuming that similar objects are nearby in the
data space and non-similar objects are far away from each other.
BB-Trees partition the entire data space into disjoint regions, which are covered by distinct

bubble buckets. BB-Trees could implement NN queries by executing three steps. First, locate
the BB, which covers the region the search object belongs to. Also, all neighboring regions (and
respective BB) must be considered. Second, scan these candidate BB to determine the distances
between the data objects and the search object. Technically, we could manage the obtained
distances (and the associated data objects) in a binary min heap. Third, return the data object
that has the smallest distance to the search object, which boils down to extracting the minimum
element from the heap built in the previous step. Similarly, BB-Trees could implement k-NN
queries by extracting k elements from the heap. Note that if the regions obtained in the first
step contained less than k elements, we would have to extend the search to further regions.
For low-dimensional data, BB-Trees could implement NN efficiently, leading to a complexity

of O(h ∗ log(k) + Bmatch ∗ bmax ∗m)1. The first step of the algorithm requires a navigation of
the IST to locate the BB covering the search object, which has a complexity of O(h ∗ log(k)) as
shown in Section 5.5. The second step investigates the Bmatch candidate BB, each holding up
to bmax m-dimensional data objects. For instance, in the two-dimensional domain, up to nine
candidate BB (Bmatch = 9) would have to be considered, as every region has eight neighbors.
The third step can be done in O(1). When the dimensionality of the data space increases, a
growing number of data objects (or candidate BB) would have to be investigated, as implied by
the curse of dimensionality [Beyer et al. 1999], thus strongly increasing the complexity of the
second step, which becomes linear in n. However, most MDIS also cannot efficiently handle NN
search queries in high-dimensional data spaces, but degenerate to sequential scans [Weber et al.
1998].

1Note that k here denotes the fan out of the inner nodes.

121

Appendix A: Genomic Multidimensional Range
Query Benchmark

Query Template 1

Listing 1: Query Template 1.
1 SELECT * FROM variants
2 WHERE chromosome = ?
3 AND location BETWEEN ? AND ?;

Query Template 2

Listing 2: Query Template 2.
1 SELECT * FROM variants
2 WHERE chromosome BETWEEN ? AND ?
3 AND location BETWEEN ? AND ?
4 AND quality BETWEEN ? AND ?
5 AND depth BETWEEN ? AND ?
6 AND allele_freq BETWEEN ? AND ?;

Query Template 3

Listing 3: Query Template 3.
1 SELECT * FROM variants
2 WHERE chromosome BETWEEN ? AND ?
3 AND location BETWEEN ? AND ?
4 AND gender = ?;

Query Template 4

Listing 4: Query Template 4.
1 SELECT * FROM variants
2 WHERE chromosome BETWEEN ? AND ?
3 AND location BETWEEN ? AND ?
4 AND gender = ?
5 AND population = ’?’;

Query Template 5

Listing 5: Query Template 5.

123

Appendix A: Genomic Multidimensional Range Query Benchmark

1 SELECT * FROM variants
2 WHERE chromosome BETWEEN ? AND ?
3 AND location BETWEEN ? AND ?
4 AND gender = ?
5 AND population = ’?’
6 AND relationship = ’?’;

Query Template 6

Listing 6: Query Template 6.
1 SELECT * FROM variants
2 WHERE chromosome BETWEEN ? AND ?
3 AND location BETWEEN ? AND ?
4 AND gender = ?
5 AND population = ’?’
6 AND relationship = ’?’
7 AND family_id BETWEEN ? AND ?;

Query Template 7

Listing 7: Query Template 7.
1 SELECT * FROM variants
2 WHERE chromosome BETWEEN ? AND ?
3 AND location BETWEEN ? AND ?
4 AND gender = ?
5 AND population = ’?’
6 AND relationship = ’?’
7 AND family_id BETWEEN ? AND ?
8 AND variant_id BETWEEN ? AND ?;

Query Template 8

Listing 8: Query Template 8.
1 SELECT * FROM variants
2 WHERE chromosome BETWEEN ? AND ?
3 AND location BETWEEN ? AND ?
4 AND quality BETWEEN ? AND ?
5 AND depth BETWEEN ? AND ?
6 AND allele_freq BETWEEN ? AND ?
7 AND ref_base = ’?’
8 AND alt_base = ’?’
9 AND ancestral_allele = ’?’

10 AND variant_id BETWEEN ? AND ?
11 AND sample_id BETWEEN ? AND ?
12 AND gender = ?
13 AND family_id BETWEEN ? AND ?
14 AND population = ’?’
15 AND relationship = ’?’
16 AND variant_type = ’?’
17 AND genotype = ’?’

124

18 AND genotype_quality BETWEEN ? AND ?
19 AND read_depth BETWEEN ? AND ?
20 AND haplotype_quality BETWEEN ? AND ?;

125

Appendix A: Genomic Multidimensional Range Query Benchmark

126

Bibliography
Abadi, Daniel J., Samuel Madden, and Miguel Ferreira (2006). “Integrating compression and
execution in column-oriented database systems”. In: Proceedings of the ACM SIGMOD Inter-
national Conference on Management of Data, pp. 671–682.

Abadi, Daniel, Peter A. Boncz, Stavros Harizopoulos, Stratos Idreos, and Samuel Madden
(2013). “The Design and Implementation of Modern Column-Oriented Database Systems”.
In: Foundations and Trends in Databases 5.3, pp. 197–280.

Ailamaki, Anastassia, David J. DeWitt, Mark D. Hill, and David A. Wood (1999). “DBMSs
on a Modern Processor: Where Does Time Go?” In: Proceedings of the 25th International
Conference on Very Large Data Bases, pp. 266–277.

Alvarez, Victor, Stefan Richter, Xiao Chen, and Jens Dittrich (2015). “A comparison of adaptive
radix trees and hash tables”. In: Proceedings of the 31st IEEE International Conference on
Data Engineering, pp. 1227–1238.

Arge, Lars, Mark de Berg, Herman J. Haverkort, and Ke Yi (2004). “The Priority R-Tree: A
Practically Efficient and Worst-Case Optimal R-Tree”. In: Proceedings of the ACM SIGMOD
International Conference on Management of Data, pp. 347–358.

Bakkum, Peter and Kevin Skadron (2010). “Accelerating SQL database operations on a GPU
with CUDA”. In: Proceedings of the 3rd Workshop on General Purpose Processing on Graphics
Processing Units, pp. 94–103.

Bayer, Rudolf (1997). “The Universal B-Tree for Multidimensional Indexing: general Concepts”.
In: Proceedings of the International Conference on Worldwide Computing and Its Applications,
pp. 198–209.

Bayer, Rudolf and Edward M. McCreight (1972). “Organization and Maintenance of Large
Ordered Indices”. In: Acta Informatica 1, pp. 173–189.

Beckmann, Norbert, Hans-Peter Kriegel, Ralf Schneider, and Bernhard Seeger (1990). “The R*-
Tree: An Efficient and Robust Access Method for Points and Rectangles”. In: Proceedings of
the ACM SIGMOD International Conference on Management of Data, pp. 322–331.

Bentley, Jon Louis (1975). “Multidimensional Binary Search Trees Used for Associative Search-
ing”. In: Communications of the ACM 18.9, pp. 509–517.

Bentley, Jon Louis and Jerome H. Friedman (1979). “Data Structures for Range Searching”. In:
ACM Computing Surveys 11.4, pp. 397–409.

Berchtold, Stefan, Christian Böhm, Bernhard Braunmüller, Daniel A. Keim, and Hans-Peter
Kriegel (1997). “Fast Parallel Similarity Search in Multimedia Databases”. In: Proceedings of
the ACM SIGMOD International Conference on Management of Data, pp. 1–12.

Berchtold, Stefan, Christian Böhm, Daniel A. Keim, Hans-Peter Kriegel, and Xiaowei Xu (2000).
“Optimal Multidimensional Query Processing Using Tree Striping”. In: Proceedings of the
Second International Conference on Data Warehousing and Knowledge Discovery, pp. 244–
257.

127

Bibliography

Berchtold, Stefan, Daniel A. Keim, and Hans-Peter Kriegel (1996). “The X-tree : An Index
Structure for High-Dimensional Data”. In: Proceedings of the 22th International Conference
on Very Large Data Bases, pp. 28–39.

Beyer, Kevin S., Jonathan Goldstein, Raghu Ramakrishnan, and Uri Shaft (1999). “When
Is ”Nearest Neighbor” Meaningful?” In: 7th International Conference on Database Theory,
pp. 217–235.

Böhm, Christian, Stefan Berchtold, and Daniel A. Keim (2001). “Searching in high-dimensional
spaces: Index structures for improving the performance of multimedia databases”. In: ACM
Computing Surveys 33.3, pp. 322–373.

Böhm, Matthias, Benjamin Schlegel, Peter Benjamin Volk, Ulrike Fischer, Dirk Habich, and
Wolfgang Lehner (2011). “Efficient In-Memory Indexing with Generalized Prefix Trees”. In:
Datenbanksysteme für Business, Technologie und Web, 14. Fachtagung des GI-Fachbereichs
"Datenbanken und Informationssysteme", pp. 227–246.

Boncz, Peter A., Stefan Manegold, and Martin L. Kersten (1999). “Database Architecture Op-
timized for the New Bottleneck: Memory Access”. In: Proceedings of the 25th International
Conference on Very Large Data Bases, pp. 54–65.

– (2009). “Database Architecture Evolution: Mammals Flourished long before Dinosaurs became
Extinct”. In: PVLDB 2.2, pp. 1648–1653.

Bozkaya, Tolga and Z. Meral Özsoyoglu (1999). “Indexing Large Metric Spaces for Similarity
Search Queries”. In: ACM Transactions on Database Systems 24.3, pp. 361–404.

Broneske, David, Sebastian Breß, and Gunter Saake (2014). “Database Scan Variants on Mod-
ern CPUs: A Performance Study”. In: Proceedings of the 2nd International Workshop on In
Memory Data Management and Analytics, pp. 1–15.

Broneske, David, Veit Köppen, Gunter Saake, and Martin Schäler (2017a). “Accelerating Multi-
Column Selection Predicates in Main-Memory - The Elf Approach”. In: Proceedings of the
33rd IEEE International Conference on Data Engineering, pp. 647–658.

Broneske, David and Martin Schäler (2017b). “Single Instruction Multiple Data - Not Everything
is a Nail for this Hammer”. In: Failed Aspirations in Database Systems.

Bryant, Randal E, O’Hallaron David Richard, and O’Hallaron David Richard (2003). Computer
systems: a programmer’s perspective. Vol. 2. Prentice Hall Upper Saddle River.

Bulpin, James R and Ian A Pratt (2004). “Multiprogramming performance of the Pentium 4
with Hyper-Threading”. In: Second Annual Workshop on Duplicating, Deconstruction and
Debunking. Citeseer, p. 53.

Buluç, Aydin and Kamesh Madduri (2011). “Parallel breadth-first search on distributed memory
systems”. In: Conference on High Performance Computing Networking, Storage and Analysis,
65:1–65:12.

Calder, Brad, Chandra Krintz, Simmi John, and Todd M. Austin (1998). “Cache-Conscious Data
Placement”. In: Proceedings of the 8th International Conference on Architectural Support for
Programming Languages and Operating Systems, pp. 139–149.

Carlson, Josiah L. (2013). Redis in Action. Greenwich, CT, USA: Manning Publications Co.
isbn: 1617290858, 9781617290855.

Chakrabarti, Kaushik, Minos N. Garofalakis, Rajeev Rastogi, and Kyuseok Shim (2001). “Ap-
proximate query processing using wavelets”. In: VLDB Journal 10.2-3, pp. 199–223.

128

Bibliography

Chan, Chee Yong and Yannis E. Ioannidis (1998). “Bitmap Index Design and Evaluation”. In:
Proceedings of the ACM SIGMOD International Conference on Management of Data, pp. 355–
366.

Chang, Jo-Mei and King-Sun Fu (1981). “Extended Kd tree database organization: A dynamic
multiattribute clustering method”. In: IEEE Transactions on Software Engineering 3, pp. 284–
290.

Chaudhuri, Surajit and Umeshwar Dayal (1997). “An Overview of Data Warehousing and OLAP
Technology”. In: SIGMOD Record 26.1, pp. 65–74.

Chen, Jack, Samir Jindel, Robert Walzer, Rajkumar Sen, Nika Jimsheleishvilli, and Michael
Andrews (2016). “The MemSQL Query Optimizer: A modern optimizer for real-time analytics
in a distributed database”. In: PVLDB 9.13, pp. 1401–1412.

Choi, Byn, Rakesh Komuravelli, Victor Lu, Hyojin Sung, Robert L. Bocchino Jr., Sarita V.
Adve, and John C. Hart (2010). “Parallel SAH k-D tree construction”. In: Proceedings of the
ACM SIGGRAPH/EUROGRAPHICS Conference on High Performance Graphics, pp. 77–86.

Choudhary, Pratik, John Shin, Yongyin Wang, Mark L. Evans, Peter J. Hammond, David Kerr,
James A.M. Shaw, John C. Pickup, and Stephanie A. Amiel (2011). “Insulin Pump Therapy
With Automated Insulin Suspension in Response to Hypoglycemia”. In: Diabetes Care 34.9,
pp. 2023–2025.

Ciaccia, Paolo, Marco Patella, and Pavel Zezula (1997). “M-tree: An Efficient Access Method
for Similarity Search in Metric Spaces”. In: Proceedings of the 23rd International Conference
on Very Large Data Bases, pp. 426–435.

Codd, E. F. (1970). “A Relational Model of Data for Large Shared Data Banks”. In: Commu-
nications of the ACM 13.6, pp. 377–387.

Comer, Douglas (1979). “The Ubiquitous B-Tree”. In: ACM Computing Surveys 11.2, pp. 121–
137.

Council, National Research (2011). The Future of Computing Performance: Game Over or Next
Level? National Academies Press. isbn: 978-0-309-15951-7,978-0-309-21164-2.

Danecek, Petr, Adam Auton, Gonçalo R. Abecasis, Cornelis A. Albers, Eric Banks, Mark A.
DePristo, Robert E. Handsaker, Gerton Lunter, Gabor T. Marth, Stephen T. Sherry, Gilean
McVean, and Richard Durbin (2011). “The variant call format and VCFtools”. In: Bioinfor-
matics 27.15, pp. 2156–2158.

Das, Dinesh, Jiaqi Yan, Mohamed Zaït, Satyanarayana R. Valluri, Nirav Vyas, Ramarajan Kr-
ishnamachari, Prashant Gaharwar, Jesse Kamp, and Niloy Mukherjee (2015). “Query Opti-
mization in Oracle 12c Database In-Memory”. In: PVLDB 8.12, pp. 1770–1781.

DeWitt, David J. and Jim Gray (1992). “Parallel Database Systems: The Future of High Per-
formance Database Systems”. In: Communications of the ACM 35.6, pp. 85–98.

Diaconu, Cristian, Craig Freedman, Erik Ismert, Per-Åke Larson, Pravin Mittal, Ryan Stoneci-
pher, Nitin Verma, and Mike Zwilling (2013). “Hekaton: SQL server’s memory-optimized
OLTP engine”. In: Proceedings of the ACM SIGMOD International Conference on Manage-
ment of Data, pp. 1243–1254.

Drepper, Ulrich (2007). “What every programmer should know about memory”. In: Technical
Report.

129

Bibliography

Faerber, Franz, Alfons Kemper, Per-Åke Larson, Justin J. Levandoski, Thomas Neumann, and
Andrew Pavlo (2017). “Main Memory Database Systems”. In: Foundations and Trends in
Databases 8.1-2, pp. 1–130.

Faloutsos, Christos (1985). “Access Methods for Text”. In: ACM Computing Surveys 17.1,
pp. 49–74.

Faloutsos, Christos and Ibrahim Kamel (1994). “Beyond Uniformity and Independence: Analysis
of R-trees Using the Concept of Fractal Dimension”. In: Proceedings of the Thirteenth ACM
SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, pp. 4–13.

Finkel, Raphael A. and Jon Louis Bentley (1974). “Quad Trees: A Data Structure for Retrieval
on Composite Keys”. In: Acta Informatica 4, pp. 1–9.

Flynn, Michael J. (1972). “Some Computer Organizations and Their Effectiveness”. In: IEEE
Transactions on Computers 21.9, pp. 948–960.

Fomitchev, Mikhail and Eric Ruppert (2004). “Lock-free linked lists and skip lists”. In: Proceed-
ings of the Twenty-Third Annual ACM Symposium on Principles of Distributed Computing,
pp. 50–59.

Gaede, Volker and Oliver Günther (1998). “Multidimensional Access Methods”. In: ACM Com-
puting Surveys 30.2, pp. 170–231.

Garcia-Molina, Hector, Jeffrey D. Ullman, and Jennifer Widom (2000). Database System Imple-
mentation. Prentice-Hall. isbn: 0-13-040264-8.

Germann, Ulrich, Eric Joanis, and Samuel Larkin (2009). “Tightly packed tries: How to fit
large models into memory, and make them load fast, too”. In: Proceedings of the Workshop
on Software Engineering, Testing, and Quality Assurance for Natural Language Processing.
Association for Computational Linguistics, pp. 31–39.

Graefe, Goetz (1990). “Encapsulation of Parallelism in the Volcano Query Processing System”.
In: Proceedings of the ACM SIGMOD International Conference on Management of Data,
pp. 102–111.

– (1994). “Volcano - An Extensible and Parallel Query Evaluation System”. In: IEEE Transac-
tions on Knowledge and Data Engineering 6.1, pp. 120–135.

Gubbi, Jayavardhana, Rajkumar Buyya, Slaven Marusic, and Marimuthu Palaniswami (2013).
“Internet of Things (IoT): A vision, architectural elements, and future directions”. In: Future
Generation Computer Systems 29.7, pp. 1645–1660.

Guttman, Antonin (1984). “R-Trees: A Dynamic Index Structure for Spatial Searching”. In:
Proceedings of the ACM SIGMOD International Conference on Management of Data, pp. 47–
57.

Hakenberg, Jörg, Wei-Yi Cheng, Philippe E. Thomas, Ying-Chih Wang, Andrew V. Uzilov,
and Rong Chen (2016). “Integrating 400 million variants from 80,000 human samples with
extensive annotations: towards a knowledge base to analyze disease cohorts”. In: BMC Bioin-
formatics 17, p. 24.

Hellerstein, Joseph M., Jeffrey F. Naughton, and Avi Pfeffer (1995). “Generalized Search Trees
for Database Systems”. In: Proceedings of the 21th International Conference on Very Large
Data Bases, pp. 562–573.

Herlihy, Maurice, Yossi Lev, Victor Luchangco, and Nir Shavit (2006). “A provably correct
scalable concurrent skip list”. In: Conference On Principles of Distributed Systems. Citeseer.

130

Bibliography

Hinterberger, Hans, Kathrin Anne Meier, and Hans Gilgen (1994). “Spatial Data Reallocation
Based on Multidimensional Range Queries - A Contribution to Data Management for the
Earth Sciences”. In: Seventh International Working Conference on Scientific and Statistical
Database Management, pp. 228–239.

Ho, Ching-Tien, Rakesh Agrawal, Nimrod Megiddo, and Ramakrishnan Srikant (1997). “Range
Queries in OLAP Data Cubes”. In: Proceedings of the ACM SIGMOD International Confer-
ence on Management of Data, pp. 73–88.

Hoel, Erik G. and Hanan Samet (1992). “A Qualitative Comparison Study of Data Structures
for Large Line Segment Databases”. In: Proceedings of the ACM SIGMOD International Con-
ference on Management of Data, pp. 205–214.

Hofmann, Johannes, Jan Treibig, Georg Hager, and Gerhard Wellein (2014). “Comparing the
performance of different x86 SIMD instruction sets for a medical imaging application on
modern multi- and manycore chips”. In: Proceedings of the Workshop on Programming models
for SIMD/Vector processing, pp. 57–64.

Holloway, Allison L., Vijayshankar Raman, Garret Swart, and David J. DeWitt (2007). “How
to barter bits for chronons: compression and bandwidth trade offs for database scans”. In:
Proceedings of the ACM SIGMOD International Conference on Management of Data, pp. 389–
400.

Holze, Marc and Norbert Ritter (2007). “Towards workload shift detection and prediction for
autonomic databases”. In: Proceedings of the First Ph.D. Workshop in CIKM, Sixteenth ACM
Conference on Information and Knowledge Management, pp. 109–116.

Hwang, Sohyun, Eiru Kim, Insuk Lee, and Edward M Marcotte (2015). “Systematic comparison
of variant calling pipelines using gold standard personal exome variants”. In: Scientific reports
5, p. 17875.

International Human Genome Sequencing Consortium (2004). “Finishing the euchromatic se-
quence of the human genome”. In: Nature 431.7011, p. 931.

Jacob, Bruce, Spencer Ng, and David Wang (2010). Memory systems: cache, DRAM, disk.
Morgan Kaufmann.

Jagadish, H. V. (1990). “Spatial Search with Polyhedra”. In: Proceedings of the 6th IEEE In-
ternational Conference on Data Engineering, pp. 311–319.

Jagadish, H. V., Nick Koudas, S. Muthukrishnan, Viswanath Poosala, Kenneth C. Sevcik, and
Torsten Suel (1998). “Optimal Histograms with Quality Guarantees”. In: Proceedings of the
24th International Conference on Very Large Data Bases, pp. 275–286.

Jahn, Marco, Marc Jentsch, Christian R Prause, Ferry Pramudianto, Amro Al-Akkad, and Rene
Reiners (2010). “The energy aware smart home”. In: 5th International Conference on Future
Information Technology. IEEE, pp. 1–8.

Jarke, Matthias and Jürgen Koch (1984). “Query Optimization in Database Systems”. In: ACM
Computing Surveys 16.2, pp. 111–152.

Ji, Yuanzhen, Thomas Heinze, and Zbigniew Jerzak (2013). “HUGO: real-time analysis of com-
ponent interactions in high-tech manufacturing equipment (industry article)”. In: The 7th
ACM International Conference on Distributed Event-Based Systems, pp. 87–96.

Kallman, Robert, Hideaki Kimura, Jonathan Natkins, Andrew Pavlo, Alex Rasin, Stanley B.
Zdonik, Evan P. C. Jones, Samuel Madden, Michael Stonebraker, Yang Zhang, John Hugg, and

131

Bibliography

Daniel J. Abadi (2008). “H-store: a high-performance, distributed main memory transaction
processing system”. In: PVLDB 1.2, pp. 1496–1499.

Kamel, Ibrahim and Christos Faloutsos (1994). “Hilbert R-tree: An Improved R-tree using Frac-
tals”. In: Proceedings of the 20th International Conference on Very Large Data Bases, pp. 500–
509.

Kanth, Kothuri Venkata Ravi, Siva Ravada, and Daniel Abugov (2002). “Quadtree and R-tree
indexes in oracle spatial: a comparison using GIS data”. In: Proceedings of the ACM SIGMOD
International Conference on Management of Data, pp. 546–557.

Katayama, Norio and Shin’ichi Satoh (1997). “The SR-tree: An Index Structure for High-
Dimensional Nearest Neighbor Queries”. In: Proceedings of the ACM SIGMOD International
Conference on Management of Data, pp. 369–380.

Khamayseh, Ahmed K and Glen Hansen (2007). “Use of the Spatial kd-Tree in Computational
Physics Applications”. In: Communications in Computational Physics 2.

Kim, Changkyu, Jatin Chhugani, Nadathur Satish, Eric Sedlar, Anthony D. Nguyen, Tim
Kaldewey, Victor W. Lee, Scott A. Brandt, and Pradeep Dubey (2010). “FAST: fast ar-
chitecture sensitive tree search on modern CPUs and GPUs”. In: Proceedings of the ACM
SIGMOD International Conference on Management of Data, pp. 339–350.

Kim, Kihong, Sang Kyun Cha, and Keunjoo Kwon (2001). “Optimizing Multidimensional In-
dex Trees for Main Memory Access”. In: Proceedings of the ACM SIGMOD International
Conference on Management of Data, pp. 139–150.

King, Mary-Claire and Allan C Wilson (1975). “Evolution at two levels in humans and chim-
panzees”. In: Science 188.4184, pp. 107–116.

Kissinger, Thomas, Benjamin Schlegel, Dirk Habich, and Wolfgang Lehner (2012). “KISS-Tree:
smart latch-free in-memory indexing on modern architectures”. In: Proceedings of the Eighth
International Workshop on Data Management on New Hardware, pp. 16–23.

Kooi, Robert (1980). “The Optimization of Queries in Relational Databases”. PhD thesis. Case
Western Reserve University.

Koudas, Nick, Christos Faloutsos, and Ibrahim Kamel (1996). “Declustering Spatial Databases
on a Multi-Computer Architecture”. In: Proceedings of the 5th International Conference on
Extending Database Technology, pp. 592–614.

Kreveld, Marc J. van and Mark H. Overmars (1991). “Divided k-d Trees”. In: Algorithmica 6.6,
pp. 840–858.

Labrinidis, Alexandros and H. V. Jagadish (2012). “Challenges and Opportunities with Big
Data”. In: PVLDB 5.12, pp. 2032–2033.

Lahiri, Tirthankar, Marie-Anne Neimat, and Steve Folkman (2013). “Oracle TimesTen: An In-
Memory Database for Enterprise Applications”. In: IEEE Data Engineering Bulletin 36.2,
pp. 6–13.

Lang, Harald, Tobias Mühlbauer, Florian Funke, Peter A. Boncz, Thomas Neumann, and Al-
fons Kemper (2016). “Data Blocks: Hybrid OLTP and OLAP on Compressed Storage using
both Vectorization and Compilation”. In: Proceedings of the ACM SIGMOD International
Conference on Management of Data, pp. 311–326.

Lawder, Jonathan K. and Peter J. H. King (2001). “Querying Multi-dimensional Data Indexed
Using the Hilbert Space-filling Curve”. In: SIGMOD Record 30.1, pp. 19–24.

132

Bibliography

Leis, Viktor, Alfons Kemper, and Thomas Neumann (2013). “The adaptive radix tree: ART-
ful indexing for main-memory databases”. In: Proceedings of the 29th IEEE International
Conference on Data Engineering, pp. 38–49.

Lemahieu, Wilfried, Seppe vanden Broucke, and Bart Baesens (2018). Principles of Database
Management: The Practical Guide to Storing, Managing and Analyzing Big and Small Data.
Cambridge University Press.

Leutenegger, Scott T., J. M. Edgington, and Mario A. López (1997). “STR: A Simple and
Efficient Algorithm for R-Tree Packing”. In: Proceedings of the 13th IEEE International Con-
ference on Data Engineering, pp. 497–506.

Levandoski, Justin J., David B. Lomet, and Sudipta Sengupta (2013). “The Bw-Tree: A B-tree
for new hardware platforms”. In: Proceedings of the 29th IEEE International Conference on
Data Engineering, pp. 302–313.

Li, Heng (2011). “Tabix: fast retrieval of sequence features from generic TAB-delimited files”.
In: Bioinformatics 27.5, pp. 718–719.

Li, Xin, Young-Jin Kim, Ramesh Govindan, and Wei Hong (2003). “Multi-dimensional range
queries in sensor networks”. In: Proceedings of the 1st International Conference on Embedded
Networked Sensor Systems, pp. 63–75.

Li, Yinan and Jignesh M. Patel (2013). “BitWeaving: fast scans for main memory data pro-
cessing”. In: Proceedings of the ACM SIGMOD International Conference on Management of
Data, pp. 289–300.

– (2014). “WideTable: An Accelerator for Analytical Data Processing”. In: PVLDB 7.10, pp. 907–
918.

Liang, Weifa, Hui Wang, and Maria E. Orlowska (2000). “Range queries in dynamic OLAP data
cubes”. In: Data & Knowledge Engineering 34.1, pp. 21–38.

Lievre, Astrid, Jean-Baptiste Bachet, Delphine Le Corre, Valerie Boige, Bruno Landi, Jean-
François Emile, Jean-François Côté, Gorana Tomasic, Christophe Penna, Michel Ducreux, et
al. (2006). “KRAS mutation status is predictive of response to cetuximab therapy in colorectal
cancer”. In: Cancer research 66.8, pp. 3992–3995.

Lin, King-Ip, H. V. Jagadish, and Christos Faloutsos (1994). “The TV-Tree: An Index Structure
for High-Dimensional Data”. In: VLDB Journal 3.4, pp. 517–542.

Lipton, Richard J., Jeffrey F. Naughton, and Donovan A. Schneider (1990). “Practical Selectivity
Estimation through Adaptive Sampling”. In: Proceedings of the ACM SIGMOD International
Conference on Management of Data, pp. 1–11.

Lomet, David B. and Betty Salzberg (1990). “The hB-Tree: A Multiattribute Indexing Method
with Good Guaranteed Performance”. In: ACM Transactions on Database Systems 15.4,
pp. 625–658.

Manegold, Stefan, Peter A. Boncz, and Martin L. Kersten (2000). “Optimizing database archi-
tecture for the new bottleneck: memory access”. In: VLDB Journal 9.3, pp. 231–246.

– (2002). “Generic Database Cost Models for Hierarchical Memory Systems”. In: Proceedings
of the 28th International Conference on Very Large Data Bases, pp. 191–202.

Mao, Yandong, Eddie Kohler, and Robert Tappan Morris (2012). “Cache craftiness for fast mul-
ticore key-value storage”. In: Proceedings of the Seventh European Conference on Computer
Systems, pp. 183–196.

133

Bibliography

Meagher, Donald (1982). “Geometric modeling using octree encoding”. In: Computer Graphics
and Image Processing 19.2, pp. 129–147.

Morrison, Donald R. (1968). “PATRICIA - Practical Algorithm To Retrieve Information Coded
in Alphanumeric”. In: Journal of the ACM 15.4, pp. 514–534.

Mucci, Philip J, Shirley Browne, Christine Deane, and George Ho (1999). “PAPI: A portable
interface to hardware performance counters”. In: Proceedings of the department of defense
HPCMP users group conference. Vol. 710.

Müller, Emmanuel, Stephan Günnemann, Ira Assent, and Thomas Seidl (2009). “Evaluating
Clustering in Subspace Projections of High Dimensional Data”. In: PVLDB 2.1, pp. 1270–
1281.

Munro, J. Ian, Thomas Papadakis, and Robert Sedgewick (1992). “Deterministic Skip Lists”. In:
Proceedings of the Third Annual ACM/SIGACT-SIAM Symposium on Discrete Algorithms,
pp. 367–375.

Nievergelt, Jürg, Hans Hinterberger, and Kenneth C. Sevcik (1984). “The Grid File: An Adapt-
able, Symmetric Multikey File Structure”. In: ACM Transactions on Database Systems 9.1,
pp. 38–71.

Orenstein, Jack A. and T. H. Merrett (1984). “A Class of Data Structures for Associative
Searching”. In: Proceedings of the Third ACM SIGACT-SIGMOD Symposium on Principles
of Database Systems, pp. 181–190.

Pagel, Bernd-Uwe, Hans-Werner Six, Heinrich Toben, and Peter Widmayer (1993). “Towards
an Analysis of Range Query Performance in Spatial Data Structures”. In: Proceedings of the
Twelfth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems,
pp. 214–221.

Plattner, Hasso (2009). “A common database approach for OLTP and OLAP using an in-
memory column database”. In: Proceedings of the ACM SIGMOD International Conference
on Management of Data, pp. 1–2.

Plattner, Hasso and Alexander Zeier (2011). In-memory data management: an inflection point
for enterprise applications. Springer.

Pohl, Angela, Biagio Cosenza, Mauricio Alvarez Mesa, Chi Ching Chi, and Ben H. H. Juurlink
(2016). “An evaluation of current SIMD programming models for C++”. In: Proceedings of
the 3rd Workshop on Programming Models for SIMD/Vector Processing, 3:1–3:8.

Polychroniou, Orestis, Arun Raghavan, and Kenneth A. Ross (2015). “Rethinking SIMD Vec-
torization for In-Memory Databases”. In: Proceedings of the ACM SIGMOD International
Conference on Management of Data, pp. 1493–1508.

Poosala, Viswanath (1997). “Histogram-Based Estimation Techniques in Database Systems”.
PhD thesis. University of Wisconsin-Madison.

Poosala, Viswanath and Yannis E. Ioannidis (1997). “Selectivity Estimation Without the At-
tribute Value Independence Assumption”. In: Proceedings of the 23rd International Conference
on Very Large Data Bases, pp. 486–495.

Procopiuc, Octavian, Pankaj K. Agarwal, Lars Arge, and Jeffrey Scott Vitter (2003). “Bkd-
Tree: A Dynamic Scalable kd-Tree”. In: Proceedings of the 8th International Symposium on
Advances in Spatial and Temporal Databases, pp. 46–65.

134

Bibliography

Pugh, William (1990). “Skip Lists: A Probabilistic Alternative to Balanced Trees”. In: Commu-
nications of the ACM 33.6, pp. 668–676.

Qi, Jianzhong, Yufei Tao, Yanchuan Chang, and Rui Zhang (2018). “Theoretically Optimal and
Empirically Efficient R-trees with Strong Parallelizability”. In: PVLDB 11.5, pp. 621–634.

Qiao, Lin, Vijayshankar Raman, Frederick Reiss, Peter J. Haas, and Guy M. Lohman (2008).
“Main-memory scan sharing for multi-core CPUs”. In: PVLDB 1.1, pp. 610–621.

Raman, Vijayshankar, Gopi K. Attaluri, Ronald Barber, Naresh Chainani, David Kalmuk, Vin-
cent KulandaiSamy, Jens Leenstra, Sam Lightstone, Shaorong Liu, Guy M. Lohman, Tim
Malkemus, René Müller, Ippokratis Pandis, Berni Schiefer, David Sharpe, Richard Sidle,
Adam J. Storm, and Liping Zhang (2013). “DB2 with BLU Acceleration: So Much More
than Just a Column Store”. In: PVLDB 6.11, pp. 1080–1091.

Ramsak, Frank, Volker Markl, Robert Fenk, Martin Zirkel, Klaus Elhardt, and Rudolf Bayer
(2000). “Integrating the UB-Tree into a Database System Kernel”. In: Proceedings of the 26th
International Conference on Very Large Data Bases, pp. 263–272.

Rao, Jun and Kenneth A. Ross (1999). “Cache Conscious Indexing for Decision-Support in Main
Memory”. In: Proceedings of the 25th International Conference on Very Large Data Bases,
pp. 78–89.

– (2000). “Making B+-Trees Cache Conscious in Main Memory”. In: Proceedings of the ACM
SIGMOD International Conference on Management of Data, pp. 475–486.

Robinson, John T. (1981). “The K-D-B-Tree: A Search Structure For Large Multidimensional
Dynamic Indexes”. In: Proceedings of the ACM SIGMOD International Conference on Man-
agement of Data, pp. 10–18.

Rödiger, Wolf, Tobias Mühlbauer, Alfons Kemper, and Thomas Neumann (2015). “High-Speed
Query Processing over High-Speed Networks”. In: PVLDB 9.4, pp. 228–239.

Roussopoulos, Nick and Daniel Leifker (1985). “Direct Spatial Search on Pictorial Databases
Using Packed R-Trees”. In: Proceedings of the ACM SIGMOD International Conference on
Management of Data, pp. 17–31.

Rowstron, Antony, Dushyanth Narayanan, Austin Donnelly, Greg O’Shea, and Andrew Douglas
(2012). “Nobody ever got fired for using Hadoop on a cluster”. In: Proceedings of the 1st
International Workshop on Hot Topics in Cloud Data Processing. ACM.

Saecker, Michael and Volker Markl (2012). “Big Data Analytics on Modern Hardware Architec-
tures: A Technology Survey”. In: Business Intelligence - Second European Summer School,
eBISS 2012, pp. 125–149.

Sagan, Hans (2012). Space-filling curves. Springer Science & Business Media.
Saini, Subhash, Haoqiang Jin, Robert Hood, David Barker, Piyush Mehrotra, and Rupak Biswas
(2011). “The impact of hyper-threading on processor resource utilization in production appli-
cations”. In: 18th International Conference on High Performance Computing. IEEE, pp. 1–
10.

Schlegel, Benjamin, Rainer Gemulla, and Wolfgang Lehner (2009). “k-ary search on modern
processors”. In: Proceedings of the Fifth International Workshop on Data Management on
New Hardware, pp. 52–60.

135

Bibliography

Schlegel, Benjamin, Thomas Willhalm, and Wolfgang Lehner (2011). “Fast Sorted-Set Intersec-
tion using SIMD Instructions”. In: International Workshop on Accelerating Data Management
Systems Using Modern Processor and Storage Architectures, pp. 1–8.

Schnitzer, Bernd and Scott T. Leutenegger (1999). “Master-Client R-Trees: A New Parallel R-
Tree Architecture”. In: Proceedings of the 11th International Conference on Scientific and
Statistical Database Management, pp. 68–77.

Seeger, Bernhard and Hans-Peter Kriegel (1988). “Techniques for Design and Implementation
of Efficient Spatial Access Methods”. In: Proceedings of the 14th International Conference on
Very Large Data Bases, pp. 360–371.

– (1990). “The Buddy-Tree: An Efficient and Robust Access Method for Spatial Data Base
Systems”. In: Proceedings of the 16th International Conference on Very Large Data Bases,
pp. 590–601.

Selinger, Patricia G., Morton M. Astrahan, Donald D. Chamberlin, Raymond A. Lorie, and
Thomas G. Price (1979). “Access Path Selection in a Relational Database Management Sys-
tem”. In: Proceedings of the ACM SIGMOD International Conference on Management of
Data, pp. 23–34.

Sellis, Timos K., Nick Roussopoulos, and Christos Faloutsos (1987). “The R+-Tree: A Dynamic
Index for Multi-Dimensional Objects”. In: Proceedings of the 13th International Conference
on Very Large Data Bases, pp. 507–518.

Smith, Alan Jay (1982). “Cache Memories”. In: ACM Computing Surveys 14.3, pp. 473–530.
Sprenger, Stefan, Patrick Schäfer, and Ulf Leser (2018a). “BB-Tree: A practical and efficient
main-memory index structure for multidimensional workloads”. In: Submitted for publication.

– (2018b). “Multidimensional Range Queries on Modern Hardware”. In: Proceedings of the 30th
International Conference on Scientific and Statistical Database Management.

Sprenger, Stefan, Steffen Zeuch, and Ulf Leser (2016). “Cache-Sensitive Skip List: Efficient Range
Queries on Modern CPUs”. In: 7th International Workshop on Accelerating Data Analysis
and Data Management Systems Using Modern Processor and Storage Architectures and 4th
International Workshop on In-Memory Data Management and Analytics, pp. 1–17.

– (2018c). “Exploiting Automatic Vectorization to Employ SPMD on SIMD Registers”. In: 34th
IEEE International Conference on Data Engineering Workshops, pp. 90–95.

Sproull, Robert F. (1991). “Refinements to Nearest-Neighbor Searching in k-Dimensional Trees”.
In: Algorithmica 6.4, pp. 579–589.

Stonebraker, Michael, Daniel J. Abadi, Adam Batkin, Xuedong Chen, Mitch Cherniack, Miguel
Ferreira, Edmond Lau, Amerson Lin, Samuel Madden, Elizabeth J. O’Neil, Patrick E. O’Neil,
Alex Rasin, Nga Tran, and Stanley B. Zdonik (2005). “C-Store: A Column-oriented DBMS”.
In: Proceedings of the 31st International Conference on Very Large Data Bases, pp. 553–564.

Stonebraker, Michael and Ariel Weisberg (2013). “The VoltDB Main Memory DBMS”. In: IEEE
Data Engineering Bulletin 36.2, pp. 21–27.

Taniar, David, Clement HC Leung, Wenny Rahayu, and Sushant Goel (2008). High-performance
parallel database processing and grid databases. Vol. 67. John Wiley & Sons.

Teubner, Jens and Louis Woods (2013). Data Processing on FPGAs. Synthesis Lectures on Data
Management. Morgan & Claypool Publishers.

136

Bibliography

The 1000 Genomes Project Consortium (2012). “An integrated map of genetic variation from
1,092 human genomes”. In: Nature 491.7422, p. 56.

– (2015). “A global reference for human genetic variation”. In: Nature 526.7571, pp. 68–74.
Thorvaldsdóttir, Helga, James T. Robinson, and Jill P. Mesirov (2013). “Integrative Genomics
Viewer (IGV): high-performance genomics data visualization and exploration”. In: Briefings
in Bioinformatics 14.2, pp. 178–192.

Tian, Xinmin, Yen-Kuang Chen, Milind Girkar, Steven Ge, Rainer Lienhart, and Sanjiv Shah
(2003). “Exploring the Use of Hyper-Threading Technology for Multimedia Applications with
Intel R© OpenMP* Compiler”. In: Proceedings of 17th International Parallel and Distributed
Processing Symposium, p. 36.

Tsirogiannis, Dimitris, Sudipto Guha, and Nick Koudas (2009). “Improving the Performance of
List Intersection”. In: PVLDB 2.1, pp. 838–849.

Uhlmann, Jeffrey K. (1991). “Satisfying General Proximity/Similarity Queries with Metric
Trees”. In: Information Processing Letters 40.4, pp. 175–179.

Ullman, Jeffrey D. (1988). Principles of Database and Knowledge-Base Systems, Volume I.
Vol. 14. Principles of computer science series. Computer Science Press. isbn: 0-7167-8069-
0.

Valois, John D. (1995). “Lock-Free Linked Lists Using Compare-and-Swap”. In: Proceedings of
the Fourteenth Annual ACM Symposium on Principles of Distributed Computing, pp. 214–222.

Wang, Sheng, David Maier, and Beng Chin Ooi (2014). “Lightweight Indexing of Observational
Data in Log-Structured Storage”. In: PVLDB 7.7, pp. 529–540.

– (2016). “Fast and Adaptive Indexing of Multi-Dimensional Observational Data”. In: PVLDB
9.14, pp. 1683–1694.

Weber, Roger, Klemens Böhm, and Hans-Jörg Schek (2000). “Interactive-Time Similarity Search
for Large Image Collections Using Parallel VA-Files”. In: Proceedings of the 4th European
Conference on Research and Advanced Technology for Digital Libraries, pp. 83–92.

Weber, Roger, Hans-Jörg Schek, and Stephen Blott (1998). “A Quantitative Analysis and Per-
formance Study for Similarity-Search Methods in High-Dimensional Spaces”. In: Proceedings
of the 24th International Conference on Very Large Data Bases, pp. 194–205.

White, David A. and Ramesh Jain (1996). “Similarity Indexing with the SS-tree”. In: Proceedings
of the 12th IEEE International Conference on Data Engineering, pp. 516–523.

Willhalm, Thomas, Ismail Oukid, Ingo Müller, and Franz Faerber (2013). “Vectorizing Database
Column Scans with Complex Predicates”. In: International Workshop on Accelerating Data
Management Systems Using Modern Processor and Storage Architectures, pp. 1–12.

Willhalm, Thomas, Nicolae Popovici, Yazan Boshmaf, Hasso Plattner, Alexander Zeier, and
Jan Schaffner (2009). “SIMD-Scan: Ultra Fast in-Memory Table Scan using on-Chip Vector
Processing Units”. In: PVLDB 2.1, pp. 385–394.

Xie, Zhongle, Qingchao Cai, H. V. Jagadish, Beng Chin Ooi, and Weng-Fai Wong (2016). “PI : a
Parallel in-memory skip list based Index”. In: CoRR abs/1601.00159. url: http://arxiv.
org/abs/1601.00159.

Yianilos, Peter N. (1993). “Data Structures and Algorithms for Nearest Neighbor Search in Gen-
eral Metric Spaces”. In: Proceedings of the Fourth Annual ACM/SIGACT-SIAM Symposium
on Discrete Algorithms, pp. 311–321.

137

http://arxiv.org/abs/1601.00159
http://arxiv.org/abs/1601.00159

Bibliography

Yoo, Andy, Edmond Chow, Keith W. Henderson, Will McLendon III, Bruce Hendrickson, and
Ümit V. Çatalyürek (2005). “A Scalable Distributed Parallel Breadth-First Search Algorithm
on BlueGene/L”. In: Proceedings of the ACM/IEEE SC2005 Conference on High Performance
Networking and Computing, p. 25.

Yu, Jia and Mohamed Sarwat (2016). “Two Birds, One Stone: A Fast, yet Lightweight, Indexing
Scheme for Modern Database Systems”. In: PVLDB 10.4, pp. 385–396.

Zäschke, Tilmann, Christoph Zimmerli, and Moira C. Norrie (2014). “The PH-tree: a space-
efficient storage structure and multi-dimensional index”. In: Proceedings of the ACM SIGMOD
International Conference on Management of Data, pp. 397–408.

Zeuch, Steffen, Johann-Christoph Freytag, and Frank Huber (2014). “Adapting Tree Structures
for Processing with SIMD Instructions”. In: Proceedings of the 17th International Conference
on Extending Database Technology, pp. 97–108.

Zhang, Hao, Gang Chen, Beng Chin Ooi, Kian-Lee Tan, and Meihui Zhang (2015). “In-Memory
Big Data Management and Processing: A Survey”. In: IEEE Transactions on Knowledge and
Data Engineering 27.7, pp. 1920–1948.

Zhang, Huanchen, David G. Andersen, Andrew Pavlo, Michael Kaminsky, Lin Ma, and Rui
Shen (2016). “Reducing the Storage Overhead of Main-Memory OLTP Databases with Hybrid
Indexes”. In: Proceedings of the ACM SIGMOD International Conference on Management of
Data, pp. 1567–1581.

Zhou, Jingren and Kenneth A. Ross (2002). “Implementing database operations using SIMD
instructions”. In: Proceedings of the ACM SIGMOD International Conference on Management
of Data, pp. 145–156.

Zhou, Kun, Qiming Hou, Rui Wang, and Baining Guo (2008). “Real-time KD-tree construction
on graphics hardware”. In: ACM Transactions on Visualization and Computer Graphics 27.5,
126:1–126:11.

138

List of Figures

2.1 A kd-tree (right) indexing six points from a two-dimensional data set (left). . . . 12
2.2 A PH-tree indexing the bitstrings of three two-dimensional points: (1, 8), (3, 8),

(3, 10). The bitstrings are: (0001, 1000), (0011, 1000), (0011, 1010). The figure is
taken from [Zäschke et al. 2014]. 15

2.3 An R-tree (right) managing six points from a two-dimensional data set (left). . . 19
2.4 Memory hierarchy of Intel Skylake CPUs (Source: https://www.7-cpu.com/

cpu/Skylake.html, Last access: August 29, 2018). 24
2.5 Evolution of Intel Xeon server CPUs (Source: https://en.wikipedia.org/

wiki/List_of_Intel_Xeon_microprocessors and https://en.wikipedia.
org/wiki/Xeon_Phi, Last accesses: February 25, 2019). 27

2.6 A screenshot taken from a genome browser, the integrative genomics viewer [Thor-
valdsdóttir et al. 2013]. 30

3.1 A balanced skip list that manages nine keys with two fast lanes. Each fast lane
skips over two elements (p = 1/2). 38

3.2 A CSSL managing 32 keys with two fast lanes (p = 1/2). 40
3.3 The linearized fast lane array of a CSSL indexing all four-byte integers in {1, .., 64}

with two levels (p = 1/2). The fast lane array is aligned to 64-byte cache lines. . 42
3.4 Range query throughput of the competitors on 16 Million four-byte synthetic

integer keys depending on the range size. 49
3.5 Range query throughput of the competitors on 256 Million four-byte synthetic

integer keys depending on the range size. 51
3.6 Range query throughput on 13,571,394 four-byte integer keys obtained from real-

world genomic variant data depending on the range size. 51
3.7 Lookup throughput on 16 Million four-byte synthetic integer keys. 52
3.8 Throughput of a mixed workload consisting of 500,000 lookups and 500,000 range

queries when applied to 16 Million four-byte synthetic integer keys. 54
3.9 Space consumption for 16 Million four-byte integer keys. 55

4.1 Horizontal and vertical partitioning used to divide twenty five-dimensional tuples
into five partitions. 60

4.2 Single-threaded execution of an MDRQ on a conventional R∗-tree vs. parallel
execution of an MDRQ on p instances of an R∗-tree, where each instance manages
the data of one partition (horizontal partitioning) and is searched with a distinct
thread (p threads in total). 65

139

https://www.7-cpu.com/cpu/Skylake.html
https://www.7-cpu.com/cpu/Skylake.html
https://en.wikipedia.org/wiki/List_of_Intel_Xeon_microprocessors
https://en.wikipedia.org/wiki/List_of_Intel_Xeon_microprocessors
https://en.wikipedia.org/wiki/Xeon_Phi
https://en.wikipedia.org/wiki/Xeon_Phi

List of Figures

4.3 Throughput when executing MDRQ with an average selectivity of 0.1% on one
Million twenty-dimensional tuples from UNIFORM depending on the used hard-
ware features. 70

4.4 Throughput when executing MDRQ with an average selectivity of 0.4% (five
dimensions) to 0.0002% (more than ten dimensions) on one Million tuples from
UNIFORM using 24 software threads depending on the dimensionality. 71

4.5 Throughput when executing range queries on one Million five-dimensional tuples
from UNIFORM using 24 software threads depending on the query selectivity. . 72

4.6 Throughput when executing range queries with an average selectivity of 0.4% on
five-dimensional tuples from UNIFORM using 24 software threads depending on
the size of the data set. 73

4.7 Throughput when executing range queries with an average selectivity of 0.38%
(one cluster) to 27.40% (20 clusters) on one Million five-dimensional tuples from
CLUSTERED using 24 software threads depending on the number of clusters. . . 74

4.8 Throughput when executing range queries with an average selectivity of 11.12%
on three-dimensional tuples from POWER using 24 software threads depending
on the size of the data set. 75

4.9 Throughput of the contestants when executing the GMRQB on ten Million 19-
dimensional tuples from GENOMIC using 24 software threads (the query tem-
plates are ordered by average selectivity, from low (left) to high (right)). 76

4.10 Throughput of the contestants when applying the mixed workload from GMRQB
to ten Million 19-dimensional tuples from GENOMIC depending on the number
of used software threads. 77

4.11 Memory usage of the competitors. 78
4.12 Throughput of the contestants on the desktop machine when applying the GM-

RQB to ten Million 19-dimensional tuples from GENOMIC using 12 software
threads (the query templates are ordered by average selectivity, from low (left)
to high (right)). 79

5.1 A BB-Tree of height h = 2 with an inner node fan out of k = 3 and a BB capacity
of bmax = 4 managing n = 36 data objects of dimensionality m = 3; buckets 3 to
6 are omitted. 89

5.2 The linearized storage of the inner search tree. 90
5.3 When inserting a new data object (3 8 7) with TID 42 into the BB-Tree from

Figure 5.1, the regular BB 2 morphs into a super BB that contains k regular
nodes and partitions data objects according to dimension 2. 92

5.4 Parallel execution of an exemplary range query, defined by the lower boundary
[1, 0, 3] and the upper boundary [3, 7, 6], using three threads. 97

5.5 Performance of BB-Trees with different BB capacities (Bmax) when executing
range queries with varying selectivities (1%, 10%, and 20%) on ten Million data
objects from UNIFORM and CLUSTERED. 102

5.6 Performance of point queries on the different data sets depending on the number
of data objects. 103

140

List of Figures

5.7 Performance of synthetic range queries on the different data sets depending on the
number of data objects. Average query selectivities are as follows: UNIFORM:
0.4% (σ = 0.9%), CLUSTERED: 19.8% (σ = 19.7%), POWER: 12.6% (σ =
13.1%), GENOMIC: 0.2% (σ = 0.2%). 104

5.8 Performance of the Genomic Multidimensional Range Query Benchmark when
executed on ten Million 19-dimensional data objects from GENOMIC. Query
templates are ordered by selectivity, from low (left) to high (right). 105

5.9 Performance of range queries on ten Million data objects from UNIFORM (five
dimensions) depending on query selectivity. We omitted the kd-tree. 105

5.10 Performance of point and range queries (average selectivity = 1%, σ = 0.7%)
when applied to ten Million uniformly distributed data objects depending on
dimensionality. 107

5.11 Performance of synthetic range queries with a varying selectivity executed on ten
Million five-dimensional data objects from UNIFORM depending on the number
of distinct values per dimension. 108

5.12 Performance of synthetic range queries with an average selectivity of 0.00002%
(σ = 0.0%) executed on ten Million 50-dimensional data objects from UNIFORM
depending on the number of distinct values per dimension; PH-tree is omitted. . 109

5.13 Performance of insert operations on the different data sets depending on the
number of data objects. 110

5.14 Performance of delete operations on the different data sets depending on the
number of data objects. 111

5.15 Execution times of the mixed workload consisting of inserts, deletes, point and
range queries executed in random order (bulk insert is not included). The PH-
tree ran out of memory. The VA-file was excluded, because it does not support
single-tuple inserts. 112

5.16 Performance of the Mixed Workload from GMRQB with an average selectivity
of 1.58% (σ = 3.58%) when applied to ten Million data objects from GENOMIC
depending on the number of used software threads. 113

5.17 Space consumption of the competitors when storing ten Million data objects from
the four data sets used in our evaluation. 114

141

List of Figures

142

List of Tables

2.1 The set of genomic variants used in this thesis consisting of ten Million tuples. . 32
2.2 The query templates of the GMRQB. 34

3.1 Hardware performance counters per range query (10 % range size) on 16 Million
four-byte integer keys. 50

3.2 Hardware performance counters per lookup on 16 Million four-byte integer keys. 53

4.1 Data sets used in our experiments. 68
4.2 Space consumption of the competitors. 77

5.1 Frequently used notations and input parameters. 86
5.2 Data sets used in our experiments. 100
5.3 Time spent on navigation of the IST and scanning of the BB when executing

range queries of varying selectivity on ten Million five-dimensional objects from
UNIFORM. 106

5.4 Performance counters per range query with a selectivity of 1% when applied to
ten Million objects from UNIFORM (five dimensions). 106

5.5 (1) Total execution time of the bulk insert and (2) average, minimum and maxi-
mum execution time of the remaining queries, both read and write operations, of
the mixed workload. 112

143

List of Tables

144

Selbständigkeitserklärung

Hiermit erkläre ich, die Dissertation selbstständig und nur unter Verwendung der angegebe-
nen Hilfen und Hilfsmittel angefertigt zu haben. Ich habe mich nicht anderwärts um einen
Doktorgrad in dem Promotionsfach beworben und besitze keinen entsprechenden Doktorgrad.
Die Promotionsordnung der Mathematisch-Naturwissenschaftlichen Fakultät, veröffentlicht im
Amtlichen Mitteilungsblatt der Humboldt-Universität zu Berlin Nr. 42 am 11. Juli 2018, habe
ich zur Kenntnis genommen.

Berlin, den 29. August 2018 Stefan Sprenger

145

	1 Introduction
	1.1 Motivation
	1.2 Problem Definition and Contributions
	1.3 Outline
	1.4 Prior Publications

	2 Fundamentals
	2.1 Terminology
	2.2 Multidimensional Access Methods
	2.2.1 Sequential Scan
	2.2.2 Point Access Methods (PAM)
	2.2.3 Spatial Access Methods (SAM)

	2.3 Index Structures on Modern Hardware
	2.3.1 Modern Memory Hierarchy
	2.3.2 Single Instruction Multiple Data (SIMD)
	2.3.3 Multi-Core CPUs and Simultaneous Multithreading (SMT)

	2.4 Genomic Multidimensional Range Query Benchmark (GMRQB)
	2.4.1 Range Queries on Genomic Variant Data
	2.4.2 Real-World Data Set
	2.4.3 Realistic Range Query Templates

	3 CSSL: Processing One-Dimensional Range Queries in Main Memory
	3.1 Related Work
	3.2 Conventional Skip Lists
	3.3 Cache-Sensitive Skip Lists (CSSL)
	3.3.1 Memory Layout
	3.3.2 Search Algorithms and Updates

	3.4 Evaluation
	3.4.1 Experimental Setup
	3.4.2 Experimental Data and Workloads
	3.4.3 Range Queries
	3.4.4 Lookups
	3.4.5 Mixed Workloads
	3.4.6 Space Consumption

	3.5 Discussion
	3.6 Summary

	4 An Analysis of Multidimensional Range Queries on Modern Hardware
	4.1 Partitioning for Parallelization
	4.2 Vectorizing Range Queries
	4.3 Conservative Adaptation of Multidimensional Index Structures
	4.4 Evaluation
	4.4.1 Experimental Setup
	4.4.2 Experimental Data and Workloads
	4.4.3 Impact of Multithreading and Vectorization
	4.4.4 Synthetic Data
	4.4.5 Sensor Data from Hi-Tech Manufacturing Equipment
	4.4.6 Genomic Variant Data
	4.4.7 Scalability
	4.4.8 Space Consumption
	4.4.9 Other Evaluation Platform

	4.5 Discussion
	4.6 Summary

	5 BB-Trees: Processing Multidimensional Range Queries in Main Memory
	5.1 Data Organization
	5.2 Bubble Buckets
	5.3 Building and Reorganizing BB-Trees
	5.4 Low-Cardinality Dimensions
	5.5 Search Algorithms
	5.6 Parallel BB-Trees
	5.7 Evaluation
	5.7.1 Experimental Setup
	5.7.2 Experimental Data and Workloads
	5.7.3 Impact of Bubble Bucket Capacities
	5.7.4 Point Queries
	5.7.5 Range Queries
	5.7.6 Impact of Dimensionality
	5.7.7 Low-Cardinality Dimensions
	5.7.8 Insertions and Deletions
	5.7.9 Mixed Read/Write Workloads
	5.7.10 Scalability
	5.7.11 Space Consumption

	5.8 Discussion
	5.9 Summary

	6 Summary and Outlook
	6.1 Summary
	6.2 Outlook

	Appendix A: Genomic Multidimensional Range Query Benchmark

